WO2013021470A1 - 流動層乾燥装置及び流動層乾燥設備 - Google Patents

流動層乾燥装置及び流動層乾燥設備 Download PDF

Info

Publication number
WO2013021470A1
WO2013021470A1 PCT/JP2011/068190 JP2011068190W WO2013021470A1 WO 2013021470 A1 WO2013021470 A1 WO 2013021470A1 JP 2011068190 W JP2011068190 W JP 2011068190W WO 2013021470 A1 WO2013021470 A1 WO 2013021470A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluidized bed
dried
bed drying
fluidized
drying apparatus
Prior art date
Application number
PCT/JP2011/068190
Other languages
English (en)
French (fr)
Inventor
功 鳥居
甘利 猛
有馬 謙一
木下 正昭
大浦 康二
啓介 松尾
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2011/068190 priority Critical patent/WO2013021470A1/ja
Publication of WO2013021470A1 publication Critical patent/WO2013021470A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/06Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried
    • F26B3/08Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed

Definitions

  • the present invention relates to a fluidized bed drying apparatus for drying a material to be dried by fluidizing gas, and more particularly to a fluidized bed drying device and a fluidized bed drying facility capable of taking measures against poor flow of the material to be dried.
  • the coal gasification combined cycle power generation facility is a power generation facility aiming at higher efficiency and higher environmental performance than conventional coal thermal power by gasifying coal and combining it with combined cycle power generation.
  • This coal gasification combined cycle power generation facility has a great merit that it can use coal with abundant resources, and it is known that the merit can be further increased by expanding the applicable coal types.
  • low-grade coal such as lignite and sub-bituminous coal has a large amount of moisture that is brought in, and there is a problem that power generation efficiency decreases due to this moisture. For this reason, it is necessary to dry the low-grade coal to remove moisture.
  • a fluidized bed drying apparatus (fluid dryer and method for drying an object to be dried) described in Patent Document 1 includes a drying chamber which is a dispersible plate having a plurality of openings at the bottom and a lower portion of the drying chamber. And a wind chamber located in That is, this fluidized bed drying apparatus dries while flowing a material to be dried by supplying a fluidizing gas (drying gas) from the wind chamber to the drying chamber via the dispersion plate.
  • JP 2008-89243 A Japanese Patent Laid-Open No. 04-13086 Japanese Patent Laid-Open No. 06-299176
  • the current technology adopts a method of suppressing clogging by introducing purge gas into a place where clogging or adhesion is a concern.
  • a fluidized bed drying apparatus for drying an object to be dried such as lignite has a drying chamber having a perforated plate with a bottom having a large number of openings and a chamber chamber located at the lower portion of the drying chamber. That is, in this fluidized bed drying apparatus, a fluidized gas (drying gas) is supplied from a wind box to a drying chamber through a perforated plate, thereby drying the material to be dried while flowing (Patent Document 2 or 3). ).
  • a mechanical stirring device is provided or the supply amount of fluidized gas at the inlet is adjusted so that the material to be dried does not cause flow failure at the inlet.
  • a method for suppressing the flow failure has been proposed.
  • wear of the stirrer may be a problem, while in the case of adjusting the fluidized gas, the effect may be insufficient. .
  • the present invention provides a fluidized bed drying device and a fluidized bed drying facility capable of promoting good fluidization and promoting fluidization in a fluidized bed drying device when a material to be dried is supplied. This is a second problem.
  • fluidized bed drying apparatuses are widely used for drying powders, but selection of the particle size of an object to be dried is important in order to obtain good drying characteristics. That is, if the particle size of the material to be dried is too large, the surface area of the particles is reduced, so that the amount of heat transfer is reduced and the drying speed is slowed. On the other hand, when the particle size is reduced, there is a problem that the proportion of fine particles that are not sufficiently dried and carry over to the outside of the drying apparatus increases. Therefore, it is necessary to reduce the average particle size reasonably and to secure the surface area necessary for drying, while narrowing the width of the so-called particle size distribution with a small proportion of fine particles.
  • the lignite input portion has a large amount of water, it is essentially difficult to fluidize, and particularly when there are many fine particles, it condenses and further makes fluidization difficult.
  • means for adjusting the particle size and narrowing the width of the particle size distribution include crushing means and classification means, but for powders containing a large amount of water, classification using a sieve is difficult because it causes adhesion and clogging. It is.
  • the present invention provides a fluidized bed drying device and a fluidized bed drying facility capable of promoting good fluidization and promoting fluidization in a fluidized bed drying device when a material to be dried is supplied. This is a third problem.
  • the first invention of the present invention for solving the above-described problem is a fluidized bed drying apparatus for flowing and drying a material to be dried supplied to the drying chamber by supplying a fluidizing gas to the drying chamber.
  • a fluidized bed drying apparatus for flowing and drying a material to be dried supplied to the drying chamber by supplying a fluidizing gas to the drying chamber.
  • a part of the dried product dried in the drying chamber is mixed with a material to be dried supplied to the fluidized bed drying apparatus.
  • the dust is mixed with an object to be dried supplied to the fluidized bed drying device.
  • the fluidized bed drying apparatus is characterized in that.
  • a third invention is the fluidized bed drying according to the first or second invention, wherein the dried material supplied to the fluidized bed drying device is mixed with dry particles of a type different from the dried material. In the device.
  • the 4th invention is provided in the 1st fluidized-bed drying apparatus which dries to-be-dried material with high moisture content, and the said fluidized-bed drying apparatus, supplies superheated steam inside a tubular or plate-shaped inside, and is dried
  • a heat transfer member for removing moisture in the product, a generated steam line for discharging generated steam generated when the material to be dried is dried by the heat transfer member to the outside of the fluidized bed drying device, and the generated steam line.
  • a dust collector that removes dust in the generated steam, a heat recovery system that is interposed downstream of the dust collector in the generated steam line and recovers the heat of the generated steam, and dust from the dust collector.
  • a part of the generated steam from which water is removed is branched and supplied as fluidized steam into the fluidized bed drying apparatus, and a cooler for cooling the material to be dried extracted from the fluidized bed drying apparatus. It is in the fluidized bed drying facility characterized by this.
  • a fluidized bed drying apparatus for flowing and drying a material to be dried supplied to the drying chamber by supplying a fluidizing gas to the drying chamber. Introducing the material to be dried by supplying the material to be dried from above or along the inclined part and supplying the fluidizing gas to the region other than the inclined part from the bottom side. -It is in the fluidized-bed drying apparatus characterized by forming a fluidized bed.
  • a sixth invention is the fluidized bed drying apparatus according to the fifth invention, wherein an inclination angle of the inclined portion is not less than an angle of repose of the particles to be dried and not more than 90 °.
  • the seventh invention is the fluidized bed drying apparatus according to the fifth invention, wherein a supply nozzle for supplying a stirring gas to the inclined portion is provided.
  • An eighth invention is characterized in that, in the fifth invention, a partition wall is provided in the fluidized bed drying apparatus, and the introduction / fluidized bed region of the material to be dried is separated from the dried fluidized bed region on the downstream side. In the fluidized bed drying apparatus.
  • the ninth invention is the fluidized bed drying apparatus according to the eighth invention, characterized in that the amount of fluidized gas in the introduction / fluidized bed region is larger than the amount of gas in the dried fluidized bed region.
  • a tenth aspect of the present invention is a fifth fluidized bed drying device for drying a material to be dried having a high water content, and is provided in the fluidized bed drying device, supplying superheated steam into a tubular or plate-shaped interior to be dried.
  • a heat transfer member for removing moisture in the product, a generated steam line for discharging generated steam generated when the material to be dried is dried by the heat transfer member to the outside of the fluidized bed drying device, and the generated steam line.
  • a dust collector that removes dust in the generated steam, a heat recovery system that is interposed downstream of the dust collector in the generated steam line and recovers the heat of the generated steam, and dust from the dust collector.
  • a part of the generated steam from which water is removed is branched and supplied as fluidized steam into the fluidized bed drying apparatus, and a cooler for cooling the material to be dried extracted from the fluidized bed drying apparatus.
  • An eleventh aspect of the invention is a fluidized bed drying apparatus for supplying a fluidizing gas to a drying chamber to flow and dry the material to be dried supplied to the drying chamber, and crush the material to be dried to a predetermined particle size.
  • the crusher and the fluidized bed drying apparatus were divided into partition walls, supplied with the crushed material to be dried, and fluidized and dried in the first fluidized chamber, and fluidized and dried in the first fluidized chamber.
  • the second flow chamber in which fine particles overflow and further fluidize and dry, and a transport line that transports coarse particles discharged from the first fluid chamber to the crusher side, In a fluidized bed dryer.
  • a twelfth aspect of the invention is the fluidized bed drying according to the eleventh aspect of the invention, wherein the velocity of the fluidizing gas in the first fluidizing chamber is larger than the velocity of the fluidizing gas in the second fluidizing chamber.
  • the thirteenth invention is the fluidized bed drying apparatus according to the eleventh invention, wherein the second fluidized chamber is divided into a plurality of fluidized chambers.
  • a fourteenth aspect of the invention is an eleventh fluidized bed drying device for drying a material to be dried having a high water content, and is provided in the fluidized bed drying device, supplying superheated steam to the inside of a tubular or plate shape to be dried.
  • a heat transfer member for removing moisture in the product, a generated steam line for discharging generated steam generated when the material to be dried is dried by the heat transfer member to the outside of the fluidized bed drying device, and the generated steam line.
  • a dust collector that removes dust in the generated steam, a heat recovery system that is interposed downstream of the dust collector in the generated steam line and recovers the heat of the generated steam, and dust from the dust collector.
  • a part of the generated steam from which water is removed is branched and supplied as fluidized steam into the fluidized bed drying apparatus, and a cooler for cooling the material to be dried extracted from the fluidized bed drying apparatus.
  • a fluidized bed drying facility In a fluidized bed drying facility .
  • adhesion during the supply of the material to be dried can be prevented, and agglomeration can be suppressed and the apparatus operating rate can be improved.
  • good mixing in the fluidized bed dryer can be achieved and fluidization can be promoted. Thereby, even when a material to be dried having a large particle size distribution is supplied, the material to be dried can be satisfactorily dried.
  • FIG. 1 is a schematic diagram showing an example of a fluidized bed drying facility to which a fluidized bed drying apparatus according to Embodiment 1 of the present invention is applied.
  • FIG. 2 is a schematic diagram illustrating an example of fluidized bed drying equipment to which a fluidized bed drying apparatus according to Embodiment 2 of the present invention is applied.
  • FIG. 3 is a schematic diagram illustrating an example of a fluidized bed drying facility to which a fluidized bed drying apparatus according to Embodiment 3 of the present invention is applied.
  • FIG. 4 is a schematic diagram illustrating an example of a fluidized bed drying facility to which a fluidized bed drying apparatus according to Example 4 of the present invention is applied.
  • FIG. 1 is a schematic diagram showing an example of a fluidized bed drying facility to which a fluidized bed drying apparatus according to Embodiment 1 of the present invention is applied.
  • FIG. 2 is a schematic diagram illustrating an example of fluidized bed drying equipment to which a fluidized bed drying apparatus according to Embodiment 2 of the
  • FIG. 5 is a schematic diagram showing an example of a combined coal gasification combined power generation system to which a fluidized bed drying facility is applied.
  • FIG. 6 is a schematic view showing an example of a lignite-fired boiler to which a fluidized bed drying facility is applied.
  • FIG. 7 is a schematic diagram illustrating an example of fluidized bed drying equipment to which a fluidized bed drying apparatus according to Embodiment 5 of the present invention is applied.
  • FIG. 8 is a schematic view showing a fluidized bed drying apparatus according to Example 5 of the present invention.
  • FIG. 9 is a schematic view showing a fluidized bed drying apparatus according to Example 6 of the present invention.
  • FIG. 10 is a schematic view showing a fluidized bed drying apparatus according to Example 7 of the present invention.
  • FIG. 11 is a schematic view showing a fluidized bed drying apparatus according to Example 8 of the present invention.
  • FIG. 1 is a schematic diagram illustrating an example of fluidized bed drying equipment to which a fluidized bed drying apparatus according to the present embodiment is applied.
  • a fluidized bed drying apparatus 100 ⁇ / b> A according to the present embodiment is supplied from a supply hopper 120 and forms a drying chamber for drying lignite 101 which is a material to be dried having a high water content.
  • a heat transfer member (heating means) 103 for supplying superheated steam (for example, 150 ° C. steam) A to the inside of the tube to remove moisture in the lignite 101, and the above described heat transfer.
  • a dust collector 105 for removing dust is interposed on the downstream side of the dust collecting apparatus 105 in generating steam line L 1, the heat recovery system 106 for recovering the steam generated 104 heat, the condenser ChiriSo 105 branches a part of the steam generated 104 dust is removed from a branch line L 2 to be supplied to the fluidized bed dryer 102 as a fluidizing steam 107, drying brown coal withdrawn from the fluidized bed dryer 102 And a cooler 110 that cools 108 to produce product charcoal 109.
  • Reference numeral 116 denotes a rectifying plate that rectifies the fluidized steam 107 that is a fluidized gas.
  • the lignite 101 is introduced into the fluidized bed drying apparatus 102 by the supply hopper 120 via the supply line L 0 and is fluidized by the fluidized steam 107 separately introduced into the fluidized bed drying apparatus 102.
  • the fluidized bed 111 is formed.
  • a part of the dry lignite 108 cooled by the cooler 110 is supplied on the supply hopper 120 side.
  • the introduction line L 5 for connecting to a supply line L 0 supplies the lignite 101 provided, and to supply a portion of the cooled dried brown coal 108. Therefore, a part of the dry lignite 108 is supplied to the lignite 101 supplied from the supply hopper 120 and mixed by the introduction line L 5 , so 1) the powder at the inlet of the powder supply system and the fluidized bed drying apparatus 102 The effect of suppressing body adhesion and agglomeration can be exerted, and 2) the operation rate of the fluidized bed drying apparatus 102 can be improved.
  • the supply line L 0 from the supply hopper 120 is connected to the introduction line L 5 for supplying dry lignite, but the present invention is not limited to this, and the drying is also performed in the supply hopper. Brown coal 108 may be introduced.
  • the heat transfer member 103 described above is disposed in the fluidized bed 111.
  • 150 ° C. superheated steam A is supplied, and the lignite 101 is dried indirectly using the latent heat of the high temperature superheated steam A.
  • the superheated steam A used for drying is discharged to the outside of the fluidized bed drying apparatus 102 as, for example, 150 ° C. condensed water B.
  • the superheated steam A condenses into a liquid (moisture), so the condensed latent heat dissipated at this time is effectively used for heating the drying of the lignite 101.
  • Any heating medium other than the high-temperature superheated steam A may be used as long as it is accompanied by a phase change. Examples thereof include Freon, pentane, and ammonia.
  • an electric heater may be installed.
  • the generated steam 104 after being collected by the dust collector 105 is, for example, steam at 105 to 110 ° C., so that it is recovered by the heat recovery system 106 and then processed by the water treatment unit 112 and drained 113. Is discharged to the outside of the fluidized bed drying facility 100A.
  • the generated steam 104 after being collected by the dust collector 105 may be applied to, for example, a heat exchanger, a steam turbine, or the like to effectively use the heat.
  • a fluidizing medium for fluidizing the fluidized bed 111 a part of the generated steam 104 is reused.
  • the fluidizing medium is not limited to this. For example, nitrogen, carbon dioxide, or a low oxygen concentration containing these gases is used. Air may be used.
  • the fluidized bed drying apparatus 102 described above exemplifies a tube-shaped heat transfer member as the heat transfer member 103, but the present invention is not limited to this, for example, a plate-shaped heat transfer member May be used.
  • a plate-shaped heat transfer member May be used.
  • the structure which supplies superheated steam A to the heat-transfer member 103 and dries the lignite 101 indirectly was demonstrated, not only this but the lignite 101 is made into fluidized steam 107 which makes the fluidized bed 111 of the lignite 101 flow. It is good also as a structure dried directly by supplying the fluidizing gas for heating further, and drying.
  • brown coal 101 was illustrated as a to-be-dried material, if it has a high water content, low-grade coal containing subbituminous coal or the like, or a to-be-dried material such as sludge may be the drying target.
  • FIG. 2 is a schematic diagram illustrating an example of fluidized bed drying equipment to which the fluidized bed drying apparatus according to the present embodiment is applied.
  • the fluidized bed drying facility 100 ⁇ / b> B according to the present embodiment is provided with a dry lignite supply hopper 121 that stores the dried lignite 108 and circulates a part of the dry lignite 108 to the supply hopper 120. It is what I did.
  • a moisture meter 122 that measures the amount of moisture in the supply hopper 120 is provided in order to control the amount of dry powder to be mixed according to the amount of moisture in the received powder.
  • the moisture meter 122 measures the amount of moisture in the supply hopper 120 and adjusts the amount of dry lignite 108 supplied in accordance with the moisture ratio.
  • the dry lignite 108 previously dried is used to make the supply system dry and to form a fluidized bed.
  • FIG. 3 is a schematic diagram illustrating an example of fluidized bed drying equipment to which the fluidized bed drying apparatus according to the present embodiment is applied.
  • the fluidized bed drying equipment 100C according to this embodiment is provided, in a fluidized bed drying equipment 100A according to the first embodiment, the solid component 115 of the dust separated in the dust collector 105 by the separation line L 3
  • the hopper 120 is supplied. Thereby, you may make it take the adhesion countermeasure of the supply system of the lignite 101 which is to-be-dried material.
  • the solid component 115 is supplied by the supply hopper 120.
  • the same operation may be performed in the drying facility of the second embodiment to take measures for adhesion of the supply system. .
  • FIG. 4 is a schematic diagram illustrating an example of fluidized bed drying equipment to which the fluidized bed drying apparatus according to the present embodiment is applied.
  • the fluidized bed drying facility 100D according to the present embodiment additionally prepares dry particles 123 of a different type from the material to be dried in the fluidized bed drying facility 100B according to the second embodiment. Is supplied from the supply hopper 120 to the supply hopper 120 side by the dry particle supply hopper 124 via the supply line L 6 . Thereby, you may make it take the countermeasure of adhesion of a supply system
  • the dry particles 123 are supplied.
  • the same operation may be performed in the drying facility of the second or third embodiment to take measures for adhesion of the supply system.
  • FIG. 5 is a schematic diagram showing an example of a combined coal gasification combined power generation system to which the fluidized bed drying facility 100A shown in FIG. 1 is applied.
  • the coal gasification combined power generation system 200 treats pulverized coal 201 a pulverized by a mill 210 with a product coal (dry lignite) 109 as a fuel and converts it into gasification gas 202.
  • a furnace 203 a gas turbine (GT) 204 operated using the gasified gas 202 as a fuel, and a heat recovery steam generator (HRSG) 206 for introducing a turbine exhaust gas 205 from the gas turbine 204
  • the steam turbine (ST) 208 operated by the steam 207 and the generator (G) 209 connected to the gas turbine 204 and / or the steam turbine 208 are provided.
  • product coal 109 dried using the fluidized bed drying equipment 100 (100A to 100D) according to the present embodiment shown in the first to fourth embodiments is used.
  • the combined coal gasification combined power generation system 200 gasifies pulverized coal 201a pulverized by a mill 210 in a coal gasification furnace 203 to obtain a gasification gas 202 which is a generated gas.
  • the gasified gas 202 is dust-removed and gas-purified by a cyclone 211 and a gas purifier 212, and then supplied to a combustor 213 of a gas turbine 204, which is a power generation means. Is generated.
  • the gas turbine 204 is driven by the combustion gas 214.
  • the gas turbine 204 is connected to a generator 209, and the generator 209 generates electric power when the gas turbine 204 is driven.
  • the turbine exhaust gas 205 after driving the gas turbine 204 still has a temperature of about 500 to 600 ° C., it is sent to an exhaust heat recovery boiler (HRSG) 206, where thermal energy is recovered.
  • HRSG exhaust heat recovery boiler
  • steam 207 is generated by the thermal energy of the turbine exhaust gas 205, and the steam turbine 208 is driven by the steam 207.
  • the exhaust gas 215 from which heat energy has been recovered by the exhaust heat recovery boiler (HRSG) 206 is released into the atmosphere via the chimney 217 after the NOx and SOx components in the exhaust gas 215 are removed by the gas purification device 216.
  • reference numeral 218 denotes a condenser
  • 219 denotes air
  • 220 denotes a compressor
  • 221 denotes an air separation device (ASU) that separates air into nitrogen (N 2 ) and oxygen (O 2 ).
  • ASU air separation device
  • this coal gasification combined cycle power generation system 200 even when gasifying using lignite 101 having a high moisture content, since the lignite 101 is dried by the efficient fluidized bed drying apparatus 102, the gasification efficiency is high.
  • the power generation can be improved stably over a long period of time.
  • the efficiency of the coal-fired power plant which has been about 40% in the past, can be improved to about 46% by combining the gas turbine and the steam turbine.
  • CO 2 emissions can be reduced by about 13% compared to conventional coal fired boilers.
  • the power generation system using the product coal 109 dried by the fluidized bed drying facility 100 is not limited to the coal gasification combined power generation system 200 described above.
  • a brown coal cooking boiler that supplies product charcoal 109 dried in the fluidized bed drying facility 100 to a boiler furnace, drives a steam turbine with steam generated in the boiler furnace, and obtains output by a generator. May be a power generation system.
  • FIG. 6 is a schematic view showing an example of a lignite-fired boiler to which the fluidized bed drying equipment 100 (100A to 100D) shown in Examples 1 to 4 is applied.
  • a furnace 151 installed in the vertical direction, a combustion device 152 installed in the lower part of the furnace wall of the furnace 151, and a flue 153 connected to the outlet of the furnace 151, A plurality of superheaters 154 provided in the flue 153, a economizer 155, an induction fan 156 provided on the downstream side of the flue 153, and a chimney 157 are provided.
  • the combustion device 152 includes a plurality of pulverized coal burners 158 attached to the furnace wall, an impact pulverizer 159 that converts pulverized coal to be supplied to the pulverized coal burner 158, and secondary air as combustion air to the pulverized coal burner 158. And air supply means 160 for supplying (air).
  • the impact type pulverizer 159 pulverizes the supplied lignite 101 into pulverized coal having a size suitable for combustion (for example, several ⁇ m to several hundred ⁇ m). A part of the combustion gas 161 is introduced and dried and pulverized.
  • the impact type pulverizer 159 is supplied with product charcoal 109 previously dried by the fluidized bed drying equipment 100 described above.
  • a push ventilator (air supply device) 162 that pressurizes and supplies air
  • an air box 163 provided on the outer wall of the furnace 151, and air that connects the push ventilator 162 and the air box 163.
  • a tube 164 is provided.
  • a regenerative heat exchanger 160a is installed across the air pipe 164 and the flue 153 so as to exchange heat between the secondary air (air) and the combustion gas.
  • the turbine equipment 165 is provided with a plurality of turbines (for example, high-pressure / medium-pressure / low-pressure turbines).
  • the high-pressure turbine expands superheated steam introduced from the superheater 154 and converts it into rotational energy, and supplies exhaust steam to the primary reheater.
  • heated steam reheated by the primary reheater and the secondary reheater is introduced from the secondary reheater, and is expanded and converted into rotational energy.
  • the low-pressure turbine introduces the exhaust steam of the intermediate-pressure turbine and further expands it to convert it into rotational energy.
  • the rotational energy converted by the high-pressure turbine, the intermediate-pressure turbine, and the low-pressure turbine is transmitted to the generator G connected by the shaft to generate electric power.
  • the exhaust steam that has finished work in the low-pressure turbine is sent to the condenser 166, where it is condensed and returned to water.
  • the water condensed in the condenser 166 is sent to the economizer 155 through the water supply line 167.
  • the water supply line 167 is provided with a condensate pump, a deaerator, a water supply pump water heater, etc. (not shown).
  • the operation of the lignite-fired boiler 150 described above will be described.
  • the lignite 101 supplied from the lignite bunker (not shown) is dried by the fluidized bed drying equipment 100 to remove moisture, and then dried and pulverized by the impact gas pulverizer 159 with the combustion gas 161 of about 1,000 ° C. It is pulverized into pulverized coal of a size suitable for. Thereafter, the pulverized coal that has been pulverized is mixed with pressurized carrier air to form a pulverized coal mixture, and is sent to the pulverized coal burner 158 through a coal supply pipe.
  • the secondary air pressurized and supplied by the forced air blower 162 is supplied with heat from the combustion gas by the rotary regenerative heat exchanger 160 a, heated up, and supplied to the wind box 163 through the air pipe 164.
  • the secondary air is sent from the wind box 163 to the pulverized coal burner 158.
  • a pulverized coal mixture and secondary air are supplied from the pulverized coal burner 158 into the furnace 151, and when ignited, a flame is generated in the furnace.
  • the combustion gas flows from the bottom to the top in the furnace 151 and is discharged to the flue 153.
  • the water supplied from the water supply pump is preheated by the economizer 155 and then supplied to the water wall pipe.
  • the water supplied to the water wall pipe is heated by the combustion gas while flowing through the water wall pipe from the bottom to the superheated steam, and is sent to the superheater 154.
  • the superheated steam sent to the primary superheater is then sequentially introduced into the secondary superheater, the tertiary superheater, and the fourth superheater, and is superheated by the combustion gas 161.
  • Superheated steam generated by the fourth superheater is supplied to the high-pressure turbine of the turbine equipment 165.
  • the exhaust steam expanded and worked in the high-pressure turbine is introduced into the primary reheater and then into the secondary reheater, where it is superheated again by the combustion gas.
  • the superheated steam superheated by the secondary reheater is supplied to the intermediate pressure turbine.
  • the steam that has expanded and worked in the medium pressure turbine is supplied to the low pressure turbine. Rotational energy generated by the expansion of steam in the high-pressure turbine, intermediate-pressure turbine, and low-pressure turbine is transmitted to the generator G connected by the shaft to generate electric power.
  • the exhaust steam that has finished its work in the low-pressure turbine is sent to the condenser 160 where it is condensed and returned to the water.
  • the water condensed in the condenser 160 passes through the water supply line 167 and is sent to the economizer 155 by the water supply pump.
  • the combustion gas that has passed through the economizer 155 supplies heat to the secondary air that passes through the air pipe 164 in the rotary regenerative heat exchanger 160a, and is subjected to purification treatment such as desulfurization, denitration, and dust removal. , Discharged from the chimney 157 into the atmosphere.
  • the lignite 101 is dried by the efficient fluidized bed drying device 102.
  • the conventional high-temperature (1,000 ° C.) combustion gas is not necessary for the heat source, and the lower-temperature (200 to 300 ° C.) combustion gas is sufficient, and from the steam generated in the fluidized bed drying apparatus 102
  • energy efficiency can be improved, and stable and efficient power generation can be performed over a long period of time.
  • FIG. 7 is a schematic diagram illustrating an example of fluidized bed drying equipment to which a fluidized bed drying apparatus according to Embodiment 5 of the present invention is applied.
  • the fluidized bed drying facility 100E including the fluidized bed drying apparatus according to the present embodiment is on the supply port side (left side in the figure) of the lignite 101 of the fluidized bed drying apparatus 102, and on the bottom side wall surface.
  • An inclined portion 130 having an inclination angle ( ⁇ ) is formed.
  • the fluidized bed drying equipment 100E with a fluidized layer drying apparatus from the fluidized bed drying equipment 100A according to the first embodiment, the introduction line L 5 for introducing a portion of the dry brown coal 108 to feed hopper 120 It has been deleted.
  • the other structure is the same as that of the fluidized bed drying equipment 100A which concerns on Example 1, it abbreviate
  • the contents of the inclined portion 130 according to the present embodiment will be described.
  • FIG. 8 is a detailed view of the fluidized bed drying apparatus according to the fifth embodiment.
  • the fluidized bed drying apparatus 102 ⁇ / b> A is a fluidized bed drying apparatus that dries a granular material such as lignite 101 having high moisture, high adhesion, and high condensability.
  • the lignite 101 is supplied from the upper part of this inclination part 130 or along this inclination part 130. As shown in FIG.
  • the inclined portion 130 to which the lignite 101 is supplied is not supplied with the fluidized steam 107 which is a fluidized gas, and is provided on the bottom side after the lignite 101 flows down along the inclined portion 130 to the bottom side. From the rectifying plate 116, fluidized vapors 107a and 107b, which are fluidized gases, are supplied and fluidized.
  • the gas supply amount of the fluidized steam 107a in the introduction / fluidized bed zone X in the vicinity of the inclined portion 130 where the lignite 101 flows down, and the fluidized steam in the other dry fluidized bed zone Y are used.
  • the fluidization of the lignite 101 in the introduction / fluidized bed zone X may be promoted by increasing the amount of gas compared to the amount of gas 107b.
  • the supplied lignite 101 is mixed with the surrounding granular material, and the fluidized bed along the inclined portion 130. It moves to the bottom part of 111, and it fluidizes, mixing with the granular material which the surrounding drying advanced again by the upward flow from the fluidization vapor
  • the provision of the inclined portion 130 makes it possible to improve the lignite 101, which is an object to be dried, having high moisture supplied into the fluidized bed drying apparatus 102A and having high adhesion and condensation properties. Smooth mixing and fluidization can be promoted. Therefore, even when lignite 101 with high adhesion is supplied, poor flow due to adhesion and aggregation can be prevented.
  • the inlet portion 102a for supplying the lignite 101 is formed on the side wall 102b.
  • the present invention is not limited to this, and the inlet portion is formed on the top portion 102c side. Also good.
  • the heat-transfer member as shown in FIG. 1 is abbreviate
  • FIG. 9 is a schematic view showing a fluidized bed drying apparatus according to Example 6 of the present invention.
  • the fluidized bed drying apparatus 102B according to the sixth embodiment jets the stirring gas 131 laterally into the fluidized bed 111 at the inclined portion 130 on the inlet section 102a side of the fluidized bed drying apparatus 102B.
  • a supply nozzle 132 is provided.
  • the supply nozzle 132 is preferably installed at a location near the bottom of the fluidized bed 111 because fluidization is promoted.
  • the installation direction of the supply nozzle 132 is preferably horizontal or slightly downward from the horizontal, so that stirring with the fluidized steam 107 from the bottom side is performed and fluidization is promoted.
  • FIG. 10 is a schematic view showing a fluidized bed drying apparatus according to Example 7 of the present invention.
  • the fluidized bed drying apparatus 102 ⁇ / b> C according to the seventh embodiment is provided with partition walls 133 having gaps 132 a and 132 b above and below in the fluidized bed 111.
  • the dry fluidized bed region Y on the flow side is separated.
  • the gap portion is provided above and below, but in order to make it easier to move the dry coal on the downstream side to the introduction portion of the material to be dried and mix it, at least a gap is formed at the lower portion of the partition wall. It is desirable to provide.
  • the amount of fluidized steam 107a in the introduction / fluidized bed zone X is made larger than the amount of fluidized steam 107b in the dry fluidized bed zone Y on the downstream side.
  • the supplied lignite 101 moves to the bottom side of the fluidized bed 111 along the inclined portion 130 while being mixed with the surrounding granular powder that has been dried.
  • it passes through the upper and lower gaps 132a, 132b of the partition wall 133 and moves to the dry fluidized bed region Y side on the downstream side, and fluidization for drying is performed. I try to do it enough. Thereby, drying of lignite progresses favorably and the further improvement of drying efficiency can be aimed at.
  • a fluidized bed drying apparatus according to Example 8 of the present invention will be described with reference to FIG. It is the schematic which shows the fluidized bed drying apparatus which concerns on Example 8 of this invention.
  • the fluidized bed drying apparatus 102D uses fluidized bed drying in which a material to be dried supplied to the drying chamber is fluidized and dried by supplying a fluidizing gas to the drying chamber.
  • the material to be dried (brown coal) 101 is crushed to a predetermined particle size (average particle size of about several mm), and the fluidized bed drying device 102 is divided by a partition wall 141 and crushed to be dried.
  • the first flow chamber 142A for supplying the product 101 to start flow / drying, and the fine particles 144 flown / dried in the first flow chamber 142A overflow into the partition wall 141, and further flow / dry
  • the second flow chamber 142B to be performed and the transfer line L 7 such as a belt conveyor for transferring the coarse particles 143 discharged from the first flow chamber 142A to the crusher 140 side are provided.
  • the speed (superficial velocity) of the fluidized steam 107A in the first fluidization chamber 142A is made larger than the speed (superficial velocity) of the fluidized steam 107B in the second fluidization chamber 142B.
  • the fluidized bed drying apparatus 102 is divided into a first fluidized chamber 142A and a second fluidized chamber 142B, and the first fluidized chamber 142A for supplying the brown coal 101 is caused to function as a fluidized bed classifier and a preliminary drying chamber. ing. Then, the coarse particles 143 dried in the first fluid chamber 132A are selected, extracted by an extraction means (not shown), sent to the crusher 140 side via the transfer line L 7 and mixed with the wet lignite 101. After crushing, the fluidized bed drying apparatus 102 is supplied again.
  • lignite 101 is supplied to the crusher 140 and crushed.
  • the average particle diameter of the crushed lignite 101 is larger than the required particle diameter of the dried lignite 108 after drying at the outlet of the crusher 140.
  • the crushing with the crusher 140 may be crushed to an average particle size of 4 mm.
  • Lignite 101 which are crushed to a predetermined particle size by a supply line L 0, and supplies the first hydraulic chamber 142A of the fluidized bed dryer 102.
  • the gas velocity in the first fluid chamber 142A is preferably higher than the velocity at which the layer of wet lignite 101 can be fluidized. In this embodiment, the flow velocity is about 1 m / s, but is not limited to this.
  • the fine particles 144 that have been initially dried get over the upper part of the partition wall 141 that separates the first fluid chamber 142A and the second fluid chamber 142B, and overflow to the second fluid chamber 142B side.
  • the coarse particles 143 settle to the bottom of the first fluid chamber 142A and are discharged out of the fluidized bed drying apparatus 102 by a dispensing means (not shown).
  • the discharged coarse particles 143 are sent to the crusher 140 side by the conveying line L 7 and are pulverized again here.
  • the crushed coarse particles 143 are mixed with raw coal and then supplied again into the fluidized bed drying apparatus 102.
  • the fluidizing gas in the first fluid chamber 142A and the second fluid chamber 142B uses fluidized steam in the present embodiment, but is not limited thereto, and may be another fluidizing gas.
  • the first fluid chamber 142A functions as a fluidized bed classifier, and only the coarse particles 143 can be selected and crushed, so that the width of the particle size distribution can be reduced. As a result, excessive generation of fine particles can be prevented, and carryover is reduced.
  • the particle size of the lignite 101 in the first fluidization chamber 142A is larger than the particle size of the lignite 101 in the second fluidization chamber 142B and is difficult to fluidize, but increases the speed of the fluidized steam 107A that is a fluidized gas. This ensures a good fluid state.
  • the particle size is large, even if the gas velocity of the fluidized steam 107A is increased, the carry-over as in the conventional case does not increase.
  • the lignite 101 can be well mixed in the fluidized bed drying apparatus 102 and fluidization can be promoted. Thereby, even when brown coal 101 having a large particle size distribution is supplied, good drying can be performed.
  • Examples 5 to 9 it is possible to take measures to promote good fluidization and promote fluidization in the fluidized bed drying apparatuses 102A to 102D.
  • the example applied to the fluidized bed drying apparatus 100E shown in FIG. 7 has been described.
  • the present invention is not limited to this, and the flow according to Examples 1 to 4 shown in FIGS.
  • the layer drying facilities 100A to 100D they may be applied in combination with each other.
  • the fluidized bed drying facility to which the fluidized bed drying apparatus according to the fifth to ninth embodiments is applied to, for example, a coal gasification combined cycle (Integrated Coal Gasification Combined Cycle: IGCC) system shown in FIG.
  • IGCC Integrated Coal Gasification Combined Cycle
  • fluidized bed drying equipment to which the fluidized bed drying apparatus according to Examples 5 to 8 is applied, for example, to a lignite-fired boiler shown in FIG. 6, stable and efficient power generation over a long period of time. It can be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

 流動層乾燥装置102に供給する被乾燥物である褐炭101を供給する際に、前記乾燥室内で乾燥した乾燥褐炭108の一部を供給ホッパ120に導入する導入ラインL5により、乾燥褐炭108を供給するので、粉体供給系、流動層乾燥装置102の入口部における粉体付着性、アグロメ性の抑制効果を発揮でき、流動層乾燥装置102の装置稼働率の向上を図ることができる。また、従来のような供給ラインに設けるパージ設備の低減を図り、供給系統の簡素化、パージ運用費の大幅な低減を図ることができる。

Description

流動層乾燥装置及び流動層乾燥設備
 本発明は、流動化ガスにより被乾燥物を流動させつつ乾燥させる流動層乾燥装置に関し、特に、被乾燥物の流動不良に対策を講じることのできる流動層乾燥装置及び流動層乾燥設備に関する。
 例えば、石炭ガス化複合発電設備は、石炭をガス化し、コンバインドサイクル発電と組み合わせることにより、従来型の石炭火力に比べ、さらなる高効率化・高環境性を目指した発電設備である。この石炭ガス化複合発電設備は、資源量が豊富な石炭を利用可能であることも大きなメリットであり、適用炭種を拡大することにより、さらにメリットが大きくなることが知られている。ところが、褐炭や亜瀝青炭等の低品位炭は、持ち込まれる水分が多く、この水分により発電効率が低下する問題がある。このため、低品位炭を乾燥させて水分を除去する必要がある。
 従来、例えば、特許文献1に記載の流動層乾燥装置(流動乾燥機および被乾燥物の乾燥方法)は、底部が多数の開孔を有する通気可能な分散板である乾燥室と、乾燥室下部に位置する風室とを備えている。すなわち、この流動層乾燥装置は、流動化ガス(乾燥用気体)を風室から分散板を介して乾燥室に供給することによって被乾燥物を流動させつつ乾燥させる。
特開2008-89243号公報 特開平04-13086号公報 特開平06-299176号公報
 特許文献1に記載の流動層乾燥装置において、流動層乾燥装置に高水分の被乾燥物である粉体を適用する場合、粉体の供給系における供給管への付着・滞留および、乾燥炉入口部におけるアグロメ(流動不良)が発生する可能性がある。
 この対策として、現状の技術では、閉塞、付着が懸念される箇所にパージガスを導入して、閉塞を抑制する方法等が採用されている。
 しかしながら、付着が特に懸念される被乾燥物である粉体を適用する場合には、パージガスを多くの箇所に設置する必要があり、配管設計が複雑となり、設備コスト、運用コストが増加する、という問題がある。
 そこで、被乾燥物である粉体の供給系における付着・滞留や流動不良を防止すると共に、配管設計が簡易であり、設備コスト及び運用コストの低廉化をはかることができる対策を施すことが切望されている。
 本発明は、前記問題に鑑み、被乾燥物の供給の際に、簡易な構成で付着防止等を図ることのできる流動層乾燥装置及び流動層乾燥設備を提供することを第1の課題とする。
 また、褐炭等の被乾燥物を乾燥する流動層乾燥装置は、底部が多数の開孔を有する通気可能な多孔板を有する乾燥室と、乾燥室下部に位置するチャンバ室とを備えている。すなわち、この流動層乾燥装置は、流動化ガス(乾燥用気体)を風箱から多孔板を介して乾燥室に供給することによって被乾燥物を流動させつつ乾燥させている(特許文献2又は3)。
 特許文献2又は3に記載の流動層乾燥装置において、被乾燥物が入口部で流動不良の原因とならないように、機械的な攪拌装置を設けたり、入口部分の流動化ガスの供給量を調整したりすることにより、流動不良を抑制する方法等が提案されている。しかしながら、機械的な攪拌装置の場合には、攪拌装置の摩耗が問題となる可能性があり、一方、流動化ガスの調整を行うような場合では、その効果が不十分となる可能性がある。
 そこで、このような対策を講ずることなく、流動層乾燥装置内での良好な混合を図り、流動化を促進することのできる対策を施すことが切望されている。
 本発明は、前記問題に鑑み、被乾燥物を供給した際に、流動層乾燥装置内での良好な混合を図り、流動化を促進することのできる流動層乾燥装置及び流動層乾燥設備を提供することを第2の課題とする。
 また、流動層乾燥装置は粉体の乾燥用として広く用いられているが、良好な乾燥特性を得るためには被乾燥物の粒径の選定が重要である。
 すなわち被乾燥物の粒径が大きすぎると粒子の表面積が小さくなるため熱伝達量が減少し乾燥速度が遅くなる。一方、その粒子径を小さくすると十分に乾燥されずに乾燥装置外にキャリーオーバーされてしまう微粒子の割合が増加するという問題がある。
 従って、平均粒径はそこそこに小さくし、乾燥のために必要な表面積を確保しつつ、一方では微粒子の割合が少ない、いわゆる粒度分布の幅を狭くすることが必要である。
 ところで、被乾燥物である褐炭は軟らかいために、破砕の過程等で微粒子が生成されやすく、粒度分布の幅も広いという問題があり、流動層乾燥には本来は適さないものである。
 また、褐炭投入部は水分が多いため本質的に流動化しにくく、特に微粒が多い場合には凝結し、更に流動化が困難となる、という問題がある。
 粒径を調整し、粒度分布の幅を狭くする手段としては、例えば破砕手段と分級手段とが挙げられるが、水分を多く含む粉粒体については篩による分級手段は付着・詰まりを生じるため困難である。
 そこで、このような対策を講ずることなく、流動層乾燥装置内での良好な混合を図り、流動化及び乾燥を促進することのできる対策を施すことが切望されている。
 本発明は、前記問題に鑑み、被乾燥物を供給した際に、流動層乾燥装置内での良好な混合を図り、流動化を促進することのできる流動層乾燥装置及び流動層乾燥設備を提供することを第3の課題とする。
 上述した課題を解決するための本発明の第1の発明は、乾燥室に流動化ガスを供給することで前記乾燥室に供給された被乾燥物を流動させて乾燥させる流動層乾燥装置において、前記乾燥室内で乾燥した乾燥物の一部を、流動層乾燥装置に供給する被乾燥物に混合してなることを特徴とする流動層乾燥装置にある。
 第2の発明は、第1の発明において、前記流動層乾燥装置から排出される発生ガス中に混入する粉塵を分離した後、該粉塵を流動層乾燥装置に供給する被乾燥物に混合してなることを特徴とする流動層乾燥装置にある。
 第3の発明は、第1又は2の発明において、前記流動層乾燥装置に供給する被乾燥物に、被乾燥物とは異なる種類の乾燥粒子を混合してなることを特徴とする流動層乾燥装置にある。
 第4の発明は、水分含量が高い被乾燥物を乾燥する第1の流動層乾燥装置と、前記流動層乾燥装置内に設けられ、管状又は板状の内部に過熱蒸気を供給して被乾燥物中の水分を除去する伝熱部材と、前記伝熱部材によって被乾燥物が乾燥される際に発生する発生蒸気を流動層乾燥装置の外部に排出する発生蒸気ラインと、前記発生蒸気ラインに介装され、発生蒸気中の粉塵を除去する集塵装置と、発生蒸気ラインにおける集塵装置の下流側に介装され、発生蒸気の熱を回収する熱回収システムと、前記集塵装置から粉塵が除去された発生蒸気の一部を分岐し、流動化蒸気として流動層乾燥装置内に供給する分岐ラインと、前記流動層乾燥装置から抜き出された被乾燥物を冷却する冷却器とを備えることを特徴とする流動層乾燥設備にある。
 第5の発明は、乾燥室に流動化ガスを供給することで前記乾燥室に供給された被乾燥物を流動させて乾燥させる流動層乾燥装置において、前記被乾燥物の供給口側の底部側壁面を傾斜部とすると共に、該傾斜部の上方から又は傾斜部に沿って被乾燥物を供給し、且つ前記傾斜部以外の領域に流動化ガスを底部側から供給し、被乾燥物の導入・流動層を形成することを特徴とする流動層乾燥装置にある。
 第6の発明は、第5の発明において、前記傾斜部の傾斜角度は、被乾燥物粒子の安息角以上90°以下とすることを特徴とする流動層乾燥装置にある。
 第7の発明は、第5の発明において、前記傾斜部に撹拌用ガスを供給する供給ノズルを設けることを特徴とする流動層乾燥装置にある。
 第8の発明は、第5の発明において、前記流動層乾燥装置内に隔壁を設け、被乾燥物の導入・流動層域と後流側の乾燥流動層域とを分離してなることを特徴とする流動層乾燥装置にある。
 第9の発明は、第8の発明において、前記導入・流動層域の流動化ガス量を乾燥流動層域のガス量と較べて大きくしてなることを特徴とする流動層乾燥装置にある。
 第10の発明は、水分含量が高い被乾燥物を乾燥する第5の流動層乾燥装置と、前記流動層乾燥装置内に設けられ、管状又は板状の内部に過熱蒸気を供給して被乾燥物中の水分を除去する伝熱部材と、前記伝熱部材によって被乾燥物が乾燥される際に発生する発生蒸気を流動層乾燥装置の外部に排出する発生蒸気ラインと、前記発生蒸気ラインに介装され、発生蒸気中の粉塵を除去する集塵装置と、発生蒸気ラインにおける集塵装置の下流側に介装され、発生蒸気の熱を回収する熱回収システムと、前記集塵装置から粉塵が除去された発生蒸気の一部を分岐し、流動化蒸気として流動層乾燥装置内に供給する分岐ラインと、前記流動層乾燥装置から抜き出された被乾燥物を冷却する冷却器とを備えることを特徴とする流動層乾燥設備にある。
 第11の発明は、乾燥室に流動化ガスを供給することで前記乾燥室に供給された被乾燥物を流動させて乾燥させる流動層乾燥装置において、前記被乾燥物を所定粒径まで破砕する破砕機と、前記流動層乾燥装置内を隔壁で分割し、破砕された被乾燥物を供給して、流動・乾燥化を開始させる第一流動室と、第一流動室で流動・乾燥された微細粒子がオーバーフローして、さらに流動・乾燥化を行う第二流動室と、第一流動室から払い出された粗大粒子を、前記破砕機側へ搬送する搬送ラインとを具備することを特徴とする流動層乾燥装置にある。
 第12の発明は、第11の発明において、前記第一流動室内の流動化ガスの速度を、第二流動室内の流動化ガスの速度と較べて大きくしてなることを特徴とする流動層乾燥装置にある。
 第13の発明は、第11の発明において、前記第二流動室内を複数の流動室に分割してなることを特徴とする流動層乾燥装置にある。
 第14の発明は、水分含量が高い被乾燥物を乾燥する第11の流動層乾燥装置と、前記流動層乾燥装置内に設けられ、管状又は板状の内部に過熱蒸気を供給して被乾燥物中の水分を除去する伝熱部材と、前記伝熱部材によって被乾燥物が乾燥される際に発生する発生蒸気を流動層乾燥装置の外部に排出する発生蒸気ラインと、前記発生蒸気ラインに介装され、発生蒸気中の粉塵を除去する集塵装置と、発生蒸気ラインにおける集塵装置の下流側に介装され、発生蒸気の熱を回収する熱回収システムと、前記集塵装置から粉塵が除去された発生蒸気の一部を分岐し、流動化蒸気として流動層乾燥装置内に供給する分岐ラインと、前記流動層乾燥装置から抜き出された被乾燥物を冷却する冷却器とを備えることを特徴とする流動層乾燥設備にある。
 本発明の流動層乾燥装置によれば、被乾燥物の供給の際に付着が防止され、アグロメ性の抑制、装置稼働率の向上を図ることができる。
 また、流動層乾燥装置内での良好な混合を図り、流動化を促進することができる。これにより付着性の高い被乾燥物を供給した場合においても、被乾燥物の付着、凝集による流動不良を防止することができる。
 また、流動層乾燥装置内での良好な混合を図り、流動化を促進することができる。これにより粒度分布が大きい被乾燥物を供給した場合においても、被乾燥物の良好な乾燥を行うことができる。
図1は、本発明の実施例1に係る流動層乾燥装置を適用した流動層乾燥設備の一例を示す概略図である。 図2は、本発明の実施例2に係る流動層乾燥装置を適用した流動層乾燥設備の一例を示す概略図である。 図3は、本発明の実施例3に係る流動層乾燥装置を適用した流動層乾燥設備の一例を示す概略図である。 図4は、本発明の実施例4に係る流動層乾燥装置を適用した流動層乾燥設備の一例を示す概略図である。 図5は、流動層乾燥設備を適用した石炭ガス化複合発電システムの一例を示す概略図である。 図6は、流動層乾燥設備を適用した褐炭焚きボイラの一例を示す概略図である。 図7は、本発明の実施例5に係る流動層乾燥装置を適用した流動層乾燥設備の一例を示す概略図である。 図8は、本発明の実施例5に係る流動層乾燥装置を示す概略図である。 図9は、本発明の実施例6に係る流動層乾燥装置を示す概略図である。 図10は、本発明の実施例7に係る流動層乾燥装置を示す概略図である。 図11は、本発明の実施例8に係る流動層乾燥装置を示す概略図である。
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
 本発明の実施例1について、図面を参照して説明する。図1は、本実施例に係る流動層乾燥装置を適用した流動層乾燥設備の一例を示す概略図である。
 図1に示すように、本実施例に係る流動層乾燥設備100Aは、供給ホッパ120から供給され、水分含量が高い被乾燥物である褐炭101を乾燥する乾燥室を形成する流動層乾燥装置102と、流動層乾燥装置102内に設けられ、管状の内部に過熱蒸気(例えば150℃の蒸気)Aを供給して褐炭101中の水分を除去する伝熱部材(加熱手段)103と、前記伝熱部材103によって褐炭101が乾燥される際に発生する発生蒸気104を流動層乾燥装置102の外部に排出する発生蒸気ラインLと、前記発生蒸気ラインLに介装され、発生蒸気104中の粉塵を除去する集塵装置105と、発生蒸気ラインLにおける集塵装置105の下流側に介装され、発生蒸気104の熱を回収する熱回収システム106と、前記集塵装置105から粉塵が除去された発生蒸気104の一部を分岐し、流動化蒸気107として流動層乾燥装置102内に供給する分岐ラインLと、前記流動層乾燥装置102から抜き出された乾燥褐炭108を冷却して製品炭109とする冷却器110とを備えるものである。
 なお、符号116は流動化ガスである流動化蒸気107を整流する整流板を図示する。
 流動層乾燥設備100Aにおいて、褐炭101は、供給ホッパ120により供給ラインL0を介して流動層乾燥装置102内に投入され、流動層乾燥装置102内に別に導入される流動化蒸気107により流動されて流動層111を形成する。
 本実施例では、冷却器110で冷却された乾燥褐炭108の一部を、供給ホッパ120側の供給している。これにより、褐炭101を供給する供給ラインL0に連結する導入ラインL5を設け、冷却された乾燥褐炭108の一部を供給するようにしている。
 よって、導入ラインL5により、乾燥褐炭108の一部を供給ホッパ120から供給される褐炭101に供給され、混合されるので、1)粉体供給系、流動層乾燥装置102の入口部における粉体付着性、アグロメ性の抑制効果を発揮でき、2)流動層乾燥装置102の装置稼働率の向上を図ることができる。
 また、従来のような供給ラインに設けるパージ設備の低減を図り、供給系統の簡素化、パージ運用費の大幅な低減を図ることができる。
 ここで、本実施例では供給ホッパ120からの供給ラインL0に、乾燥褐炭を供給する導入ラインL5を連結しているが、本発明はこれに限定されず、さらに供給ホッパ内にも乾燥褐炭108を導入するようにしてもよい。
 上述した伝熱部材103は、この流動層111内に配置されている。伝熱部材103内には、150℃の過熱蒸気Aが供給され、その高温の過熱蒸気Aの潜熱を利用して褐炭101を間接的に乾燥させるようにしている。乾燥に利用された過熱蒸気Aは、例えば150℃の凝縮水Bとして流動層乾燥装置102の外部に排出されている。
 すなわち、加熱手段である伝熱部材103内面では、過熱蒸気Aが凝縮して液体(水分)になるので、この際に放熱される凝縮潜熱を、褐炭101の乾燥の加熱に有効利用している。なお、高温の過熱蒸気A以外としては、相変化を伴う熱媒であれば何れでも良く、例えばフロンやペンタンやアンモニア等を例示することができる。また、伝熱部材103として熱媒体を用いる以外に電気ヒータを設置してもよい。
 伝熱部材103によって褐炭101が乾燥される際に発生する発生蒸気104は、流動層乾燥装置102内において、流動層111の上部空間に形成されるフリーボード部Fから発生蒸気ラインLにより流動層乾燥装置102の外部に排出される。この発生蒸気104は、褐炭101が乾燥し微粉化したものが含まれているので、サイクロンや電気集塵機等の集塵装置105により集塵して固体成分115として分離する。
 この固体成分115は、分離ラインL3を介して流動層乾燥装置102から抜き出された製品ラインL4において乾燥褐炭108に混合し、冷却器110で冷却し、製品炭109としている。この製品炭109は、例えばボイラ、ガス化炉等の原料として利用に供される。
 一方、集塵装置105により集塵された後の発生蒸気104は、例えば105~110℃の蒸気であるので、熱回収システム106で熱回収された後、水処理部112で処理され、排水113として流動層乾燥設備100Aの外部に排出されている。なお、集塵装置105により集塵された後の発生蒸気104は、例えば、熱交換器や蒸気タービン等に適用してその熱を有効利用するようにしてもよい。
 また、集塵装置105により集塵された後の発生蒸気104の一部は、分岐ラインLに介装された循環ファン114により流動層乾燥装置102内に送られて、褐炭101の流動層111を流動させる流動化蒸気107として利用される。なお、流動層111を流動化させる流動化媒体としては、発生蒸気104の一部を再利用しているが、これに限定されず、例えば窒素、二酸化炭素またはこれらのガスを含む低酸素濃度の空気を用いてもよい。
 なお、上述した流動層乾燥装置102は、伝熱部材103として、本実施例はチューブ形状の伝熱部材を例示しているが、本発明はこれに限定されず、例えば板状の伝熱部材を用いるようにしてもよい。
 また、過熱蒸気Aを伝熱部材103に供給して褐炭101を間接的に乾燥させる構成を説明したが、これに限らず、褐炭101の流動層111を流動させる流動化蒸気107により褐炭101を直接乾燥させる構成、さらに加熱用の流動化ガスを供給して乾燥させる構成としてもよい。
 なお、被乾燥物として褐炭101を例示したが、水分含量の高いものであれば、亜瀝青炭等を含む低品位炭や、スラッジ等の被乾燥物を乾燥対象としてもよい。
 本発明の実施例2について、図面を参照して説明する。図2は、本実施例に係る流動層乾燥装置を適用した流動層乾燥設備の一例を示す概略図である。なお、実施例1に係る流動層乾燥設備と同一部材については、同一符号を付してその説明は省略する。
 図2に示すように、本実施例に係る流動層乾燥設備100Bは、乾燥された乾燥褐炭108を保管する乾燥褐炭供給ホッパ121を設け、乾燥褐炭108の一部を、供給ホッパ120へ循環させるようにしたものである。
 この際、受入粉体の水分量によって、乾燥粉体の混合量を調節するように制御するために、供給ホッパ120内の水分量を計測する水分計122を設けている。
 この水分計122により、供給ホッパ120内部の水分量を計測し、その水分割合に応じて、乾燥褐炭108の供給量を調整するようにしている。
 また、システムの起動の際には、予め乾燥した乾燥褐炭108用いて、供給系を乾燥状態とすると共に、流動床を形成させる。次いで、水分の多い褐炭101を供給して徐々に乾燥を開始させるようにするのが好ましい。
 これにより、流動層乾燥装置の粉体供給系統において、付着性の高い水分含有量が高い褐炭等を供給した場合の、1)粉体供給系における粉体付着性、アグロメ性の抑制効果、装置稼働率の向上、2)パージ設備の低減、供給系統の簡素化、パージ運用費の低減を図ることができる。
 本発明の実施例3について、図面を参照して説明する。図3は、本実施例に係る流動層乾燥装置を適用した流動層乾燥設備の一例を示す概略図である。なお、実施例1に係る流動層乾燥設備と同一部材については、同一符号を付してその説明は省略する。
 図3に示すように、本実施例に係る流動層乾燥設備100Cは、実施例1に係る流動層乾燥設備100Aにおいて、集塵装置105で分離した粉塵の固体成分115を分離ラインL3により供給ホッパ120に供給している。これにより、被乾燥物である褐炭101の供給系統の付着対策を講じるようにしてもよい。
 なお、実施例3において、固体成分115を供給ホッパ120により供給するようにしたが、実施例2の乾燥設備においても同様に操作するようにして、供給系統の付着対策を講じるようにしてもよい。
 本発明の実施例4について、図面を参照して説明する。図4は、本実施例に係る流動層乾燥装置を適用した流動層乾燥設備の一例を示す概略図である。なお、実施例1に係る流動層乾燥設備と同一部材については、同一符号を付してその説明は省略する。
 図4に示すように、本実施例に係る流動層乾燥設備100Dは、実施例2に係る流動層乾燥設備100Bにおいて、さらに、被乾燥物とは異なる種類の乾燥粒子123を別途用意し、これを供給ホッパ120から供給ラインL6を介して乾燥粒子供給ホッパ124により、供給ホッパ120側に供給している。これにより、被乾燥物である褐炭101とは異なる種類の乾燥粒子123により、供給系統の付着対策を講じるようにしてもよい。
 なお、実施例4において、乾燥粒子123を供給するようにしたが、実施例2又は3の乾燥設備においても同様に操作するようにして、供給系統の付着対策を講じるようにしてもよい。
 本実施例に係る流動層乾燥装置102で乾燥した製品炭109を用い、石炭ガス化複合発電(Integrated Coal Gasification Combined Cycle:IGCC)システムに適用した一例を説明する。図5は、図1に示す流動層乾燥設備100Aを適用した石炭ガス化複合発電システムの一例を示す概略図である。
 図5に示すように、石炭ガス化複合発電システム200は、燃料である製品炭(乾燥褐炭)109がミル210により粉砕された微粉炭201aを処理してガス化ガス202に変換する石炭ガス化炉203と、前記ガス化ガス202を燃料として運転されるガスタービン(GT)204と、前記ガスタービン204からのタービン排ガス205を導入する排熱回収ボイラ(Heat Recovery Steam Generator:HRSG)206で生成した蒸気207により運転される蒸気タービン(ST)208と、前記ガスタービン204および/または前記蒸気タービン208と連結された発電機(G)209とを備えるものである。ここで、石炭201は、実施例1~4に示す本実施例に係る流動層乾燥設備100(100A~100D)を用いて乾燥した製品炭109を用いている。
 この石炭ガス化複合発電システム200は、ミル210で粉砕された微粉炭201aを石炭ガス化炉203でガス化し、生成ガスであるガス化ガス202を得る。このガス化ガス202は、サイクロン211およびガス精製装置212で除塵およびガス精製された後、発電手段であるガスタービン204の燃焼器213に供給され、ここで燃焼して高温・高圧の燃焼ガス214を生成する。そして、この燃焼ガス214によってガスタービン204を駆動する。このガスタービン204は、発電機209と連結されており、ガスタービン204が駆動することによって発電機209が電力を発生する。ガスタービン204を駆動した後のタービン排ガス205は、まだ約500~600℃の温度を持っているため、排熱回収ボイラ(HRSG)206へ送られ、ここで熱エネルギーが回収される。この排熱回収ボイラ(HRSG)206では、タービン排ガス205の熱エネルギーによって蒸気207が生成され、この蒸気207によって蒸気タービン208を駆動する。この排熱回収ボイラ(HRSG)206で熱エネルギーが回収された排ガス215は、ガス浄化装置216で排ガス215中のNOxおよびSOx分が除去された後、煙突217を介して大気中へ放出される。なお、図中、符号218は復水器、219は空気、220は圧縮機、221は空気を窒素(N)と酸素(O)とに分離する空気分離装置(ASU)を各々図示する。
 この石炭ガス化複合発電システム200によれば、高い水分を有する褐炭101を用いてガス化する場合においても、効率的な流動層乾燥装置102により褐炭101を乾燥しているので、ガス化効率が向上し、長期間に亙って安定して発電を行うことができる。
 また、石炭ガス化複合発電システム200においては、ガスタービンおよび蒸気タービンの組み合わせによって、従来40%程度であった石炭焚発電プラントの効率を約46%まで向上させることができる。このプラント効率の向上によって、COの排出量は従来の石炭焚ボイラに対して約13%削減できる。
 なお、本実施の形態に係る流動層乾燥設備100で乾燥した製品炭109を用いた発電システムとしては、上述した石炭ガス化複合発電システム200に限らない。例えば、図には明示しないが、流動層乾燥設備100で乾燥した製品炭109をボイラ火炉に供給し、当該ボイラ火炉で発生した蒸気で蒸気タービンを駆動して発電機により出力を得る褐炭炊ボイラによる発電システムであってもよい。
 上述した流動層乾燥装置102で乾燥した製品炭109を用い、褐炭焚きボイラに適用した一例を説明する。図6は、実施例1~4に示す流動層乾燥設備100(100A~100D)を適用した褐炭焚きボイラの一例を示す概略図である。
 本実施形態にかかる褐炭焚きボイラ150には、鉛直方向に設置された火炉151と、火炉151の火炉壁の下部に設置された燃焼装置152と、火炉151の出口に連結された煙道153と、煙道153に設けられた複数からなる過熱器154と、節炭器155と、煙道153の下流側に設けられた誘引通風機156と、煙突157と、が備えられている。
 燃焼装置152には、火炉壁に取り付けられた複数の微粉炭バーナ158と、微粉炭バーナ158に供給する微粉炭とする衝撃型粉砕機159と、微粉炭バーナ158に燃焼用空気として二次空気(空気)を供給する空気供給手段160と、が備えられている。
 衝撃型粉砕機159は、供給された褐炭101を燃焼に適した大きさ(例えば、数μm~数百μm)の微粉炭に粉砕するものであり、節炭器155の後流側の低温の燃焼ガス161の一部を導入して乾燥・粉砕するものである。この衝撃型粉砕機159には、前述した流動層乾燥設備100で予め乾燥した製品炭109を供給している。
 空気供給手段160には、空気を加圧して供給する押込通風機(空気供給装置)162と、火炉151外壁に設けられた風箱163と、押込通風機162と風箱163とを接続する空気管164とが備えられている。なお、回転再生式熱交換器160aが空気管164と煙道153とにまたがって、二次空気(空気)と燃焼ガスとを熱交換させるように設置されている。
 褐炭焚きボイラ150で発生した蒸気はタービン設備165で活用される。タービン設備165には、複数のタービン(例えば高圧・中圧・低圧タービン)が備えられている。例えば高圧タービンは、過熱器154から導入された過熱蒸気を膨張させて回転エネルギーに変換させ、排気蒸気を一次再熱器へ供給するものである。中圧タービンは、一次再熱器および二次再熱器によって再度過熱された加熱蒸気が二次再熱器から導入され、それを膨張させて回転エネルギーに変換させるものである。低圧タービンは、中圧タービンの排気蒸気を導入して、それをさらに膨張させて回転エネルギーに変換するものである。
 高圧タービン、中圧タービンおよび低圧タービンで変換された回転エネルギーは、軸によって接続されている発電機Gに伝達され、電力を生成する。
 低圧タービンで仕事を終えた排気蒸気は、復水器166に送られ、復水器166で凝縮されて水に戻される。復水器166で凝縮された水は、給水ライン167を通って節炭器155に送られる。なお、給水ライン167には、図示しない復水ポンプ、脱気器、給水ポンプ給水加熱器等が備えられている。
 以上、説明した褐炭焚きボイラ150の運転について説明する。
 図示しない褐炭バンカから供給された褐炭101は、流動層乾燥設備100で乾燥され、水分を除去し、その後、衝撃型粉砕機159により約1,000℃の燃焼ガス161で乾燥・粉砕され、燃焼に適した大きさの微粉炭に粉砕される。その後粉砕された微粉炭は、加圧された搬送空気と混合されて微粉炭混合気を形成され、給炭管を通って微粉炭バーナ158へ送られる。
 一方、押込通風機162で加圧されて供給される二次空気は、回転再生式熱交換器160aによって燃焼ガスから熱量を供給され、昇温されて空気管164を経て風箱163へ供給される。二次空気は風箱163から微粉炭バーナ158へ送られる。微粉炭バーナ158から火炉151内へ微粉炭混合気と二次空気とが供給され、着火されると火炉内に火炎が生じる。
 このようにして火炉151内の下部に火炎を生じさせると、燃焼ガスが火炉151内を下から上に流れ、煙道153に排出される。この時、給水ポンプから供給された水は、節炭器155によって予熱された後、水壁管に供給される。水壁管に供給された水は、水壁管を下から上に流れる間に燃焼ガスによって加熱されて過熱蒸気となり、過熱器154に送り込まれる。さらに、一次過熱器に送られた過熱蒸気は、次いで二次過熱器、三次過熱器および四次過熱器に順次導入され、燃焼ガス161によって過熱される。四次過熱器で生成された過熱蒸気はタービン設備165の高圧タービンに供給される。
 一方、高圧タービンで膨張して仕事をした排気蒸気は、一次再熱器に、次いで二次再熱器に導入され、燃焼ガスによって再度過熱される。二次再熱器で過熱された過熱蒸気は中圧タービンに供給される。中圧タービンで膨張して仕事を行なった蒸気は低圧タービンに供給される。高圧タービン、中圧タービンおよび低圧タービンで蒸気の膨張によって生成された回転エネルギーは、軸によって接続されている発電機Gに伝達され、電力を生成する。
 低圧タービンで仕事を終えた排気蒸気は、復水器160に送られ、復水器160で凝縮されて水に戻される。復水器160で凝縮された水は、給水ライン167を通って給水ポンプによって節炭器155に送られる。
 一方、節炭器155を通過した燃焼ガスは、回転再生式熱交換器160aにて空気管164を通過する二次空気に熱量を供給し、脱硫、脱硝、除塵等の浄化処理が施されて、煙突157から大気中に排出される。
 この褐炭焚きボイラ150によれば、高い水分を有する褐炭101を用いて燃焼させる場合においても、効率的な流動層乾燥装置102により褐炭101を乾燥しているので、衝撃型粉砕機159で必要とされる熱源に、従来のような高温(1,000℃)の燃焼ガスは不要となり、より低温(200~300℃)の燃焼ガスで十分となるとともに、流動層乾燥装置102で発生した水蒸気から、潜熱を回収するシステムとすることにより、エネルギー効率を向上させることが可能となり、長期間に亙って安定して効率的な発電を行うことができる。
 以下、本発明の実施例5の流動層乾燥装置について図7を参照して説明する。図7は、本発明の実施例5に係る流動層乾燥装置を適用した流動層乾燥設備の一例を示す概略図である。図7に示すように、本実施例に係る流動層乾燥装置を備える流動層乾燥設備100Eは、流動層乾燥装置102の褐炭101の供給口側(図中左側)で、且つ底部側壁面に、傾斜角度(θ)の傾斜部130を形成している。
 ここで、本実施例係る流動層乾燥装置を備える流動層乾燥設備100Eは、実施例1に係る流動層乾燥設備100Aから、乾燥褐炭108の一部を供給ホッパ120に導入する導入ラインL5を削除している。なお、その他の構成は実施例1に係る流動層乾燥設備100Aと同様であるので、詳細については省略する。
 以下、本実施例に係る傾斜部130の内容について説明する。
 図8は、実施例5に係る流動層乾燥装置の詳細図である。
 図8に示すように、本実施例に係る流動層乾燥装置102Aは、高水分で、付着性、凝縮性の高い例えば褐炭101のような粉粒体を乾燥させる流動層乾燥装置において、流動層乾燥装置102Aの入口部102aの供給口側の底部側壁面に、傾斜角度(θ)が粉粒体の安息角以上90°以下、より好適には60~80°程度の傾斜部130を形成している。
 そして、この傾斜部130の上部から、又は該傾斜部130に沿って褐炭101を供給するようにしている。
 また、褐炭101が供給される傾斜部130には、流動化ガスである流動化蒸気107を供給せず、褐炭101が傾斜部130に沿って底部側に流下した後に、底部側に設けられた整流板116から、流動化ガスである流動化蒸気107a、107bを供給して、流動化させている。
 また、流動化蒸気107の供給量として、褐炭101が流下する傾斜部130近傍の導入・流動層域Xの流動化蒸気107aのガス供給量を、それ以外の乾燥流動層域Yの流動化蒸気107bのガス量と較べて大きくするようにして、導入・流動層域Xでの褐炭101の流動化を促進するようにしてもよい。
 これにより、流動層乾燥装置102Aの入口部102aの導入・流動層域Xにおいて、供給された褐炭101は、周囲の乾燥が進んだ粉粒体と混合しながら、傾斜部130に沿って流動層111の底部側に移動し、底部側の整流板116から供給される流動化蒸気107aからの上昇流により、再度周囲の乾燥が進んだ粉粒体と混合しながら流動化し、乾燥を開始させることとなる。
 以上のように、本実施例によれば、傾斜部130を設けることにより、流動層乾燥装置102A内に供給された高水分で、付着性、凝縮性の高い被乾燥物である褐炭101の良好な混合を図り、流動化を促進することができる。よって、付着性の高い褐炭101を供給した場合においても、その付着、凝集による流動不良を防止することができる。
 なお、本実施形態では、褐炭101を供給する入口部102aは、側壁102bに形成しているが、本発明はこれに限定されるものではなく、頂部102c側に入口部を形成するようにしてもよい。
 また、本実施形態では、図1に示したような伝熱部材を省略しているが、伝熱部材を設けることなく、直接乾燥する流動化乾燥装置においても適用できることはいうまでもない。
 本発明の実施例6に係る流動層乾燥装置について図9を参照して説明する。図9は、本発明の実施例6に係る流動層乾燥装置を示す概略図である。図9に示すように、本実施例6に係る流動層乾燥装置102Bは、流動層乾燥装置102Bの入口部102a側の傾斜部130において、流動層111内に横方向に撹拌用ガス131を噴出させる供給ノズル132を設けている。
 この供給ノズル132の位置は、流動層111の底部に近い箇所に設置するのが流動化を促進するので、好ましい。
 さらに、供給ノズル132の設置向きは、水平もしくは水平よりやや下向きとするのが、底部側からの流動化蒸気107との撹拌がなされ、流動化を促進するうえでより好ましい。
 そして、流動層乾燥装置102Bの入口部102aにおいて、供給された褐炭101は、周囲の乾燥が進んだ粉粒体と混合しながら、傾斜に沿って流動層の底部に移動する際に、攪拌用ガス131により横方向への攪拌が促進され、さらに周囲の乾燥が進んだ乾燥褐炭と混合しながら流動化され、乾燥が促進される。
 本発明の実施例7に係る流動層乾燥装置について図10を参照して説明する。図10は、本発明の実施例7に係る流動層乾燥装置を示す概略図である。図10に示すように、本実施例7に係る流動層乾燥装置102Cは、流動層111内に上下に隙間132a、132bを有する隔壁133を設け、被乾燥物の導入・流動層域Xと後流側の乾燥流動層域Yとを分離するようにしている。なお、本実施形態では、隙間部を上下に設けているが、後流側の乾燥炭を被乾燥物の導入部に移動して混合させることを容易にするために、少なくとも隔壁の下部に隙間を設けるのが望ましい。
 そして、前記導入・流動層域Xの流動化蒸気107aのガス量を後流側の乾燥流動層域Yの流動化蒸気107bのガス量と較べて大きくしている。
 この結果、流動層乾燥装置102Cの入口部102aにおいて、供給された褐炭101は、周囲の乾燥が進んだ粉粒体と混合しながら、傾斜部130に沿って流動層111の底部側に移動し、既に乾燥が進んだ乾燥褐炭と確実に混合された後に、隔壁133の上下の隙間132a、132bを通過して後流側の乾燥流動層域Y側に移動させ、乾燥のための流動化を十分にするようにしている。これにより、褐炭の乾燥が良好に進行することとなり、乾燥効率の更なる向上を図ることができる。
 本発明の実施例8に係る流動層乾燥装置について図11を参照して説明する。本発明の実施例8に係る流動層乾燥装置を示す概略図である。図11に示すように、本実施例7に係る流動層乾燥装置102Dは、乾燥室に流動化ガスを供給することで前記乾燥室に供給された被乾燥物を流動させて乾燥させる流動層乾燥装置において、前記被乾燥物(褐炭)101を所定粒径(平均粒径数mm程度)まで破砕する破砕機140と、前記流動層乾燥装置102内を隔壁141で分割し、破砕された被乾燥物101を供給して、流動・乾燥化を開始させる第一流動室142Aと、第一流動室142Aで流動・乾燥された微細粒子144が前記隔壁141へオーバーフローして、さらに流動・乾燥化を行う第二流動室142Bと、第一流動室142Aから払い出された粗大粒子143を、前記破砕機140側へ搬送する例えばベルトコンベア等の搬送ラインL7とを具備するものである。
 また、前記第一流動室142A内の流動化蒸気107Aの速度(空塔速度)を、第二流動室142B内の流動化蒸気107Bの速度(空塔速度)と較べて大きくしている。
 本発明では、流動層乾燥装置102内を第一流動室142Aと第二流動室142Bとに分割し、褐炭101を供給する第一流動室142Aを、流動層分級器且つ予備乾燥室として機能させている。
 そして、第一流動室132Aにおいて乾燥された粗大粒子143を選別し、図示しない抜出手段により抜き出して、搬送ラインL7を介して、破砕機140側へ送り、湿った褐炭101と混合させて破砕させた後、再度流動層乾燥装置102に供給するようにしている。
 本装置においては、先ず褐炭101を破砕機140に供給し破砕する。ここで、破砕された褐炭101は、破砕機140の出口において、その平均粒径は乾燥後の乾燥褐炭108の所要粒径よりも大きくするのが好ましい。
 乾燥後の乾燥褐炭108の所要粒径を例えば2mm以下とする場合には、破砕機140での破砕は、平均粒径4mmまで砕くようにすればよい。
 所定粒径まで破砕された褐炭101は供給ラインL0により、流動層乾燥装置102の第一流動室142Aに供給する。
 この第一流動室142Aのガス速度は湿った褐炭101の層が流動化できる速度以上に高めとするのが好ましい。
 本実施形態では約1m/sの流速としているが、これに限定されるものではない。
 初期乾燥がなされた微細粒子144は第一流動室142Aと第二流動室142Bとを分離する隔壁141の上部を乗り越え、第二流動室142B側へオーバーフローする。
 一方、粗大粒子143は第一流動室142Aの底部側に沈降し、流動層乾燥装置102外に図示しない払出手段により排出される。
 排出された粗大粒子143は、搬送ラインL7により、破砕機140側へ送られ、ここで再度粉砕される。
 砕かれた粗大粒子143は原炭に混合後、再び流動層乾燥装置102内へ供給される。
 なお、第一流動室142Aと第二流動室142Bの流動化ガスは、本実施形態では流動化蒸気を用いているが、これに限定されず、他の流動化用の気体としてもよい。
 本発明によれば、第一流動室142Aが流動層分級器として機能し、粗大粒子143のみ選別して破砕することが出来るため、粒度分布の幅を小さくすることが出来る。
 その結果、微粒子が過度に生成されるのを防止できるため、キャリーオーバーが減少する。
 第一流動室142A内の褐炭101の粒径は、第二流動室142B内の褐炭101の粒径よりも大きく湿っており流動化しにくいが、流動化ガスである流動化蒸気107Aの速度を上げることで良好な流動状態を確保できる。なお、粒径が大きいため、流動化蒸気107Aのガス速度を増加しても、従来のようなキャリーオーバーが増加することは無くなる。
 さらに、一部乾燥した粗大粒子143を、再度湿った褐炭101と混合することで、入口部での付着・閉塞、層内での流動不良の問題が解消される。
 以上、本実施例によれば、流動層乾燥装置102内での褐炭101の良好な混合を図り、流動化を促進することができる。これにより粒度分布が大きい褐炭101を供給した場合においても、良好な乾燥を行うことができる。
 実施例5~9の流動層乾燥装置によれば、流動層乾燥装置102A~102D内での良好な混合を図り、流動化を促進することのできる対策を施すことができる。
 なお、実施例5~9は、図7に示す流動層乾燥設備100Eに適用した例について説明したが、本発明はこれに限定されず、図1~4に示す実施例1~4に係る流動層乾燥設備100A~100Dにおいて、さらに相互に組み合わせて適用するようにしてもよい。
 よって、本実施例5~9に係る流動層乾燥装置を適用した流動層乾燥設備を、例えば図5に示す石炭ガス化複合発電(Integrated Coal Gasification Combined Cycle:IGCC)システムに適用することで、長期間に亙って安定したガス化を行うことができ、効率的な発電を行うことができる。
 また、本実施例5~8に係る流動層乾燥装置を適用した流動層乾燥設備を、例えば図6に示す褐炭焚きボイラに適用することで、長期間に亙って安定して効率的な発電を行うことができる。
 100A~100E 流動層乾燥設備
 101 褐炭
 102、102A~102D 流動層乾燥装置
 103 伝熱部材
 104 発生蒸気
 105 集塵装置
 106 熱回収システム
 107、107a、107b 流動化蒸気
 108 乾燥褐炭
 109 製品炭
 110 冷却器
 111 流動層
 112 水処理部
 113 排水
 114 循環ファン
 115 固体成分
 116 整流板
 120 供給ホッパ
 121 乾燥褐炭供給ホッパ
 122 水分計
 123 乾燥粒子
 130 傾斜部
 131 撹拌用ガス
 132 供給ノズル
 133 隔壁
 140 破砕機
 141 隔壁
 142A 第一流動室
 142B 第二流動室
 143 粗大粒子
 144 微細粒子
 150 褐炭焚きボイラ
 151 火炉
 152 燃焼装置
 153 煙道
 154 過熱器
 159 衝撃型粉砕機
 165 タービン設備
 200 石炭ガス化複合発電システム
 201 石炭
 201a 微粉炭
 202 ガス化ガス
 203 石炭ガス化炉
 204 ガスタービン(GT)
 205 タービン排ガス
 206 排熱回収ボイラ(HRSG)
 207 蒸気
 208 蒸気タービン(ST)
 209 発電機(G)
 210 ミル
 211 サイクロン
 212 ガス精製装置
 213 燃焼器
 214 燃焼ガス
 215 排ガス
 217 煙突
 218 復水器
 219 空気
 220 圧縮機
 221 空気分離装置(ASU)
 A 過熱蒸気
 B 凝縮水
 F フリーボード部

Claims (14)

  1.  乾燥室に流動化ガスを供給することで前記乾燥室に供給された被乾燥物を流動させて乾燥させる流動層乾燥装置において、
     前記乾燥室内で乾燥した乾燥物の一部を、流動層乾燥装置に供給する被乾燥物に混合してなることを特徴とする流動層乾燥装置。
  2.  請求項1において、
     前記流動層乾燥装置から排出される発生ガス中に混入する粉塵を分離した後、該粉塵を流動層乾燥装置に供給する被乾燥物に混合してなることを特徴とする流動層乾燥装置。
  3.  請求項1において、
     前記流動層乾燥装置に供給する被乾燥物に、被乾燥物とは異なる種類の乾燥粒子を混合してなることを特徴とする流動層乾燥装置。
  4.  水分含量が高い被乾燥物を乾燥する請求項1の流動層乾燥装置と、
     前記流動層乾燥装置内に設けられ、管状又は板状の内部に過熱蒸気を供給して被乾燥物中の水分を除去する伝熱部材と、
     前記伝熱部材によって被乾燥物が乾燥される際に発生する発生蒸気を流動層乾燥装置の外部に排出する発生蒸気ラインと、
     前記発生蒸気ラインに介装され、発生蒸気中の粉塵を除去する集塵装置と、
     発生蒸気ラインにおける集塵装置の下流側に介装され、発生蒸気の熱を回収する熱回収システムと、
     前記集塵装置から粉塵が除去された発生蒸気の一部を分岐し、流動化蒸気として流動層乾燥装置内に供給する分岐ラインと、
     前記流動層乾燥装置から抜き出された被乾燥物を冷却する冷却器とを備えることを特徴とする流動層乾燥設備。
  5.  乾燥室に流動化ガスを供給することで前記乾燥室に供給された被乾燥物を流動させて乾燥させる流動層乾燥装置において、
     前記被乾燥物の供給口側の底部側壁面を傾斜部とすると共に、該傾斜部の上方から又は傾斜部に沿って被乾燥物を供給すると共に、
     前記傾斜部以外の領域に流動化ガスを底部側から供給し、被乾燥物の導入・流動層を形成することを特徴とする流動層乾燥装置。
  6.  請求項5において、
     前記傾斜部の傾斜角度は、被乾燥物粒子の安息角以上90°以下とすることを特徴とする流動層乾燥装置。
  7.  請求項5において、
     前記傾斜部に撹拌用ガスを供給する供給ノズルを設けることを特徴とする流動層乾燥装置。
  8.  請求項5において、
     前記流動層乾燥装置内に隙間を有する隔壁を設け、被乾燥物の導入・流動層域と後流側の乾燥流動層域とを分離してなることを特徴とする流動層乾燥装置。
  9.  請求項8において、
     前記導入・流動層域の流動化ガス量を乾燥流動層域のガス量と較べて大きくしてなることを特徴とする流動層乾燥装置。
  10.  水分含量が高い被乾燥物を乾燥する請求項5の流動層乾燥装置と、
     前記流動層乾燥装置内に設けられ、管状又は板状の内部に過熱蒸気を供給して被乾燥物中の水分を除去する伝熱部材と、
     前記伝熱部材によって被乾燥物が乾燥される際に発生する発生蒸気を流動層乾燥装置の外部に排出する発生蒸気ラインと、
     前記発生蒸気ラインに介装され、発生蒸気中の粉塵を除去する集塵装置と、
     発生蒸気ラインにおける集塵装置の下流側に介装され、発生蒸気の熱を回収する熱回収システムと、
     前記集塵装置から粉塵が除去された発生蒸気の一部を分岐し、流動化蒸気として流動層乾燥装置内に供給する分岐ラインと、
     前記流動層乾燥装置から抜き出された被乾燥物を冷却する冷却器とを備えることを特徴とする流動層乾燥設備。
  11.  乾燥室に流動化ガスを供給することで前記乾燥室に供給された被乾燥物を流動させて乾燥させる流動層乾燥装置において、
     前記被乾燥物を所定粒径まで破砕する破砕機と、
     前記流動層乾燥装置内を隔壁で分割し、破砕された被乾燥物を供給して、流動・乾燥化を開始させる第一流動室と、
     第一流動室で流動・乾燥された微細粒子がオーバーフローして、さらに流動・乾燥化を行う第二流動室と、
     第一流動室から払い出された粗大粒子を、前記破砕機側へ搬送する搬送ラインとを具備することを特徴とする流動層乾燥装置。
  12.  請求項11において、
     前記第一流動室内の流動化ガスの速度を、第二流動室内の流動化ガスの速度と較べて大きくしてなることを特徴とする流動層乾燥装置。
  13.  請求項11において、
     前記第二流動室内を複数の流動室に分割してなることを特徴とする流動層乾燥装置。
  14.  水分含量が高い被乾燥物を乾燥する請求項11の流動層乾燥装置と、
     前記流動層乾燥装置内に設けられ、管状又は板状の内部に過熱蒸気を供給して被乾燥物中の水分を除去する伝熱部材と、
     前記伝熱部材によって被乾燥物が乾燥される際に発生する発生蒸気を流動層乾燥装置の外部に排出する発生蒸気ラインと、
     前記発生蒸気ラインに介装され、発生蒸気中の粉塵を除去する集塵装置と、
     発生蒸気ラインにおける集塵装置の下流側に介装され、発生蒸気の熱を回収する熱回収システムと、
     前記集塵装置から粉塵が除去された発生蒸気の一部を分岐し、流動化蒸気として流動層乾燥装置内に供給する分岐ラインと、
     前記流動層乾燥装置から抜き出された被乾燥物を冷却する冷却器とを備えることを特徴とする流動層乾燥設備。
PCT/JP2011/068190 2011-08-09 2011-08-09 流動層乾燥装置及び流動層乾燥設備 WO2013021470A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/068190 WO2013021470A1 (ja) 2011-08-09 2011-08-09 流動層乾燥装置及び流動層乾燥設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/068190 WO2013021470A1 (ja) 2011-08-09 2011-08-09 流動層乾燥装置及び流動層乾燥設備

Publications (1)

Publication Number Publication Date
WO2013021470A1 true WO2013021470A1 (ja) 2013-02-14

Family

ID=47668021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068190 WO2013021470A1 (ja) 2011-08-09 2011-08-09 流動層乾燥装置及び流動層乾燥設備

Country Status (1)

Country Link
WO (1) WO2013021470A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210016223A1 (en) * 2018-03-28 2021-01-21 Mitsubishi Power, Ltd. Treated water drying device and boiler system including the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527386A (en) * 1975-07-08 1977-01-20 Kurimoto Iron Works Ltd Continuous granulating and drying apparatus
JPS5386679A (en) * 1976-11-17 1978-07-31 Anvar Plural phase contact method
JPS5846928U (ja) * 1981-09-19 1983-03-30 中外炉工業株式会社 余剰熱量の有効利用を図つた汚泥乾燥焼却装置
JPH0413086A (ja) * 1990-04-28 1992-01-17 Kurimoto Ltd 攪拌伝熱式流動乾燥装置
JPH0515900A (ja) * 1990-12-28 1993-01-26 Tsukishima Kikai Co Ltd 含水汚泥の乾燥方法および装置
JPH11285700A (ja) * 1998-02-26 1999-10-19 Andritz Patentverwaltungs Gmbh スラッジの機械的及び熱的な脱水方法及び装置
JP2001138331A (ja) * 1999-11-16 2001-05-22 Matsui Mfg Co 連続式粉粒体温度制御装置
JP2002317180A (ja) * 2001-04-20 2002-10-31 Kawasaki Heavy Ind Ltd 地盤改良材製造装置の制御方法
JP2002336823A (ja) * 2001-05-16 2002-11-26 Esi:Kk 有機廃棄物処理装置および処理方法
JP2006232891A (ja) * 2005-02-22 2006-09-07 Nippon Steel Corp 湿潤原料の乾燥方法及び装置
JP2007205652A (ja) * 2006-02-02 2007-08-16 Tsukishima Kikai Co Ltd 被乾燥物の乾燥方法および流動乾燥機

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527386A (en) * 1975-07-08 1977-01-20 Kurimoto Iron Works Ltd Continuous granulating and drying apparatus
JPS5386679A (en) * 1976-11-17 1978-07-31 Anvar Plural phase contact method
JPS5846928U (ja) * 1981-09-19 1983-03-30 中外炉工業株式会社 余剰熱量の有効利用を図つた汚泥乾燥焼却装置
JPH0413086A (ja) * 1990-04-28 1992-01-17 Kurimoto Ltd 攪拌伝熱式流動乾燥装置
JPH0515900A (ja) * 1990-12-28 1993-01-26 Tsukishima Kikai Co Ltd 含水汚泥の乾燥方法および装置
JPH11285700A (ja) * 1998-02-26 1999-10-19 Andritz Patentverwaltungs Gmbh スラッジの機械的及び熱的な脱水方法及び装置
JP2001138331A (ja) * 1999-11-16 2001-05-22 Matsui Mfg Co 連続式粉粒体温度制御装置
JP2002317180A (ja) * 2001-04-20 2002-10-31 Kawasaki Heavy Ind Ltd 地盤改良材製造装置の制御方法
JP2002336823A (ja) * 2001-05-16 2002-11-26 Esi:Kk 有機廃棄物処理装置および処理方法
JP2006232891A (ja) * 2005-02-22 2006-09-07 Nippon Steel Corp 湿潤原料の乾燥方法及び装置
JP2007205652A (ja) * 2006-02-02 2007-08-16 Tsukishima Kikai Co Ltd 被乾燥物の乾燥方法および流動乾燥機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210016223A1 (en) * 2018-03-28 2021-01-21 Mitsubishi Power, Ltd. Treated water drying device and boiler system including the same

Similar Documents

Publication Publication Date Title
US8349036B2 (en) Systems and method for heating and drying solid feedstock in a gasification system
JP2011214562A (ja) 石炭ガス化複合発電システム
JP5634100B2 (ja) 流動層乾燥装置及び流動層乾燥設備
JP5473732B2 (ja) 低品位炭乾燥システム
JP5693493B2 (ja) 流動層乾燥装置及び石炭を用いたガス化複合発電システム
JP5675671B2 (ja) 流動層乾燥装置
AU2011373344B2 (en) Fluidized bed drying facility
WO2012147752A1 (ja) 流動層乾燥設備及び石炭を用いたガス化複合発電システム
JP5851884B2 (ja) 流動層乾燥装置、ガス化複合発電設備および乾燥方法
JP2011214817A (ja) 流動層乾燥装置及び流動層乾燥設備
JP5634101B2 (ja) 流動層乾燥設備
WO2012133309A1 (ja) 流動層乾燥装置及び流動層乾燥設備
JP2011214805A (ja) 流動層乾燥装置及び流動層乾燥設備
JP5896821B2 (ja) 流動層乾燥設備及び石炭を用いたガス化複合発電システム
WO2013021470A1 (ja) 流動層乾燥装置及び流動層乾燥設備
JP5748559B2 (ja) 流動層乾燥装置
WO2012133549A1 (ja) 湿潤原料供給設備及び湿潤原料を用いたガス化複合発電システム
WO2012141217A1 (ja) 流動層乾燥装置
JP5812896B2 (ja) 流動層乾燥装置、ガス化複合発電設備および乾燥方法
JP2013170767A (ja) 流動層乾燥装置
JP2012214578A (ja) 低品位炭供給設備及び低品位炭を用いたガス化複合発電システム
JP5922338B2 (ja) 流動層乾燥設備及び流動層乾燥設備を用いたガス化複合発電システム
JP2013167378A (ja) 流動層乾燥設備及び石炭を用いたガス化複合発電システム
JP2013210179A (ja) 湿潤燃料の減圧乾燥装置
JP2013174420A (ja) 流動層乾燥装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP