WO2013008751A1 - 光変換用セラミック複合体の製造方法 - Google Patents

光変換用セラミック複合体の製造方法 Download PDF

Info

Publication number
WO2013008751A1
WO2013008751A1 PCT/JP2012/067342 JP2012067342W WO2013008751A1 WO 2013008751 A1 WO2013008751 A1 WO 2013008751A1 JP 2012067342 W JP2012067342 W JP 2012067342W WO 2013008751 A1 WO2013008751 A1 WO 2013008751A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
ceramic composite
light conversion
solidified body
dry etching
Prior art date
Application number
PCT/JP2012/067342
Other languages
English (en)
French (fr)
Inventor
太 稲森
河野 孝史
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to CN201280033953.7A priority Critical patent/CN103732354B/zh
Priority to JP2013523932A priority patent/JP5510614B2/ja
Priority to EP12810625.9A priority patent/EP2730369A4/en
Priority to US14/131,057 priority patent/US9334197B2/en
Priority to KR1020147000337A priority patent/KR20140051209A/ko
Publication of WO2013008751A1 publication Critical patent/WO2013008751A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • C04B35/652Directional oxidation or solidification, e.g. Lanxide process
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • C04B41/5338Etching
    • C04B41/5346Dry etching
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/91After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics involving the removal of part of the materials of the treated articles, e.g. etching
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/80Optical properties, e.g. transparency or reflexibility
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder

Definitions

  • the present invention relates to a method for producing a ceramic composite for light conversion used for a light emitting diode used for a display, illumination, backlight light source and the like.
  • white light emitting devices using a blue light emitting element as a light source have been actively conducted.
  • white light-emitting devices using blue light-emitting elements have a long life span and not only consume less power than incandescent and fluorescent lamps, but also do not use harmful substances such as mercury.
  • the used lighting equipment is being put into practical use.
  • the most common method for obtaining white light using blue light from a blue light emitting element as a light source is to obtain a pseudo white color by mixing yellow having a complementary color relationship with blue.
  • a transparent resin containing a phosphor that emits yellow light by blue light emitted from a blue light emitting element for example, a YAG (Y 3 Al 5 O 12 ) phosphor containing Ce.
  • the blue light emitting element is sealed by. Blue light (wavelength 450 to 460 nm) is emitted from the blue light emitting element, YAG is excited by a part of the blue light, and yellow light is emitted from the phosphor.
  • the present inventors have formed a plurality of oxide crystal phases including a Ce-containing YAG phosphor phase that emits fluorescence and an Al 2 O 3 phase continuously and intertwined with each other three-dimensionally.
  • the white light-emitting device comprised using the ceramic composite for light conversion which consists of the solidified body and the blue light emitting element which have been proposed is proposed (patent documents 1, 2).
  • the ceramic composite for light conversion can stably obtain homogeneous yellow fluorescence because the phosphor phase is uniformly distributed, and it is excellent in durability because it is a ceramic, and occurs when encapsulated with an epoxy resin or the like. It is possible to solve the problem and provide a highly reliable white light emitting device.
  • the configuration of the white light emitting device using the ceramic composite for light conversion is, for example, a circuit board on which a blue light emitting element that is flip-chip mounted and a wiring pattern that receives and supplies power to the blue light emitting element are formed. And a ceramic composite for light conversion directly bonded to the blue light emitting element.
  • a single crystal layer capable of forming a light emitting diode element and at least two oxide crystal phases selected from a single metal oxide and a composite metal oxide have been continuously and three-dimensionally interconnected so far.
  • a light emitting diode substrate in which a ceramic composite layer for light conversion composed of a solidified body entangled with each other is laminated Patent Document 3
  • a single crystal substrate such as sapphire is generally used (Patent Document 4).
  • abrasive particles such as diamond particles that are harder than the workpiece are used.
  • MP mechanical polishing
  • CMP Chemical Mechanical Polishing
  • the surface of the single crystal substrate can be a smooth surface with an Ra (arithmetic mean roughness) of less than 1 nm by polishing such as MP processing and CMP processing.
  • Patent Document 3 discloses a method of directly bonding at a high temperature and a method of interposing a very small amount of a low melting point material as a bonding layer in order to laminate a single crystal layer and a ceramic composite layer for light conversion.
  • the bonding surface between the single crystal layer and the ceramic composite layer for light conversion is flat, not only the above method, but also the direct contact between the ceramic composite layer for light conversion and the single crystal layer by the surface activated bonding method, etc. Since bonding is possible, it is important that the bonding surface is flat.
  • the present invention has been made in view of the above problems, and has a structure in which an Al 2 O 3 phase and an oxide crystal phase other than Al 2 O 3 are continuously and three-dimensionally entangled with each other.
  • An object of the present invention is to provide a method for producing a ceramic composite for light conversion capable of efficiently flattening the surface of the ceramic composite.
  • the present inventors have intensively studied, and as a result, the Al 2 O 3 phase and the oxide crystal phase other than Al 2 O 3 are continuously and three-dimensionally entangled with each other.
  • an interphase step is formed so that the oxide crystal phase other than the Al 2 O 3 on the surface of the solidified body has a convex shape with respect to the Al 2 O 3 phase.
  • the solidified body after the dry etching process is subjected to CMP process or MP process, thereby reducing the phase difference between the phases.
  • the present invention has been found to be able to be manufactured in an efficient manner.
  • the present invention performs dry etching processing on the surface of a solidified body having a structure in which an Al 2 O 3 phase and an oxide crystal phase other than Al 2 O 3 are continuously and three-dimensionally entangled with each other, A first step of forming an interphase step so that an oxide crystal phase other than Al 2 O 3 on the surface of the solidified body has a convex shape with respect to the Al 2 O 3 phase; and solidification after the dry etching process And a second step of reducing the interphase difference by subjecting the body to CMP processing or MP processing.
  • the oxide crystal phase other than the Al 2 O 3 is a fluorescent substance that emits fluorescence, and contains a YAG (Y 3 Al 5 O 12 ) phase containing Ce, or Ce and Gd. it is a manufacturing method of the light converting ceramic composite for which is a YAG (Y 3 Al 5 O 12 ) phase.
  • the interphase step after processing in the second step is 0.005 ⁇ m or less.
  • the process for reducing the inter-phase step in the second step is a CMP process.
  • the slurry containing 0.1% by mass or more and less than 5% by mass of silica particles is used as a polishing liquid when performing the CMP process.
  • a unit load of 10 to 50 kPa is applied when performing the CMP process.
  • the Al 2 O 3 phase and the oxide crystal phase other than Al 2 O 3 are continuously and three-dimensionally formed from a solidified body having a structure intertwined with each other.
  • a method for producing a ceramic composite for light conversion capable of efficiently planarizing the surface. That is, according to the production method of the present invention, a ceramic composite for light conversion having a flat surface can be efficiently obtained.
  • FIG. 1 It is typical sectional drawing which shows the light-emitting device using the ceramic composite for light conversion which concerns on this invention. It is a top view which shows an example of the measuring point of each inter-step difference in the surface of the solidification body which comprises the ceramic composite for light conversion which concerns on this invention. It is a perspective view which shows the surface shape of the solidified body after the lapping process in the reference example of this invention. It is a perspective view which shows the surface shape of the solidified body after the dry etching process in Example 1 of this invention. It is a perspective view which shows the surface shape of the solidification body after CMP process in Example 1 of this invention. It is a perspective view which shows the surface shape of the solidified body after the CMP process in the comparative example 1 of this invention.
  • a solidified body having a structure in which an Al 2 O 3 phase and an oxide crystal phase other than Al 2 O 3 are continuously and three-dimensionally entangled with each other is produced by melting and solidifying a raw material oxide.
  • a solidified body can be obtained by a simple method of cooling and condensing a melt charged in a crucible held at a predetermined temperature while controlling a cooling temperature.
  • Preferred as the light conversion ceramic composite is a solidified body produced by a unidirectional solidification method. This is because by performing unidirectional solidification, the crystal phase contained in the solidified body continuously grows in a single crystal state, and the attenuation of light in the member is reduced.
  • Japanese Patent Application Laid-Open Nos. 7-149597 and 7-187893 filed previously by the present applicant are disclosed.
  • No. 8-81257, JP-A-8-253389, JP-A-8-253390, and JP-A-9-67194 and corresponding US applications US Pat. No. 5,569,547, No. 1).
  • No. 5,484,752, No. 5,902,963 and the like can be used.
  • an oxide crystal phase other than the Al 2 O 3 is a fluorescent material that emits fluorescence, and a Ce-containing YAG phase (hereinafter referred to as YAG: Ce phase). Or a YAG phase containing Ce and Gd (hereinafter referred to as YAG: Gd, Ce phase).
  • the oxide crystal phase other than Al 2 O 3 is a YAG: Ce phase or a YAG: Gd, Ce phase
  • the Al 2 O 3 phase is A part of the blue light is transmitted, and the oxide crystal phase other than the Al 2 O 3 absorbs a part of the blue light and emits yellow fluorescence, whereby the blue light and the yellow light are mixed to generate white light emission. It is because it is obtained.
  • the ceramic composite for light conversion in which the oxide crystal phase other than the Al 2 O 3 is a fluorescent substance that emits fluorescence and is a YAG: Ce phase or a YAG: Gd, Ce phase is known, and the present applicant Is disclosed in WO2008-041566 and the like filed earlier.
  • the YAG: Ce phase absorbs violet to blue excitation light of 400 nm to 500 nm and emits fluorescence with a peak wavelength of 530 nm to 560 nm
  • the YAG: Gd Ce phase absorbs violet to blue excitation light of 400 nm to 500 nm. Since it emits fluorescence having a peak wavelength of 540 nm to 580 nm, the solidified body in which the oxide crystal phase other than Al 2 O 3 is YAG: Ce phase or YAG: Gd, Ce phase is blue light or violet light. It is suitable as a light conversion member for a white light emitting device used in combination with a light emitting element.
  • the boundaries of the Al 2 O 3 phase of the solidified body to be used in the present invention and the other than Al 2 O 3 oxide crystal phase is not present boundary layer of an amorphous phase such as, the said Al 2 O 3 phase
  • the oxide crystal phase other than Al 2 O 3 is in direct contact.
  • the ceramic composite for light conversion obtained by the present invention has little loss of light inside and high light transmittance.
  • the oxide crystal phase that emits fluorescence has a structure that is continuously and three-dimensionally entangled with each other, and the two phases as a whole are uniformly distributed in the ceramic composite for light conversion. No homogeneous fluorescence can be obtained.
  • the oxide crystal phase is a YAG: Ce phase or a YAG: Gd, Ce phase
  • the violet to blue light is incident on the ceramic composite for light conversion, and thus the fluorescence from the phosphor phase is increased.
  • the light transmitted through the transmitted light phase can be obtained at the same time.
  • blue light or violet light can be efficiently incident on the ceramic composite for light conversion, and strong white light is obtained. be able to.
  • the bonding surface of the ceramic composite for light conversion and the blue light emitting element can be made extremely flat, for example, the ceramic composite for light conversion and the blue light emission can be obtained by a surface activated bonding method or the like. Direct bonding with the element can be applied.
  • the solidified body used in the present invention is composed entirely of an inorganic oxide ceramic, it has excellent heat resistance and durability, and is not deteriorated by light. Therefore, it is possible to provide a ceramic composite for light conversion suitable for constituting a highly reliable white light emitting device with high reliability in combination with a light emitting element of blue light or violet light.
  • a plate-shaped solid body having a structure in which an Al 2 O 3 phase and an oxide crystal phase other than Al 2 O 3 are continuously and three-dimensionally intertwined is dry-etched. It is a process to process.
  • the plate-like solidified body to be dry-etched any of a solidified body sliced to a predetermined thickness, and a solidified body whose surface has been previously ground, lapped, or polished can be used. Is not to be done. However, if a solidified body in which the interphase step and the surface roughness in the phase are adjusted not to be extremely large by grinding, lapping, or polishing, the time required for the first step and the second step is further increased.
  • a solidified body whose surface is ground, lapped, or polished. Grinding, lapping, or polishing of the solidified body surface is performed by, for example, surface grinding, gliding, single-sided lapping, double-sided lapping, buffing, CMP, or the like. Is not to be done.
  • a general dry etching apparatus is used for the dry etching process in the first step of the present invention.
  • the etching selectivity ratio of the etching rate of the Al 2 O 3 phase and the oxide crystal phase other than Al 2 O 3
  • the dry etching apparatus for example, a general dry etching apparatus such as an RIE (Reactive Ion Etching) type, a CCP (Capacitive Coupled Plasma) type, or an ICP (Inductive Coupled Plasma) type can be used.
  • Examples of the gas for dry etching include Cl 2 , SiCl 4 , BCl 3 , HBr, SF 6 , CHF 3 , C 4 F 8 , CF 4 , Ar, etc., which are generally used in semiconductor and liquid crystal manufacturing. These gases can be used alone or in combination.
  • the oxide crystal phase other than the Al 2 O 3 which has a higher polishing rate than the Al 2 O 3 phase, is processed so as to have a convex shape, and the height thereof is adjusted, whereby the second When performing CMP processing or MP processing in the process, the step difference between the surfaces of the Al 2 O 3 phase and the oxide crystal phase other than Al 2 O 3 can be reduced to 0.005 ⁇ m or less in a short time.
  • the other than Al 2 O 3 phase step as the convex oxide crystal phase relative to the Al 2 O 3 phase is not more than 0.500 ⁇ m preferable.
  • the interphase step is larger than 0.500 ⁇ m, the interphase step on the surface of the Al 2 O 3 phase and the oxide crystal phase other than the Al 2 O 3 is reduced when CMP processing or MP processing is performed in the second step. Since processing time becomes long to make it 0.005 micrometer or less, it is not preferable.
  • CMP processing or MP processing is performed to reduce the step difference between the Al 2 O 3 phase and the oxide crystal phase other than Al 2 O 3 on the surface of the solidified body after the dry etching processing that has undergone the first step.
  • the CMP process generally increases the mechanical polishing effect generated on the surface of the abrasive grains and the workpiece by the chemical reaction action on the solid surface of the abrasive grains and the workpiece or the chemical etching action by the chemical liquid in the polishing liquid. It is a technique for flattening the surface of the workpiece at high speed, and it is easy to precisely control the interphase step, and generally the surface roughness of the workpiece is smaller than that of MP processing. Therefore, it is preferable to use CMP processing in the second step.
  • a slurry containing silica particles, Al 2 O 3 particles, CeO 2 particles, Mn 2 O 3 particles, diamond particles, etc. is used as the polishing liquid.
  • a slurry containing silica particles is preferably used.
  • the content of silica particles in the slurry used is the Al 2 O 3 phase on the surface of the solidified body formed by dry etching in the first step.
  • an oxide crystal phase other than Al 2 O 3 need to be appropriately adjusted depending on the interphase step and the polishing rate selection ratio.
  • the silica particles are contained in an amount of 1% by mass to less than 5% by mass. It is preferable to use a polishing liquid containing, and it is preferable to use a polishing liquid containing 2% by mass or more and less than 3% by mass of silica particles.
  • the silica particles are contained in an amount of 0.1% by mass or more and 1% by mass.
  • polishing liquid containing less than 0.3% by mass It is preferable to use a polishing liquid containing less than 0.3% by mass, and it is more preferable to use a polishing liquid containing 0.2% by mass or more and less than 0.3% by mass of silica particles.
  • the content of silica particles in the polishing liquid is set based on a step difference between the Al 2 O 3 phase to be subjected to CMP and an oxide crystal phase other than the Al 2 O 3 , the stability of the polishing liquid, and the like.
  • the polishing rate of the oxide crystal phase other than the Al 2 O 3 becomes excessively large, and it becomes difficult to control the processing time. This is because if a polishing liquid having an amount of less than 0.1% by mass is used, the polishing rate is lowered and the time required for polishing may be increased.
  • polishing liquid used in the CMP process for example, a polishing liquid obtained by diluting a slurry containing silica particles with pure water can be used.
  • a commercially available polishing slurry for example, “Quartron (registered trademark) PL series” of colloidal silica polishing slurry manufactured by Fuso Chemical Industry Co., Ltd. can be used.
  • a polishing liquid adjusted to a desired concentration can be obtained.
  • a general polishing slurry for CMP processing can be used for the polishing liquid in that case, and it does not matter whether or not the pH and additives are contained.
  • a difference occurs in the polishing rate between the Al 2 O 3 phase and the oxide crystal phase other than Al 2 O 3 , but the polishing conditions may be appropriately adjusted depending on the pH.
  • a general polishing slurry for CMP processing is used in a flattening process of semiconductor or liquid crystal production, and is a polishing agent, an organic compound (surfactant, color-preventing agent), an oxidizing agent, a pH adjuster (inorganic acid or alkali). )
  • Such polishing slurries are very expensive and contain various chemicals as solid abrasive grains and additives, and problems such as complicated drainage are pointed out.
  • a polishing liquid composition containing an alkanolamine compound and a fluorine-based compound having a perfluoroalkyl group is known (Patent Document 4).
  • Patent Document 4 a polishing liquid composition containing an alkanolamine compound and a fluorine-based compound having a perfluoroalkyl group is known (Patent Document 4).
  • Patent Document 4 a polishing liquid composition containing an alkanolamine compound and a fluorine-based compound having a perfluoroalkyl group is known (Patent Document 4).
  • polishing liquid containing a special additive or the like is not required for the CMP process in the second step, it is possible to provide a manufacturing method with a low environmental load and a low cost even in wastewater treatment.
  • limiting in using the polishing slurry containing the said additive The polishing slurry containing the said additive can be used without a problem.
  • the unit load applied to the solidified body after the dry etching processing is preferably 10 to 50 kPa, and more preferably 10 to 33 kPa. preferable.
  • the unit load is less than 10 kPa, the polishing rate is reduced, and when it exceeds 50 kPa, the step difference between the Al 2 O 3 phase and the oxide crystal phase other than the Al 2 O 3 on the surface to be polished can be precisely adjusted. It becomes difficult.
  • a general polishing apparatus can be used for the CMP processing in the second step. It is preferable that CMP processing is performed by attaching the solidified body after dry etching to a rotating polishing head, and the solidified body after dry etching processing attached to a polishing head rotating at about 50 rpm (rotation / minute) is about 50 rpm.
  • the CMP process can be performed by pressing against the rotating polishing pad.
  • the manufacturing method of a ceramic composite for light conversion of the present invention in a first step, so that the oxide crystal phase other than Al 2 O 3 is larger polishing rate than Al 2 O 3 phase is convex
  • the Al 2 O 3 phase and Al 2 on the surface of the solidified body are processed.
  • the step difference between the oxide crystal phase other than O 3 can be made 0.005 ⁇ m or less in a short time. Since the dry etching processing time of the first step required for the implementation of the present invention is also short, according to the present invention, the Al 2 O 3 phase and the oxide crystal phase other than Al 2 O 3 are very efficiently formed.
  • the level difference between phases can be reduced. Further, depending on the combination of the dry etching process conditions and the CMP process or MP process conditions, the Al 2 O 3 phase may be changed to an oxide crystal phase other than the Al 2 O 3 after the CMP process or the MP process. On the other hand, it may be convex.
  • reducing the interphase step may be a step of reducing the absolute value of the interphase step formed in the first step, and the Al 2 O 3 phase is an oxide other than the Al 2 O 3 . It may be convex with respect to the crystal phase.
  • the ceramic composite for light conversion obtained by the present invention is composed of a solidified body having a structure in which an Al 2 O 3 phase and an oxide crystal phase other than Al 2 O 3 are continuously and three-dimensionally entangled with each other.
  • the Al 2 O 3 phase transmits part of the received light, and the oxide crystal phase other than the Al 2 O 3 can absorb part of the light and emit fluorescence.
  • a ceramic composite having a step difference between the Al 2 O 3 phase on the light receiving surface and an oxide crystal phase other than the Al 2 O 3 of 0.005 ⁇ m or less.
  • the step difference between the Al 2 O 3 phase and the oxide crystal phase other than Al 2 O 3 on the surface of the solidified body constituting the ceramic composite for light conversion obtained by the present invention is one crystal constituting a convex shape.
  • An arbitrary point on the surface of the phase and an arbitrary point on the surface of the other crystal phase constituting the concave shape, and an arbitrary surface parallel to the surface to be processed as a reference plane, the two points The height is obtained, and the difference between the two heights is obtained as an absolute value.
  • an arbitrary point on the surface of the crystal phase constituting such a convex shape and an arbitrary point on the surface of the crystal phase constituting the concave shape constitute a concave shape with the crystal phase constituting the convex shape.
  • the points close to each other across the interface of the crystal phase to be used are preferable. Furthermore, in the present invention, twelve measurement points including two points are set, and the step difference between the phases is an average value of the measurement results. . Therefore, the phase difference between the Al 2 O 3 phase and the oxide crystal phase other than Al 2 O 3 is 0.005 ⁇ m or less means that the measurement results of the individual phase differences at any 12 locations according to the above method are used. The average value is 0.005 ⁇ m or less.
  • bonding can be performed even when the phase difference exceeds 0.005 ⁇ m.
  • the bonding strength decreases, and unevenness may occur on the bonding surface. Therefore, it is possible to obtain a bonding strength having no practical problem by setting the interphase step to 0.005 ⁇ m or less.
  • the light emitting device includes a light emitting element 2 that emits light having a peak at a wavelength of 400 nm to 500 nm, and a ceramic composite 1 for light conversion including an oxide crystal phase that emits yellow fluorescence having a peak at a wavelength of 550 nm to 560 nm.
  • Light emitted from the light-emitting element 2 is applied to the ceramic composite 1 for light conversion, and light transmitted through the ceramic composite 1 for light conversion and light emitted from the light-emitting element 2 are subjected to yellow fluorescence contained in the ceramic composite 1 for light conversion. Fluorescence whose wavelength is converted by the emitted oxide crystal phase is used.
  • reference numeral 3 is a flip chip electrode terminal
  • reference numeral 4 is an anode electrode
  • reference numeral 5 is a cathode electrode.
  • a light emitting element that emits light having a peak at a wavelength of 400 nm to 500 nm is an element that emits violet to blue light.
  • violet to blue light emitted from a light emitting diode element or an element that generates laser light is used for the wavelength.
  • the light enters the ceramic composite for light conversion whose chromaticity is adjusted so that white color is obtained. Due to the structure in which the yellow fluorescence from the phosphor phase excited thereby and the violet to blue transmitted light from the non-phosphor phase are uniformly entangled with each other in a continuous and three-dimensional manner. By mixing uniformly, white light with small color unevenness can be obtained.
  • a white light emitting device in which a light emitting diode element is used as the light emitting element is referred to as a white light emitting diode.
  • this raw material was directly charged into a molybdenum crucible and set in a unidirectional solidification apparatus, and the raw material was melted under a pressure of 1.33 ⁇ 10 ⁇ 3 Pa (10 ⁇ 5 Torr).
  • the crucible is lowered at a rate of 5 mm / hour in the same atmosphere, and the solidification has a structure in which the Al 2 O 3 phase and the fluorescent YAG: Ce phase are continuously and three-dimensionally entangled with each other.
  • Got the body The solidified body was cut into a wafer shape having a diameter of 2 inches with a multi-wire saw, and a disk-shaped sample was cut out.
  • the cut surface of the disk-shaped sample was a satin surface having an Ra (arithmetic mean roughness) of about 65 nm.
  • FIG. 3 shows a surface shape diagram of the disk-shaped sample after the lapping process. It was confirmed that an inter-step difference of 0.020 ⁇ m was formed on the surface of the disk-shaped sample after the lapping process so that the Al 2 O 3 phase was convex with respect to the YAG: Ce phase.
  • the surface of the disk-shaped sample after the lapping was a mirror surface with an Ra (arithmetic mean roughness) of about 5.7 nm.
  • the present invention is not limited to this, and in the present invention, a multi-wire saw or the like is used. Any of a sample cut and processed by, a sample whose surface is ground, or a sample whose surface is polished can be used. However, if a solidified body in which the interphase step and the surface roughness in the phase are adjusted not to be extremely large by grinding, lapping, or polishing, the time required for the first step and the second step is further increased. Since it can be shortened, it is preferable to use a solidified body whose surface is ground, lapped, or polished.
  • the measurement of the step difference between the Al 2 O 3 phase and the YAG: Ce phase of the solidified body according to this example is performed by measuring the disk-shaped sample after lapping, the solidified body after dry etching, and the solidification after CMP processing.
  • an AFM atomic force microscope
  • Example 1 of the ceramic composite for light conversion according to the present invention will be described.
  • the dry etching process was performed using the ICP type dry etching apparatus.
  • As the etching gas a mixed gas of BCl 3 and Ar was used. Further, dry etching was performed for 1 minute under the conditions of antenna power: 700 W and bias power: 300 W.
  • antenna power 700 W
  • bias power 300 W.
  • the surface shape of the solidified body after dry etching was measured with an AFM (atomic force microscope), the YAG: Ce phase was convex with respect to the Al 2 O 3 phase, and the step difference between the phases was about 0.100 ⁇ m. Met.
  • the processed surface shape of the solidified body after dry etching is shown in FIG.
  • CMP processing was performed by the following method to obtain a ceramic composite for light conversion according to Example 1.
  • “Quartron (registered trademark) PL-2L” a colloidal silica polishing slurry manufactured by Fuso Chemical Industry Co., Ltd., which has a silica particle content of 20 mass%, has a silica particle content of 2 mass%.
  • a slurry obtained by diluting with pure water was used.
  • the solidified body (disk sample) after the dry etching is attached to a polishing head of a CMP apparatus, and then the polishing liquid is supplied while rotating the polishing head at about 50 rpm (rotation / min).
  • the CMP process was performed by pressing the polishing pad against a 15-inch diameter polishing pad rotating at about 50 rpm (rotation / min).
  • a 15-inch diameter polishing pad rotating at about 50 rpm (rotation / min).
  • the unit load applied to the solidified body (disk sample) after the dry etching was 33 kPa
  • the supply amount of the polishing liquid was 10 mL / min
  • the processing time was 2 minutes.
  • Example 1 When the surface shape of the ceramic composite for light conversion and the step difference between the phases according to Example 1 after CMP were measured using an AFM (atomic force microscope), the Al 2 O 3 phase and the YAG: It was confirmed that the step difference with the Ce phase was 0.003 ⁇ m.
  • the shape of the surface of the ceramic composite for light conversion according to Example 1 is shown in FIG.
  • Table 1 shows the polishing conditions and the measurement results of the interphase steps on the surface of the obtained ceramic composite for light conversion.
  • Example 2 of the ceramic composite for light conversion according to the present invention.
  • the dry etching process was performed by the method similar to Example 1.
  • FIG. When the surface shape of the solidified body after dry etching was measured with an AFM (atomic force microscope), the YAG: Ce phase was convex with respect to the Al 2 O 3 phase, and the step difference between the phases was about 0.100 ⁇ m. Met.
  • Example 1 of the obtained solidified body (disk-shaped sample) after the dry etching was obtained except that the unit load applied to the solidified body after the dry etching was 13 kPa and the time of CMP was 5 minutes.
  • the ceramic composite for light conversion which concerns on Example 2 was produced by carrying out CMP processing by the same method.
  • the surface shape of the ceramic composite for light conversion and the step difference between the phases according to Example 2 after CMP were measured using an AFM (atomic force microscope), the Al 2 O 3 phase and the YAG: It was confirmed that the step difference with the Ce phase was 0.002 ⁇ m.
  • Example 3 of the ceramic composite for light conversion according to the present invention will be described.
  • the dry etching process was performed by the method similar to Example 1.
  • FIG. When the surface shape of the solidified body after dry etching was measured with an AFM (atomic force microscope), the YAG: Ce phase was convex with respect to the Al 2 O 3 phase, and the step difference between the phases was about 0.100 ⁇ m. Met.
  • a unit load applied to the obtained solidified body (disk-shaped sample) after the dry etching process is applied to the solidified body (disk-shaped sample) after the dry etching process is 46 kPa, and a CMP processing time is 1.5.
  • a ceramic composite for light conversion according to Example 3 was fabricated by CMP in the same manner as in Example 1 except that the time was changed to minutes.
  • the surface shape of the ceramic composite for light conversion and the step difference between the phases according to Example 3 after CMP were measured using an AFM (atomic force microscope), the Al 2 O 3 phase and the YAG: It was confirmed that the step difference with the Ce phase was 0.005 ⁇ m.
  • Example 4 of the ceramic composite for light conversion according to the present invention will be described.
  • the dry etching process was performed by the method similar to Example 1.
  • FIG. When the surface shape of the solidified body after dry etching was measured with an AFM (atomic force microscope), the YAG: Ce phase was convex with respect to the Al 2 O 3 phase, and the step difference between the phases was about 0.100 ⁇ m. Met.
  • the obtained solidified body (disk sample) after the dry etching was subjected to CMP by the following method.
  • polishing liquid “Quartron (registered trademark) PL-2L”, a colloidal silica polishing slurry manufactured by Fuso Chemical Industry Co., Ltd., which has a silica particle content of 20 mass%, has a silica particle content of 0.2 mass%.
  • Example 5 of the ceramic composite for light conversion according to the present invention will be described.
  • the dry etching process was performed by the method similar to Example 1.
  • FIG. When the surface shape of the solidified body after dry etching was measured with an AFM (atomic force microscope), the YAG: Ce phase was convex with respect to the Al 2 O 3 phase, and the step difference between the phases was about 0.100 ⁇ m. Met.
  • the obtained solidified body (disk sample) after the dry etching was subjected to CMP by the following method.
  • polishing liquid “Quartron (registered trademark) PL-2L”, a colloidal silica polishing slurry manufactured by Fuso Chemical Industry Co., Ltd., which has a silica particle content of 20 mass%, has a silica particle content of 4 mass%.
  • the CMP processing was performed in the same manner as in Example 1 except that the CMP processing time was set to 1 minute, so that the ceramic composite for light conversion according to Example 5 was obtained. Produced.
  • Example 6 of the ceramic composite for light conversion according to the present invention will be described.
  • the dry etching process was performed by the method similar to Example 1.
  • FIG. When the surface shape of the solidified body after dry etching was measured with an AFM (atomic force microscope), the YAG: Ce phase was convex with respect to the Al 2 O 3 phase, and the step difference between the phases was about 0.100 ⁇ m. Met.
  • the obtained solidified body (disk sample) after the dry etching was subjected to CMP by the following method.
  • a colloidal silica polishing slurry “COMPOL (registered trademark) Type 20” manufactured by Fujimi Incorporated with a silica particle content of 40% by mass is pure so that the silica particle content is 2% by mass.
  • Example 7 of the ceramic composite for light conversion according to the present invention will be described.
  • the dry etching process was performed by the method similar to Example 1.
  • FIG. When the surface shape of the solidified body after dry etching was measured with an AFM (atomic force microscope), the YAG: Ce phase was convex with respect to the Al 2 O 3 phase, and the step difference between the phases was about 0.100 ⁇ m. Met.
  • the obtained solidified body (disk sample) after the dry etching was subjected to CMP by the following method.
  • the ceramic composite for light conversion which concerns on Example 7 was produced by CMP process.
  • Example 8 of the ceramic composite for light conversion according to the present invention will be described.
  • the dry etching process was performed by the method similar to Example 1.
  • FIG. When the surface shape of the solidified body after dry etching was measured with an AFM (atomic force microscope), the YAG: Ce phase was convex with respect to the Al 2 O 3 phase, and the step difference between the phases was about 0.100 ⁇ m. Met.
  • the obtained solidified body (disk sample) after the dry etching was subjected to CMP by the following method.
  • Example 9 of the ceramic composite for light conversion according to the present invention will be described.
  • the dry etching process was performed by the method similar to Example 1.
  • FIG. When the surface shape of the solidified body after dry etching was measured with an AFM (atomic force microscope), the YAG: Ce phase was convex with respect to the Al 2 O 3 phase, and the step difference between the phases was about 0.100 ⁇ m. Met.
  • the obtained solidified body (disk sample) after the dry etching was subjected to CMP by the following method.
  • the ceramic composite for light conversion according to Example 9 was subjected to CMP processing in the same manner as in Example 1 except that the unit load applied to the solidified body after dry etching was 8 kPa and the CMP processing time was 30 minutes. The body was made.
  • the surface shape of the ceramic composite for light conversion and the step difference between the phases according to Example 9 after CMP were measured using an AFM (atomic force microscope), the Al 2 O 3 phase and the YAG: It was confirmed that the step difference with the Ce phase was 0.003 ⁇ m.
  • Example 10 of the ceramic composite for light conversion according to the present invention will be described.
  • the dry etching process was performed by the method similar to Example 1.
  • FIG. When the surface shape of the solidified body after dry etching was measured with an AFM (atomic force microscope), the YAG: Ce phase was convex with respect to the Al 2 O 3 phase, and the step difference between the phases was about 0.100 ⁇ m. Met.
  • the obtained solidified body (disk sample) after the dry etching was subjected to CMP by the following method.
  • polishing liquid “Quartron (registered trademark) PL-2L”, a colloidal silica polishing slurry manufactured by Fuso Chemical Industry Co., Ltd., which has a silica particle content of 20 mass%, has a silica particle content of 0.05 mass%.
  • a ceramic composite was prepared.
  • Example 11 of the ceramic composite for light conversion according to the present invention will be described.
  • the dry etching process was performed by the method similar to Example 1.
  • FIG. When the surface shape of the solidified body after dry etching was measured with an AFM (atomic force microscope), the YAG: Ce phase was convex with respect to the Al 2 O 3 phase, and the step difference between the phases was about 0.100 ⁇ m. Met.
  • the obtained solidified body (disk sample) after dry etching was subjected to MP processing by the following method.
  • an oil-based dispersion medium polishing slurry having a content of diamond particles having an average particle diameter of about 20 nm of 0.1% by mass and additionally containing a nonionic surfactant was used.
  • the solidified body (disk-shaped sample) after the dry etching process is attached to a work holder of an MP apparatus, and then the surface of the solidified body is pressed against the surface of a surface plate, and the work holder is rotated at about 30 rpm (rotation / minute).
  • MP processing was performed by pressing against a tin plate with a diameter of 15 inches rotating at about 30 rpm (rotation / minute) to which the polishing liquid was supplied.
  • the unit load applied to the solidified body (disk sample) after the dry etching was 10 kPa, the supply amount of the polishing liquid was 2 mL / min, and the processing time was 1 minute.
  • the surface shape of the ceramic composite for light conversion and the step difference between the phases according to Example 11 after MP processing were measured using an AFM (atomic force microscope), the Al 2 O 3 phase and the YAG: It was confirmed that the step difference with the Ce phase was 0.004 ⁇ m.
  • Example 12 of the ceramic composite for light conversion according to the present invention will be described.
  • the dry etching process was performed by the method similar to Example 1 except having made etching time into 6 minutes.
  • the surface shape of the solidified body after dry etching was measured with an AFM (atomic force microscope)
  • the YAG: Ce phase was convex with respect to the Al 2 O 3 phase
  • the step difference between the phases was about 0.400 ⁇ m. Met.
  • the CMP processing was performed in the same manner as in Example 1 except that the CMP processing time was set to 10 minutes, and the ceramic composite for light conversion according to Example 12 was obtained.
  • Example 13 of the ceramic composite for light conversion according to the present invention will be described.
  • the dry etching process was performed using the RIE type dry etching apparatus. CF 4 gas was used as an etching gas. Further, dry etching was performed for 30 minutes under the conditions of RF power: 200 W, gas flow rate: 20 sccm, and gas pressure: 2.0 Pa.
  • RF power 200 W
  • gas flow rate 20 sccm
  • gas pressure 2.0 Pa.
  • Example 13 CMP was performed in the same manner as in Example 1 to obtain a ceramic composite for light conversion according to Example 13.
  • the surface shape of the ceramic composite for light conversion and the step difference between the phases according to Example 13 after CMP were measured using an AFM (atomic force microscope), the Al 2 O 3 phase and the YAG: It was confirmed that the step difference with the Ce phase was 0.003 ⁇ m.
  • Comparative Example 1 of the ceramic composite for light conversion according to the present invention will be described.
  • the disc-shaped sample after lapping manufactured according to the reference example was subjected to CMP processing in the same manner as in Example 1 except that dry etching processing was not performed, and the ceramic composite for light conversion according to Comparative Example 1 was obtained. Obtained. Thereafter, even if the processing time is further added, the step difference between the Al 2 O 3 phase and the YAG: Ce phase was not reduced.
  • the surface shape and interphase step measurement of the ceramic composite for light conversion according to Comparative Example 1 after the CMP processing were performed using an AFM (atomic force microscope), an Al 2 O 3 phase and a YAG: Ce phase were measured. It was confirmed that the Al 2 O 3 phase was convex with respect to the YAG: Ce phase on the surface of the ceramic composite for light conversion according to Comparative Example 1.
  • the shape of the surface of the ceramic composite for light conversion according to Comparative Example 1 is shown in FIG.
  • Comparative Example 2 of the ceramic composite for light conversion according to the present invention will be described.
  • the disk-shaped sample after lapping manufactured by the reference example dry etching is not performed, the unit load is 50 kPa, the content of diamond particles in the polishing liquid is 1% by mass, and the processing time is 360 minutes.
  • MP processing was performed in the same manner as in Example 11 to produce a ceramic composite for light conversion according to Comparative Example 2.
  • the surface shape of the ceramic composite for light conversion and the step difference between the phases according to Comparative Example 2 after MP processing were measured using an AFM (atomic force microscope), the Al 2 O 3 phase was compared with the YAG: Ce phase. It was confirmed that the phase difference between the Al 2 O 3 phase and the YAG: Ce phase was 0.011 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Luminescent Compositions (AREA)
  • Ceramic Products (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Led Device Packages (AREA)

Abstract

 Al相およびAl相以外の酸化物結晶相が連続的にかつ三次元的に相互に絡み合った組織を有する凝固体であるにも関わらず、その表面を効率的に平坦化できる、光変換用セラミック複合体の製造方法を提供する。 Al相とAl以外の酸化物結晶相とが連続的にかつ三次元的に相互に絡み合った組織を有する凝固体の表面をドライエッチング加工することにより、前記凝固体の表面の前記Al以外の酸化物結晶相が前記Al相に対して凸形状となるように相間段差を形成する第1工程と、前記ドライエッチング加工後の凝固体をCMP加工またはMP加工することにより、前記相間段差を小さくする第2工程とを備える光変換用セラミック複合体の製造方法である。

Description

光変換用セラミック複合体の製造方法
 本発明は、ディスプレイ、照明、バックライト光源等に利用される発光ダイオードなどに用いられる光変換用セラミック複合体の製造方法に関する。
 近年、青色発光素子を発光源とする白色発光装置の研究開発が盛んに行われている。特に青色発光素子を用いた白色発光装置は、寿命が長く、白熱灯や蛍光灯に比べて消費電力が小さいだけでなく、水銀のような有害物質を使用しないことから、現在、白色発光装置を用いた照明機器が実用化されつつある。
 青色発光素子の青色光を光源として白色光を得る方法として最も一般的に行なわれている方法は、青色と補色関係にある黄色を混色することにより擬似的に白色を得るものである。
 例えば、典型的な白色発光装置では、青色発光素子から放出された青色光によって黄色を発する蛍光体(例えば、Ceを含有するYAG(YAl12)蛍光体)を含有する透明な樹脂によって青色発光素子が封止されている。この青色発光素子から青色光(波長450~460nm)が放出され、青色光の一部によってYAGが励起されて、この蛍光体から黄色光が放出される。
 しかしながら、青色発光素子をエポキシ樹脂等の透光性樹脂材料で封止した場合、発光素子から発せられる光や外部からの光等に反応して黄変等の劣化が見られることが知られている。また、白色発光装置において高輝度を得る場合に高電流を使用すると、素子自体の発熱により封止樹脂の劣化が発生する。さらに、封止樹脂の水分の吸収等により発光効率が低下することがある。
 そのため、本発明者らは、以前より蛍光を発するCeを含有するYAG蛍光体相とAl相を含む複数の酸化物結晶相が連続的にかつ三次元的に相互に絡み合って形成されている凝固体からなる光変換用セラミック複合体および青色発光素子を用いて構成される白色発光装置を提案している(特許文献1、2)。光変換用セラミック複合体は、蛍光体相が均一に分布するため均質な黄色蛍光を安定して得ることができ、またセラミックであるため耐久性に優れ、エポキシ樹脂等で封止した場合に生じる問題を解決し、信頼性の高い白色発光装置を提供することができる。
 この光変換用セラミック複合体を用いた白色発光装置の構成は、例えば、フリップチップ実装される青色発光素子と、前記青色発光素子に対して電力の受供給を行う配線パターンを形成された回路基板と、前記青色発光素子と直接接合した光変換用セラミック複合体とを有する。
 また、これまでに、発光ダイオード素子が形成可能な単結晶層と、単一金属酸化物および複合金属酸化物から選ばれる少なくとも2つ以上の酸化物結晶相が連続的にかつ三次元的に相互に絡み合って形成されている凝固体とからなる光変換用セラミックス複合体層とが積層された発光ダイオード用基板が提案されている(特許文献3)。
 このような発光ダイオード素子形成用の基板としては、一般的に、サファイア等の単結晶基板が用いられている(特許文献4)。この単結晶基板の表面を、研磨加工時に発生するスクラッチ等の研磨傷のない平坦な表面に仕上げるためには、一般的には、被加工物よりも硬い材質のダイヤモンド粒子等の砥粒の粒子径を段階的に小さくしていく、研削、ラッピングなどの機械的研磨(Mechanical Polishing、以下MPと記す)加工や、コロイダルシリカなどの被加工物よりも軟らかい材質の砥粒と化学的作用を伴う研磨液を用いて行う化学機械研磨(Chemical Mechanical Polishing、以下CMPと記す)加工が行われている。このようにMP加工およびCMP加工等による研磨加工によって、前記単結晶基板の表面は、Ra(算術平均粗さ)が1nm未満の平滑な面にできることが知られている。
特開2006-173433号公報 国際公開第2004/065324号 国際公開第2007/018222号 特開2009-297818号公報
 しかしながら、これらの加工方法は、単一結晶相からなる単結晶基板の研磨加工には適切であるが、被加工物が、二種以上の結晶相からなりその表面の構成も同様である複合材料の場合は、MPまたはCMPなどの研磨加工を行うと、機械的作用および化学的作用がそれぞれの結晶相により異なるので、各結晶相の研磨速度に差が生じて、結晶相間に凹凸形状の高低差(以下、相間段差とする)が発生する。
 前記Al相およびAl以外の酸化物結晶相が連続的にかつ三次元的に相互に絡み合った組織を有する凝固体を、前記の方法により研磨加工すると、その表面は、前記Al相およびAl以外の酸化物結晶相の材料物性(硬度や結晶方位など)の違いなどから、前記Al相が前記Al以外の酸化物結晶相に対して凸形状となり、前記Al相と前記Al以外の酸化物結晶相との境界に大きな相間段差が生じる。したがって、前記凝固体を前記の方法により研磨加工して平坦化することは困難である。また、前記の方法による研磨加工には長時間を要するため、工業的にも問題である。
 また、特許文献3において、単結晶層と光変換用セラミックス複合体層とを積層するために、高温で直接接合する方法や非常に少量の低融点材料を接合層として介在させる方法が示されているが、単結晶層と光変換用セラミックス複合体層の接合面が平坦であれば、上記方法だけでなく、表面活性化接合法などにより光変換用セラミック複合体層と単結晶層との直接接合ができるため、接合面が平坦であることは重要である。
 本発明は、上記問題点に鑑みてなされたものであり、Al相およびAl以外の酸化物結晶相が連続的にかつ三次元的に相互に絡み合った組織を有する凝固体から構成されているにも関わらず、その表面を効率的に平坦化できる、光変換用セラミック複合体の製造方法を提供することを目的とする。
 以上の目的を達成するために、本発明者らは、鋭意検討した結果、Al相とAl以外の酸化物結晶相とが連続的にかつ三次元的に相互に絡み合った組織を有する凝固体の表面をドライエッチング加工することにより、前記凝固体の表面の前記Al以外の酸化物結晶相が前記Al相に対して凸形状となるように相間段差を形成した後、前記ドライエッチング加工後の凝固体をCMP加工またはMP加工することにより前記相間段差を小さくすることによって、前記凝固体の表面が平坦化された前記光変換用セラミック複合体が効率的に製造できることを見出し、本発明に至った。
 すなわち本発明は、Al相とAl以外の酸化物結晶相とが連続的にかつ三次元的に相互に絡み合った組織を有する凝固体の表面をドライエッチング加工することにより、前記凝固体の表面の前記Al以外の酸化物結晶相が前記Al相に対して凸形状となるように相間段差を形成する第1工程と、前記ドライエッチング加工後の凝固体をCMP加工またはMP加工することにより、前記相間段差を小さくする第2工程とを備える光変換用セラミック複合体の製造方法である。
 また、本発明は、前記Al以外の酸化物結晶相が、蛍光を発する蛍光体であり、Ceを含有するYAG(YAl12)相、または、CeおよびGdを含有するYAG(YAl12)相であることを特徴とする前記光変換用セラミック複合体の製造方法である。
 また、前記第2工程における加工後の前記相間段差が、0.005μm以下であることを特徴とする前記光変換用セラミック複合体の製造方法である。
 また、前記第2工程における前記相間段差を小さくする加工が、CMP加工であることを特徴とする前記光変換用セラミック複合体の製造方法である。
 また、前記CMP加工を行なう際に、シリカ粒子を0.1質量%以上5質量%未満含有するスラリーを研磨液として使用することを特徴とする前記光変換用セラミック複合体の製造方法である。
 また、前記CMP加工を行なう際に、10~50kPaの単位荷重を印加することを特徴とする前記光変換用セラミック複合体の製造方法である。
 本発明によれば、Al相とAl以外の酸化物結晶相とが連続的にかつ三次元的に相互に絡み合った組織を有する凝固体から構成されているにも関わらず、その表面を効率的に平坦化できる、光変換用セラミック複合体の製造方法を提供することができる。すなわち、本発明の製造方法によれば、表面が平坦な光変換用セラミック複合体を効率的に得ることができる。
本発明に係る光変換用セラミック複合体を用いた発光装置を示す模式的断面図である。 本発明に係る光変換用セラミック複合体を構成する凝固体の表面における個々の相間段差の測定点の一例を示す平面図である。 本発明の参考例におけるラッピング加工後の凝固体の表面形状を示す斜視図である。 本発明の実施例1におけるドライエッチング加工後の凝固体の表面形状を示す斜視図である。 本発明の実施例1におけるCMP加工後の凝固体の表面形状を示す斜視図である。 本発明の比較例1におけるCMP加工後の凝固体の表面形状を示す斜視図である。
 先ず、本発明に係る光変換用セラミック複合体の製造方法に用いられるAl相とAl相以外の酸化物結晶相が連続的にかつ三次元的に相互に絡み合った組織を有する凝固体について説明する。
 Al相とAl以外の酸化物結晶相とが連続的にかつ三次元的に相互に絡み合った組織を有する凝固体は、原料酸化物を融解後、凝固させることによって作製される。例えば、所定温度に保持したルツボに仕込んだ溶融物を、冷却温度を制御しながら冷却凝結させる簡単な方法で凝固体を得ることができる。光変換セラミック複合体として好ましいのは一方向凝固法により作製された凝固体である。一方向凝固を行なうことにより、凝固体に含まれる結晶相が単結晶状態で連続的に成長し、部材内での光の減衰が減少するためである。
 前記凝固体の製造方法としては、蛍光を発する酸化物結晶相が含まれていることを除き、本出願人が先に出願した特開平7-149597号公報、特開平7-187893号公報、特開平8-81257号公報、特開平8-253389号公報、特開平8-253390号公報および特開平9-67194号公報並びにこれらに対応する米国出願(米国特許第5,569,547号、同第5,484,752号、同第5,902,963号)等に開示されたセラミック複合材料の製造方法と同様の方法を用いることができる。
 光変換用セラミック複合体を構成する凝固体としては、前記Al以外の酸化物結晶相が、蛍光を発する蛍光体であり、Ceを含有するYAG相(以下、YAG:Ce相と記す)、または、CeおよびGdを含有するYAG相(以下、YAG:Gd,Ce相と記す)であることが好ましい。前記Al以外の酸化物結晶相が、YAG:Ce相、またはYAG:Gd,Ce相である場合、青色光を光変換用セラミック複合体が受光した際に、Al相が青色光の一部を透過し、前記Al以外の酸化物結晶相が青色光の一部を吸収して黄色蛍光を発することにより、前記青色光および黄色光が混合されて白色発光が得られるからである。前記Al以外の酸化物結晶相が、蛍光を発する蛍光体であり、YAG:Ce相、またはYAG:Gd,Ce相である前記光変換用セラミック複合体は公知であり、本出願人が先に出願した、WO2008-041566等に開示される。
 YAG:Ce相は、400nm~500nmの紫~青色励起光を吸収してピーク波長530nm~560nmの蛍光を発し、YAG:Gd,Ce相は、400nm~500nmの紫~青色励起光を吸収してピーク波長540nm~580nmの蛍光を発することから、前記Al以外の酸化物結晶相が、YAG:Ce相、またはYAG:Gd,Ce相である前記凝固体は、青色光または紫色光の発光素子と組み合わせて使用される白色発光装置用の光変換用部材として好適である。
 本発明に用いられる凝固体の前記Al相と前記Al以外の酸化物結晶相との境界には、アモルファス相等の境界層が存在せず、前記Al相と前記Al以外の酸化物結晶相とが直接接している。このため本発明で得られる光変換用セラミック複合体は、内部での光の損失が少なく、光透過率も高い。また、蛍光を発する酸化物結晶相が連続的にかつ三次元的に相互に絡み合った構造をとり、全体として前記両相が光変換用セラミック複合体内に均一に分布するため、部分的な偏りのない均質な蛍光を得ることができる。さらに、前記酸化物結晶相がYAG:Ce相またはYAG:Gd,Ce相である場合は、前記光変換用セラミック複合体に紫色~青色の光を入射することにより、蛍光体相からの蛍光と、透過光相を透過した光とを同時に得ることができる。青色光または紫色光の発光素子と光変換用セラミック複合体を直接接合することで、青色光または紫色光を光変換用セラミック複合体に効率良く入射することができ、強度の強い白色光を得ることができる。ここで、後述するように、光変換用セラミック複合体と青色発光素子との接合面を非常に平坦にすることができれば、例えば、表面活性化接合法などにより光変換用セラミック複合体と青色発光素子との直接接合を適用することができる。
 また、本発明に用いられる凝固体は、全て無機酸化物セラミックで構成されているため、耐熱性・耐久性に優れると共に、光による劣化等もない。このため青色光または紫色光の発光素子と組み合わせて信頼性の高い高効率の白色発光装置を構成するに好適な光変換用セラミック複合体を提供することができる。
 続いて、本発明に係る光変換用セラミック複合体の製造方法について説明する。まず、本発明の第1工程について具体的に説明する。
 本発明の第1工程は、Al相とAl以外の酸化物結晶相とが連続的にかつ三次元的に相互に絡み合った組織を有する、板状の凝固体をドライエッチング加工する工程である。ドライエッチング加工される板状の凝固体としては、所定の厚さにスライス加工した凝固体、その表面を予め研削加工、ラッピング加工、又はポリッシング加工した凝固体のいずれを用いることもでき、特に限定されるものではない。ただし、研削加工、ラッピング加工、又はポリッシング加工によって、相間段差および相内の表面粗さが極端に大きくない程度に調整された凝固体を用いれば、第1工程及び第2工程の所要時間をより短くできるので、表面を、研削加工、ラッピング加工、又はポリッシング加工した凝固体を用いることが好ましい。凝固体表面の研削加工、ラッピング加工、又はポリッシング加工は、例えば、平面研削加工、グライディング加工、片面ラップ加工、両面ラップ加工、バフ研磨加工、CMP加工などにより行なわれるが、特にこれらの方法に限定されるものではない。
 本発明の第1工程におけるドライエッチング加工には、一般的なドライエッチング装置が用いられる。一般的なドライエッチング装置では、投入電力、バイアス電力、エッチングガス雰囲気などによってエッチング選択比(Al相とAl以外の酸化物結晶相のエッチングレートの比)を調整することができるので、Al相とAl以外の酸化物結晶相との境界に生じる相間段差を制御することができる。ドライエッチング装置としては、例えばRIE(Reactive Ion Etching)型、CCP(Capacitive Coupled Plasma)型、ICP(Inductive Coupled Plasma)型等の一般的なドライエッチング装置を用いることができる。
 また、ドライエッチング加工用のガスとしては、半導体および液晶製造において一般的に用いられているCl、SiCl、BCl、HBr、SF、CHF、C、CF、Arなどのガスを単独で、または混合して用いることができる。
 第1工程において、前記Al相に比べて研磨速度が大きい前記Al以外の酸化物結晶相が凸形状となるように加工し、その高さを調整することで、第2工程におけるCMP加工またはMP加工を行なう場合に、前記Al相とAl以外の酸化物結晶相との表面における相間段差を短時間で0.005μm以下にすることができる。
 第1工程において前記凝固体表面に形成される、前記Al以外の酸化物結晶相が前記Al相に対して凸形状となる相間段差は、0.500μm以下であることが好ましい。前記相間段差が0.500μmより大きくなると、第2工程においてCMP加工またはMP加工を行う場合に、前記Al相と前記Al以外の酸化物結晶相との表面における相間段差を0.005μm以下にするのに加工時間が長くなるので好ましくない。
 続いて、本発明の第2工程について具体的に説明する。
 第2工程において、前記第1工程を経たドライエッチング加工後の凝固体の表面のAl相とAl以外の酸化物結晶相との相間段差を小さくするCMP加工またはMP加工を行なう。CMP加工は、一般に砥粒と被加工物の固体表面における化学反応作用あるいは研磨液中の薬液による化学エッチング作用によって、砥粒と被加工物の表面に生じる機械的研磨効果を増大させることで、被加工物の表面を高速に平坦化する技術であり、前記相間段差を精密に制御することが容易であり、また、一般的にはMP加工と比べて被加工物の表面粗さをより小さくすることが可能なので、第2工程においてはCMP加工が用いられることが好ましい。
 本発明の前記第2工程における加工がCMP加工である場合、研磨液としては、シリカ粒子、Al粒子、CeO粒子、Mn粒子、ダイヤモンド粒子等を含有するスラリーを用いることができるが、シリカ粒子を含有するスラリーが好適に用いられる。研磨液としてシリカ粒子を含有するスラリーを使用する場合は、使用されるスラリーのシリカ粒子の含有量は、前記第1工程におけるドライエッチング加工により形成された前記凝固体の表面のAl相とAl以外の酸化物結晶相との相間段差および研磨速度の選択比によって適宜調整される必要がある。例えば、第1工程において形成されたAl相とAl以外の酸化物結晶相との相間段差が0.100μm以上である場合は、シリカ粒子を1質量%以上5質量%未満含有する研磨液を使用することが好ましく、さらには、シリカ粒子を2質量%以上3質量%未満含有する研磨液を使用することが好ましい。また、第1工程において形成されたAl相とAl以外の酸化物結晶相との相間段差が0.100μm未満の場合は、シリカ粒子を0.1質量%以上1質量%未満含有する研磨液を使用することが好ましく、さらには、シリカ粒子を0.2質量%以上0.3質量%未満含有する研磨液を使用することが好ましい。この研磨液のシリカ粒子の含有量は、CMP加工が行なわれる前記Al相と前記Al以外の酸化物結晶相との相間段差、研磨液の安定性などに基づいて設定されるが、本発明においては、シリカ粒子を0.1質量%以上5質量%未満含有する研磨液を使用することが好ましい。シリカ粒子を5質量%以上含有する研磨液を使用すると、前記Al以外の酸化物結晶相の研磨速度が過剰に大きくなって、加工時間の制御が難しくなり、また、シリカ粒子の含有量が0.1質量%未満の研磨液を使用すると、研磨速度が低下して、研磨に要する時間が長くなることがあるからである。
 CMP加工において使用される研磨液としては、例えば、シリカ粒子を含有するスラリーを純水で希釈した研磨液を使用することができる。市販の研磨スラリーとしては、例えば、扶桑化学工業(株)製コロイダルシリカ研磨スラリーの「クォートロン(登録商標)PLシリーズ」等を用いることができる。コロイダルシリカ等、市販の研磨スラリーを、純水で希釈することによって、所望の濃度に調整した研磨液を得ることができる。本発明の第2工程においてCMP加工を行う場合には、その場合の研磨液に、一般的なCMP加工用の研磨スラリーを使用することができ、そのpHおよび添加剤含有の有無を問わない。研磨液のpHによっては、Al相とAl以外の酸化物結晶相の研磨速度の差に違いが生じるが、pHによって、研磨条件を適宜調整すれば良い。
 一般的なCMP加工用の研磨スラリーは、半導体や液晶製造の平坦化処理工程に用いられ、研磨剤、有機化合物(界面活性剤、防色剤)、酸化剤、pH調整剤(無機酸またはアルカリ)を主成分とすることが多い。このような研磨スラリーは、非常に高価である上に、固形分の砥粒や添加剤として様々な化学薬品が含まれているため、排液処理が煩雑になる等の問題が指摘されている。例えば、サファイア単結晶基板をCMP加工する場合に、アルカノールアミン化合物とパーフルオロアルキル基を有するフッ素系化合物を含有する研磨液組成物が知られている(特許文献4)。この場合、フッ素系廃水中のフッ素除去性能が影響を受け、突発的にフッ素系廃水処理設備が目標とする基準値以下の水質を得られない場合が生じることがある。
 本発明においては、第2工程におけるCMP加工に特殊な添加剤等を含む研磨液を必要としないため、廃水処理においても環境負荷が小さく、また低コストな製造方法を提供することができる。ただし、本発明において、前記添加物が含まれる研磨スラリーを使用することに何ら制限があるわけではなく、前記添加物が含まれる研磨スラリーを問題なく使用することができる。
 さらに、本発明の第2工程において、CMP加工を行なう際に、前記ドライエッチング加工後の凝固体に印加される単位荷重は、10~50kPaであることが好ましく、10~33kPaであることがさらに好ましい。前記単位荷重が10kPa未満であると、研磨速度が小さくなり、50kPaを超えると被研磨面の前記Al相と前記Al以外の酸化物結晶相の相間段差の精密な調整が難しくなる。
 前記第2工程における前記CMP加工には、一般的な研磨装置を使用することができる。前記ドライエッチング加工後の凝固体を回転研磨ヘッドに取り付けてCMP加工が行なわれることが好ましく、約50rpm(回転/分)で回転する研磨ヘッドに取り付けた前記ドライエッチング加工後の凝固体を約50rpmで回転する研磨パッドに押し当ててCMP加工を行なうことができる。
 本発明に係る光変換用セラミック複合体の製造方法によれば、第1工程において、Al相に比べて研磨速度が大きいAl以外の酸化物結晶相が凸形状となるように該凝固体の表面をドライエッチング加工し、その高さを調整することで、第2工程におけるCMP加工またはMP加工を行った場合に、該凝固体の表面のAl相とAl以外の酸化物結晶相との相間段差を短時間で0.005μm以下にすることができる。本発明の実施に要する、第1工程のドライエッチング加工時間も短時間であるので、本発明によれば、きわめて効率的にAl相とAl以外の酸化物結晶相との相間段差を小さくすることができる。また、前記ドライエッチング加工の条件と、前記CMP加工またはMP加工の条件の組合せによっては、前記CMP加工またはMP加工後に、前記Al相が前記Al以外の酸化物結晶相に対して凸形状となることもある。第2工程において、相間段差を小さくするとは、前記第1工程において形成された相間段差の絶対値を小さくする工程であれば良く、前記Al相が前記Al以外の酸化物結晶相に対して凸形状となっても良い。
 本発明によって得られた光変換用セラミック複合体は、Al相とAl以外の酸化物結晶相が連続的にかつ三次元的に相互に絡み合った組織を有する凝固体から構成され、前記Al相が受光した光の一部を透過し、また、前記Al以外の酸化物結晶相が前記光の一部を吸収して蛍光を発することができる、前記受光面の前記Al相と前記Al以外の酸化物結晶相との相間段差が0.005μm以下のセラミック複合体である。
 本発明によって得られた光変換用セラミック複合体を構成する凝固体の表面のAl相とAl以外の酸化物結晶相との相間段差は、凸形状を構成する一方の結晶相の表面の任意の点と、凹形状を構成する他方の結晶相の表面の任意の点、の2つの点と、被加工面に平行な任意の面を基準面として、前記2つの点の高さを求め、該2つの高さの差を絶対値として求められる。具体的には、そのような凸形状を構成する結晶相の表面の任意の点と、凹形状を構成する結晶相の表面の任意の点は、凸形状を構成する結晶相と凹形状を構成する結晶相の界面を挟んで近接した点が好ましく、さらには、そのような2つの点からなる測定点は、本発明では12カ所設定し、相間段差は、それらの測定結果の平均値とした。したがって、Al相とAl以外の酸化物結晶相との相間段差が0.005μm以下であるとは、前記の方法による、任意の12カ所における個々の相間段差の測定結果の平均値が0.005μm以下であることをいう。
 例えば、表面活性化接合により前記光変換用セラミック複合体と発光素子とを接合する場合には、前記相間段差が0.005μmを超えた場合でも接合することは可能であるが、前記相間段差が大きくなるほど接合強度が小さくなり、接合面にムラが生じることがあることから、前記相間段差を0.005μm以下にすることで、実用上問題のない接合強度を得ることが可能となる。
 次に、本発明によって得られた光変換用セラミック複合体を用いた発光装置の模式的断面図の一例を図1に示す。この発光装置は、波長400nm~500nmにピークを有する光を発する発光素子2と、波長550nm~560nmにピークを有する黄色蛍光を発する酸化物結晶相を含む光変換用セラミック複合体1とからなり、発光素子2から発する光を光変換用セラミック複合体1に照射し、光変換用セラミック複合体1を透過した光および発光素子2から発する光を光変換用セラミック複合体1に含まれる黄色蛍光を発する前記酸化物結晶相により波長変換された蛍光を利用することを特徴とする。図中、符号3は、フリップチップ電極端子であり、符号4は、アノード電極であり、符号5は、カソード電極である。
 波長400nm~500nmにピークを有する光を発する発光素子は、紫色~青色の光を発光する素子であり、例えば、発光ダイオード素子やレーザー光を発生する素子から発する紫色~青色光を、その波長に合わせて白色が得られるように色度の調整をおこなった光変換用セラミック複合体に入射する。それによって励起された蛍光体相からの黄色の蛍光と非蛍光体相からの紫色~青色の透過光が、酸化物結晶相が連続的にかつ三次元的に相互に絡み合い均一に分布する構造により、均質に混合されることで、色むらが小さい白色光を得ることができる。発光素子として発光ダイオード素子を用いた場合の白色発光装置を白色発光ダイオードという。
 次に、本発明に係る光変換用セラミック複合体の製造方法の実施例について説明するが、本発明は、これら実施例に限定されるものではない。
 [参考例]
 先ず、実施例に用いられる凝固体を製造する。α-Al粉末(純度99.99%)をAlO3/2換算で0.82モル、Y粉末(純度99.9%)をYO3/2換算で0.175モル、CeO粉末(純度99.9%)を0.005モルとなるよう秤量した。これらの粉末をエタノール中、ボールミルによって16時間湿式混合した後、エバポレーターを用いてエタノールを脱媒して原料粉末を得た。原料粉末は、真空炉中で予備溶解し一方向凝固の原料とした。次に、この原料をそのままモリブデンルツボに仕込み、一方向凝固装置にセットし、1.33×10-3Pa(10-5Torr)の圧力下で原料を融解した。次に、同一の雰囲気においてルツボを5mm/時間の速度で下降させ、Al相と、蛍光を発するYAG:Ce相とが連続的にかつ三次元的に相互に絡み合った組織を有する凝固体を得た。前記凝固体をマルチワイヤーソーで直径2インチのウェハー状に切断加工し、円板状試料を切り出した。前記円板状試料の切断面は、Ra(算術平均粗さ)が65nm程度の梨地面であった。
 前記円板状試料の両方の切断面に、ダイヤモンド砥粒を用いてラッピング加工を行った。前記ラッピング加工後の前記円板状試料の表面形状および相間段差測定を、AFM(原子間力顕微鏡)を用いて行った。前記ラッピング加工後の前記円板状試料の表面形状図を図3に示す。前記ラッピング加工後の前記円板状試料の表面には、Al相がYAG:Ce相に対して凸形状となる0.020μmの相間段差が形成されていることが確認できた。前記ラッピング加工後の前記円板状試料の表面は、Ra(算術平均粗さ)が5.7nm程度の鏡面であった。
 なお、以下、本実施例においては、前記ラッピング加工後の試料を用いて本発明を実施した具体例を示すが、本発明はこれに限定されるものではなく、本発明では、マルチワイヤーソーなどで切断加工した試料、表面を研削加工した試料、または、表面をポリッシング加工した試料のいずれを用いることもできる。ただし、研削加工、ラッピング加工、又はポリッシング加工によって、相間段差および相内の表面粗さが極端に大きくない程度に調整された凝固体を用いれば、第1工程及び第2工程の所要時間をより短くできるので、表面を、研削加工、ラッピング加工、又はポリッシング加工した凝固体を用いることが好ましい。
 ここで、本発明にて行なったAFM(原子間力顕微鏡)による相間段差の測定の方法について説明する。本実施例に係る凝固体のAl相とYAG:Ce相との相間段差の測定は、ラッピング加工後の前記円板状試料、ドライエッチング加工後の凝固体、およびCMP加工後の凝固体のいずれについても、AFM(原子間力顕微鏡)を用いて以下の方法により行った。
 前記凝固体の被加工面において、図2に示すように、Al相とYAG:Ce相との界面を少なくとも3カ所横切るように任意に直線を4本引いた(A-B、C-D、E-F、G-H)。次いで、それぞれの直線と前記界面との交点を挟んで前記直線上の前記界面近傍に位置するAl相の表面の点とYAG:Ce相の表面の点を、1つの直線に対しそれぞれ3組ずつ設定した。任意に設けられた被加工面と平行な基準面から、前記点までの高さの差(同一番号が記された2カ所の点の前記基準面からの高さの差)を、合計で12カ所について測定し、それらの測定値の平均値を相間段差とした。
 [実施例1]
 次に、本発明に係る光変換用セラミック複合体の実施例1について説明する。参考例により製造されたラッピング加工後の円板状試料について、ICP型ドライエッチング装置を用いてドライエッチング加工を行なった。エッチングガスには、BClとArの混合ガスを用いた。また、アンテナ電力:700W、バイアス電力:300Wの条件で1分間のドライエッチング加工を行った。ドライエッチング加工後の凝固体の表面形状を、AFM(原子間力顕微鏡)により測定したところ、YAG:Ce相がAl相に対して凸形状であり、その相間段差は0.100μm程度であった。ドライエッチング加工後の凝固体の加工された表面形状を図4に示す。次に、以下の方法にてCMP加工を行い、実施例1に係る光変換用セラミック複合体を得た。研磨液には、シリカ粒子の含有量が20質量%である扶桑化学工業(株)製コロイダルシリカ研磨スラリーの「クォートロン(登録商標)PL-2L」を、シリカ粒子の含有量が2質量%になるように純水で希釈して得られたスラリーを用いた。まず、前記ドライエッチング加工後の凝固体(円板状試料)をCMP装置の研磨ヘッドに取り付け、次いで、該研磨ヘッドを約50rpm(回転/分)で回転させながら、前記研磨液が供給される、約50rpm(回転/分)で回転する直径15インチの研磨パッドに押し当てることでCMP加工を行った。研磨パッドには、その表面に15mm間隔の格子状の溝が加工されたニッタ・ハース(株)製「IC1000(登録商標)研磨パッド」を用いた。また、前記ドライエッチング加工後の凝固体(円板状試料)に印加される単位荷重を33kPa、前記研磨液の供給量を10mL/分、加工時間を2分間とした。前記CMP加工後の実施例1に係る光変換用セラミック複合体の表面形状および相間段差測定を、AFM(原子間力顕微鏡)を用いて行ったところ、前記Al相と、前記YAG:Ce相との相間段差が0.003μmであることが確認できた。実施例1に係る光変換用セラミック複合体の表面の形状図を図5に示す。また、研磨条件と、得られた光変換用セラミック複合体の表面の相間段差の測定結果を表1に示す。
 [実施例2]
 次に、本発明に係る光変換用セラミック複合体の実施例2について説明する。参考例により製造されたラッピング加工後の円板状試料について、実施例1と同様の方法でドライエッチング加工を行った。ドライエッチング加工後の凝固体の表面形状を、AFM(原子間力顕微鏡)により測定したところ、YAG:Ce相がAl相に対して凸形状であり、その相間段差は0.100μm程度であった。得られた前記ドライエッチング加工後の凝固体(円板状試料)を、前記ドライエッチング加工後の凝固体に印加される単位荷重を13kPa、CMP加工の時間を5分間とした以外は実施例1と同様の方法でCMP加工して、実施例2に係る光変換用セラミック複合体を作製した。前記CMP加工後の実施例2に係る光変換用セラミック複合体の表面形状および相間段差測定を、AFM(原子間力顕微鏡)を用いて行ったところ、前記Al相と、前記YAG:Ce相との相間段差が0.002μmであることが確認できた。
 [実施例3]
 次に、本発明に係る光変換用セラミック複合体の実施例3について説明する。参考例により製造されたラッピング加工後の円板状試料について、実施例1と同様の方法でドライエッチング加工を行った。ドライエッチング加工後の凝固体の表面形状を、AFM(原子間力顕微鏡)により測定したところ、YAG:Ce相がAl相に対して凸形状であり、その相間段差は0.100μm程度であった。得られた前記ドライエッチング加工後の凝固体(円板状試料)を、前記ドライエッチング加工後の凝固体(円板状試料)に印加される単位荷重を46kPa、CMP加工の時間を1.5分間とした以外は実施例1と同様の方法でCMP加工して実施例3に係る光変換用セラミック複合体を作製した。前記CMP加工後の実施例3に係る光変換用セラミック複合体の表面形状および相間段差測定を、AFM(原子間力顕微鏡)を用いて行ったところ、前記Al相と、前記YAG:Ce相との相間段差が0.005μmであることが確認できた。
 [実施例4]
 次に、本発明に係る光変換用セラミック複合体の実施例4について説明する。参考例により製造されたラッピング加工後の円板状試料について、実施例1と同様の方法でドライエッチング加工を行った。ドライエッチング加工後の凝固体の表面形状を、AFM(原子間力顕微鏡)により測定したところ、YAG:Ce相がAl相に対して凸形状であり、その相間段差は0.100μm程度であった。得られた前記ドライエッチング加工後の凝固体(円板状試料)を以下の方法によりCMP加工した。研磨液に、シリカ粒子の含有量が20質量%である扶桑化学工業(株)製コロイダルシリカ研磨スラリーの「クォートロン(登録商標)PL-2L」を、シリカ粒子の含有量が0.2質量%になるように純水で希釈して得られたスラリーを用い、CMP加工の時間を12分間とした以外は実施例1と同様の方法でCMP加工して実施例4に係る光変換用セラミック複合体を作製した。前記CMP加工後の実施例4に係る光変換用セラミック複合体の表面形状および相間段差測定を、AFM(原子間力顕微鏡)を用いて行ったところ、前記Al相と、前記YAG:Ce相との相間段差が0.003μmであることが確認できた。
 [実施例5]
 次に、本発明に係る光変換用セラミック複合体の実施例5について説明する。参考例により製造されたラッピング加工後の円板状試料について、実施例1と同様の方法でドライエッチング加工を行った。ドライエッチング加工後の凝固体の表面形状を、AFM(原子間力顕微鏡)により測定したところ、YAG:Ce相がAl相に対して凸形状であり、その相間段差は0.100μm程度であった。得られた前記ドライエッチング加工後の凝固体(円板状試料)を以下の方法によりCMP加工した。研磨液に、シリカ粒子の含有量が20質量%である扶桑化学工業(株)製コロイダルシリカ研磨スラリーの「クォートロン(登録商標)PL-2L」を、シリカ粒子の含有量が4質量%になるように純水で希釈して得られたスラリーを用い、CMP加工の時間を1分間とした以外は実施例1と同様の方法でCMP加工して実施例5に係る光変換用セラミック複合体を作製した。前記CMP加工後の実施例5に係る光変換用セラミック複合体の表面形状および相間段差測定を、AFM(原子間力顕微鏡)を用いて行ったところ、前記Al相と、前記YAG:Ce相との相間段差が0.004μmであることが確認できた。
 [実施例6]
 次に、本発明に係る光変換用セラミック複合体の実施例6について説明する。参考例により製造されたラッピング加工後の円板状試料について、実施例1と同様の方法でドライエッチング加工を行った。ドライエッチング加工後の凝固体の表面形状を、AFM(原子間力顕微鏡)により測定したところ、YAG:Ce相がAl相に対して凸形状であり、その相間段差は0.100μm程度であった。得られた前記ドライエッチング加工後の凝固体(円板状試料)を、以下の方法によりCMP加工した。研磨液に、シリカ粒子の含有量が40質量%である(株)フジミインコーポレーテッド製コロイダルシリカ研磨スラリー「COMPOL(登録商標)Type20」を、シリカ粒子の含有量が2質量%になるように純水で希釈して得られた、pHが約9のスラリーを用い、CMP加工の時間を2分間とした以外は実施例1と同様の方法でCMP加工して実施例6に係る光変換用セラミック複合体を作製した。前記CMP加工後の実施例6に係る光変換用セラミック複合体の表面形状および相間段差測定を、AFM(原子間力顕微鏡)を用いて行ったところ、前記Al相と、前記YAG:Ce相との相間段差が0.004μmであることが確認できた。
 [実施例7]
 次に、本発明に係る光変換用セラミック複合体の実施例7について説明する。参考例により製造されたラッピング加工後の円板状試料について、実施例1と同様の方法でドライエッチング加工を行った。ドライエッチング加工後の凝固体の表面形状を、AFM(原子間力顕微鏡)により測定したところ、YAG:Ce相がAl相に対して凸形状であり、その相間段差は0.100μm程度であった。得られた前記ドライエッチング加工後の凝固体(円板状試料)を、以下の方法によりCMP加工した。研磨液に、シリカ粒子の含有量が40質量%であり、それ以外にピペラジンおよび水酸化テトラメチルアンモニウムを含有する、ニッタ・ハース(株)製研磨スラリー「Nanopure(登録商標)NP6502」を、シリカ粒子の含有量が0.1質量%になるように純水で希釈して得られた、pHが約11のスラリーを用い、CMP加工の時間を1分間とした以外は実施例1と同様の方法でCMP加工して実施例7に係る光変換用セラミック複合体を作製した。前記CMP加工後の実施例7に係る光変換用セラミック複合体の表面形状および相間段差測定を、AFM(原子間力顕微鏡)を用いて行ったところ、前記Al相と、前記YAG:Ce相との相間段差が0.005μmであることが確認できた。
 [実施例8]
 次に、本発明に係る光変換用セラミック複合体の実施例8について説明する。参考例により製造されたラッピング加工後の円板状試料について、実施例1と同様の方法でドライエッチング加工を行った。ドライエッチング加工後の凝固体の表面形状を、AFM(原子間力顕微鏡)により測定したところ、YAG:Ce相がAl相に対して凸形状であり、その相間段差は0.100μm程度であった。得られた前記ドライエッチング加工後の凝固体(円板状試料)を、以下の方法によりCMP加工した。研磨液に、シリカ粒子の含有量が40質量%であり、それ以外にピペラジンおよび水酸化テトラメチルアンモニウムを含有する、ニッタ・ハース(株)製研磨スラリー「Nanopure(登録商標)NP6504」を、シリカ粒子の含有量が0.1質量%になるように純水で希釈して得られた、pHが約12のスラリーを用い、CMP加工の時間を1分間とした以外は実施例1と同様にして実施例8に係る光変換用セラミック複合体を作製した。前記CMP加工後の実施例8に係る光変換用セラミック複合体の表面形状および相間段差測定を、AFM(原子間力顕微鏡)を用いて行ったところ、前記Al相と、前記YAG:Ce相との相間段差が0.005μmであることが確認できた。
 [実施例9]
 次に、本発明に係る光変換用セラミック複合体の実施例9について説明する。参考例により製造されたラッピング加工後の円板状試料について、実施例1と同様の方法でドライエッチング加工を行った。ドライエッチング加工後の凝固体の表面形状を、AFM(原子間力顕微鏡)により測定したところ、YAG:Ce相がAl相に対して凸形状であり、その相間段差は0.100μm程度であった。得られた前記ドライエッチング加工後の凝固体(円板状試料)を、以下の方法によりCMP加工した。前記ドライエッチング加工後の凝固体に印加される単位荷重を8kPa、CMP加工の時間を30分間とした以外は実施例1と同様の方法でCMP加工して実施例9に係る光変換用セラミック複合体を作製した。前記CMP加工後の実施例9に係る光変換用セラミック複合体の表面形状および相間段差測定を、AFM(原子間力顕微鏡)を用いて行ったところ、前記Al相と、前記YAG:Ce相との相間段差が0.003μmであることが確認できた。
 [実施例10]
 次に、本発明に係る光変換用セラミック複合体の実施例10について説明する。参考例により製造されたラッピング加工後の円板状試料について、実施例1と同様の方法でドライエッチング加工を行った。ドライエッチング加工後の凝固体の表面形状を、AFM(原子間力顕微鏡)により測定したところ、YAG:Ce相がAl相に対して凸形状であり、その相間段差は0.100μm程度であった。得られた前記ドライエッチング加工後の凝固体(円板状試料)を以下の方法によりCMP加工した。研磨液に、シリカ粒子の含有量が20質量%である扶桑化学工業(株)製コロイダルシリカ研磨スラリーの「クォートロン(登録商標)PL-2L」を、シリカ粒子の含有量が0.05質量%になるように純水で希釈して得られたスラリーを研磨液として用い、CMP加工の時間を50分間とした以外は実施例1と同様の方法でCMP加工して実施例10に係る光変換用セラミック複合体を作製した。前記CMP加工後の実施例10に係る光変換用セラミック複合体の表面形状および相間段差測定を、AFM(原子間力顕微鏡)を用いて行ったところ、前記Al相と、前記YAG:Ce相との相間段差が0.004μmであることが確認できた。
 [実施例11]
 次に、本発明に係る光変換用セラミック複合体の実施例11について説明する。参考例により製造されたラッピング加工後の円板状試料について、実施例1と同様の方法でドライエッチング加工を行った。ドライエッチング加工後の凝固体の表面形状を、AFM(原子間力顕微鏡)により測定したところ、YAG:Ce相がAl相に対して凸形状であり、その相間段差は0.100μm程度であった。得られた前記ドライエッチング加工後の凝固体(円板状試料)を以下の方法によりMP加工した。研磨液には、平均粒子径が約20nmのダイヤモンド粒子の含有量が0.1質量%であり、それ以外に非イオン界面活性剤を含有する、油性分散媒の研磨スラリーを用いた。まず、前記ドライエッチング加工後の凝固体(円板状試料)をMP装置のワークホルダーに取り付け、次いで、前記凝固体の表面を定盤の表面に押し付け、該ワークホルダーを約30rpm(回転/分)で回転させながら、前記研磨液が供給される、約30rpm(回転/分)で回転する直径15インチの錫定盤に押し当てることでMP加工を行った。前記ドライエッチング加工後の凝固体(円板状試料)に印加される単位荷重を10kPa、前記研磨液の供給量を2mL/分、加工時間を1分間とした。MP加工後の前記実施例11に係る光変換用セラミック複合体の表面形状および相間段差測定を、AFM(原子間力顕微鏡)を用いて行ったところ、前記Al相と、前記YAG:Ce相との相間段差が0.004μmであることが確認できた。
 [実施例12]
 次に、本発明に係る光変換用セラミック複合体の実施例12について説明する。参考例により製造されたラッピング加工後の円板状試料について、エッチング時間を6分間とした以外は、実施例1と同様の方法でドライエッチング加工を行った。ドライエッチング加工後の凝固体の表面形状を、AFM(原子間力顕微鏡)により測定したところ、YAG:Ce相がAl相に対して凸形状であり、その相間段差は0.400μm程度であった。次に、CMP加工の時間を10分間とした以外は、実施例1と同様にしてCMP加工を行い、実施例12に係る光変換用セラミック複合体を得た。前記CMP加工後の実施例12に係る光変換用セラミック複合体の表面形状および相間段差測定を、AFM(原子間力顕微鏡)を用いて行ったところ、前記Al相と、前記YAG:Ce相との相間段差が0.003μmであることが確認できた。
 [実施例13]
 次に、本発明に係る光変換用セラミック複合体の実施例13について説明する。参考例により製造されたラッピング加工後の円板状試料について、RIE型ドライエッチング装置を用いてドライエッチング加工を行なった。エッチングガスには、CFガスを用いた。また、RF電力:200W、ガス流量:20sccm、ガス圧力:2.0Paの条件で30分間のドライエッチング加工を行った。ドライエッチング加工後の凝固体の表面形状を、AFM(原子間力顕微鏡)により測定したところ、YAG:Ce相がAl相に対して凸形状であり、その相間段差は0.100μm程度であった。次に、実施例1と同様にしてCMP加工を行い、実施例13に係る光変換用セラミック複合体を得た。前記CMP加工後の実施例13に係る光変換用セラミック複合体の表面形状および相間段差測定を、AFM(原子間力顕微鏡)を用いて行ったところ、前記Al相と、前記YAG:Ce相との相間段差が0.003μmであることが確認できた。
Figure JPOXMLDOC01-appb-T000001
 [比較例1]
 本発明に係る光変換用セラミック複合体の比較例1について説明する。参考例により製造されたラッピング加工後の円板状試料について、ドライエッチング加工を行わないこと以外は実施例1と同様の方法でCMP加工して、比較例1に係る光変換用セラミック複合体を得た。また、この後、加工時間をさらに追加しても前記Al相と、YAG:Ce相との相間段差が小さくなることはなかった。前記CMP加工後の比較例1に係る光変換用セラミック複合体の表面形状および相間段差測定を、AFM(原子間力顕微鏡)を用いて行ったところ、Al相と、YAG:Ce相との相間段差が0.092μmであり、比較例1に係る光変換用セラミック複合体の表面は前記Al相が前記YAG:Ce相に対して凸形状であることが確認できた。比較例1に係る光変換用セラミック複合体の表面の形状図を図6に示す。
 [比較例2]
 次に、本発明に係る光変換用セラミック複合体の比較例2について説明する。参考例により製造されたラッピング加工後の円板状試料について、ドライエッチング加工を行わず、単位荷重を50kPa、研磨液のダイヤモンド粒子の含有量を1質量%、加工時間を360分間とした以外は、実施例11と同様の方法でMP加工して、比較例2に係る光変換用セラミック複合体を作製した。MP加工後の比較例2に係る光変換用セラミック複合体の表面形状および相間段差測定を、AFM(原子間力顕微鏡)を用いて行ったところ、Al相がYAG:Ce相に対して凸形状であり、前記Al相と、前記YAG:Ce相との相間段差は0.011μmであることが確認できた。
 1 光変換用セラミック複合体
 2 発光素子(発光ダイオード素子)
 3 フリップチップ電極端子
 4 アノード電極
 5 カソード電極

Claims (6)

  1.  Al相とAl以外の酸化物結晶相とが連続的にかつ三次元的に相互に絡み合った組織を有する凝固体をドライエッチング加工することにより、前記凝固体の表面の前記Al以外の酸化物結晶相が前記Al相に対して凸形状となるように相間段差を形成する第1工程と、
     前記ドライエッチング加工後の凝固体をCMP加工またはMP加工することにより、前記相間段差を小さくする第2工程と、
    を備えることを特徴とする光変換用セラミック複合体の製造方法。
  2.  前記Al以外の酸化物結晶相が、蛍光を発する蛍光体であり、Ceを含有するYAG(YAl12)相、または、CeおよびGdを含有するYAG(YAl12)相であることを特徴とする請求項1記載の光変換用セラミック複合体の製造方法。
  3.  前記第2工程における加工後の前記相間段差が、0.005μm以下であることを特徴とする請求項1又は2記載の光変換用セラミック複合体の製造方法。
  4.  前記第2工程における前記相間段差を小さくする加工が、CMP加工であることを特徴とする請求項1乃至3いずれか記載の光変換用セラミック複合体の製造方法。
  5.  前記CMP加工を行なう際に、シリカ粒子を0.1質量%以上5質量%未満含有するスラリーを研磨液として使用することを特徴とする請求項4記載の光変換用セラミック複合体の製造方法。
  6.  前記CMP加工を行なう際に、10~50kPaの単位荷重を印加することを特徴とする請求項4又は5記載の光変換用セラミック複合体の製造方法。
     
PCT/JP2012/067342 2011-07-08 2012-07-06 光変換用セラミック複合体の製造方法 WO2013008751A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280033953.7A CN103732354B (zh) 2011-07-08 2012-07-06 光转换用陶瓷复合体的制造方法
JP2013523932A JP5510614B2 (ja) 2011-07-08 2012-07-06 光変換用セラミック複合体の製造方法
EP12810625.9A EP2730369A4 (en) 2011-07-08 2012-07-06 PROCESS FOR PRODUCING CERAMIC COMPOSITE FOR PHOTOCONVERSION
US14/131,057 US9334197B2 (en) 2011-07-08 2012-07-06 Method for producing ceramic composite for light conversion
KR1020147000337A KR20140051209A (ko) 2011-07-08 2012-07-06 광변환용 세라믹 복합체의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011152257 2011-07-08
JP2011-152257 2011-07-08

Publications (1)

Publication Number Publication Date
WO2013008751A1 true WO2013008751A1 (ja) 2013-01-17

Family

ID=47506041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067342 WO2013008751A1 (ja) 2011-07-08 2012-07-06 光変換用セラミック複合体の製造方法

Country Status (8)

Country Link
US (1) US9334197B2 (ja)
EP (1) EP2730369A4 (ja)
JP (1) JP5510614B2 (ja)
KR (1) KR20140051209A (ja)
CN (1) CN103732354B (ja)
MY (1) MY163271A (ja)
TW (1) TWI540764B (ja)
WO (1) WO2013008751A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015023291A (ja) * 2013-07-22 2015-02-02 中国科学院福建物質構造研究所Fujian Institute Of Research On The Structure Of Matter, Chinese Academyof Sciences GaN系LEDエピタキシャル構造およびその製造方法
JP2020029472A (ja) * 2018-08-20 2020-02-27 株式会社ダイセル 多結晶yag研磨用スラリー組成物
JP2021084849A (ja) * 2019-11-29 2021-06-03 日亜化学工業株式会社 セラミックス複合体の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130103784A (ko) * 2010-12-10 2013-09-24 우베 고산 가부시키가이샤 광변환용 세라믹 복합체 및 그 제조방법
JP2017107071A (ja) * 2015-12-10 2017-06-15 日本電気硝子株式会社 波長変換部材及び波長変換素子、並びにそれらを用いた発光装置
CN108610023B (zh) * 2016-12-09 2021-07-23 深圳光峰科技股份有限公司 陶瓷复合材料的制备方法、陶瓷复合材料及波长转换器
CN110611021A (zh) 2018-06-14 2019-12-24 日亚化学工业株式会社 发光装置及其制造方法
CN108838745B (zh) * 2018-06-27 2019-08-13 大连理工大学 一种钇铝石榴石晶体的高效化学机械抛光方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07149597A (ja) 1993-10-08 1995-06-13 Ube Ind Ltd セラミックス複合材料
JPH07187893A (ja) 1993-11-12 1995-07-25 Ube Ind Ltd セラミックス複合材料
US5484752A (en) 1993-11-12 1996-01-16 Ube Industries, Ltd. Ceramic composite material
JPH0881257A (ja) 1993-11-12 1996-03-26 Ube Ind Ltd セラミックス複合材料
JPH08253390A (ja) 1995-01-19 1996-10-01 Ube Ind Ltd セラミックス複合材料
JPH08253389A (ja) 1995-01-19 1996-10-01 Ube Ind Ltd セラミックス複合材料
JPH0967194A (ja) 1995-01-19 1997-03-11 Ube Ind Ltd セラミックス複合材料
US5902963A (en) 1996-09-18 1999-05-11 Schneider Electric High voltage insulator
WO2004065324A1 (ja) 2003-01-20 2004-08-05 Ube Industries, Ltd. 光変換用セラミックス複合材料およびその用途
JP2004335722A (ja) * 2003-05-07 2004-11-25 Rodel Nitta Co 半導体ウェハ研磨用組成物
JP2006173433A (ja) 2004-12-17 2006-06-29 Ube Ind Ltd 光変換用セラミック複合体およびそれを用いた発光装置
WO2007018222A1 (ja) 2005-08-10 2007-02-15 Ube Industries, Ltd. 発光ダイオード用基板及び発光ダイオード
WO2007148829A1 (ja) * 2006-06-22 2007-12-27 Ube Industries, Ltd. 光変換用複合体、それを用いた発光装置および色調制御方法
WO2008041566A1 (en) 2006-09-25 2008-04-10 Ube Industries, Ltd. Ceramic composite for phototransformation and light emitting device using the same
JP2009297818A (ja) 2008-06-11 2009-12-24 Yamaguchi Seiken Kogyo Kk サファイア基板用研磨液組成物、及びサファイア基板の研磨方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1246408C (zh) 2003-11-26 2006-03-22 中国科学院金属研究所 一种化学机械抛光液
US7320897B2 (en) * 2005-03-23 2008-01-22 Sharp Laboratories Of Amrica, Inc. Electroluminescence device with nanotip diodes
JP4957557B2 (ja) * 2006-01-19 2012-06-20 宇部興産株式会社 セラミックス複合体光変換部材およびそれを用いた発光装置
DE102006027306B4 (de) * 2006-06-06 2013-10-17 Schott Ag Verfahren zur Herstellung einer Glaskeramik mit einer Granatphase und Verwendung der danach hergestellten Glaskeramik
DE102006054330A1 (de) * 2006-11-17 2008-05-21 Merck Patent Gmbh Leuchtstoffplättchen für LEDs aus strukturierten Folien
CN101716745B (zh) * 2009-11-09 2011-06-29 清华大学 一种超声辅助化学机械抛光蓝宝石衬底材料的装置及方法
KR20130103784A (ko) 2010-12-10 2013-09-24 우베 고산 가부시키가이샤 광변환용 세라믹 복합체 및 그 제조방법

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07149597A (ja) 1993-10-08 1995-06-13 Ube Ind Ltd セラミックス複合材料
US5569547A (en) 1993-10-08 1996-10-29 Ube Industries, Ltd. Ceramic composite material
JPH07187893A (ja) 1993-11-12 1995-07-25 Ube Ind Ltd セラミックス複合材料
US5484752A (en) 1993-11-12 1996-01-16 Ube Industries, Ltd. Ceramic composite material
JPH0881257A (ja) 1993-11-12 1996-03-26 Ube Ind Ltd セラミックス複合材料
JPH08253390A (ja) 1995-01-19 1996-10-01 Ube Ind Ltd セラミックス複合材料
JPH08253389A (ja) 1995-01-19 1996-10-01 Ube Ind Ltd セラミックス複合材料
JPH0967194A (ja) 1995-01-19 1997-03-11 Ube Ind Ltd セラミックス複合材料
US5902963A (en) 1996-09-18 1999-05-11 Schneider Electric High voltage insulator
WO2004065324A1 (ja) 2003-01-20 2004-08-05 Ube Industries, Ltd. 光変換用セラミックス複合材料およびその用途
JP2004335722A (ja) * 2003-05-07 2004-11-25 Rodel Nitta Co 半導体ウェハ研磨用組成物
JP2006173433A (ja) 2004-12-17 2006-06-29 Ube Ind Ltd 光変換用セラミック複合体およびそれを用いた発光装置
WO2007018222A1 (ja) 2005-08-10 2007-02-15 Ube Industries, Ltd. 発光ダイオード用基板及び発光ダイオード
WO2007148829A1 (ja) * 2006-06-22 2007-12-27 Ube Industries, Ltd. 光変換用複合体、それを用いた発光装置および色調制御方法
WO2008041566A1 (en) 2006-09-25 2008-04-10 Ube Industries, Ltd. Ceramic composite for phototransformation and light emitting device using the same
JP2009297818A (ja) 2008-06-11 2009-12-24 Yamaguchi Seiken Kogyo Kk サファイア基板用研磨液組成物、及びサファイア基板の研磨方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2730369A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015023291A (ja) * 2013-07-22 2015-02-02 中国科学院福建物質構造研究所Fujian Institute Of Research On The Structure Of Matter, Chinese Academyof Sciences GaN系LEDエピタキシャル構造およびその製造方法
JP2020029472A (ja) * 2018-08-20 2020-02-27 株式会社ダイセル 多結晶yag研磨用スラリー組成物
JP2021084849A (ja) * 2019-11-29 2021-06-03 日亜化学工業株式会社 セラミックス複合体の製造方法
US11498883B2 (en) 2019-11-29 2022-11-15 Nichia Corporation Method for producing ceramic composite
JP7335506B2 (ja) 2019-11-29 2023-08-30 日亜化学工業株式会社 セラミックス複合体の製造方法

Also Published As

Publication number Publication date
US20140138348A1 (en) 2014-05-22
CN103732354B (zh) 2016-05-25
JPWO2013008751A1 (ja) 2015-02-23
KR20140051209A (ko) 2014-04-30
TWI540764B (zh) 2016-07-01
TW201308695A (zh) 2013-02-16
EP2730369A1 (en) 2014-05-14
CN103732354A (zh) 2014-04-16
JP5510614B2 (ja) 2014-06-04
EP2730369A4 (en) 2014-05-14
MY163271A (en) 2017-08-30
US9334197B2 (en) 2016-05-10

Similar Documents

Publication Publication Date Title
JP5510614B2 (ja) 光変換用セラミック複合体の製造方法
US7678700B2 (en) Silicon carbide polishing method utilizing water-soluble oxidizers
KR101281879B1 (ko) 수용성 산화제를 이용한 탄화규소 연마 방법
EP2406341B1 (en) Chemical mechanical planarization using nanodiamond
EP2478064B1 (en) Composition for polishing bulk silicon
IL226558A (en) Composition and method for polysilicon polishing
KR102350734B1 (ko) 사파이어 표면 연마용 화학적 기계적 연마 조성물 및 그의 사용방법
US20130130595A1 (en) Polishing agent and polishing method
US9616542B2 (en) Manufacture of synthetic quartz glass substrate
JP2009538236A (ja) 酸化アルミニウムおよび酸窒化アルミニウム基材を研磨するための組成物、方法およびシステム
CN105817976A (zh) 一种纳米深度损伤层高效超精密磨削方法
KR101357328B1 (ko) Cmp 연마액, 및 이것을 이용한 연마 방법 및 반도체 기판의 제조 방법
JP2012248594A (ja) 研磨剤
TW201504412A (zh) 化學機械拋光(cmp)組成物
JP5370595B2 (ja) 光変換用セラミック複合体及びその製造方法
JP2013077661A (ja) 化合物半導体基板の表面研磨方法
JP2008098199A (ja) Iii−v族窒化物半導体基板の研磨方法及びそれにより得られたiii−v族窒化物半導体基板
CN108007982A (zh) 一种延长a-面蓝宝石窗口抛光液使用寿命的方法
JP2003117806A (ja) 多結晶セラミックスの鏡面研磨方法
JP2005136227A (ja) 工作物表面加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12810625

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013523932

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147000337

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012810625

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012810625

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14131057

Country of ref document: US