WO2013010409A1 - 一种高性能可充电电池 - Google Patents

一种高性能可充电电池 Download PDF

Info

Publication number
WO2013010409A1
WO2013010409A1 PCT/CN2012/076367 CN2012076367W WO2013010409A1 WO 2013010409 A1 WO2013010409 A1 WO 2013010409A1 CN 2012076367 W CN2012076367 W CN 2012076367W WO 2013010409 A1 WO2013010409 A1 WO 2013010409A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
surfactant
carbons
electrolyte
ion battery
Prior art date
Application number
PCT/CN2012/076367
Other languages
English (en)
French (fr)
Inventor
施萍萍
Original Assignee
浙江理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江理工大学 filed Critical 浙江理工大学
Publication of WO2013010409A1 publication Critical patent/WO2013010409A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of capacitor technology, and in particular to a high performance battery comprising manganese dioxide as a positive electrode material, zinc as a negative electrode material, and an electrolyte containing zinc ions and a surfactant.
  • the secondary battery can repeat the charge and discharge cycle a plurality of times, and the raw material can be fully utilized, so that it is more economical and practical.
  • the Chinese patent [ZL 200910106650.3] first disclosed a rechargeable zinc ion battery with manganese dioxide (Mn0 2 ) as the positive electrode and zinc as the negative electrode and a neutral aqueous solution containing zinc ions as the electrolyte.
  • the manganese dioxide is removed from the electrolyte and then deposited on the negative electrode. The above process is reversed when discharging.
  • Negative electrode Zn o Zn + le— ( 2 )
  • the zinc ion-filled battery Due to the reversible deintercalation behavior of zinc ions in the positive electrode material, the zinc ion-filled battery has the characteristics of low cost, long cycle life, and the like, and can be widely used in the fields of consumer electronics, electric toys, communication, transportation, and the like.
  • the behavior of manganese dioxide in storing zinc ions is the electrochemical reaction of the intercalation and extraction of zinc ions in the surface layer or bulk phase of the electrolyte.
  • the key step involved is the diffusion and interface of the cations in the surface layer or bulk phase.
  • the charge transfer which determines the amount of manganese dioxide that can store the number of cations (the greater the number, the greater the capacity) is the charge transfer step at the manganese dioxide/electrolyte interface.
  • a surfactant is a substance that has both hydrophilic and lipophilic properties and can reduce surface tension. It is possible to improve the affinity of the manganese dioxide electrode and the electrolyte by adding a surfactant to the electrolyte, which is beneficial to the zinc ion. Diffusion in the electrode holes and charge transfer at the manganese dioxide/electrolyte interface improve the performance of the manganese dioxide electrode.
  • Figure 1 is a manganese dioxide electrode sheet, respectively 0.1 mol L- 1 ZnS0 4 solution and 0.1 mol L- 1 ZnS0 4 ten 0.02 mol L- 1 in an aqueous solution of sodium dodecylbenzenesulfonate Nyquist impedance, the presence or absence of In the electrolyte added with surfactant, the patterns of the impedance map of the manganese dioxide electrode sheets are similar, including two semicircles and one oblique line at the low frequency end, and the two semicircles respectively indicate the diffusion of zinc ions in the pores of the manganese dioxide electrode.
  • FIG. 2 shows the scanning electron micrograph of the zinc negative electrode sheet in 0 mol, 50 times, and 100 times in 0.1 mol L 1 ZnS0 4 electrolyte. It can be seen from the figure that after several tens of cycles, the zinc negative electrode sheet The clean surface formed a spherical zinc precipitate.
  • the spherical zinc precipitate formed a dense precipitate on the zinc surface, which was the main reason for the decline in the cycle life of the zinc battery (see Figure 3).
  • the electron micrograph of the zinc negative electrode sheet after 100 cycles is shown in Fig. 2d, and it is seen that the zinc precipitate is mainly large.
  • the shape of the rest is spherical zinc. Due to this large-scale morphology, the zinc precipitate has a loose large pore structure, which is beneficial to the dissolution and precipitation of zinc. This is also the addition of the surfactant dodecylbenzenesulfonate. After sodium acid, the main reason for the improved cycle life of zinc ion batteries.
  • the addition of a certain amount of surfactant to the electrolyte improves the performance of the rechargeable zinc ion battery, particularly in terms of increasing its capacity and cycle life.
  • the invention relates to a rechargeable zinc ion battery, which comprises a positive electrode, a negative electrode, a separator between the two, and an electrolyte containing anion and cation and having ionic conductivity, and the negative electrode is made of an active material mainly composed of zinc.
  • the active material used for the positive electrode is a manganese dioxide electrode material capable of occluding and releasing zinc ions
  • the electrolyte is an aqueous solution system containing zinc ions and a surfactant.
  • the surfactant in the electrolyte according to the present invention is a substance having both hydrophilic and lipophilic properties and capable of lowering surface tension, and at least one or more of the following types of surfactants are used in the electrolyte:
  • an anionic surfactant refers to a surfactant which is negatively charged in an aqueous solution to form a negatively charged surface active ion, the hydrophilic group of which is composed of a negatively charged group, a hydrophobic group Mainly composed of hydrocarbon.
  • Anionic surfactants are especially:
  • R and R' are a hydrocarbon group of 2 to 18 carbons
  • M is an alkali metal or an alkaline earth metal, preferably sodium sulfosuccinate methyl isobutylcarboxylate;
  • R-S0 3 M is an alkali metal or alkaline earth metal, wherein R is an alkyl group of 2 to 18 carbons, preferably sodium dodecyl sulfate;
  • a nonionic surfactant especially a polyoxyethylene ether R-(OCH 2 CH 2 ) n — OH, wherein R is a hydrocarbon group of 2 to 18 carbons, and n is 2 to 8.
  • Cationic surfactants are surfactants that are positively charged in aqueous solution to form positively charged surface-active ions, the hydrophilic group of which is composed of a positively charged group, a hydrophobic group Mainly composed of hydrocarbons, cationic surfactants are especially:
  • an amine salt type in particular: R-NH 2 HX, R-NH(CH 3 )X or RN(CH 3 ) 2 X, wherein R is a hydrocarbon group of 2 to 18 carbons, and X is F -, C1—or Br—;
  • X- is F-, C1- or Br-;
  • the manganese dioxide electrode material of the present invention may be doped with any one or more of the following doping elements, wherein the doping elements are Li, Na, K, Cu, Fe, Ni, Al, Mg, Ca, Ba, Ti. , V, Co, Pb, Bi or Nb.
  • the doping behavior described herein is to replace a certain amount of Mn in manganese dioxide with other metal elements to improve the performance of manganese dioxide.
  • the positive electrode film material of the present invention further contains an electronic conductive agent and a binder, wherein the electronic conductive agent is graphite, carbon black, black block black, carbon fiber or carbon nanotube, and the added amount is less than 50% of the mass of the positive electrode film.
  • the binder is polytetrafluoroethylene, water-soluble rubber, polyvinylidene fluoride or cellulose, and the amount added is less than 20% by mass of the positive electrode film.
  • the positive electrode can also be alive Powdered materials, conductive carbon or other additives are compacted into cores of various shapes.
  • the negative electrode is an alloy of pure metal zinc or zinc, and the alloy of zinc or zinc may be in the form of a sheet, a foil, a ribbon or the like, or an alloy of zinc or zinc.
  • a film-like material made of a powdery conductive agent and a binder, which is generally applied to a current collector.
  • the shape of the electrochemical capacitor composed of the above materials is not limited, and may be a button type, a square type, a cylindrical type or the like, and the outer casing may be a composite material of an organic plastic, a metal material or a metal organic material.
  • the invention adopts a method of adding a surfactant to improve the capacity and cycle life of the rechargeable zinc ion battery, thereby providing a high-performance secondary energy storage device, which can be expected to be used instead of the primary zinc-manganese battery.
  • a surfactant to improve the capacity and cycle life of the rechargeable zinc ion battery, thereby providing a high-performance secondary energy storage device, which can be expected to be used instead of the primary zinc-manganese battery.
  • Figure 1 shows the manganese dioxide electrode sheets in (a) 0.1 mol L - 1 ZnS0 4 aqueous solution and (b) 0.1 mol L - 1 ZnS0 4 100.2 mol L - 1 dodecylbenzenesulfonate Nyquist impedance map in aqueous sodium solution;
  • Fig. 2 is a scanning electron micrograph of zinc negative electrode sheets in zinc ion battery 1 with 0.1 mol L - 1 ZnSO ⁇ solution as electrolyte. (a) 0 times, (b) 50 times, (c) 100 times. And the electron microscopy of the zinc negative electrode sheet in the zinc ion battery 2 with the aqueous solution of (d) 0.1 mol L - 1 ZnS0 4 +0. 02 mol L - 1 dodecylbenzenesulfonate as the electrolyte after 100 cycles photo;
  • Figure 4 is a cycle life diagram of a zinc ion battery 3 using 0.1 mol of L-l ZnS04: 0.01 mol L_l of cetyltrimethylammonium bromide as an electrolyte;
  • FIG. 5 is a cycle life diagram of a zinc ion battery 4 using 0.1 mol of Ll ZnS04 of 0.01 mol L_l n-butanol + 0.01 mol of L-l nonylphenol polyoxyethylene ether as an electrolyte.
  • Embodiment 1 The technical solution of the present aspect is further illustrated by the following figures: Embodiment 1
  • the manganese dioxide is mixed with the conductive agent black, and the binder PVDF (polyvinylidene fluoride) is mixed at a mass ratio of 70:20:10, pressed onto the stainless steel foil, and cut into a certain size in a vacuum. Drying into manganese dioxide electrode sheets.
  • the single electrode test uses a manganese dioxide electrode as a working electrode, a metal platinum electrode as a counter electrode, and a Hg/H g2 S0 4 (i saturated K 2 S0 4 solution) as a reference electrode.
  • Manganese dioxide 0. lmol L- 1 ZnS0 4 solution and 0. 1 mol L- 1 ZnS0 4 ten 0.
  • the manganese dioxide electrode sheet was used as a positive electrode, and a pure zinc foil having a thickness of 100 ⁇ m was used as a negative electrode, and a 0. lmol L- 1 ZnS0 4 aqueous solution was used as an electrolyte to assemble a zinc ion battery 1.
  • a manganese dioxide electrode sheet as a positive electrode
  • a pure zinc foil having a thickness of 100 ⁇ m as a negative electrode
  • an aqueous solution of 0. lmol L- 1 ZnS0 4 +0. 02 mol L- 1 sodium dodecylbenzenesulfonate for electrolysis Liquid assembled into a zinc ion battery 2.
  • Fig. 2 Scanning electron micrographs of the zinc negative electrode in the zinc battery 1 after 0, 50 and 100 times are shown in Fig. 2. It can be seen from the figure that after dozens of cycles, the zinc negative electrode sheet has a spherical surface to form a spherical zinc. Precipitation, after 100 cycles, the spherical zinc precipitate formed a dense precipitate on the zinc surface. In the zinc ion battery 2, the electron micrograph of the zinc negative electrode sheet after 100 cycles is shown in Fig. 2d. It can be seen from the figure that the zinc precipitate is mainly a large sheet shape, and the rest is spherical zinc, due to the large sheet shape. The morphology of the zinc precipitated layer has a loose large pore structure.
  • Example 1 Manganese dioxide electrode sheet in Example 1 as a positive electrode, a thickness of 100 micrometer thick foil of pure zinc as the negative electrode to 0. lmol L- 1 ZnS0 4 +0. 01 mol L- 1 cetyltrimethylammonium
  • the aqueous solution of ammonium bromide is an electrolyte and is assembled into a zinc ion battery 3.
  • the cycle life of the zinc ion battery 3 is shown in Fig. 4. It can be seen from the figure that the Cell 3 cycle performance and capacity with surfactant added is significantly better than that of Cel l 1 without surfactant added. This is mainly because the addition of surfactant can improve the positive manganese dioxide and electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

一种高性能的可充电电池,由正极、负极、介于两者之间的隔离膜以及含有阴阳离子并具有离子导电性的电解质组成,负极采用以锌元素为主的活性材料,正极采用的活性材料为可吸藏和释放锌离子的二氧化锰电极材料,电解质是以含有锌离子和表面活性剂的水溶液体系。本发明采用了表面活性剂的改性作用,使得电池的容量和循环寿命得到提高。

Description

一种高性能可充电电池
技术领域
发明属电容器技术领域, 具体地说, 是涉及一种由二氧化锰为正极材料, 锌为负极材 料, 以及电解质含锌离子和表面活性剂的高性能电池。
背景技术
二次电池能重复多次进行充放电循环, 能充分利用原材料, 故其更经济实用。
中国专利 [ZL 200910106650.3]首次公开了一种以二氧化锰 (Mn02)为正极, 以锌为负极, 以含锌离子的中性水溶液为电解液的可充电锌离子电池,在充电时锌离子脱出二氧化锰经过 电解液然后在负极沉积, 放电时上述过程刚好相反。
这种锌离子电池储存电子的机理如下:
正极: ;CZM2+ + 2xe' + Mn02 ^ ZnxMn02 ( 1 )
负极: Zn o Zn + le— ( 2 )
由于利用到锌离子在正极材料的可逆脱嵌行为, 因此这种可充锌离子的电池具有成本 低、 循环寿命长等特点, 其可广泛应用于消费电子、 电动玩具、 通讯、 交通等领域。
众所周知电池的性能直接受到电解液影响,通常在电解液中添加添加剂会使整个电池的 性能得到提高, 因此, 寻找合适的电解液添加剂来提高电池性能不失为一个好的方法。 二氧 化锰储藏锌离子的行为为电解液中锌离子在其表面层或体相内的嵌入和脱出的电化学反应, 其涉及的关键步骤为阳离子在表面层或体相内的扩散和界面进行的电荷转移,其中决定二氧 化锰能储存阳离子数目 (数目越多容量越大) 的关键步骤是在二氧化锰 /电解液界面的电荷 转移步骤。表面活性剂是一种同时具有亲水亲油性能并能降低表面张力的物质, 通过在电解 液中添加表面活性剂有可能能够改善二氧化锰电极和电解液的亲润性,有利于锌离子在电极 孔中的扩散和二氧化锰 /电解液界面的电荷转移, 改善二氧化锰电极性能。
图 1为二氧化锰电极片分别在 0.1 mol L- 1 ZnS04水溶液和 0.1 mol L- 1 ZnS04十 0.02 mol L- 1十二烷基苯磺酸钠水溶液中的 Nyquist阻抗图, 在有无添加表面活性剂的电解液中, 二氧 化锰电极片阻抗图的图形都很相似, 包括两个半圆和一条在低频端的斜线, 两个半圆分别表 示锌离子在二氧化锰电极孔中的扩散以及锌离子和电子在二氧化锰电极 /电解液进行电荷转 移, 斜线代表的是锌离子在二氧化锰晶粒内部的扩散 [参考文献: 曹楚南,张鉴清. 电化学阻 抗谱论. 北京: 科学出版社]。 从图中可以看出, 添加了表面活性剂后, 在高频和中频的两个 半圆的直径都变小, 这表面添加了表面活性剂后, 表面活性剂能改善二氧化锰电极和电解液 的亲润性, 有利于锌离子在电极孔中的扩散和在二氧化锰 /电解液界面进行的电荷转移过程, 有利于提高正极容量。
同时负极锌在溶解沉淀过程中, 由于表面活性剂存在, 可以改善锌 /电解液界面性能, 从而控制锌负极的溶解和沉淀, 在充电过程中沉淀具有大孔径的锌沉积物, 更有利于放电时 锌的溶解。 图 2所示为锌负极片于 0.1 mol L 1 ZnS04电解液中在经过 0次、 50次、 100次后 的扫描电镜照片, 从图中可以看出经过数十次循环后, 锌负极片本来干净的表面形成了球型 的锌沉淀, 经过 100次循环, 球型锌沉淀在锌表面形成了一层致密的沉淀层, 这也是造成锌 电池循环寿命下降的主要原因 (见图 3)。 在电解液中添加表面活性剂十二烷基苯磺酸钠的 锌离子电池中, 锌负极片经过 100次循环后的电镜照片见图 2d, 从图中看出锌沉淀物主要 为大片状的形貌,其余为球型锌, 由于这种大片状的形貌,锌沉淀层具有松散的大孔道结构, 有利于锌的溶解和沉淀, 这也是添加表面活性剂十二烷基苯磺酸钠后, 锌离子电池循环寿命 得到改善的主要原因。
由此可见, 在电解液中添加一定量的表面活性剂可以改善可充电锌离子电池的性能, 特 别是在提高其容量和循环寿命的方面。
发明内容
本发明的目的在于提出一种高性能的可充电锌离子电池,这种电池与未添加表面活性剂 相比, 容量更高, 循环寿命更好。
本发明的具体技术方案如下:
本发明是一种可充电的锌离子电池, 由正极、 负极、 介于两者之间的隔离膜以及含有阴 阳离子并具有离子导电性的电解质组成, 负极采用以锌元素为主的活性材料, 正极采用的活 性材料为可吸藏和释放锌离子的二氧化锰电极材料,电解质是以含有锌离子和表面活性剂的 水溶液体系。
本发明所述的电解质中表面活性剂为同时具有亲水亲油性能并能降低表面张力的物质, 所述电解质中至少选用如下其中一种或以上类型的表面活性剂:
( 1 ) 阴离子型表面活性剂, 阴离子表面活性剂指的是在水溶液中呈负电性, 形成带负 电荷的表面活性离子的表面活性剂, 其亲水基由带负电的基团构成, 疏水基主要是由碳 氢构成。 阴离子型表面活性剂尤其是:
(a) 琥珀酸酯磺酸盐 /CH2— COOR
Figure imgf000004_0001
其中 R和 R'为 2〜18个碳的烃基, M为碱金属或碱土金属, 优先是磺基琥珀 酸甲基异丁基甲酯钠;
(b ) 烷基磺酸盐 R— S03M, M为碱金属或碱土金属, 其中 R为 2〜18个碳的烷 基, 优先是十二烷基磺酸钠;
( c) 烷基苯磺酸盐 R— ( C6H6) — SO3M, 其中 R为 2〜18个碳的烃基, M为碱 金属或碱土金属, 优先是十二烷基苯磺酸钠;
( d) α -烯烃磺酸盐。
( 2)非离子型表面活性剂,尤其是聚氧乙烯醚类 R—(OCH2CH2) n— OH,其中 R为 2〜 18个碳的烃基, n为 2〜8。
( 3 ) 阳离子表面活性剂, 阳离子表面活性剂指的是在水溶液中呈正电性, 形成带正电 荷的表面活性离子的表面活性剂, 其亲水基由带正电的基团构成, 疏水基主要是由碳氢 构成, 阳离子表面活性剂尤其是:
( a) 胺盐型, 尤其是: R-NH2HX、 R-NH(CH3)X或 R-N(CH3)2X, 其中 R为 2〜18 个碳的烃基, X—为 F -、 C1—或 Br—;
(b ) 季胺盐型, 尤其是:
Figure imgf000004_0002
其中 为2〜18个碳的烃基, 为 1〜18个碳的烃基或苯环, X—为 F -、 C1—或 Br—; ( c) 含氮原子环型胺盐、 双季胺盐等。
( 4) 醇类 R— CH2— OH, 其中 R为含 1一 18个碳的烃基。
本发明所述的二氧化锰电极材料可用如下任一或多种掺杂元素进行掺杂,其中掺杂元素 为 Li、 Na、 K、 Cu、 Fe、 Ni、 Al、 Mg、 Ca、 Ba、 Ti、 V、 Co、 Pb、 Bi或 Nb。 这里所述的 掺杂行为为用其它金属元素取代二氧化锰中一定量的 Mn以改善二氧化锰的性能。
本发明所述的正极膜材料中还含有电子导电剂和粘结剂,其中电子导电剂为石墨、炭黑、 乙块黑、 炭纤维或碳纳米管, 添加量为正极膜质量的 50 %以下; 粘结剂为聚四氟乙烯、 水 溶性橡胶、 聚偏四氟乙烯或纤维素, 添加量为正极膜质量的 20 %以下。 所述正极也可为活 性粉末材料、 导电炭或者其它添加剂压实而成各种形状的芯体。
本发明所述的可充电的锌离子电池, 所述的负极是纯金属锌或锌的合金, 锌或锌的合金 可以是片状、 箔状、 带状等形状, 也可是锌或锌的合金粉末状导电剂和粘结剂制成的膜状材 料, 这种膜状材料一般涂覆于集流体之上。
本发明中, 由上述材料组成的电化学电容器的形状不限, 可以是纽扣型、 方型和圆筒型 等, 其外壳可以采用有机塑料、 金属材料或者金属有机材料的复合材料等。
本发明的有益效果如下:
本发明采用添加表面活性剂的方法来提高可充电锌离子电池容量和循环寿命,因此提供 了一种高性能的二次储能器件,可以预见这种电池能取代一次碱性锌锰电池而应用在电动玩 具、 游戏机、 便携式设备等领域, 另一方面由于其优良的循环寿命, 可大幅减少原材料的消 耗, 减少制造电池过程中的能源消耗。
附图说明
图 1为 二氧化锰电极片分别在 (a) 0. 1 mol L— 1 ZnS04水溶液和 (b) 0. 1 mol L— 1 ZnS04十 0. 02 mol L— 1十二烷基苯磺酸钠水溶液中的 Nyquist阻抗图;
图 2为以 0. 1 mol L— 1 ZnSO^ 溶液为电解液的锌离子电池 1中锌负极片分别循环 (a) 0 次, (b) 50 次, (c) 100 次后的扫描电镜照片以及以(d) 0. 1 mol L— 1 ZnS04+0. 02 mol L— 1 十二烷基苯磺酸钠水溶液为电解液的锌离子电池 2 中锌负极片经过 100次循环后的电镜照 片;
图 3为以 0. 1 mol L— 1 ZnS04水溶液为电解液的锌离子电池 1和以 0. 1 mol L— 1 ZnS04十 0. 02 mol L—1十二烷基苯磺酸钠水溶液为电解液的锌离子电池 2的循环寿命图;
图 4为以 0. 1 mol L-l ZnS04十 0. 01 mol L_l十六烷基三甲基溴化氨水溶液为电解液的 锌离子电池 3的循环寿命图;
图 5为以 0. 1 mol L-l ZnS04十 0. 01 mol L_l正丁醇 +0. 01 mol L_l壬基酚聚氧乙烯醚 水溶液为电解液的锌离子电池 4的循环寿命图。 具体实施方式
下面通过附图对本方面的技术方案作进一步说明: 实施例 1
将二氧化锰与导电剂乙块黑, 粘结剂 PVDF (聚偏四氟乙烯) 按质量比为 70: 20: 10的 比例混合后, 压于不锈钢箔上, 剪裁成一定大小, 于真空中烘干为二氧化锰电极片。 单电极 测试采用二氧化锰电极片为工作电极, 以金属铂电极为对电极, 以 Hg/Hg2S04 (i 饱和 K2S04 溶液)为参比电极进行检测。 二氧化锰在 0. lmol L— 1 ZnS04水溶液和 0. 1 mol L— 1 ZnS04十 0. 02 mol L— 1十二烷基苯磺酸钠水溶液中的 Nyquist阻抗图见图例 1, 从图中可以看出, 通过添加 表面活性剂可以改善二氧化锰正极的性能。
以二氧化锰电极片为正极, 以厚度为 100微米厚的纯锌箔为负极, 以 0. lmol L— 1 ZnS04 水溶液为电解液, 组装为锌离子电池 1。 以二氧化锰电极片为正极, 以厚度为 100微米厚的 纯锌箔为负极, 以 0. lmol L— 1 ZnS04+0. 02 mol L—1十二烷基苯磺酸钠水溶液为电解液, 组装 为锌离子电池 2。 锌电池 1中锌负极经过 0次、 50次和 100次后的扫描电镜照片见图 2, 从 图中可以看出经过数十次循环后, 锌负极片本来干净的表面形成了球型的锌沉淀, 经过 100 次循环, 球型锌沉淀在锌表面形成了一层致密的沉淀层。 锌离子电池 2 中, 锌负极片经过 100次循环后的电镜照片见图 2d,从图中看出锌沉淀物主要为大片状的形貌,其余为球型锌, 由于这种大片状的形貌, 锌沉淀层具有松散的大孔道结构。锌离子电池 1和 2的循环寿命见 图 3。 从图中可以看出, 添加了表面活性剂的 Cel l 2循环性能和容量明显优于没添加表面 活性剂的 Cel l 1, 这主要是因为添加表面活性剂能改善正极二氧化锰与电解液的亲润性以 及控制负极的溶解沉淀过程形成疏松的结构, 从而获得了更好的容量和更好的循环性能。 实施例 2
以实施例 1中的二氧化锰电极片为正极,以厚度为 100微米厚的纯锌箔为负极,以 0. lmol L— 1 ZnS04+0. 01 mol L— 1十六烷基三甲基溴化氨水溶液为电解液, 组装为锌离子电池 3, 锌离 子电池 3的循环寿命见图 4。 从图中可以看出, 添加了表面活性剂的 Cel l 3循环性能和容 量明显优于没添加表面活性剂的 Cel l 1, 这主要是因为添加表面活性剂能改善正极二氧化 锰与电解液的亲润性以及控制负极的溶解沉淀过程,从而获得了更好的容量和更好的循环性 实施例 3
以实施例 1中的二氧化锰电极片为正极,以厚度为 100微米厚的纯锌箔为负极,以 0. lmol L— 1 ZnS04+0. 01 mol L— 1正丁醇 +0. 01 mol L—1壬基酚聚氧乙烯醚水溶液为电解液, 组装为锌 离子电池 4, 锌离子电池 4的循环寿命见图 5。 从图中可以看出, 添加了表面活性剂的 Cel l 4循环性能和容量明显优于没添加表面活性剂的 Cel l 1, 这主要是因为添加表面活性剂能改 善正极二氧化锰与电解液的亲润性以及控制负极的溶解沉淀过程,从而获得了更好的容量和 更好的循环性能。

Claims

权利要求
1、 一种可充电的锌离子电池, 由正极、 负极、 介于两者之间的隔离膜以及含有阴阳离子并 具有离子导电性的电解质组成, 其特征在于:
( 1 ) 所述的负极采用以锌元素为主的活性材料;
( 2) 所述的正极采用的活性材料为可吸藏和释放锌离子的二氧化锰电极材料;
( 3 ) 所述的电解质是以含有锌离子和表面活性剂的水溶液体系。
2、 根据权利要求 1所述的可充电的锌离子电池, 其特征在于所述的电解质中表面活性剂为 同时具有亲水亲油性能并能降低表面张力的物质, 所述的表面活性剂为如下的一种或者几 种:
( 1 ) 阴离子型表面活性剂
阴离子表面活性剂指的是在水溶液中呈负电性, 形成带负电荷的表面活性离子的表面活性 剂,其亲水基由带负电的基团构成,疏水基主要是由碳氢构成,阴离子型表面活性剂尤其是:
(a) 琥珀酸酯磺酸盐
其中 R和 R' 为 2〜18个碳的烃基, M为碱金属或碱土金属, 优先是磺基琥珀酸甲基异丁基 甲酯钠;
(b) 烷基磺酸盐 R— S03M, M为碱金属或碱土金属, 其中 R为 2〜18个碳的烷基, 优先是 十二烷基磺酸钠;
( c) 烷基苯磺酸盐 R— (C6H6)— S03M, 其中 R为 2〜18个碳的烃基, M为碱金属或碱土 金属, 优先是十二烷基苯磺酸钠;
( d) α _烯烃磺酸盐;
( 2) 非离子型表面活性剂, 尤其是聚氧乙烯醚类 R— (0CH2CH2) η— 0Η, 其中 R为 2〜18 个碳的烃基, η为 2〜8;
( 3) 阳离子表面活性剂
阳离子表面活性剂指的是在水溶液中呈正电性, 形成带正电荷的表面活性离子的表面活性 剂, 其亲水基由带正电的基团构成, 疏水基主要是由碳氢构成, 阳离子表面活性剂尤其是:
(a) 胺盐型, 尤其是: R_NH2HX、 R_NH (CH3) X或 R_N (CH3) 2X, 其中 R为 2〜18个碳的烃 基, X—为 F—、 C1一或 Br—;
(b) 季胺盐型, 尤其是: 其中 R1为 2〜18个碳的烃基, !^为 1〜18个碳的烃基或苯环, X—为 F—、 C1一或 Br—;
( c) 含氮原子环型胺盐、 双季胺盐等;
(4) 醇类 R— CH2— 0H, 其中 R为含 1一 18个碳的烃基。
3、 根据权利要求 1所述的可充电的锌离子电池, 其特征在于所述的正极中还含有电子导电 剂和粘结剂, 其中电子导电剂为石墨、 炭黑、 乙块黑、 炭纤维或碳纳米管, 添加量为正极膜 质量的 50%以下; 粘结剂为聚四氟乙烯、 水溶性橡胶、 聚偏四氟乙烯或纤维素, 添加量为 正极膜质量的 20%以下。
4、 根据权利要求 1所述的可充电的锌离子电池, 其特征在于所述的二氧化锰电极材料可用 如下任一或多种掺杂元素进行掺杂, 其中掺杂元素为 Li、 Na、 K、 Cu、 Fe、 Ni、 Al、 Mg、 Ca、 Ba、 Ti、 V、 Co、 Pb、 Bi或 Nb。
5、 根据权利要求 1所述的可充电的锌离子电池, 其特征在于: 所述的负极是纯金属锌或锌 的合金。
6、 根据权利要求 5所述的可充电的锌离子电池, 其特征在于: 所述的锌或锌的合金可以是 片状、 箔状、 带状等形状, 也可是锌或锌的合金粉末状导电剂和粘结剂制成的膜状材料, 这 种膜状材料一般涂覆于集流体之上。
PCT/CN2012/076367 2011-07-19 2012-06-01 一种高性能可充电电池 WO2013010409A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110201063XA CN102299389A (zh) 2011-07-19 2011-07-19 一种高性能可充电电池
CN201110201063.X 2011-07-19

Publications (1)

Publication Number Publication Date
WO2013010409A1 true WO2013010409A1 (zh) 2013-01-24

Family

ID=45359652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076367 WO2013010409A1 (zh) 2011-07-19 2012-06-01 一种高性能可充电电池

Country Status (2)

Country Link
CN (1) CN102299389A (zh)
WO (1) WO2013010409A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299389A (zh) * 2011-07-19 2011-12-28 浙江理工大学 一种高性能可充电电池
CN103531811A (zh) * 2012-07-03 2014-01-22 海洋王照明科技股份有限公司 锂离子电池正极片及其制备方法、锂离子电池的制备方法
JP6053242B2 (ja) 2014-03-04 2016-12-27 グラジュエート スクール アット シェンチェン、 ツィングワ ユニバーシティー 充電可能な亜鉛イオン電池
US11075382B2 (en) * 2014-05-30 2021-07-27 Duracell U.S. Operations, Inc. Cathode for an electrochemical cell including at least one cathode additive
RU2017101168A (ru) 2014-06-16 2018-07-16 Ттсб С.Р.Л. Перезаряжаемая батарея, содержащая ионы цинка
WO2016154885A1 (zh) * 2015-03-31 2016-10-06 深圳市寒暑科技新能源有限公司 一种锌离子电池电极制造方法及基于其的可充电电池
US10910674B2 (en) 2015-10-21 2021-02-02 Research Foundation Of The City University Of New New York Additive for increasing lifespan of rechargeable zinc-anode batteries
CN105914400B (zh) * 2016-05-04 2019-06-21 中国科学技术大学 电解液及钠离子电池
US11316203B2 (en) * 2017-05-29 2022-04-26 Namics Corporation Secondary battery and device including secondary battery
CN107221687B (zh) * 2017-06-19 2019-09-27 广州鹏辉能源科技股份有限公司 一种无汞锌浆组合物及具有该组合物的无汞锌空电池
CN109037794B (zh) * 2017-10-20 2020-11-24 刘小林 一种可充电电池
EP3544098B1 (en) * 2018-03-23 2020-12-30 Kabushiki Kaisha Toshiba Secondary battery, battery pack, vehicle, and stationary power supply
CN109273759A (zh) * 2018-09-27 2019-01-25 中山大学 一种二次电池用的电解液及含有其的二次电池
CN109616699B (zh) * 2018-11-27 2021-07-16 恩力能源科技有限公司 一种电池电解液和水系离子电池及其制备方法
CN111276339B (zh) * 2018-12-04 2023-05-09 中国科学院上海硅酸盐研究所 一种超级电容器赝电容型电解液及其制备方法和应用
US11424484B2 (en) 2019-01-24 2022-08-23 Octet Scientific, Inc. Zinc battery electrolyte additive
CN109786712B (zh) * 2019-01-25 2022-09-13 天津理工大学 一种镍、铋改性二氧化锰正极材料及其制备方法和应用
WO2021017751A1 (zh) * 2019-07-26 2021-02-04 瑞新材料科技(香港)有限公司 正极材料、正极、电池和电池组
CN111115688B (zh) * 2019-12-06 2022-02-15 瑞海泊(青岛)能源科技有限公司 锌离子电池正极材料及其制备方法和应用
CN111653834B (zh) * 2020-06-05 2021-10-08 恩力能源科技(安徽)有限公司 水系电解液、水系金属离子电池及其制备方法
CN111969224A (zh) * 2020-08-28 2020-11-20 河南师范大学 一种废旧碱性锌锰一次电池材料资源化再利用的方法
CN115566150A (zh) * 2021-07-01 2023-01-03 陈璞 中性或弱酸性体系水系锌离子电池正极材料及其制备方法与应用
CN113782842A (zh) * 2021-08-25 2021-12-10 华中科技大学 一种水系锌离子电池电解液及电池
CN114361611A (zh) * 2021-12-28 2022-04-15 武汉工程大学 一种基于二氧化锰基正极和聚酰亚胺基负极的锌离子电池及其制备方法
CN116002763A (zh) * 2022-12-15 2023-04-25 西北大学 一种水系锌离子电池正极材料及其制备方法
WO2024210789A1 (en) * 2023-04-05 2024-10-10 Enerpoly Ab Aqueous battery with anti-corrosive chlorinated electrolyte

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1260603A (zh) * 1999-11-01 2000-07-19 卢大伟 一种锌锰电池
CN101174705A (zh) * 2006-11-01 2008-05-07 中国科学院金属研究所 一种全钒离子氧化还原液流电池电解液的电解制备方法
CN101471431A (zh) * 2008-02-03 2009-07-01 河南环宇集团有限公司 锌镍碱性蓄电池隔膜亲水处理的方法
CN101677136A (zh) * 2008-09-18 2010-03-24 中国人民解放军63971部队 一种碱性锌液流电池用电解质溶液
CN101969144A (zh) * 2010-08-20 2011-02-09 华南师范大学 一种碱性锌电池负极电解液及其制备方法与应用
CN102013526A (zh) * 2009-09-08 2011-04-13 清华大学深圳研究生院 可充电的锌离子电池
CN102088115A (zh) * 2011-01-11 2011-06-08 中南大学 碱性铝电池碱性电解液的复合缓蚀剂、电解液及制备方法
CN102299389A (zh) * 2011-07-19 2011-12-28 浙江理工大学 一种高性能可充电电池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000001242A (ko) * 1998-06-10 2000-01-15 이병길 황산아연(ⅱ) 수용액 이차전지
CN101783419B (zh) * 2009-01-16 2015-05-13 清华大学深圳研究生院 一种可充电的锌离子电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1260603A (zh) * 1999-11-01 2000-07-19 卢大伟 一种锌锰电池
CN101174705A (zh) * 2006-11-01 2008-05-07 中国科学院金属研究所 一种全钒离子氧化还原液流电池电解液的电解制备方法
CN101471431A (zh) * 2008-02-03 2009-07-01 河南环宇集团有限公司 锌镍碱性蓄电池隔膜亲水处理的方法
CN101677136A (zh) * 2008-09-18 2010-03-24 中国人民解放军63971部队 一种碱性锌液流电池用电解质溶液
CN102013526A (zh) * 2009-09-08 2011-04-13 清华大学深圳研究生院 可充电的锌离子电池
CN101969144A (zh) * 2010-08-20 2011-02-09 华南师范大学 一种碱性锌电池负极电解液及其制备方法与应用
CN102088115A (zh) * 2011-01-11 2011-06-08 中南大学 碱性铝电池碱性电解液的复合缓蚀剂、电解液及制备方法
CN102299389A (zh) * 2011-07-19 2011-12-28 浙江理工大学 一种高性能可充电电池

Also Published As

Publication number Publication date
CN102299389A (zh) 2011-12-28

Similar Documents

Publication Publication Date Title
WO2013010409A1 (zh) 一种高性能可充电电池
CN108520985B (zh) 一种提高锌电池循环寿命的方法及其应用
Shen et al. Advanced Energy‐Storage Architectures Composed of Spinel Lithium Metal Oxide Nanocrystal on Carbon Textiles
WO2016107564A1 (zh) 一种高倍率性能锂硫电池的复合正极材料及制备方法
Chang et al. Green energy storage chemistries based on neutral aqueous electrolytes
Wang et al. Peanut-like MnO@ C core–shell composites as anode electrodes for high-performance lithium ion batteries
TWI664774B (zh) 鋰離子電池負極及柔性鋰離子電池
WO2020143532A1 (zh) 正极活性材料及其制备方法、钠离子电池及包含钠离子电池的装置
CN103500820B (zh) 一种用于锂硫电池的硫/多孔碳包覆碳纳米管复合正极材料及其制备方法
WO2011079482A1 (zh) 一种电池
JP2020529102A (ja) 三次元構造電極及びそれを含む電気化学素子
JP7175968B2 (ja) リチウム‐硫黄電池用バインダー、これを含む正極及びリチウム‐硫黄電池
US20120177974A1 (en) Non-aqueous electrolyte battery
CN103794776B (zh) 一种高电压、高压实锂离子电池复合正极材料及制备方法
CN112531281A (zh) 一种基于纳米金属氢氧化物-碳复合材料的锂硫电池用改性隔膜的制备方法
CN110571413A (zh) 一种具有复合层结构的电极和锂电池
US20210028500A1 (en) Electrolyte solution, battery and battery pack
CN108807843A (zh) 多层复合负极及其制备方法和包括其的碱金属电池
JP2013214493A (ja) リチウムイオン2次電池用リチウムマンガン酸化物正極活物質およびそれを含むリチウムイオン2次電池
Wang et al. Robust Room‐Temperature Sodium‐Sulfur Batteries Enabled by a Sandwich‐Structured MXene@ C/Polyolefin/MXene@ C Dual‐functional Separator
CN112687865A (zh) 一种锂离子电池负极浆料、其制备方法和用途
Sarmah et al. Recent advancement in rechargeable battery technologies
KR20150057260A (ko) 리튬 공기 전지용 양극 및 이를 포함하는 리튬 공기 전지
CN115881897A (zh) 一种金属复合材料及其制备方法和用作电池集流体的用途
WO2016155504A1 (zh) 一种镍基可充电电池及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12815249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12815249

Country of ref document: EP

Kind code of ref document: A1