WO2013011178A1 - Análisis rápido y preciso de la sialilación de proteínas - Google Patents

Análisis rápido y preciso de la sialilación de proteínas Download PDF

Info

Publication number
WO2013011178A1
WO2013011178A1 PCT/ES2012/070501 ES2012070501W WO2013011178A1 WO 2013011178 A1 WO2013011178 A1 WO 2013011178A1 ES 2012070501 W ES2012070501 W ES 2012070501W WO 2013011178 A1 WO2013011178 A1 WO 2013011178A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
sample
reaction
samples
galactose
Prior art date
Application number
PCT/ES2012/070501
Other languages
English (en)
French (fr)
Inventor
Zihao Wang
Jessica SLOAN
Kevin WEE
Original Assignee
Grifols, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020147003822A priority Critical patent/KR101864468B1/ko
Priority to CA2837981A priority patent/CA2837981C/en
Priority to US14/232,783 priority patent/US9260743B2/en
Priority to CN201280033128.7A priority patent/CN103635590A/zh
Application filed by Grifols, S.A. filed Critical Grifols, S.A.
Priority to EP12815322.8A priority patent/EP2733218B1/en
Priority to AU2012285696A priority patent/AU2012285696B2/en
Priority to NZ618889A priority patent/NZ618889B2/en
Priority to BR112013033883-0A priority patent/BR112013033883B1/pt
Priority to RU2013154278/10A priority patent/RU2605900C2/ru
Priority to JP2014519588A priority patent/JP2014525742A/ja
Priority to PL12815322T priority patent/PL2733218T3/pl
Priority to MX2014000378A priority patent/MX344407B/es
Priority to ES12815322.8T priority patent/ES2675511T3/es
Publication of WO2013011178A1 publication Critical patent/WO2013011178A1/es
Priority to IL229828A priority patent/IL229828A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/54Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving glucose or galactose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/363Anion-exchange
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8831Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving peptides or proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/924Hydrolases (3) acting on glycosyl compounds (3.2)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/924Hydrolases (3) acting on glycosyl compounds (3.2)
    • G01N2333/938Hydrolases (3) acting on glycosyl compounds (3.2) acting on beta-galactose-glycoside bonds, e.g. beta-galactosidase

Definitions

  • Sialic acids comprise a family of N-linked and N-linked neuraminic acids.
  • N-linked sialic acids are formed by linking acetyl or glucosyl moieties to the amino residue of neuraminic acid, forming iV-acet-ilneuraminic acid (Neu5Ac) and iV-glucolylneuraminic acid (Neu5Gc), respectively. If the amino group of the neuraminic is replaced by a hydroxyl moiety, this produces 3-deoxy-D-glyceric-D-galacto-2-nonulosonic acid (KDN).
  • KDN 3-deoxy-D-glyceric-D-galacto-2-nonulosonic acid
  • O-linked sialic acids are formed by substituting one or more of the hydroxyl groups of Neu5Ac, Neu5Gc or KDN by methyl, acetyl, lactoyl, sulfate or phosphate groups. Therefore, there is a large and diverse population of sialic acids.
  • sialylation may be important for the pharmacokinetics and efficacy of protein biotherapeutics.
  • several analytical methods have been developed to evaluate the sialic acid content of glycoproteins. For example, they can be used antibody-based assays to identify particular carbohydrate residues.
  • the terminal sialic acid residues can be enzymatically separated from the glycoprotein of interest and analyzed by HPLC.
  • each of these methods has defects and usually requires pure samples or high concentrations.
  • Conventional methods used by the pharmaceutical industry suffer from low precision, high data variability and cannot be used with complex culture media due to matrix interference.
  • the enzymatic part of the method involves the release of exposed terminal galactose residues (uncoated) by specific exo-glucosidase, ⁇ - (1-4) -galactosidase ( ⁇ -galactosidase), while terminal sialic acid residues are released by a- (2- 3, 6, 8, 9) -sialidase (OC-sialidase).
  • a sample is divided between at least three tubes.
  • the first tube, Reaction A is a background sample and comprises only the enzymatic reaction buffers.
  • the second tube, Reaction B is reacted with ⁇ -galactosidase which cleaves all galactose residues that are not coated by sialic acids.
  • the third tube, Reaction C is co-digested with both neuraminidase and ⁇ -galactosidase.
  • the enzyme neuraminidase removes sialic coating acids and allows ⁇ -galactosidase to cleave all exposed galactose residues.
  • High-resolution anion exchange chromatography with pulsed amperometric detection (HPAEC PAD) is then used to determine the amount of galactose present in the three samples.
  • the proportion of uncoated galactose (i.e. Reaction B) with respect to total galactose (i.e. Reaction C) is used to calculate the percentage of galactose residue coating, while also explaining any free galactose present in the media (Reaction A).
  • a method for determining the sialylation content of a protein comprising: (a) preparing a protein for analysis; (b) enzymatically treating the prepared protein, which comprises: dividing the prepared protein into a plurality of protein samples comprising (i) at least one protein sample as a media sample (Reaction A); (ii) add at least ⁇ -galactosidase to at least one protein sample (Reaction B); (iii) add at least ⁇ -galactosidase and OC-sialidase to at least one different protein sample (Reaction C); and incubate the plurality of protein samples; and (c) analyze the plurality of protein samples using HPAEC-PAD chromatography; (d) determine a carbohydrate content for the plurality of protein samples; and (e) calculate a percentage of sialylation for the protein.
  • the use is also described which further comprises: (f) analyzing a plurality of positive and negative controls using HPAEC-PAD chromatography; (g) analyze a plurality of patterns using HPAEC-PAD chromatography; and (h) compare the plurality of protein samples with the plurality of patterns and controls.
  • a kit is also described for determining the sialylation content of any protein comprising: at least one container comprising a plurality of containers comprising previously measured amounts of a galactosidase and a sialidase; optionally, containers containing at least one buffer composition, a positive control sample, a negative control sample and carbohydrate standards, and instructions describing a method for determining the sialylation content of a protein, comprising descriptions of: (a) prepare a protein for analysis; (b) enzymatically treating the prepared protein, which comprises: dividing the prepared protein into a plurality of protein samples comprising (i) at least one protein sample as a media sample (Reaction A); (ii) add at least ⁇ -galactosidase to at least one protein sample (Reaction B); (iii) add at least ⁇ -galactosidase and OC-sialidase to at least one different protein sample (Reaction C); and incubate the plurality of protein samples; and (c) analyze the
  • a kit is also described which further comprises: (f) analyzing a positive and negative control using HPAEC-PAD chromatography; (g) analyze a plurality of patterns using HPAEC-PAD chromatography; and (h) compare the results of the plurality of protein samples with the results of the plurality of standards.
  • Figure 1 shows a scheme of Reactions A, B and C, and the data obtained from each respective reaction.
  • the percentage of coating by sialylation can be determined from the ratio of the differences in Reactions C and B and Reactions C and A, respectively. See equation 1.
  • Figure 2 shows a typical chromatogram for a sample of recAlpha-1 digested in Reaction C. Elution times for galactose vary between approximately 14 and 16 minutes.
  • Figure 4 demonstrates that excipients upstream of recAlpha-1 culture media can be detected and can co-elute near the galactose peak.
  • an excipient peak is eluted next to the galactose peak in some samples after cleaning the centrifuge filter.
  • the impurity peak initially resolves from the galactose peak and does not integrate.
  • the The impurity peak of the process is co-eluted with a sample of Reaction C. In this case, the impurity peak must be divided as shown above to prevent it from being integrated with the galactose peak area.
  • Figure 5 The specificity of the method was confirmed by analyzing a mixture of neutral monosaccharides and aminomonosaccharides derived from glycoproteins.
  • Figure 6. Example of a typical galactose standard curve.
  • the recombinant alpha-1 proteinase inhibitor (recAlpha-1) was designed for secretion by the PerC6 cell line with N-linked glycan carbohydrate structures that are partially or fully coated by terminal sialic acids (iV-acetylneuraminic acids). A decrease in the amount of terminal sialic acids has been shown to reduce the half-life of recAlpha-1 in serum. Thus, It is important to know the percentage of galactose residues coated by sialic acids in recAlpha-1 when investigating their function or efficacy as a therapeutic drug.
  • Example 1 Preparation of the sample for analysis and enzymatic digestion
  • a method for determining the sialylation content of a glycoprotein begins with the preparation of a protein sample for enzymatic hydrolysis of carbohydrate residues. Therefore, the protein must be placed under conditions compatible with enzymatic reactions, including adjusting the protein concentration, eliminating solution components such as dissolved salts, buffers, other proteins, carbohydrates, excipients, etc., which could interfere with the enzyme. or enzymes
  • the term "prepared” or the phrase "prepare a protein for analysis” describes the process of removing components of the solution that could interfere with enzymatic hydrolysis and diluting the protein solution to an optimal concentration for the test with deionized water.
  • MWCO molecular weight cutoff limit
  • the protein was inserted into a dialysis membrane and dialyzed against an excess of deionized water or suitable buffer and / or saline solution for at least 4 hours at 4 ° C.
  • a protein sample can be prepared for enzymatic digestion by centrifugal filtration.
  • the protein solution was centrifuged against a semipermeable membrane with a specified MWCO.
  • the components of the solution with molecular weights below the MWCO pass through the filter during centrifugation, while the protein and the higher molecular weight species are retained.
  • the protein solution is concentrated during centrifugal filtration, because water passes through the semipermeable membrane.
  • a 10 kDa centrifuge filter according to the manufacturer's instructions, was used to prepare the protein sample.
  • reaction A was the background control (to control exogenous galactose). This reaction is composed only of buffers for enzymatic reactions and serves as a control for carbohydrates that may exist in the medium comprising the protein analyte.
  • Reaction B contained ⁇ -galactosidase, which hydrolyzed non-sialylated carbohydrate groups, but not those that were “coated” with sialyl groups.
  • Reaction C contained both OC-sialidase and ⁇ -galactosidase. In this reaction, OC-sialidase hydrolyzed the coating sialyl moieties, which then allowed ⁇ -galactosidase to hydrolyze all carbohydrate groups.
  • High resolution anion exchange chromatography analysis with pulsed amperometric detection was performed in Dionex ICS-3000 ion chromatography systems with single pumps, automatic sample processors with thermostat set at 10 ° C, and electrochemical detection units (Dionex, Sunnyvale, CA).
  • Disposable (Au) gold electrodes were used for pulsed amperometric detection (PAD) (Dionex Prod. No. 060139).
  • PAD pulsed amperometric detection
  • the waveform used for the sample analysis was based on Dionex Data Sheet 21, which describes optimal settings for carbohydrate PADs as shown in Table 2. See Data Sheet 21 from Dionex, Optimal Settings for Pulsed Amperometric Detection of Carbohydrates Using the Dionex ED40 Electrochemical Detector [Dionex (1998)).
  • the first mobile phase (A) contained 20 mM NaOH and was used for isocratic separation at a flow rate of 1 ml / min for 30 minutes (initial run time was 28 minutes but extended to 30 minutes during development to leave more time for 100% re-balancing of the mobile phase A).
  • the second mobile phase (B) It contained 500 mM NaOH and was used for column elution, column cleaning and electrode cleaning.
  • the chromatographic elution method, including ramp washing using mobile phases A and B is shown in table 3.
  • the sample injection volume was 20 ⁇ . Data analysis was performed using Chromeleon® 6.8 Chromatography Data Analysis System (Dionex) software.
  • Example 3 Patterns, controls, calibration and suitability of the system
  • the control reaction was a 1 to 1 mixture of bovine sialylated fetuine and commercially available asialofetuine standard (Sigma F3004 and A4781, respectively). Individually, sialylated fetuine has a coating percentage above 99% and asialofetuine has a coating percentage of 0%. When mixed in equal proportions, the coating ratio (sialylation) for fetuine should be 50% ⁇ 3%.
  • the fetuin control was prepared as a large batch that was divided into aliquots, frozen at -70 ° C and an individual sample was thawed and used as a control each time a set of samples was digested and processed using the methods described in the present document.
  • the low concentration standard was 8 pmol galactose and the high concentration standard was 1500 pmol galactose. These test standards were intended to ensure that the results of the sample were within the linear range of the lowest and highest concentrations for the assay.
  • the 1500 pmol test control was also used as a control of the suitability of the system (for example, high concentration standard). Table 4: Typical sequence of a chromatography series
  • the enzyme target was an injection containing the enzymes (ie, ⁇ -galactosidase and OC-sialidase) and buffers without any protein sample (ie, Reaction C without any protein analyte).
  • Bovine fetuine (a 1: 1 mixture of sialylated fetuine and asyalofetuine) was used as a positive control for sialylation.
  • the area Galactose was divided by the deoxyribose area to give corrected galactose areas.
  • the percentage of coating was calculated for each of the injections in duplicate of a sample using the corrected areas.
  • the corrected galactose area measured for Reaction B was subtracted from the corrected galactose area determined from Reaction C; This value corresponds to the amount of galactose coated with sialyl.
  • the corrected galactose area determined for Reaction A was then subtracted from the corrected galactose area measured for Reaction C; This value corresponds to total galactose (i.e. coated and uncoated).
  • the coated galactose (C-B) was divided by total galactose (C-A) and multiplied by 100 to give the percentage of sialyl coating. Representative data are shown in table 5.
  • Reaction C The suitability of the system was monitored using a mixture of galactose and deoxyribose that was injected at the beginning of a series and at the end of the series to monitor the performance of the electrode and the column throughout the series.
  • the average percentage of coating described was determined from the corrected areas of duplicate injections. If the area of the galactose peak in Reaction B was smaller than the area of the galactose peak in the 8 pmol pattern, then the percentage of coating was described as ">% of [coating]" (ie, "greater than ”) calculated based on the galactose peak area of the 8 pmol pattern in the numerator of the calculation.
  • the calculation of the tail factor (called "asymmetry" in Chromeleon® software), theoretical plates and resolution were performed and determined by Dionex data acquisition software. The calculations for the remaining system suitability criteria were determined manually. Representative system suitability parameters are shown in table 6.
  • the enzyme ⁇ -galactosidase is supplied by the manufacturer at an activity of> 3 Units / ml (specific activity> 6 Units / mg), while the enzyme GC-sialidase has an activity of 5 Units / ml (specific activity at 135 Units / mg)
  • the amount of each enzyme was kept constant at 4 ⁇ each, corresponding to 0.012 Units of ⁇ -galactosidase and 0.02 Units of GC-sialidase in the reaction, while the amount of protein varied from 540 to 2160 pmol.
  • the samples analyzed were a recAlpha-1 exchanged with buffer and filtered in cell culture supernatant at a concentration of 1.4 mg / ml. Samples were prepared as shown in table 8.
  • the stoichiometry of the reaction was also examined by comparing the coating results for a sample of upstream recAlpha-1 (RAD-0637) prepared on Day 1 using 4 ⁇ of enzyme in the reaction and on Day 2 (14 days later), using 2 ⁇ of enzyme.
  • the results of the experiment show the same coating value for enzymatic amounts of 2 ⁇ and 4 ⁇ , indicating that 2 ⁇ of enzyme were sufficient for the reaction to continue until complete, which was consistent with the previous observation (Table 10 ).
  • an internal standard was used to normalize the galactose peak area due to the inherent variability of amperometric detection at each injection.
  • two internal standards were tested: galactosamine and deoxyribose. Both internal standards functioned properly and both eluted at times sufficiently different from galactose and did not interfere with quantification. Although galactosamine behaved properly, some inconsistencies were observed in the peak areas that would require broader acceptance criteria to monitor system performance. Therefore, deoxyribose was selected as internal standard.
  • deoxyribose is commonly used as a standard in the industry for amperometric detection methods. The areas for the deoxyribose peak showed less variability during the long injection sequences and could be used with narrower acceptance criteria.
  • Glyko-Prozyme was also eliminated as an option when the galactose peak areas were equal for samples treated with ⁇ -galactosidase to those samples treated with both ⁇ -galactosidase and a-sialidase in two different experiments (i.e. the activity of - sialidase was undetectable).
  • Direct comparative experiments were prepared comparing the New England BioLabs and QA Bio enzymes and were performed the same day. The results were also compared with data from previous days with the same samples digested with QA Bio enzymes.
  • Example 8 Type and preparation of the sample
  • the upstream protein samples may contain 5 mg / ml of galactose from cell culture media
  • a sample preparation method was developed to remove most of the excess galactose from the media, as well as other potentially interfering excipients. This cleaning alone was not enough to remove all impurities from the process, so additional cleaning should be performed as part of the preparation for the coating method.
  • Two quick cleaning methods were evaluated: dialysis against deionized water and filtration in a 10 kDa centrifuge filter. The experiment used a sample of recAlpha-1 exchanged with buffer. In this experiment, a sample was dialyzed against deionized water for 4 hours while another sample was cleaned simultaneously using a 10 kDa centrifuge filter. Both samples were then analyzed by the coating method.
  • Specificity is the ability of the method to evaluate the analyte in the presence of components that can be expected to be present, such as impurities, degradation products, matrices, etc.
  • the specificity of the method was determined by preparing a mixture of neutral monosaccharides and commercially available aminomonosaccharides and analyzing the mixture by HPAEC-PAD.
  • the sugars evaluated were fucose, galactosamine, glucosamine and galactose. Sugars were analyzed individually to confirm retention times and then analyzed as a mixture to determine specificity (Figure 5).
  • the monosaccharide separation was comparable to that observed in Dionex Data Sheet 20, where galactose elutes after the other three monosaccharides.
  • the linearity of the HPAEC PAD sialylation test is its ability to obtain test results that are directly proportional to the concentration or content of analyte at a given interval.
  • an interval derived from the linearity study was used to confirm the acceptable degree of linearity, accuracy and precision attainable by the procedure.
  • the linearity for the method was evaluated by preparing a standard calibration curve for galactose with an optimal range of 8 pmol to 1.5 nmol ( Figure 6).
  • the coefficient of determination was 0.99 or greater for the range of 8 pmol to 1.5 nmol. Regression residuals were also analyzed and showed not to be biased in that interval.
  • the quantification limit (LDC) of the HPAEC PAD sialylation assay indicates the lowest amount of analyte in a sample that can be quantitatively determined with adequate precision and accuracy.
  • LDC quantification limit
  • the LDC was also calculated in a different way. Based on the values in table 14 and specifically on the standard deviation of the ordinate at the origin (0.0577) divided by the average slope (0.0283) and multiplied by 10, the LDC was calculated to be 20 pmol . The two methods of calculating the quantification limit suggest that LDC was approximately 8 to 20 pmol.
  • the accuracy of the method was determined by concordance between a known standard and the experimentally measured results. Since there is no "gold standard" that serves as a reference, the accuracy of the method was determined using an equal part mixture of sialylated fetuin and asialofetuin standards. available in the market.
  • the sialylated bovine fetuin pattern and the asialofetuin pattern were prepared at equal concentrations as determined by UV absorbance at 280 nm (i.e., A280). The patterns were analyzed individually, then prepared in a 1: 1 ratio and analyzed.
  • the sialylated fetuin pattern had a 99.4% coating percentage while the asyalofetuin pattern had a 1.2% coating percentage, because the amount of galactose in Reaction B is slightly higher than Reaction C
  • the expected coating percentage for the control fetuin mixture would be approximately 50%. It was established that the actual result for the fetuin mixture was 49.3% based on the average of multiple series. The results for the experiment are summarized in Table 16. Although the derivation of exact variability or accuracy cannot be made from the A280 measurement, these results indicate that this method was accurate within a few percentage points.
  • the repeatability of the assay was evaluated for the consistency of the results obtained from the method for a short period of time under the prescribed conditions.
  • the repeatability of the method was determined using a sample of cell culture supernatant of recAlpha-1 in six duplicate injections.
  • the background sample i.e. Reaction A
  • the relative standard deviation was determined for the galactosamine area, the galactose area and the percentage of coating in the six duplicate injections.
  • the results are summarized in Table 17 and are shown both corrected by the galactosamine area and without correction. The data shows that the repeatability is approximately 0.20%.
  • Table 17 Reproducibility of the method
  • the intermediate precision analysis incorporated several additional factors: different days, different instrument settings and different sample preparation.
  • the intermediate precision of the method was investigated by preparing a sample of downstream process development recAlpha-1 (RAD-5904) for coating analysis on three different days and at three different concentrations.
  • different Dionex ICS-3000 chromatography systems, disposable electrodes, AminoTrap columns, precolumns and analytical columns were used.
  • the results show that the relative standard deviation (DER) of the sample is 0.25%.
  • the coating percentages of the fetuin control prepared in the three days of analysis were also compared.
  • the fetuin control DER was 2.99%.
  • Table 18 and Table 19 The results were averaged from duplicate series and were not corrected.
  • the robustness of the test is a measure of its ability not to be affected by small, but deliberate, variations in method parameters or sample handling. Several different factors were deliberately modified in a few sets of experiments, such as automatic sample processor stability, enzyme reaction time, enzyme volume and matrix interference.
  • the sample was then prepared using the usual exchange wash procedure with 20 mM phosphate buffer, pH 7 followed by filtration by centrifugation at 10 kDa. He Coating percentage of the Alpha-1 PD added to the culture media was compared with the coating results for Alpha-1 PD that had not been added to the cell culture media (see Table 22). The results show a 99.4% coverage percentage for PD Alpha-1 added to the media and 99.2% (average) for PD Alpha-1 not added to the media, which was within the associated intermediate accuracy to this method These results indicate that cell culture media do not interfere in the assay after the samples have undergone the appropriate cleaning steps.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Emergency Medicine (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Métodos y kits para el análisis de la sialilación de glucopro teínas. Las muestras de glucoproteína se incuban por separado en tres condiciones: con beta-galactosidasa, con beta-galactosidasa + alfa-sialidasa, y sin enzima. Tras el tratamiento enzimático, se determinan cuantitativamente mediante cromatografía de intercambio aniónico de alta resolución con detección amperométrica pulsada (HPAEC PAD) la galactosa total en la muestra, la galactosa no sialilada y la galactosa exógena del medio. La determinación de estos valores permite deducir el porcentaje de sialilación de la glucoproteína.

Description

ANÁLISIS RÁPIDO Y PRECISO DE LA SIALILACION DE PROTEÍNAS SECTOR TÉCNICO
En el presente documento se describen métodos analíticos para analizar la sialilacion de proteínas.
ANTECEDENTES
Muchas proteínas requieren glucosilación para su función biológica. A menudo, los carbohidratos terminales, "de recubrimiento" ("capping") de cadenas glucosílicas son residuos de ácido siálico. Los ácidos siálicos comprenden una familia de ácidos neuramínicos enlazados a N y a 0. Los ácidos siálicos enlazados a N se forman enlazando restos de acetilo o glucosilo al residuo amino del ácido neuramínico, formando ácido iV-acet ilneuramínico (Neu5Ac) y ácido iV-glucolilneuramínico (Neu5Gc) , respectivamente. Si el grupo amino del neuramínico se sustituye por un resto hidroxilo, esto produce ácido 3-desoxi-D-glicero-D- galacto-2-nonulosónico (KDN) . Los ácidos siálicos enlazados a O se forman mediante las sustituciones de uno o más de los grupos hidroxilo de Neu5Ac, Neu5Gc o KDN por grupos metilo, acetilo, lactoílo, sulfato o fosfato. Por consiguiente, existe una población grande y diversa de ácidos siálicos.
Además, existe un interés considerable en analizar la sialilacion de proteínas, en general, debido a las numerosas funciones biológicas atribuidas a estas modificaciones. La sialilacion puede ser importante para la farmacocinét ica y la eficacia de la bioterapéut ica de proteínas. Consecuentemente, se han desarrollado varios métodos analíticos para evaluar el contenido de ácido siálico de glucoproteínas . Por ejemplo, pueden utilizarse ensayos a base de anticuerpos para identificar restos de carbohidratos particulares. Los residuos de ácido siálico terminales pueden separarse enzimáticamente de la glucoproteina de interés y analizarse mediante HPLC. Sin embargo, cada uno de estos métodos presenta defectos y habitualmente requiere muestras puras o altas concentraciones. Los métodos convencionales utilizados por la industria farmacéutica adolecen de poca precisión, alta variabilidad de los datos y no pueden utilizarse con medios de cultivo complejos debido a la interferencia de la matriz. El método descrito en el presente documento supera dichos defectos y proporciona una cuantificación precisa y reproducible de la sialilacion de proteínas. Colectivamente, el método descrito en el presente documento comprende dos etapas: (1) se utiliza una reacción enzimática para hidrolizar los residuos de galactosa y ácido siálico de las glucoproteínas ; y (2) se utiliza un método de cromatografía de intercambio iónico para separar y cuantificar los residuos de galactosa. La parte enzimática del método implica la liberación de los restos de galactosa terminales expuestos (no recubiertos) mediante la exo-glucosidasa específica, β-(1-4)- galactosidasa ( β-galactosidasa) , mientras que los residuos de ácido siálico terminales son liberados por a- (2- 3 , 6 , 8 , 9 ) -sialidasa ( OC-sialidasa) . Antes de la digestión, se divide una muestra entre, como mínimo, tres tubos. El primer tubo, Reacción A, es una muestra de fondo y comprende solamente los tampones de reacción enzimática. El segundo tubo, Reacción B, se hace reaccionar con β- galactosidasa que escinde todos los residuos de galactosa que no están recubiertos por ácidos siálicos. El tercer tubo, Reacción C, se co-digiere tanto con neuraminidasa como con β-galactosidasa . La enzima neuraminidasa elimina los ácidos siálicos de recubrimiento y permite que la β- galactosidasa escinda todos los residuos galactosa expuestos. A continuación se utiliza cromatografía de intercambio aniónico de alta resolución con detección amperométrica pulsada (HPAEC PAD) para determinar la cantidad de galactosa presente en las tres muestras. La proporción de galactosa no recubrimiento (es decir, Reacción B) con respecto a galactosa total (es decir, Reacción C) se utiliza para calcular el porcentaje de recubrimiento de residuos de galactosa, al tiempo que se explica también cualquier galactosa libre presente en los medios (Reacción A) .
CARACTERÍSTICAS DE LA INVENCIÓN
En el presente documento se describen métodos para analizar la sialilacion de una proteína. También se describe un método para determinar el contenido de sialilacion de una proteína que comprende: (a) preparar una proteína para el análisis; (b) tratar enzimáticamente la proteína preparada, que comprende: dividir la proteína preparada en una pluralidad de muestras de proteína que comprenden (i) como mínimo una muestra de proteína como muestra de los medios (Reacción A); (ii) añadir, como mínimo, β-galactosidasa a, como mínimo, una muestra de proteína (Reacción B) ; (iii) añadir, como mínimo, β- galactosidasa y OC-sialidasa a, como mínimo, una muestra de proteína diferente (Reacción C) ; e incubar la pluralidad de muestras de proteína; y (c) analizar la pluralidad de muestras de proteína utilizando cromatografía HPAEC-PAD; (d) determinar un contenido de carbohidratos para la pluralidad de muestras de proteína; y (e) calcular un porcentaje de sialilación para la proteína. También se describe un método que comprende además (f) analizar una pluralidad de controles positivos y negativos utilizando cromatografía HPAEC-PAD; (g) analizar una pluralidad de patrones utilizando cromatografía HPAEC-PAD; y (h) comparar la pluralidad de muestras de proteína con la pluralidad de patrones y controles.
También se describe la utilización de cromatografía HPAEC- PAD para determinar el contenido de sialilación de una proteína, que comprende: (a) preparar una proteína para el análisis; (b) tratar enzimáticamente la proteína preparada, que comprende: dividir la proteína preparada en una pluralidad de muestras de proteína que comprenden (i) como mínimo una muestra de proteína como muestra de los medios (Reacción A); (ii) añadir, como mínimo, β- galactosidasa a, como mínimo, una muestra de proteína (Reacción B) ; (iii) añadir, como mínimo, β-galactosidasa y OC-sialidasa a, como mínimo, una muestra de proteína diferente (Reacción C) ; e incubar la pluralidad de muestras de proteína; y (c) analizar la pluralidad de muestras de proteína utilizando cromatografía HPAEC-PAD; (d) determinar un contenido de carbohidratos para la pluralidad de muestras de proteína; y (e) calcular un porcentaje de sialilación para la proteína. También se describe la utilización que comprende además: (f) analizar una pluralidad de controles positivos y negativos utilizando cromatografía HPAEC-PAD; (g) analizar una pluralidad de patrones utilizando cromatografía HPAEC- PAD; y (h) comparar la pluralidad de muestras de proteína con la pluralidad de patrones y controles. También se describe un kit para determinar el contenido de sialilación de cualquier proteína que comprende: como mínimo un recipiente que comprende una pluralidad de recipientes que comprenden cantidades medidas previamente de una galactosidasa y una sialidasa; opcionalmente, recipientes que contienen, como mínimo, una composición tampón, una muestra de control positivo, una muestra de control negativo y patrones de carbohidratos, e instrucciones que describen un método para determinar el contenido de sialilación de una proteína, que comprende descripciones de: (a) preparar una proteína para el análisis; (b) tratar enzimáticamente la proteína preparada, que comprende: dividir la proteína preparada en una pluralidad de muestras de proteína que comprenden (i) como mínimo una muestra de proteína como muestra de los medios (Reacción A); (ii) añadir, como mínimo, β- galactosidasa a, como mínimo, una muestra de proteína (Reacción B) ; (iii) añadir, como mínimo, β-galactosidasa y OC-sialidasa a, como mínimo, una muestra de proteína diferente (Reacción C) ; e incubar la pluralidad de muestras de proteína; y (c) analizar la pluralidad de muestras de proteína utilizando cromatografía HPAEC-PAD; (d) determinar un contenido de carbohidratos para la pluralidad de muestras de proteína; y (e) calcular un porcentaje de sialilación para la proteína.
También se describe un kit que comprende además: (f) analizar un control positivo y negativo utilizando cromatografía HPAEC-PAD; (g) analizar una pluralidad de patrones utilizando cromatografía HPAEC-PAD; y (h) comparar los resultados de la pluralidad de muestras de proteína con los resultados de la pluralidad de patrones.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
La figura 1 muestra un esquema de las Reacciones A, B y C, y los datos que se obtienen a partir de cada reacción respectiva. El porcentaje de recubrimiento mediante sialilación puede determinarse a partir del cociente de las diferencias en las Reacciones C y B y Reacciones C y A, respectivamente. Véase la ecuación 1.
La figura 2 muestra un cromatograma típico para una muestra de recAlpha-1 digerida en la Reacción C. Los tiempos de elución para galactosa varían entre aproximadamente 14 y 16 minutos.
La figura 3 muestra una comparación de una muestra de recAlpha-1 aguas arriba que se dializó contra agua desionizada o se centrifugó en un filtro de centrifugado de 10 kDa. En la muestra dializada quedaban impurezas, pero fueron eliminadas casi totalmente por el filtro de centrifugado de 10 kDa.
La figura 4 demuestra que los excipientes aguas arriba de medios de cultivo recAlpha-1 pueden detectarse y pueden co-eluirse cerca del pico de galactosa. En el panel A, se muestra un pico de excipiente que se eluye próximo al pico de galactosa en algunas muestras después de la limpieza del filtro de centrifugado. Para las muestras de la Reacción B, el pico de impureza se resuelve inicialmente del pico de galactosa y no se integra. En el panel B, el pico de impureza del proceso se co-eluye con una muestra de la Reacción C. En este caso, el pico de impureza debe dividirse como se ha mostrado anteriormente para evitar que sea integrado con el área del pico de galactosa. figura 5. La especificidad del método se confirmó analizado una mezcla de monosacáridos neutros y aminomonosacáridos derivados de glucoproteinas . figura 6. Ejemplo de una curva patrón de galactosa típica.
DESCRIPCIÓN DETALLADA
Un ejemplo de una proteína que puede analizarse utilizando el método descrito en el presente documento es el inhibidor de alfa 1-proteinasa (también conocido como alfa 1-antitripsina) . El inhibidor de alfa 1-proteinasa es una glucoproteína serpina de origen natural que está implicada en la protección de las células de enzimas proteasa implicadas en la coagulación y la inflamación. La ausencia de inhibidor de alfa-1 proteinasa, deficiencia de alfa 1- antitripsina, conduce a trastornos respiratorios tales como enfisema y enfermedad pulmonar obstructiva crónica (EPOC) . Por consiguiente, existe un interés en la utilización de inhibidor de alfa-1 proteinasa como bioterapéutico para tratar enfermedades relacionadas con la deficiencia del inhibidor de alfa-1 proteinasa. El inhibidor de alfa-1 proteinasa recombinante (recAlpha-1) se diseñó para secreción por la línea celular PerC6 con estructuras de carbohidrato glicano enlazadas a N que están parcial o totalmente recubiertas por ácidos siálicos terminales (ácidos iV-acetilneuramínicos ) . Una disminución de la cantidad de ácidos siálicos terminales ha demostrado reducir la semi-vida de recAlpha-1 en suero. Por lo tanto, es importante conocer el porcentaje de residuos de galactosa recubiertos mediante ácidos siálicos en recAlpha-1 cuando se investiga su función o eficacia como fármaco terapéutico.
EJEMPLOS
Ejemplo 1: Preparación de la muestra para análisis y digestión enzimática
En el presente documento se describe un método para la determinación del contenido de sialilación de una glucoproteina . El método comienza con la preparación de una muestra de proteína para hidrólisis enzimática de los restos de carbohidrato. Por consiguiente, la proteína debe ponerse en condiciones compatibles con las reacciones enzimáticas, incluyendo ajusfar la concentración de proteína, eliminar componentes de la solución tales como sales disueltas, tampones, otras proteínas, carbohidratos, excipientes, etc., que podrían interferir con la enzima o enzimas. Tal como se utiliza en el presente documento, el término "preparado/a" o la frase "preparar una proteína para el análisis" describe el proceso de eliminar componentes de la solución que podrían interferir en la hidrólisis enzimática y diluir la solución de proteínas a una concentración óptima para el ensayo con agua desionizada.
Como mínimo, pueden utilizarse dos métodos ejemplares no limitantes para preparar componentes de la solución de proteínas a partir de proteínas para el análisis: (1) diálisis contra agua desionizada o (2) filtración centrífuga (también llamada filtración por centrifugado) . En ambos casos, se utilizó una membrana semipermeable con un límite de corte de peso molecular (MWCO) especificado para eliminar especies de peso molecular más bajo mientras se retenia la proteína analito de interés. Los intervalos de MWCO útiles incluyen 1 kDa, 2,5 kDa, 5 kDa, 10 kDa, 20 kDa, 50 kDa, 100 kDa, 250 kDa y 500 kDa. En el procedimiento de diálisis, la proteína se insertó en una membrana de diálisis y se dializó contra un exceso de agua desionizada o tampón adecuado y/o solución salina durante, como mínimo, 4 horas a 4°C. Como alternativa, en lugar de dializarla, una muestra de proteína puede prepararse para la digestión enzimática mediante filtración centrífuga. Durante la filtración centrífuga, la solución de proteína se centrifugó contra una membrana semipermeable con un MWCO especificado. Los componentes de la solución con pesos moleculares por debajo del MWCO pasan a través del filtro durante el centrifugado, mientras que la proteína y las especies de peso molecular más alto son retenidas. Habitualmente, la solución de proteína se concentra durante la filtración por centrifugado, debido a que el agua pasa a través de la membrana semipermeable. Generalmente, como ejemplo no limitante, se utilizó un filtro de centrifugado de 10 kDa, según las instrucciones del fabricante, para preparar la muestra de proteína.
Antes de la digestión enzimática, también se diluyeron muestras de proteína a una concentración de 1,0 a 1,5 mg/ml con agua desionizada, de modo que estuvieron dentro del intervalo lineal del ensayo. Una vez que se diluyeron las muestras, como mínimo, se realizó una reacción para cada condición (es decir, A, B y C) . La solución de proteína preparada se dividió, como mínimo, en tres muestras para desglucosilación enzimática. Véase la figura 1 . La Reacción A era el control de fondo (para controlar la galactosa exógena) . Esta reacción está compuesta solamente por los tampones para las reacciones enzimáticas y sirve como control para carbohidratos que pueden existir en el medio que comprende el analito de proteína. La Reacción B contenía β-galactosidasa, que hidrolizaba grupos carbohidratos no sialilados, pero no aquellos que estaban "recubiertos" con grupos sialilo. La Reacción C contenía tanto OC-sialidasa como β-galactosidasa . En esta reacción, la OC-sialidasa hidrolizaba los restos sialilo de recubrimiento, lo que permitía a continuación a la β- galactosidasa hidrolizar todos los grupos carbohidrato. En esta reacción combinada de OC-sialidasa y β-galactosidasa, toda la glucosilación (es decir, sialilada y no sialilada) se eliminó de la proteína, mientras que en la reacción de β-galactosidasa, solamente se eliminaron los grupos carbohidratos no recubiertos (no sialilados) . Los componentes para las tres condiciones de reacción se muestra en la tabla 1 .
Tabla 1 : Condiciones de Reacción de Glicosilasa
Tampón de
Agua Tampón de β-(1-4)- reacción de α-(2-3,6,8,9)-
Reacción desionizada reacción de galactosidasa
galactosidasa sialidasa (μΙ)
(μΙ) sialidasa (μΙ) (μΙ)
(μΙ)
A-Fondo 12 4 4 0 0
Β-β-
10 4 4 2 0 galactosidasa
C-β- galactosidasa 8 4 4 2 2 + oc-sialidasa Las diferentes reacciones se prepararon múltiples veces en base al número de muestras a digerir. Para cada digestión, se añadieron 45 μΐ de muestra a tres tubos diferentes. Posteriormente, se añadieron 20 μΐ de la enzima de reacción apropiada A, B o C al tubo indicado para ese tipo de reacción y se calentaron en un termomezclador a 37°C, agitando moderadamente, durante entre 2,5 horas y 4 horas. La reacción se inactivo mediante incubación a 90 °C durante 5 minutos .
Una vez completadas las digestiones, las muestras se prepararon para los análisis cromatográficos combinado 30 μΐ de muestra y 20 μΐ de patrón de desoxirribosa a 0,02 mg/ml en un frasco y mezclando minuciosamente. Las muestras se colocaron a continuación en un procesador de muestras automático de HPLC a 10°C y se procesaron utilizando el método cromatográfico descrito en el Ejemplo 2. Ejemplo 2: Metodología cromatográfica
Se realizó análisis por cromatografía de intercambio aniónico de alta resolución con detección amperométrica pulsada (HPAE-PAD) en sistemas de cromatografía iónica Dionex ICS-3000 con bombas únicas, procesadores automáticos de muestras con termostato ajustados a 10°C, y unidades de detección electroquímica (Dionex, Sunnyvale, CA) . Se utilizaron electrodos de oro (Au) desechables para la detección amperométrica pulsada (PAD) (Dionex No. de Prod. 060139) . La forma de onda utilizada para el análisis de la muestra se basaba en la Ficha Técnica 21 de Dionex, que describe ajustes óptimos para PAD de carbohidratos tal como se muestra en la tabla 2. Véase la Ficha Técnica 21 de Dionex, Optimal Settings for Pulsed Amperometric Detection of Carbohydrates Using the Dionex ED40 Electrochemical Detector [Ajustes óptimos para detección amperométrica pulsada de carbohidratos utilizando el detector electroquímico Dionex ED40], Dionex (1998).
Figure imgf000014_0001
La cromatografía se realizó utilizando una columna de intercambio iónico CarboPac PA10 4 χ 250 mm de Dionex (Dionex No. de Prod. 046110) con una precolumna en línea CarboPac PA10 4 χ 50 mm (Dionex No. de Prod. 046115), y una columna AminoTrap de 4 χ 50 mm (Dionex No. de Prod. 046112) para unirse a la proteína desialilada e impedir su adsorción a la columna.
La primera fase móvil (A) contenía NaOH 20 mM y se utilizó para la separación isocrática a un caudal de 1 ml/min durante 30 minutos (el tiempo de ejecución inicial era de 28 minutos pero se amplió a 30 minutos durante el desarrollo para dejar más tiempo para el re-equilibrado al 100% de la fase móvil A) . La segunda fase móvil (B) contenía NaOH 500 mM y se utilizó para la elución de la columna, limpieza de la columna y limpieza del electrodo. El método de elución cromatográfica, incluyendo el lavado en rampa utilizando las fases móviles A y B se muestra en la tabla 3. El volumen de inyección de muestra era de 20 μΐ . Se realizaron análisis de datos utilizando el software Chromeleon® 6.8 Chromatography Data Analysis System ( Dionex ) .
Figure imgf000015_0001
Ejemplo 3: Patrones, controles, calibración e idoneidad del sistema
La concentración de galactosa se cuantificó en referencia a cantidades conocidas de un patrón de galactosa 10 mM (BioAssay Systems, EGAL-100) que se diluyó sucesivamente en un intervalo lineal de 8 pmol a 1,5 nmol. Durante el desarrollo del método, se realizó una única inyección de cada punto antes de las inyecciones de muestra para garantizar el rendimiento de la columna y el sistema. Véase la figura 6.
El monosacárido 2-desoxi-D-ribosa ( desoxirribosa ) se utilizó como patrón interno. Una cantidad equivalente de desoxirribosa se añadió a todas las muestras de proteína, patrones y controles para monitorizar el rendimiento del electrodo. Debido a la naturaleza de la PAD, se utilizó el patrón interno para corregir las diferencias en la respuesta del detector, que pueden producirse de inyección a inyección. El área del pico de galactosa para todas las muestras se corrigió dividiendo el área de galactosa por el área de desoxirribosa . Se utilizó un control positivo para garantizar la precisión del ensayo cada vez que se realizó. Esto requería monitorizar la función enzimática y asegurar el manejo apropiado de la muestra. La reacción de control era una mezcla 1 a 1 de fetuina sialilada bovina y patrón de asialofetuina disponibles en el mercado (Sigma F3004 y A4781, respectivamente) . Individualmente, la fetuina sialilada tiene un porcentaje de recubrimiento por encima del 99% y la asialofetuina tiene un porcentaje de recubrimiento del 0%. Cuando se mezclan a iguales proporciones, la proporción de recubrimiento ( sialilación) para fetuina debe ser del 50% ± 3%. El control de fetuina se preparó como un gran lote que se dividió en alícuotas, se congeló a -70°C y una muestra individual se descongeló y se utilizó como control cada vez que se digirió un juego de muestras y se procesó utilizando los métodos descritos en el presente documento.
Se monitorizó un experimento de idoneidad del sistema para asegurar el rendimiento del método analítico utilizando una mezcla de galactosa y desoxirribosa que se inyectó al comienzo de una serie, y se categorizaron cada 12 inyecciones de muestra (es decir, 2 muestras por duplicado), y al final de la serie para monitorizar el rendimiento del electrodo y la columna durante toda la serie. Los diferentes experimentos para una serie cromatográfica típica se muestra en la tabla 4.
Tabla 4 : Secuencia típica de una serie de cromatografía
Volumen de
Muestra Contenido Repetición
inyección (μΐ)
1 Blanco tampón3 3 20
2 Patrón a alta conc- 3 20
idoneidad del sistema
3 Patrón a baja 1 20
concentraeiónb
4 Patrón a alta 1 20
concentraeiónb
5 Blanco enzimático0 1 20
6 Fetuina-Reacción Bd 1 20
7 Fetuina-Reacción Cd 1 20
8 Fetuina-Reacción Bd 1 20
9 Fetuina-Reacción Cd 1 20
10 Patrón a alta conc- 1 20
idoneidad del sistema*
11 Blanco tampón3 1 20
12 Muestra 1-Reacción A 1 20
13 Muestra 1-Reacción B 1 20
14 Muestra 1-Reacción C 1 20
15 Muestra 1-Reacción A 1 20
16 Muestra 1-Reacción B 1 20
17 Muestra 1-Reacción C 1 20
18 Blanco tampón3 1 20 Tabla 4 : Secuencia típica de una serie de cromatografía
19 Muestra 2-Reacción A 1 20
20 Muestra 2-Reacción B 1 20
21 Muestra 2-Reacción C 1 20
22 Muestra 2-Reacción A 1 20
23 Muestra 2-Reacción B 1 20
24 Muestra 2-Reacción C 1 20
25 Patrón a alta conc- 1 20 idoneidad del sistema*
26 Blanco tampón3 1 20
AL. N... 1 20
N + 1 Patrón a alta conc- 3 20 idoneidad del sistema b
N + 2 Lavado - - a El blanco tampón era una inyección sin material (es decir, contiene la fase móvil A solamente) . Pueden ser necesarias inyecciones de blanco adicionales para asegurar que la columna está limpia y equilibrada. Se recomienda que la segunda inyección de blanco se utilice para evaluar la limpieza de la columna. También debe realizarse una inyección de blanco como mínimo una vez cada 6 inyecciones de muestra o antes si fuera necesario (Blanco Tampón) .
b El patrón a baja concentración era galactosa 8 pmol y el patrón a alta concentración era galactosa 1500 pmol. Estos patrones de ensayo pretendían garantizar que los resultados de la muestra estaban dentro del intervalo lineal de las concentraciones más baja y más alta para el ensayo. El control de ensayo 1500 pmol también se utilizó como control de la idoneidad del sistema (por ejemplo, patrón a alta concentración- Tabla 4 : Secuencia típica de una serie de cromatografía
Idoneidad del sistema) durante la serie para monitorizar el rendimiento del electrodo y la columna y debe categorizarse cada 12 series de inyección de la muestra (es decir, cuatro conjuntos de muestras A, B y
C) .
° El blanco enzimático era una inyección que contenia las enzimas (es decir, β-galactosidasa y OC-sialidasa) y tampones sin ninguna muestra de proteina (es decir, Reacción C sin ningún analito de proteina) .
d Se utilizó fetuina bovina (una mezcla 1:1 de fetuina sialilada y asialofetuina) como control positivo para sialilación .
Ejemplo 4: Corrección y cálculo de los resultados
En la figura 2 se muestra un cromatograma representativo. Las áreas de todas las inyecciones de muestra se corrigieron mediante el área de desoxirribosa . Las correcciones se realizaron dividiendo el área del pico de galactosa por el área del pico de desoxirribosa. Este número corregido se utilizó a continuación para calcular el porcentaje de sialilación. Para calcular este porcentaje, se determinó la proporción de galactosa no recubierta con respecto a galactosa total utilizando la ecuación 1 :
Reacción C (Gal Total) - Reacción B (Gal sin
Porcentaje de recubrir)
recubrimiento (%) x 100
Reacción C (Gal Total) - Reacción A (Gal en
los medios)
Para calcular el porcentaje de recubrimiento, el área galactosa se dividió por el área de desoxirribosa para dar áreas de galactosa corregidas. El porcentaje de recubrimiento se calculó para cada una de las inyecciones por duplicado de una muestra utilizando las áreas corregidas. El área de galactosa corregida medida para la Reacción B se restó del área de galactosa corregida determinada a partir de la Reacción C; este valor corresponde a la cantidad de galactosa recubierta con sialilo. El área de galactosa corregida determinada para la Reacción A se restó a continuación del área de galactosa corregida medida para la Reacción C; este valor corresponde a la galactosa total (es decir, recubierta y sin recubrir) . La galactosa recubierta (C - B) se dividió por la galactosa total (C - A) y se multiplicó por 100 para dar el porcentaje de recubrimiento con sialilo. Los datos representativos se muestran en la tabla 5.
Tabla 5: Datos de recubrimiento de galactosa representativos
Muestra Area de Area de Area Porcentaje de Porcentaje de desoxirribosa galactosa corregida recubrimiento recubrimiento (nC x min) (nC x min) (nC x min) medio
Muestra 1-
4,597 0,162 0,035
Reacción A
Muestra 1-
4,523 0,537 0, 119 97,9 Reacción B
Muestra 1-
4,461 17,545 3,933
Reacción C
97,8
Muestra 1-
4,723 0,150 0,032
Reacción A
Muestra 1-
4,633 0,548 0, 118 97,7 Reacción B
Muestra 1-
4,557 17,48 3,763
Reacción C La idoneidad del sistema se monitorizó utilizando una mezcla de galactosa y desoxirribosa que se inyectó al comienzo de una serie y al final de la serie para monitorizar el rendimiento del electrodo y la columna durante toda la serie. El porcentaje de recubrimiento medio descrito se determinó a partir de las áreas corregidas de inyecciones por duplicado. Si el área del pico de galactosa en la Reacción B era menor que el área del pico de galactosa en el patrón de 8 pmol, entonces el porcentaje de recubrimiento se describió como ">% de [recubrimiento]" (es decir, "mayor que") calculado en base al área del pico de galactosa del patrón de 8 pmol en el numerador del cálculo. Se realizaron el cálculo del factor de cola (llamado "asimetría" en el software Chromeleon®) , placas teóricas y resolución y se determinaron mediante el software de adquisición de datos de Dionex. Los cálculos para los restantes criterios de idoneidad del sistema se determinaron de forma manual. Los parámetros de idoneidad del sistema representativos se muestran en la tabla 6.
Figure imgf000022_0001
Los criterios de aceptación del ensayo de idoneidad del sistema se muestran en la tabla 7.
Tabla 7 : Criterios de aceptación del ensayo de idoneidad del sistema
Parámetros para idoneidad del sistema Criterios
Porcentaje de diferencia del tiempo de
retención de desoxirribosa en la muestra
con respecto al tiempo de retención de ±5% desoxirribosa en la media del patrón a
alta y baja concentración
Porcentaje de diferencia del área de
galactosa del control de ensayo inicial
(patrón a alta concentración) e
inyecciones de control del ensayo de ±15% categorización (es decir, inyecciones de
idoneidad de sistema patrón a alta
concentración)
Porcentaje de diferencia del % de
recubrimiento de las muestras de ±2% recAlpha-1 por duplicado
Porcentaje de diferencia del resultado
del % de recubrimiento de control a
±3% del valor partir del resultado del % de
establecido recubrimiento establecido y esperado
previamente
Factor de cola (es decir asimetría)* 1±0, 2
Placas teóricas* >2000
Resolución* >8, 5
*E1 factor de cola se determinó utilizando el pico de desoxirribosa para cada inyección de muestra Ejemplo 5: Estequiometria de las reacciones de la muestra/enzimática y tiempo de digestión
Para optimizar la velocidad de la reacción enzimática, se analizó la proporción de enzima con respecto a proteína. La enzima β-galactosidasa es suministrada por el fabricante a una actividad de >3 Unidades/ml (actividad específica >6 Unidades/mg) , mientras que la enzima GC- sialidasa tiene una actividad de 5 Unidades/ml (actividad específica a 135 Unidades/mg) . La cantidad de cada enzima se mantuvo constante a 4 μΐ cada una, correspondiente a 0,012 Unidades de β-galactosidasa y 0,02 Unidades de GC- sialidasa en la reacción, mientras que la cantidad de proteína variaba de 540 a 2160 pmol. Las muestras analizadas eran una recAlpha-1 intercambiada con tampón y filtrada en sobrenadante de cultivo celular a una concentración de 1,4 mg/ml. Las muestras se prepararon tal como se muestra en la tabla 8.
Figure imgf000024_0001
Para cada estequiometria de reacción y punto temporal de digestión de recAlpha-1, se analizó el área del pico cromatográfico de galactosa y se determinó el porcentaje de recubrimiento. En la tabla 9 se muestra un resumen de los resultados, que demuestra que el valor de recubrimiento no cambia para ninguna de las condiciones estequiométricas . La estequiometría de reacción original (por ejemplo, 2,2 χ 1CT5 unidades /pmol de proteína) se estimó en base a las recomendaciones del fabricante. Sin embargo, estos resultados indican que las enzimas pueden ser excesivas en las condiciones recomendadas por el proveedor, incluso cuando la concentración de proteína se aumentó 4 veces. Dado este amplio intervalo dinámico de estequiometría, se seleccionó una condición estequiométrica "de punto medio" (es decir, aproximadamente 1,1 χ 1CT5 Unidades/pmol de proteína) para simplificar el procedimiento, minimizar el coste de la enzima y permitir la suficiente robustez en la preparación de la muestra.
Figure imgf000026_0001
La estequiometría de la reacción también se examinó comparando los resultados del recubrimiento para una muestra de recAlpha-1 aguas arriba (RAD-0637) preparada el Día 1 utilizando 4 μΐ de enzima en la reacción y el Día 2 (14 días más tarde), utilizando 2 μΐ de enzima. Los resultados del experimento muestran el mismo valor de recubrimiento para las cantidades enzimáticas de 2 μΐ y 4 μΐ, lo que indicaba que 2 μΐ de enzima eran suficientes para que la reacción continuara hasta completarse, lo que era coherente con la observación anterior (tabla 10) .
Figure imgf000027_0001
Ejemplo 6: Patrón interno
En este método de HPAEC-PAD, se utilizó un patrón interno para normalizar el área del pico de galactosa debido a la inherente variabilidad de la detección amperométrica en cada inyección. Inicialmente, se ensayaron dos patrones internos: galactosamina y desoxirribosa . Ambos patrones internos funcionaban adecuadamente y ambos se eluian en momentos suficientemente diferentes de la galactosa y no interferían en la cuantificación . Aunque la galactosamina se comportaba adecuadamente, se observaron algunas incoherencias en las áreas del pico que requerirían criterios de aceptación más amplios para monitorizar el rendimiento del sistema. Por consiguiente, la desoxirribosa se seleccionó como patrón interno. Además, la desoxirribosa se utiliza habitualmente como patrón en la industria para métodos de detección amperométrica . Las áreas para el pico de desoxirribosa mostraban menos variabilidad durante las largas secuencias de inyección y podían usarse con criterios de aceptación más estrechos.
Durante el desarrollo, se observaron varios casos de aumentos o disminuciones sin explicación del área de desoxirribosa. Sin embargo, en estas mismas muestras, a un aumento o disminución del área de desoxirribosa le seguía el cambio opuesto del pico de galactosa (tabla 11) .
Figure imgf000028_0001
Habitualmente , las fluctuaciones del área del pico podían explicarse como diferencias de la respuesta por parte del electrodo. Si éste fuera el caso, se esperaría que ambos picos aumentaran o disminuyeran. Se realizó un experimento en el que se añadió desoxirribosa a tres muestras pero no se mezcló. Las muestras se analizaron mediante HPAEC-PAD, a continuación se retiraron y se agitaron en vórtice para garantizar el mezclado de la muestra y el patrón interno. A continuación, se reinyectaron las muestras. Los resultados de estos experimentos muestran que la fluctuación de las áreas resulta del mezclado insuficiente de la muestra y el patrón interno. Esto sugiere que puede producirse la estratificación entre la solución de patrón interno y la muestra y los usuarios deben mezclar la reacción suficientemente antes de colocarla en la bandeja del procesador automático de muestras. Los resultados de estos experimentos se resumen en la tabla 12.
Figure imgf000029_0001
Ejemplo 7: Comparación de proveedores de enzima
Dado el carácter critico de la calidad de las enzimas β- galactosidasa y sialidasa para la velocidad de la reacción y la cuantificación de la galactosa, se compararon enzimas β-galactosidasa y OC-sialidasa de cuatro proveedores diferentes. El objetivo era calibrar la aptitud de la velocidad de la reacción que proporcionará una respuesta adecuada y establecer un proveedor suplente en caso de que las enzimas del proveedor principal ya no estuvieran disponibles en el mercado. Los proveedores seleccionados fueron Sigma, Glyko-Prozyme, New England BioLabs y QA Bio. Las enzimas de QA Bio se utilizaron para la mayoría de los experimentos descritos en el presente documento. Sigma fue eliminada cuando una reacción enzimática no produjo ninguna respuesta. Glyko-Prozyme también fue eliminado como opción cuando las áreas del pico de galactosa fueron iguales para muestras tratadas con β-galactosidasa a aquellas muestras tratadas tanto con β-galactosidasa como con a-sialidasa en dos experimentos diferentes (es decir, la actividad de -sialidasa era indetect able ) . Se prepararon experimentos comparativos directos que comparaban las enzimas de New England BioLabs y QA Bio y se realizaron el mismo día. Los resultados se compararon también con datos de días anteriores con las mismas muestras digeridas con enzimas de QA Bio. Las diferencias porcentuales entre las dos enzimas eran despreciables y la desviación estándar relativa (% de DER) para las varias series de ensayos indicaban que las enzimas β- galactosidasa y α-sialidasa de New England BioLabs eran comparables a las de QA Bio y podían usarse como proveedor suplente en el caso en el que las enzimas de QA Bio ya no estuvieran disponibles en el mercado. Los resultados experimentales se resumen en la tabla 13. Tabla 13 : Resultados de muestras digeridas utilizando enzimas de QA Bio o New England BioLabs
Muestra Fecha del Fabricante de Porcentaje de análisis la enzima recubrimiento
Fetuina Día 1 QA Bio 49,5
Fetuina Día 5 QA Bio 52, 1
Fetuina Día 5 New England 52, 8
BioLabs
Media 51,5
Desv. Est. 1,74
% de DER 3,38
RAD0637 Día 1 QA Bio 97, 4
RAD0637 Día 15 QA Bio 97,2
RAD0637 Día 15 New England 97,6
BioLabs
Media 97,4
Desv. Est. 0,20
% de DER 0,21
Ejemplo 8: Tipo y preparación de la muestra
Dado que las muestras de proteína aguas arriba pueden contener 5 mg/ml de galactosa de medios de cultivo celular, se desarrolló un método de preparación de la muestra para eliminar la mayoría del exceso de galactosa de los medios, así como otros excipientes potencialmente interferentes . Esta limpieza sola no era suficiente para eliminar todas las impurezas del proceso, así que debe realizarse una limpieza adicional como parte de la preparación para el método de recubrimiento. Se evaluaron dos métodos de limpieza rápida: diálisis contra agua desionizada y filtrado en filtro de centrifugado a 10 kDa. El experimento utilizaba una muestra de recAlpha-1 intercambiada con tampón. En este experimento, se dializó una muestra contra agua desionizada durante 4 horas mientras que otra muestra se limpió simultáneamente utilizando un filtro de centrifugado de 10 kDa. Ambas muestras se analizaron a continuación mediante el método de recubrimiento. La conclusión del experimento era que los filtros de centrifugado de 10 kDa eran más efectivos en la eliminación de impurezas que la diálisis y permiten la preparación de hasta 30 muestras de una vez, con un tiempo de ejecución significativamente aumentado. Los cromatogramas de ambos procedimientos de limpieza que implicaban digestión con la Reacción C ( β-galactosidasa y OC-sialidasa) se muestran en la figura 3. La muestra filtrada por centrifugado se reconstituyó con agua desionizada y, por consiguiente, tenia una menor concentración que la muestra dializada. Aunque cantidades vestigiales de galactosa pueden seguir estando presentes después de la limpieza, todos los picos de fondo (es decir, Reacción A) se contaron posteriormente en el cálculo del porcentaje de recubrimiento restando el área del pico contaminado.
También se observó que algún excipiente o excipientes de los sobrenadantes del cultivo celular se eluyen poco después del pico de galactosa y, en algunos casos, aparecen como un reborde del pico en el pico de galactosa (véase la figura 4) . En dichos casos donde algunos excipientes residuales no pueden ser eliminados mediante el filtro de centrifugado de 10 kDa, la presencia de esta impureza se excluyó del área del pico de galactosa realizando integración "descendente" y no integrando el pico de impureza. Ejemplo 9: Especificidad
La especificidad es la capacidad del método para evaluar el analito en presencia de componentes que se puede esperar que estén presentes, tales como impurezas, productos de degradación, matrices, etc. La especificidad del método se determinó preparando una mezcla de monosacáridos neutros y aminomonosacáridos disponibles en el mercado y analizando la mezcla mediante HPAEC-PAD. Los azúcares evaluados fueron fucosa, galactosamina, glucosamina y galactosa. Los azúcares se analizaron individualmente para confirmar los tiempos de retención y, a continuación, se analizaron como una mezcla para determinar la especificidad (figura 5) . La separación de monosacáridos era comparable a la observada en la Ficha Técnica 20 de Dionex, donde la galactosa se eluye después de los otros tres monosacáridos . Véase la Ficha Técnica 20 de Dionex, "Analysis of Carbohydrates by High Performance Anión Exchange Chromatography with Pulsed Amperometric Detection" [Análisis de carbohidratos mediante cromatografía de intercambio aniónico de alta resolución con detección amperométrica pulsada] (HPAE-PAD) , Dionex Corp. (2000) . Además, para muestras altamente impuras, es decir, sobrenadantes de cultivo celular, los niveles de fondo se analizaron para evaluar si cualesquiera excipientes interferentes estaban presentes y si se eliminaban mediante preparación de la muestra. Ejemplo 10: Linealidad
La linealidad del ensayo de sialilación HPAEC PAD es su capacidad para obtener resultados del ensayo que sean directamente proporcionales a la concentración o contenido de analito en un intervalo dado. Además, un intervalo derivado del estudio de linealidad se utilizó para confirmar el grado aceptable de linealidad, exactitud y precisión alcanzable mediante el procedimiento. La linealidad para el método se evaluó preparando una curva de calibración patrón de galactosa con un intervalo óptimo de 8 pmol a 1,5 nmol (figura 6) . El coeficiente de determinación (coeficiente de regresión) era de 0,99 o mayor para el intervalo de 8 pmol a 1,5 nmol. Los residuales de regresión también se analizaron y mostraron no estar sesgados en ese intervalo. La curva de calibración puede ampliarse hasta 2 nmol y mantener una linealidad aceptable, pero con una pérdida de exactitud en el extremo inferior de la curva de calibración. El intervalo de la curva de calibración óptima se monitorizó en diferentes fechas, utilizando diferentes sistemas, columnas y electrodos de oro desechables de Dionex ICS- 3000. La tabla 14 resume estos resultados.
Tabla 14: Resumen de R-cuadrado, pendiente y ordenada en el origen para seis curvas de calibración
Ordenada
Fecha del
Instrumento R2 Pendiente en el análisis
origen
Día 1 RTQ-0087 0,9999 0, 0276 0, 0435
Día 4 RTQ-0094 1,0000 0, 0279 -0, 0139
Día 11 RTQ-0094 0,9999 0,0263 0, 0342
Día 39 RTQ-0094 1,0000 0,028 0,0029
Día 42 RTQ-0094 1,0000 0, 0308 -0, 0553
Día 46 RTQ-0087 0,9998 0,0297 0, 1138 Ejemplo 11: Limite de cuantificación
El límite de cuantificación (LDC) del ensayo de sialilación HPAEC PAD indica la cantidad más baja de analito en una muestra que puede determinarse cuantitativamente con precisión y exactitud adecuadas. Hay varias maneras de calcular el LDC de un método cuantitativo. Un método se basa en la desviación estándar de la ordenada en el origen dividida por la pendiente media. Otro método se basa en el análisis visual del cromatograma . En primer lugar, se calculó el LDC del ensayo en base a la proporción señal con respecto a ruido de un cromatograma típico. Específicamente, el nivel de ruido en una región horizontal de 1 minuto del cromatograma se midió y se multiplicó por 10 para dar el LDC en términos de altura del pico. La altura del pico se convirtió a continuación en las cantidades en pmol en base a la altura del pico de los patrones de calibración. Los resultados del nivel de ruido se compararon con un patrón de calibración que producía una respuesta similar (véase la tabla 15) . El nivel de ruido se obtuvo en seis días diferentes en dos sistemas ICS-3000 diferentes. Estos resultados indican que los niveles de ruido en días diferentes dieron resultados similares (±0,02) y estaban aproximadamente al nivel del patrón de 8 pmol (diferencia de 0,12 nC χ min, que era insignificante en comparación con la altura del patrón de 1500 pmol a aproximadamente 70 nC x min) . Tabla 15 : Comparación del nivel de ruido en seis análisis para galactosa 8 pmol
Altura del
Diferencia
pico del
Fecha del del nivel de
Instrumento patrón análisis ruido x 10
galactosa 8 (nC x min)
pmol
Día 1 RTQ-0094 0,22 0,27
Día 7 RTQ-0087 0,25 0,40
Día 14 RTQ-0087 0,27 0,37
Día 28 RTQ-0087 0,22 0,36
Día 36 RTQ-0087 0,25 0,30
Día 37 RTQ-0087 0, 23 0, 45
Media 0,24 0,36
Dado que el nivel de ruido del cromatograma puede cambiar de instrumento a instrumento, el LDC se calculó también de una manera diferente. En base a los valores en la tabla 14 y específicamente en la desviación estándar de la ordenada en el origen (0,0577) dividida por la pendiente media (0,0283) y multiplicada por 10, se calculó que el LDC era de 20 pmol. Los dos métodos de cálculo del límite de cuantificación sugieren que LDC era de aproximadamente 8 a 20 pmol.
Ejemplo 12: Exactitud del método
La exactitud del método se determinó mediante la concordancia entre un patrón conocido y los resultados medidos experimentalmente . Dado que no hay ningún "estándar de oro" que sirva como referencia, la exactitud del método se determinó utilizando una mezcla a partes iguales de patrones de fetuina sialilada y asialofetuina disponibles en el mercado. El patrón de fetuina bovina sialilada y el patrón de asialofetuina se prepararon a concentraciones iguales según lo determinado mediante absorbancia UV a 280 nm (es decir, A280) . Los patrones se analizaron individualmente, a continuación se prepararon en una proporción 1:1 y se analizaron. El patrón de fetuina sialilada tenia un porcentaje de recubrimiento del 99,4% mientras que el patrón de asialofetuina tenia un porcentaje de recubrimiento del 1,2%, debido a que la cantidad de galactosa en la Reacción B es ligeramente superior a la Reacción C. En base a estos descubrimientos, el porcentaje de recubrimiento esperado para la mezcla de fetuina de control seria de aproximadamente el 50%. Se estableció que el resultado real para la mezcla de fetuina era del 49,3% en base a la media de múltiples series. Los resultados para el experimento se resumen en la tabla 16. Aunque no puede realizarse la derivación de variabilidad o exactitud exacta a partir de la medición a A280, estos resultados indican que este método era exacto dentro de unos pocos puntos de porcentaje. Además, este control de fetuina se analizó como parte de los estudios de precisión intermedios en días diferentes (véase la tabla 18 y la tabla 19, más adelante), y mostró tener una desviación estándar relativa (% de DER) del 3%. La utilización de dicho control se recomienda cada vez que se realiza el ensayo . Tabla 16: Resultados para patrones de fetuina para determinar la exactitud del método HPAEC-PAD
Area de Porcentaje
Porcentaje de
Fetuina Reacción galactosa de
recubrimiento
(nC x min) recuperación
Asíalo A 0
Asialo B 27,636 -1,2 100
Asialo C 27,301
Sialilada A 0
Sialilada B 0,182 99, 4 100
Sialilada C 28,808
Reacción A 0
Reacción B 14, 019 49, 3 99
Reacción C 27,657
Ejemplo 13: Reproducibilidad
La repetibilidad del ensayo se evaluó para la coherencia de los resultados obtenidos del método durante un corto intervalo del tiempo en las condiciones prescritas. La repetibilidad del método se determinó utilizando una muestra de sobrenadante de cultivo celular de recAlpha-1 en seis inyecciones duplicadas. La muestra de fondo (es decir, la Reacción A) no se analizó, dado que esta muestra se había analizado previamente y había mostrado no contener ninguna galactosa interférente . La desviación estándar relativa se determinó para el área de galactosamina, el área de galactosa y el porcentaje de recubrimiento en las seis inyecciones duplicadas. Los resultados se resumen en la tabla 17 y se muestran tanto corregidos mediante el área de galactosamina como sin corrección. Los datos muestran que la repetibilidad es de aproximadamente el 0,20%. Tabla 17: Reproducibilidad del método
Inyección Porcentaje de
Área de Área de Área
de Porcentaje de recubrimiento
Reacción galactosamina galactosa corregida
muestra recubrimiento sin
(nC x min) (nC x min) (nC x min)
No. corrección
1 B 14,681 1 ,364 0,093
96,8 96,5
1 C 13,408 39,026 2,911
2 B 14,917 1 ,359 0,091
96,8 96,6
2 C 13,851 39,396 2,844
3 B 14,865 1 ,389 0093
96,6 96,5
3 C 14,506 39,863 2,748
4 B 15,241 1 ,412 0,093
96,5 96,2
4 C 14,140 37,593 2,659
5 B 14,936 1 ,375 0,092
96,4 96,5
5 C 15,070 38,760 2,572
6 B 14,710 1 ,360 0,092
96,3 96,5
6 C 15,532 39,260 2,528
Gal sola 14,897 1,376 0,092
Media 96,6 96,5
Gal + Sal 14,418 38,983 2,70
Gal sola 0,201 0,021 0,001
Desv. Est. 0,19 0,11
Gal + Sal 0,786 0,775 0,151
Gal sola 1,35 1,50 0,82
% de DER 0,2 0,12
Gal + Sal 5,45 1,90 5,59
Ejemplo 14 : Precisión intermedia
Además del estudio de repetibilidad, el análisis de precisión intermedia incorporaba varios factores adicionales: días diferentes, ajuste de instrumentos diferente y diferente preparación de la muestra. La precisión intermedia del método se investigó preparando una muestra de recAlpha-1 de desarrollo del proceso aguas abajo (RAD-5904) para análisis de recubrimiento en tres días diferentes y a tres concentraciones diferentes. Para los análisis, se utilizaron diferentes sistemas de cromatografía Dionex ICS-3000, electrodos desechables, columnas AminoTrap, precolumnas y columnas analíticas. Los resultados muestran que la desviación estándar relativa (DER) de la muestra es del 0,25%. Además, los porcentajes de recubrimiento del control de fetuina preparado en los tres días de análisis también se compararon. La DER del control de fetuina era del 2,99%. Los resultados para la precisión intermedia de muestras de recAlpha-1 y el control de fetuina se resumen en la tabla 18 y la tabla 19, respectivamente. Las áreas se promediaron a partir de series por duplicado y no se corrigieron.
Tabla 18: Resultados de precisión intermedia para recAlpha-1
Volumen de Área Porcentaje de
Reacción
muestra (μΐ) (nC x min) recubrimiento
Dia 1
20 B 0,525
95, 7
20 C 12, 073
40 B 0, 7035
95,5
40 C 15, 756
80 B 0, 4335
95, 4
80 C 9,48
Dia 2
20 B 0, 491
95,9
20 C 12, 0425
40 B 0,6645
95, 7
40 C 15,396
80 B 0,3745
96, 2
80 C 9, 7415 Tabla 18: Resultados de precisión intermedia para recAlpha-1
Volumen de Área Porcentaje de
Reacción
muestra (μΐ) (nC x min) recubrimiento
Dia 3
20 B 0,554
95, 8
20 C 13,161
40 B 0,708
95,9
40 C 17, 434
80 B 0, 417
95,9
80 C 9,298
Media 95,7
Desv. Est. 0,24
% de DER 0,25
Tabla 19: Resultados de precisión intermedia para el control de fetuina
Reacción de Porcentaje de
Área (nC x min)
fetuina recubrimiento
Dia 1
B 14, 119
51, 8
C 29,281
Dia 2
B 13,679
49, 3
C 27, 002
Dia 3
B 18, 683
49, 1
C 36,676
Media 50,1
Desv. Est. 1,50
% de DER 2, 99 Ejemplo 15: Robustez
La robustez del ensayo es una medida de su capacidad para no ser afectado por pequeñas, pero deliberadas, variaciones en los parámetros del método o el manejo de la muestra. Se modificaron deliberadamente varios factores diferentes en unos pocos conjuntos de experimentos, tales como estabilidad del procesador automático de muestras, tiempo de reacción de la enzima, volumen de enzima e interferencia de la matriz.
Estabilidad de la muestra en el procesador automático de muestras
La robustez se determinó examinando la estabilidad de la muestra durante 48 horas en las condiciones del procesador automático de muestras de HPLC (es decir, 10°C) para determinar si la muestra que espera la inyección en el procesador automático de muestras a 10°C comprometería la calidad de los resultados. Una muestra preparada individualmente contenida en el procesador automático de muestras se inyectó a diversos intervalos y se determinó la respuesta de pico de las cantidades de galactosa para cada punto temporal. Los resultados se resumen en la tabla 20 y muestran un valor de desviación estándar relativa del 0,23%, coherente con la desviación estándar relativa determinada a partir de la precisión intermedia. Los resultados se muestran tanto corregidos mediante el área del pico de galactosamina como sin corrección. Estos datos indican que las muestras pueden mantenerse en el procesador automático de muestras durante hasta 48 horas antes de la inyección sin afectar a los resultados de recubrimiento . Tabla 20: Resultados para la estabilidad de la muestra en el procesador automático de muestras
Figure imgf000043_0001
Tiempo de reacción de la enzima
La robustez también se examinó modificando el tiempo de la reacción enzimática de 1 a 4 horas para explicar la variabilidad en diferentes velocidades de reacción para diferentes lotes de enzima. Se incubó una muestra a puntos temporales de 1, 2,5 y 4 horas y se analizó cada uno. Los resultados se resumen en la tabla 21 y muestran que aunque el porcentaje de recubrimiento era similar para los tres tiempos de reacción, la muestra de digestión de una hora era ligeramente inferior a las reacciones más largas. En base a estos datos, se determinó que una digestión de 2,5 horas es suficiente para que se realice la reacción hasta completarse. Dado que el método depende de la velocidad de reacción de dos enzimas, los resultados de porcentaje de recubrimiento inferior en el tiempo de reacción de 1 hora indican que la enzima sialidasa era la etapa limitante de la velocidad. Tabla 21: Resultados para los tiempos de reacción de la enzima
Volumen
Tiempo de Área de
de Porcentaje de
Reacción reacción galactosa
muestra recubrimiento
(h) (nC x min)
(μΐ)
40 B 1 0, 740
96, 4
40 C 1 20,617
40 B 2,5 0,638
96,6
40 C 2,5 18, 817
40 B 4 0,647
96,8
40 C 4 20, 323
Interferencia de la matriz
Aunque la interferencia del excipiente y de la matriz se abordó en la sección de especificidad, se realizó un estudio de enriquecimiento de la matriz para garantizar que la matriz aguas arriba no produce un sesgo de los resultados. Una muestra de Alpha-1 obtenida de plasma (PD Alpha-1) que contiene diferentes matrices se añadió a los medios de cultivo celular y el porcentaje de recubrimiento se midió utilizando el método descrito en el presente documento. Los medios seleccionados para el experimento contenían el nivel más alto de aditivos utilizado en experimentos de desarrollo aguas arriba, tales como medios CDM4PERMAB™ (Hyclone), Pluronic® F-68 (BASF), Antifoam-C (Dow Corning®), y diversos medios de cultivo celular. Se añadió Alpha-1 obtenida de plasma a los medios a una concentración de 0,5 mg/ml. La muestra se preparó a continuación utilizando el procedimiento de lavado habitual de intercambio con tampón en fosfato 20 mM, pH 7 seguido de filtrado por centrifugado a 10 kDa. El porcentaje de recubrimiento de la PD Alpha-1 añadida a los medios de cultivo se comparó con los resultados de recubrimiento para PD Alpha-1 que no se había añadido a los medios de cultivo celular (véase la tabla 22) . Los resultados muestran un porcentaje de recubrimiento del 99,4% para PD Alpha-1 añadida a los medios y del 99,2% (media) para PD Alpha-1 no añadida a los medios, lo que estaba dentro de la precisión intermedia asociada a este método. Estos resultados indican que los medios de cultivo celular no interfieren en el ensayo después de que las muestras se hayan sometido a las etapas de limpieza apropiadas .
Figure imgf000045_0001
Resumen
Los resultados obtenidos a partir de los experimentos de desarrollo y pre-cualificación se resumen en la tabla 23. En base a los estudios anteriores, este método se optimizó para la determinación de la tasa de recubrimiento en muestras de proteína. Los parámetros de linealidad, LDC, precisión, exactitud y robustez determinados para este ensayo muestran que este método era coherente, preciso y fiable .
Tabla 23: Resumen de los parámetros del método
Parámetros Experimento Resultados
Linealidad Seis curvas patrón del
área del pico frente a
R2 ≥ 0,99 galactosa (de 8 a 1500
pmol )
Intervalo Intervalo de trabajo
de la concentración de < 1,5 mg/ml proteína
LDC 8 pmol de
galactosa/inyección
Repetibilidad Seis duplicados de
muestra el mismo
0,20% de DER día/en el mismo
instrumento
Precisión Recubrimiento
0, 25% de DER para intermedia calculado en base a
muestras de tres días, dos
recAlpha-1; 2,99% columnas, tres
para control de electrodos y dos
fetuina sistemas ICS 3000
Exactitud Proximidad del valor
97-103% de medio de fetuina al
recuperación valor preestablecido Tabla 23: Resumen de los parámetros del método
Parámetros Experimento Resultados
Robustez Estabilidad de la
muestra a 10 °C durante Sin efecto 48 h
Tiempo de reacción de
la enzima de 2 a 4 Sin efecto horas

Claims

REIVINDICACIONES
1. Método para determinar el contenido de sialilación de una proteina que comprende:
(a) preparar una proteina para el análisis;
(b) tratar enzimáticamente la proteina preparada que comprende :
dividir la proteina preparada en una pluralidad de muestras de proteina, que comprenden
(i) como mínimo una muestra de proteína como muestra de los medios (Reacción A) ;
(ii) añadir, como mínimo, β-galactosidasa a, como mínimo, una muestra de proteína (Reacción B) ;
(iii) añadir, como mínimo, β-galactosidasa y 0C- sialidasa a, como mínimo, una muestra de proteína diferente (Reacción C) ; e
incubar la pluralidad de muestras de proteína; y
(c) analizar la pluralidad de muestras de proteína utilizando cromatografía HPAEC-PAD;
(d) determinar un contenido de carbohidratos para la pluralidad de muestras de proteína; y (e) calcular un porcentaje de sialilación para la proteína.
2. Método, según la reivindicación 1, que comprende además :
(f) analizar una pluralidad de controles positivos y negativos utilizando cromatografía HPAEC-PAD;
(g) analizar una pluralidad de patrones utilizando cromatografía HPAEC-PAD; y
(h) comparar la pluralidad de muestras de proteína con la pluralidad de patrones y controles.
3. Utilización de cromatografía HPAEC-PAD para determinar el contenido de sialilación de una proteína, que comprende :
(a) preparar una proteína para el análisis;
(b) tratar enzimáticamente la proteína preparada, que comprende :
dividir la proteína preparada en una pluralidad de muestras de proteína, que comprenden
(i) como mínimo una muestra de proteína como muestra de los medios (Reacción A);
(ii) añadir, como mínimo, β-galactosidasa a, como mínimo, una muestra de proteína (Reacción B) ;
(iii) añadir, como mínimo, β-galactosidasa y GC- sialidasa a, como mínimo, otra muestra de proteína (Reacción C) ; e
incubar la pluralidad de muestras de proteína; y
(c) analizar la pluralidad de muestras de proteína utilizando cromatografía HPAEC-PAD;
(d) determinar un contenido de carbohidratos para la pluralidad de muestras de proteína; y
(e) calcular un porcentaje de sialilación para la proteína .
4. Utilización, según la reivindicación 3, que comprende además :
(f) analizar una pluralidad de controles positivos y negativos utilizando cromatografía HPAEC-PAD;
(g) analizar una pluralidad de patrones utilizando cromatografía HPAEC-PAD; y
(h) comparar la pluralidad de muestras de proteína con la pluralidad de patrones y controles.
5. Kit para determinar el contenido de sialilación de cualquier proteina que comprende:
como mínimo, un recipiente que comprende una pluralidad de recipientes que comprenden cantidades medidas previamente de una galactosidasa y una sialidasa;
opcionalmente , recipientes que contienen, como mínimo, una composición tampón, una muestra de control positivo, una muestra de control negativo y patrones de carbohidratos, e
instrucciones que describen un método para determinar el contenido de sialilación de una proteína, que comprenden descripciones de:
(a) preparar una proteína para el análisis;
(b) tratar enzimáticamente la proteína preparada que comprende:
dividir la proteína preparada en una pluralidad de muestras de proteína, que comprenden
(i) como mínimo una muestra de proteína como muestra de los medios (Reacción A) ;
(ü) añadir, como mínimo, β-galactosidasa a, como mínimo, una muestra de proteína (Reacción B) ;
(iii) añadir, como mínimo, β-galactosidasa y 0C- sialidasa a, como mínimo, una muestra de proteína diferente (Reacción C) ; e
incubar la pluralidad de muestras de proteína; y
(c) analizar la pluralidad de muestras de proteína utilizando cromatografía HPAEC-PAD;
(d) determinar un contenido de carbohidratos para la pluralidad de muestras de proteína; y
(e) calcular un porcentaje de sialilación para la proteína .
6. Kit, según la reivindicación 5, que comprende además:
(f) analizar un control positivo y negativo utilizando cromatografía HPAEC-PAD;
(g) analizar una pluralidad de patrones utilizando cromatografía HPAEC-PAD; y
(h) comparar los resultados de la pluralidad de muestras de proteína con los resultados de la pluralidad de patrones .
PCT/ES2012/070501 2011-07-14 2012-07-05 Análisis rápido y preciso de la sialilación de proteínas WO2013011178A1 (es)

Priority Applications (14)

Application Number Priority Date Filing Date Title
AU2012285696A AU2012285696B2 (en) 2011-07-14 2012-07-05 Rapid and accurate analysis of protein sialylation
US14/232,783 US9260743B2 (en) 2011-07-14 2012-07-05 Rapid and accurate analysis of protein sialylation
CN201280033128.7A CN103635590A (zh) 2011-07-14 2012-07-05 蛋白质唾液酸化的快速和准确分析
BR112013033883-0A BR112013033883B1 (pt) 2011-07-14 2012-07-05 método para determinar o teor de sialilação de uma proteína, e, uso de cromatografia hpaec-pad
EP12815322.8A EP2733218B1 (en) 2011-07-14 2012-07-05 Rapid and accurate analysis of protein sialylation
CA2837981A CA2837981C (en) 2011-07-14 2012-07-05 Rapid and accurate analysis of protein sialylation
NZ618889A NZ618889B2 (en) 2011-07-14 2012-07-05 Rapid and accurate analysis of protein sialylation
KR1020147003822A KR101864468B1 (ko) 2011-07-14 2012-07-05 단백질 시알릴화의 신속하고 정확한 분석방법
RU2013154278/10A RU2605900C2 (ru) 2011-07-14 2012-07-05 Быстрый и точный анализ сиалирования белков
JP2014519588A JP2014525742A (ja) 2011-07-14 2012-07-05 タンパク質のシアリル化の、迅速且つ正確な分析
PL12815322T PL2733218T3 (pl) 2011-07-14 2012-07-05 Szybka i dokładna analiza sjalilacji białek
MX2014000378A MX344407B (es) 2011-07-14 2012-07-05 Analisis rapdo y preciso de la sialilacion de proteinas.
ES12815322.8T ES2675511T3 (es) 2011-07-14 2012-07-05 Análisis rápido y preciso de la sialilación de proteínas
IL229828A IL229828A (en) 2011-07-14 2013-12-05 Analysis of protein sialylation in a fast and accurate manner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161507643P 2011-07-14 2011-07-14
US61/507,643 2011-07-14

Publications (1)

Publication Number Publication Date
WO2013011178A1 true WO2013011178A1 (es) 2013-01-24

Family

ID=47557705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070501 WO2013011178A1 (es) 2011-07-14 2012-07-05 Análisis rápido y preciso de la sialilación de proteínas

Country Status (22)

Country Link
US (1) US9260743B2 (es)
EP (1) EP2733218B1 (es)
JP (1) JP2014525742A (es)
KR (1) KR101864468B1 (es)
CN (1) CN103635590A (es)
AR (1) AR087175A1 (es)
AU (1) AU2012285696B2 (es)
BR (1) BR112013033883B1 (es)
CA (1) CA2837981C (es)
CL (1) CL2013003713A1 (es)
ES (1) ES2675511T3 (es)
HU (1) HUE038020T2 (es)
IL (1) IL229828A (es)
MX (1) MX344407B (es)
MY (1) MY163078A (es)
PL (1) PL2733218T3 (es)
PT (1) PT2733218T (es)
RU (1) RU2605900C2 (es)
SG (1) SG10201500002XA (es)
TR (1) TR201809082T4 (es)
UY (1) UY34195A (es)
WO (1) WO2013011178A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2605900C2 (ru) * 2011-07-14 2016-12-27 Грайфолз С.А. Быстрый и точный анализ сиалирования белков

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106324234B (zh) * 2016-08-08 2018-05-22 上海睿康生物科技有限公司 修饰的n-乙酰神经氨酸醛缩酶及其制备方法和应用
CN107045019B (zh) * 2016-09-30 2019-08-16 中国医学科学院输血研究所 一种IVIG中IgG Fab片段和Fc片段唾液酸含量的测定方法
CN110346500B (zh) * 2018-04-04 2021-11-30 青岛大学附属医院 一种基于微波酸水解的阴离子交换色谱-脉冲安培法检测血清中单糖含量的检测方法
CN109329713B (zh) * 2018-12-01 2022-04-22 西华大学 一种降解牦牛肉中n-羟乙酰神经唾液酸的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003090695A2 (en) * 2002-04-25 2003-11-06 Transkaryotic Therapies, Inc. TREATMENT OF α-GALACTOSIDASE A DEFICIENCY
US20110086362A1 (en) * 2009-10-09 2011-04-14 Massachusetts Institute Of Technology High-Throughput Method for Quantifying Sialylation of Glycoproteins

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2214166T1 (es) * 2002-09-11 2004-09-16 Fresenius Kabi Deutschland Gmbh Polipeptidos has-ilados, especialmente, eriptropoyetina has-ilada.
ATE447715T1 (de) * 2005-04-26 2009-11-15 Nat Inst For Bioproc Res And T Automatische glykofingerabdruck-strategie
US8039208B2 (en) 2005-04-26 2011-10-18 National Institute For Bioprocessing Research And Training Limited (Nibrt) Automated strategy for identifying physiological glycosylation markers(s)
JP5628790B2 (ja) * 2008-04-07 2014-11-19 バイエル・ヘルスケア・エルエルシー 糖タンパク質の組換え生産の方法
JP2014525742A (ja) * 2011-07-14 2014-10-02 グライフォルス・ス・アー タンパク質のシアリル化の、迅速且つ正確な分析

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003090695A2 (en) * 2002-04-25 2003-11-06 Transkaryotic Therapies, Inc. TREATMENT OF α-GALACTOSIDASE A DEFICIENCY
US20110086362A1 (en) * 2009-10-09 2011-04-14 Massachusetts Institute Of Technology High-Throughput Method for Quantifying Sialylation of Glycoproteins

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BHAVANANDAN ET AL.: "Identification of the glycosidically bound sialic acid in mucin glycoproteins that reacts as ''free sialic acid'' in the Warren assay", GLYCOBIOLOGY, vol. 8, no. 11, 1998, pages 1077 - 86, XP055139995 *
HEMMERICH ET AL.: "Structure of the O-glycans in GlyCAM-1, an endothelial-derived ligand for L-selectin", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 270, no. 20, 1995, pages 12035 - 47, XP001121261 *
ROHRER ET AL.: "Analysis of the N-acetylneuraminic acid and N-glycolylneuraminic acid contents of glycoproteins by high-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC/PAD)", GLYCOBIOLOGY, vol. 8, no. 1, 1998, pages 35 - 43, XP055139996 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2605900C2 (ru) * 2011-07-14 2016-12-27 Грайфолз С.А. Быстрый и точный анализ сиалирования белков

Also Published As

Publication number Publication date
MX2014000378A (es) 2014-03-31
RU2013154278A (ru) 2015-06-20
AU2012285696A1 (en) 2013-05-09
MX344407B (es) 2016-12-14
AU2012285696B2 (en) 2015-12-10
EP2733218A1 (en) 2014-05-21
NZ618889A (en) 2015-08-28
AR087175A1 (es) 2014-02-26
JP2014525742A (ja) 2014-10-02
EP2733218A4 (en) 2015-03-25
PT2733218T (pt) 2018-07-04
CA2837981C (en) 2020-08-18
US20140162299A1 (en) 2014-06-12
US9260743B2 (en) 2016-02-16
BR112013033883A2 (pt) 2017-02-14
BR112013033883B1 (pt) 2020-11-03
CA2837981A1 (en) 2013-01-24
KR101864468B1 (ko) 2018-06-04
TR201809082T4 (tr) 2018-07-23
KR20140060289A (ko) 2014-05-19
RU2605900C2 (ru) 2016-12-27
MY163078A (en) 2017-08-15
HUE038020T2 (hu) 2018-09-28
IL229828A (en) 2016-09-29
UY34195A (es) 2013-02-28
CN103635590A (zh) 2014-03-12
PL2733218T3 (pl) 2018-08-31
ES2675511T3 (es) 2018-07-11
EP2733218B1 (en) 2018-05-30
SG10201500002XA (en) 2015-02-27
CL2013003713A1 (es) 2014-08-08

Similar Documents

Publication Publication Date Title
WO2013011178A1 (es) Análisis rápido y preciso de la sialilación de proteínas
CN108646019B (zh) 新重组因子c、其制造方法、及内毒素的测定法
Guillard et al. Transferrin mutations at the glycosylation site complicate diagnosis of congenital disorders of glycosylation type I
Lu et al. Mass spectrometry analysis of changes in human milk N/O-glycopatterns at different lactation stages
Wieczorek et al. Immunoglobulin G subclass-specific glycosylation changes in primary epithelial ovarian cancer
ES2962593T3 (es) Cuantificación de resto glucano en glucoproteínas recombinantes
Coddeville et al. Determination of glycan structures and molecular masses of the glycovariants of serum transferrin from a patient with carbohydrate deficient syndrome type II
Royle et al. Determining the Structure of Oligosaccharides N‐and O‐Linked to Glycoproteins
KR20150117638A (ko) 재조합 인간 갈락토세레브로사이드 베타-갈락토시다아제(rhGALC)의 정제
Sakamoto et al. Structural study of the glycosylated and unglycosylated forms of a genetic variant of human serum albumin (63 Asp→ Asn)
Shawar et al. FGF23–S129F mutant bypasses ER/Golgi to the circulation of hyperphosphatemic familial tumoral calcinosis patients
Gilg et al. Analytical methods for the characterization and quality control of pharmaceutical peptides and proteins, using erythropoietin as an example
Zhu et al. The smart solution for DNA removal in biopharmaceutical production by benzonase endonuclease
Hernández et al. Chemical characterization of the lectin from Amaranthus leucocarpus syn. hypocondriacus by 2-D proteome analysis
NZ618889B2 (en) Rapid and accurate analysis of protein sialylation
Barton et al. Heterogeneity of IgGs: Role of Production, Processing, and Storage on Structure and Function
WO2013181577A2 (en) Methods related to omalizumab
Boiciuc et al. Diagnosis characteristics of congenital disorders of glycosylation of 40 suspected patients from Moldova
JP7425936B2 (ja) 二糖化インターフェロンβタンパク質の精製方法
Vitorino et al. Salivary peptidomics targeting clinical applications
JP2023538400A (ja) 高シアル化免疫グロブリン
Yang et al. Identification, quantification, and structural role of N-glycans in two highly purified isoforms of sheep testicular hyaluronidase
Baković VARIABILITY AND HERITABILITY OF IMMUNOGLOBULIN G GLYCOSYLATION
WO2020176921A1 (en) Immunosuppressive glycoforms of soluble cd52
AU2019201584B1 (en) Immunosuppressive glycoforms of soluble cd52

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12815322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012285696

Country of ref document: AU

Date of ref document: 20120705

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2837981

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013154278

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012815322

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013003713

Country of ref document: CL

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/000378

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2014519588

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14232783

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147003822

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013033883

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013033883

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131230