WO2013008581A1 - 二次電池用活物質 - Google Patents

二次電池用活物質 Download PDF

Info

Publication number
WO2013008581A1
WO2013008581A1 PCT/JP2012/065309 JP2012065309W WO2013008581A1 WO 2013008581 A1 WO2013008581 A1 WO 2013008581A1 JP 2012065309 W JP2012065309 W JP 2012065309W WO 2013008581 A1 WO2013008581 A1 WO 2013008581A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
secondary battery
formula
group
battery according
Prior art date
Application number
PCT/JP2012/065309
Other languages
English (en)
French (fr)
Inventor
野口 健宏
佐々木 英明
牧子 上原
加藤 有光
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/130,056 priority Critical patent/US9356284B2/en
Priority to JP2013523869A priority patent/JP5999090B2/ja
Priority to CN201280034706.9A priority patent/CN103703593B/zh
Publication of WO2013008581A1 publication Critical patent/WO2013008581A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This embodiment relates to an active material for a secondary battery.
  • Lithium secondary batteries and lithium ion secondary batteries have a small size and a large capacity, and are widely used as power sources for mobile phones, notebook computers and the like.
  • LiCoO 2 lithium cobaltate
  • LiCoO 2 is not always sufficiently safe in the charged state, and the cost of the Co raw material is high, and a search for a new active material for a secondary battery that replaces this is vigorously advanced.
  • a 5V-class operating potential can be realized by using, as an active material, a compound having a spinel structure (spinel compound) in which Mn of lithium manganate is substituted with Ni or the like.
  • a potential plateau is exhibited in a region of 4.5 V or more by using a spinel compound such as LiNi 0.5 Mn 1.5 O 4 (Patent Document 1).
  • Mn exists in a tetravalent state, and the operating potential is defined by oxidation / reduction of Ni 2+ ⁇ ⁇ Ni 4+ instead of oxidation / reduction of Mn 3+ ⁇ ⁇ Mn 4+ .
  • Li [CoMn] O 4 , Li [Fe 0.5 Mn 1.5 ] O 4 , Li [CrMn] O 4 , Li [Cu x Mn 2 ⁇ x ] O 4, and the like are also used for Li metal. It is known to charge and discharge at a potential of 4.5 V or higher. Li [Ni 0.5 Mn 1.5 ] O 4 has a capacity of 130 mAh / g or more and an average operating voltage of 4.6 V or more with respect to Li metal. When Li [Ni 0.5 Mn 1.5 ] O 4 is used, the energy density that can be stored in the positive electrode is higher than that of LiCoO 2 .
  • spinel compounds such as Li [Ni 0.5 Mn 1.5 ] O 4 can obtain an energy density of 90% or more even at a low temperature such as ⁇ 20 ° C. Since spinel compounds have high ionic conductivity, they can be used in a wide range of temperatures and charge / discharge rates.
  • a composite oxide having a layered structure mainly composed of Ni such as LiNiO 2 and Li [Ni 0.8 Co 0.2 ] O 2 can be given.
  • These materials have a feature that the discharge capacity is as high as about 200 mAh / g, but the crystal stability during charging is low, and the reliability of the battery in the charged state is a problem.
  • the charge / discharge range is about 3V to 4.3V, and the region of 3.8V or less is particularly large, the charge / discharge range is lower than that of a secondary battery using LiCoO 2 .
  • Non-patent Document 1 Non-patent Document 2
  • These materials are shown in the form of LiMO 2 and have a layered structure of Li layer, M layer, and O layer. These materials have a feature that the end-of-charge voltage is about 4.8 V and the end-of-charge voltage is higher than that of other active materials having a layered structure, so that the energy density is high.
  • these materials can obtain a high capacity of 200 mAh / g or higher at a high temperature such as 45 ° C. and a low charge / discharge rate such as 0.025 C, but a low temperature such as 20 ° C. and 0.5 C or higher. At such a high charge / discharge rate, the capacity decreases by about 10 to 30%. This is presumed to be due to the low ionic conductivity and electronic conductivity of the layered structure containing Mn.
  • Patent Document 2 discloses a mixture of LiMn 2 O 4 and Li (Ni x Co 1-x ) O 2 (0 ⁇ x ⁇ 1).
  • Patent Document 3 discloses a mixture of a spinel material such as LiNi 0.5 Mn 1.5 O 4 and a material such as Li [Ni 0.33 Li 0.1 Mn 0.57 ] O 2. ing.
  • An object of the present embodiment is to provide an active material for a secondary battery with improved life characteristics.
  • the active material for a secondary battery according to the present embodiment has the following formula (I) Li p [M1 m M2 2-mn M3 n ] O 4 (I) (In formula (I), M1 is at least one selected from the group consisting of Ni, Cr, Fe, Co and Cu. M2 is at least one selected from the group consisting of Mn, Ti and Si, and (At least Mn is included. M3 is at least one selected from the group consisting of Li, B, Mg, Al, Na, and Ca.
  • the method for producing an active material for a secondary battery according to the present embodiment has the following formula (I): Li p [M1 m M2 2-mn M3 n ] O 4 (I) (In formula (I), M1 is at least one selected from the group consisting of Ni, Cr, Fe, Co and Cu. M2 is at least one selected from the group consisting of Mn, Ti and Si, and (At least Mn is included. M3 is at least one selected from the group consisting of Li, B, Mg, Al, Na, and Ca.
  • an active material for a secondary battery with improved life characteristics can be provided.
  • the active material for a secondary battery according to the present embodiment has the following formula (I) Li p [M1 m M2 2-mn M3 n ] O 4 (I) (In formula (I), M1 is at least one selected from the group consisting of Ni, Cr, Fe, Co and Cu. M2 is at least one selected from the group consisting of Mn, Ti and Si, and (At least Mn is included. M3 is at least one selected from the group consisting of Li, B, Mg, Al, Na, and Ca.
  • the capacity of the second active material is larger than that of the first active material. Therefore, increasing the capacity per mass of the active material is one purpose of mixing the second active material.
  • the second active material since the second active material has low ionic conductivity and low rate characteristics, a high charge / discharge rate places a load on the electrolyte and the like, and sufficient life characteristics cannot be obtained. Then, the problem of the 2nd active material with low ion conductivity can be supplemented by mixing the 1st active material which can be used in a high charging / discharging rate and a wide temperature range.
  • the life of the secondary battery can be extended at a wide range of charge / discharge rates and a wide range of temperatures.
  • the first active material represented by the formula (I) is an active material called 5V class spinel, and Li, B, Mg, At least one selected from the group consisting of Al, Na and Ca is doped.
  • the second active material represented by the formula (II) is an active material having a layered structure containing Mn.
  • the feature of 5V class spinel is that Li is occluded and occluded in the voltage range of 4.5V to 5.2V with respect to Li.
  • it since it is mainly composed of Mn, it is inexpensive and has high crystal stability when Li is released during charging, so that it is highly safe as a secondary battery.
  • lithium ion conductivity is high due to the spinel structure, it can be used at a high charge / discharge rate.
  • the active material having a layered structure containing Mn has a discharge capacity of 200 mAh / g or more and a charge end voltage of about 4.8V.
  • ion conductivity is low, there is a problem in use at a high charge / discharge rate.
  • the structural stability of the crystal during overcharge is low.
  • the low ion conductivity can be compensated for by mixing 5 V class spinel into the active material having a layered structure containing Mn.
  • the 5V class spinel has a charge end voltage of about 4.8V to 5.2V, but this voltage is very close to the charge end voltage of the active material having a layered structure containing Mn.
  • the capacity decrease due to the instability of the crystal structure is less likely to occur.
  • the electrical contact between the active materials decreases due to deterioration of the active material interface, and the resistance in the electrode tends to increase.
  • lifetime characteristics are improved by substituting a part of Mn of the first active material and doping with at least one selected from the group consisting of Li, B, Mg, Al, Na and Ca. .
  • the deterioration of the interface of the first active material is suppressed, the increase in contact resistance between the first active material and the second active material is suppressed, and good life characteristics are obtained. .
  • the active material for a secondary battery when used for a secondary battery, it operates at a high capacity, a high voltage, and has improved life characteristics.
  • a secondary battery can be provided.
  • M1 is at least one selected from the group consisting of Ni, Cr, Fe, Co, and Cu.
  • M1 a secondary battery having a high capacity can be obtained. From the viewpoint of obtaining a secondary battery exhibiting high energy density, high electromotive force and high capacity, and from the viewpoint of improving the capacity retention rate, M1 preferably contains at least Ni.
  • M2 is at least one selected from the group consisting of Mn, Ti and Si, and contains at least Mn. By including M2, a high-capacity secondary battery can be obtained. M2 preferably contains Ti in addition to Mn.
  • M3 is at least one selected from the group consisting of Li, B, Mg, Al, Na, and Ca. By including M3, deterioration of the first active material interface is suppressed, and the life characteristics are improved. M3 is preferably at least one selected from the group consisting of Na, Al and Mg.
  • m is 0 ⁇ m. 0.4 ⁇ m ⁇ 1.1 is preferable, 0.4 ⁇ m ⁇ 0.9 is more preferable, and 0.4 ⁇ m ⁇ 0.6 is even more preferable.
  • insertion / extraction of Li is performed at a potential of 4.5 V or more with respect to Li.
  • n is 0 ⁇ n. 0 ⁇ n ⁇ 0.1 is preferable, 0 ⁇ n ⁇ 0.05 is more preferable, and 0 ⁇ n ⁇ 0.02 is further more preferable. When n is within the above range, the life characteristics are improved.
  • m + n In the formula (I), m + n ⁇ 2. It is preferable that 0.4 ⁇ m + n ⁇ 1.2, more preferably 0.4 ⁇ m + n ⁇ 0.9, and still more preferably 0.5 ⁇ m + n ⁇ 0.7. When m + n is within the above range, the life characteristics are improved.
  • p is 0 ⁇ p.
  • p changes due to insertion / extraction of Li by charging / discharging can be changed in the range of 0 ⁇ p ⁇ 2, can also be changed in the range of 0 ⁇ p ⁇ 1.2, and usually 0 ⁇ p ⁇ 1. It varies in the range.
  • X is at least one selected from the group consisting of Ni, Cr, Fe, Co and Cu.
  • X preferably contains at least Ni.
  • Z is at least one selected from the group consisting of Al, Mg, B, Si, Na, Ca and Ti.
  • Z is an optional component, but inclusion of Z is preferable because the life characteristics are further improved.
  • Z is preferably at least one selected from the group consisting of Al, Mg and B.
  • a is 0 ⁇ a. It is preferable that 0.1 ⁇ a ⁇ 0.3, more preferably 0.12 ⁇ a ⁇ 0.27, and further preferably 0.15 ⁇ a ⁇ 0.25. When a is within the above range, a high-capacity secondary battery can be obtained and the life characteristics can be improved.
  • x is 0 ⁇ x. 0.1 ⁇ x ⁇ 0.4 is preferable, 0.15 ⁇ x ⁇ 0.35 is more preferable, and 0.2 ⁇ x ⁇ 0.3 is further more preferable.
  • x is in the above range, a high-capacity secondary battery is obtained and the life characteristics are improved.
  • z is 0 ⁇ z. 0 ⁇ z ⁇ 0.3 is preferable, 0 ⁇ z ⁇ 0.2 is more preferable, and 0 ⁇ z ⁇ 0.1 is more preferable.
  • x is in the above range, the life characteristics are improved.
  • a + x + z is within the above range, a high-capacity secondary battery is obtained, and the life characteristics are improved.
  • q is 0 ⁇ q. q changes due to insertion / extraction of Li by charging / discharging, and can be changed in a range of 0 ⁇ q ⁇ 1.
  • the ratio of the mass of the second active material to the total of the mass of the first active material and the mass of the second active material contained in the active material for a secondary battery according to this embodiment is 3 masses. % Or more and 90% by mass or less is preferable. By setting it as such a mixing ratio, a lifetime characteristic improves and it can ensure a high energy density even after repeating charging / discharging.
  • the ratio is more preferably 3% by mass or more and 60% by mass or less, further preferably 4% by mass or more and 30% by mass or less, and particularly preferably 5% by mass or more and 18% by mass or less. .
  • the preparation method of the active material for secondary batteries which concerns on this embodiment is demonstrated. It does not specifically limit as a raw material of a 1st active material and a 2nd active material.
  • the Li raw material for example, Li 2 CO 3 , LiOH, Li 2 O, Li 2 SO 4 and the like can be used, but lithium salts such as Li 2 CO 3 and LiOH are preferable.
  • the Mn raw material various manganese oxides such as electrolytic manganese dioxide (EMD) ⁇ Mn 2 O 3 , Mn 3 O 4 , and CMD (chemical manganese dioxide), MnCO 3 , MnSO 4, and the like can be used.
  • Ni raw material it can be used NiO, Ni (OH) 2, NiSO 4, Ni (NO 3) 2 and the like.
  • Ti raw material Ti oxides such as Ti 2 O 3 and TiO 2 , Ti carbonate, Ti hydroxide, Ti sulfate, Ti nitrate and the like can be used.
  • Cr raw material Cr oxide such as Cr 2 O 3 , Cr carbonate, Cr hydroxide, Cr sulfate, Cr nitrate and the like can be used.
  • Fe raw material Fe oxide such as Fe 2 O 3 and Fe 3 O 4 , Fe (OH) 2 , FeCO 3 , Fe (NO 3 ) 2 and the like can be used.
  • CoO, Co (OH) 2 , CoCO 3 or the like can be used as the Co raw material.
  • Cu raw material CuO, Cu (OH) 2 , CuCO 3 or the like can be used.
  • Si raw material SiO, Si (OH) 4 or the like can be used.
  • Al material Al 2 O 3 , Al (OH) 3 or the like can be used.
  • Mg raw material MgO, Mg (OH) 2 or the like can be used.
  • B material B 2 O 3 or the like can be used.
  • Na raw material NaOH, Na 2 O, or the like
  • Ca raw material Ca (OH) 2 , CaO, or the like can be used.
  • a first active material and a second active material are obtained by baking the obtained mixed powder at a temperature of 500 ° C. to 1200 ° C. in air or oxygen.
  • the firing temperature is preferably a high temperature in order to diffuse each element. However, if the firing temperature is too high, oxygen deficiency may occur and battery characteristics may be degraded. Therefore, the firing temperature is preferably 500 ° C to 900 ° C.
  • n in (I) is the amount of a in the formula (II).
  • the average particle diameter of the first active material is preferably 0.1 ⁇ m to 50 ⁇ m from the viewpoint of improving the life characteristics.
  • the average particle diameter of the first active material is more preferably 1 ⁇ m to 30 ⁇ m.
  • the average particle diameter of the second active material is preferably 0.1 ⁇ m to 50 ⁇ m from the viewpoint of improving the life characteristics.
  • the average particle size of the second active material is more preferably 0.5 ⁇ m to 20 ⁇ m.
  • the average particle diameter of a 1st active material and a 2nd active material is the value measured with the laser diffraction type particle size distribution apparatus.
  • the specific surface area of the active material for a secondary battery according to this embodiment is preferably 0.01 m 2 / g or more and 20 m 2 / g or less.
  • the specific surface area of the active material for secondary batteries 0.05 m 2 / g or more, and more preferably less 10 m 2 / g.
  • the specific surface area is a value measured by the BET method.
  • the active material for a secondary battery according to this embodiment can be used as a positive electrode active material for a secondary battery or a negative electrode active material for a secondary battery, but is preferably used as a positive electrode active material for a secondary battery.
  • the active material for secondary batteries which concerns on this embodiment can be used for any of a lithium secondary battery and a lithium ion secondary battery.
  • the method for producing an active material for a secondary battery has the following formula (I): Li p [M1 m M2 2-mn M3 n ] O 4 (I) (In formula (I), M1 is at least one selected from the group consisting of Ni, Cr, Fe, Co and Cu. M2 is at least one selected from the group consisting of Mn, Ti and Si, and (At least Mn is included. M3 is at least one selected from the group consisting of Li, B, Mg, Al, Na, and Ca.
  • the method for preparing the first active material and the second active material is as described above.
  • the active material for a secondary battery according to the present embodiment can be manufactured.
  • the mixing method of said 1st active material and said 2nd active material is not specifically limited.
  • the electrode for a secondary battery according to the present embodiment includes the active material for the secondary battery according to the present embodiment.
  • the secondary battery electrode according to the present embodiment can be produced by applying the secondary battery active material according to the present embodiment on the electrode current collector.
  • the active material for a secondary battery according to this embodiment a conductivity imparting agent, and a binder. And the mixture is applied onto the positive electrode current collector.
  • the conductivity imparting agent for example, a carbon material, a metal substance such as Al, a conductive oxide powder, or the like can be used.
  • the binder polyvinylidene fluoride (PVDF), acrylic resin, polytetrafluoroethylene resin, or the like can be used.
  • PVDF polyvinylidene fluoride
  • acrylic resin polytetrafluoroethylene resin, or the like
  • the positive electrode current collector a metal thin film mainly composed of Al or the like can be used.
  • the addition amount of the conductivity-imparting agent can be 1 to 10% by mass. Sufficient electroconductivity can be maintained by making this addition amount 1 mass% or more. Moreover, since the ratio of active material mass can be enlarged by making this addition amount into 10 mass% or less, the capacity
  • the amount of the binder added can be 1 to 10% by mass. Generation
  • production of electrode peeling can be prevented by making this addition amount into 1 mass% or more. Moreover, since the ratio of active material mass can be enlarged by making this addition amount into 10 mass% or less, the capacity
  • the negative electrode for secondary batteries using the active material for secondary batteries which concerns on this embodiment, it can produce by the method similar to the method of producing the said positive electrode for secondary batteries.
  • the secondary battery according to the present embodiment includes the secondary battery electrode according to the present embodiment.
  • a secondary battery positive electrode that is an electrode for a secondary battery according to the present embodiment and a negative electrode including a negative electrode active material capable of occluding and releasing lithium are provided.
  • a separator is sandwiched between the positive electrode for secondary battery and the negative electrode so as not to cause an electrical connection, and the positive electrode for secondary battery and the negative electrode are immersed in a lithium ion conductive electrolyte. These are sealed in a battery case which is an exterior body.
  • FIG. 1 shows an example of the configuration of the secondary battery according to this embodiment.
  • a positive electrode active material layer 1 containing an active material for a secondary battery according to the present embodiment is formed on the positive electrode current collector 3 to form a positive electrode.
  • the negative electrode active material layer 2 is formed on the negative electrode current collector 4 to constitute a negative electrode.
  • the positive electrode and the negative electrode are disposed to face each other with the separator 5 in a state of being immersed in the electrolytic solution. These are accommodated in the exterior bodies 6 and 7.
  • the positive electrode is connected to the positive electrode tab 9, and the negative electrode is connected to the negative electrode tab 8.
  • lithium ions When a voltage is applied to the positive electrode and the negative electrode, lithium ions are desorbed from the positive electrode active material, and the lithium ions are occluded in the negative electrode active material, resulting in a charged state.
  • lithium ions are released from the negative electrode active material contrary to the time of charging, and discharge occurs due to occlusion of lithium ions in the positive electrode active material.
  • a solution in which a lithium salt as a supporting salt is dissolved in a solvent can be used.
  • the solvent include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate ( DEC), chain carbonates such as dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, ⁇ -lactones such as ⁇ -butyrolactone, 1,2-diethoxy Chain ethers such as ethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-diox
  • lithium salt examples include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiB 10 Cl 10, lower aliphatic lithium carboxylate, chloroborane lithium, lithium tetraphenylborate, and LiBr, LiI, LiSCN, LiCl, imides and the like . These may use only 1 type and may use 2 or more types together.
  • the concentration of the lithium salt that is the supporting salt can be, for example, 0.5 to 1.5 mol / L. Sufficient electrical conductivity can be obtained by setting the concentration of the lithium salt to 0.5 mol / L or more. Moreover, the density
  • a polymer electrolyte obtained by adding a polymer or the like to the solvent of the electrolytic solution and solidifying the electrolytic solution into a gel may be used.
  • the negative electrode active material a material capable of inserting and extracting lithium can be used.
  • the negative electrode active material include secondary battery active materials according to the present embodiment, carbon materials such as graphite, hard carbon, soft carbon, and amorphous carbon, and Si metals such as Li metal, Si, Sn, Al, and SiO.
  • An oxide, Sn oxide, Ti oxide such as Li 4 Ti 5 O 12 , TiO 2 , V-containing oxide, Sb-containing oxide, Fe-containing oxide, Co-containing oxide, or the like can be used.
  • These negative electrode active materials may be used alone or in combination of two or more.
  • the negative electrode active material is preferably at least one selected from the group consisting of graphite, SiO, Si, hard carbon, and Li 4 Ti 5 O 12 .
  • the negative electrode can be produced, for example, by mixing the negative electrode active material, a conductivity-imparting agent, and a binder, and applying the mixture onto the negative electrode current collector.
  • a conductivity-imparting agent for example, a conductive oxide powder in addition to the carbon material can be used.
  • a binder polyvinylidene fluoride (PVDF), acrylic resin, styrene butadiene rubber, imide resin, imidoamide resin, polytetrafluoroethylene resin, or the like can be used.
  • PVDF polyvinylidene fluoride
  • acrylic resin acrylic resin
  • styrene butadiene rubber imide resin
  • imidoamide resin imidoamide resin
  • polytetrafluoroethylene resin or the like
  • a metal thin film mainly composed of Al, Cu or the like can be used.
  • the secondary battery according to the present embodiment can be manufactured by assembling using the secondary battery electrode according to the present embodiment.
  • a secondary battery positive electrode and a negative electrode which are secondary battery electrodes according to the present embodiment, are arranged to face each other with no electrical contact through a separator.
  • a separator a microporous film made of polyethylene, polypropylene (PP), polyimide, polyamide or the like can be used.
  • the one in which the positive electrode and the negative electrode are arranged to face each other with a separator in between is formed into a cylindrical shape or a laminated shape. This is accommodated in the exterior body and immersed in the electrolytic solution so that both the positive electrode active material and the negative electrode active material are in contact with the electrolytic solution.
  • a battery can, a laminate film made of a laminate of a synthetic resin and a metal foil, or the like can be used.
  • a secondary battery can be manufactured by connecting a positive electrode tab and a negative electrode tab to the positive electrode and the negative electrode, respectively, and sealing the outer package so that these electrode tabs communicate with the exterior of the outer package.
  • Examples of the form of the positive electrode and the negative electrode that are opposed to each other with the separator interposed therebetween include a wound type and a laminated type.
  • examples of the secondary battery include a coin type and a laminate type.
  • examples of the shape of the secondary battery include a square shape and a cylindrical shape.
  • Example 1 Li [Ni 0.5 Mn 1.45 Al 0.05 ] O 4 was prepared as the first active material.
  • MnO 2 , NiO, Al (OH) 3 and Li 2 CO 3 were weighed so as to have a target elemental composition ratio, and pulverized and mixed. The mixed powder was fired at 500 to 1000 ° C. for 12 hours.
  • a first active material was prepared.
  • the crystal structure of the first active material was evaluated by X-ray diffraction, it was confirmed that it was a substantially single-phase spinel structure.
  • the elemental composition of the first active material was confirmed by ICP, it was consistent with the elemental composition calculated from the raw material charge.
  • Li [Li 0.12 Ni 0.25 Mn 0.63 ] O 2 was prepared as the second active material.
  • MnO 2 , NiO and Li 2 CO 3 were weighed so as to have a target elemental composition ratio, and pulverized and mixed. The mixed powder was fired at 500 to 1000 ° C. for 12 hours. This prepared the 2nd active material.
  • the crystal structure of the second active material was evaluated by X-ray diffraction, it was confirmed to be a substantially single-phase layered structure. Further, when the elemental composition of the second active material was confirmed by ICP, it was consistent with the elemental composition calculated from the raw material charge.
  • the two active materials were mixed.
  • this mixture was used as the positive electrode active material.
  • the mixture and carbon as a conductivity-imparting agent were mixed and dispersed in N-methylpyrrolidone in which polyvinylidene fluoride (PVDF) as a binder was dissolved to obtain a slurry.
  • PVDF polyvinylidene fluoride
  • the mass ratio of the mixture, the conductivity imparting agent, and the binder was 90/5/5.
  • the slurry was applied on an Al current collector.
  • the thickness of the coating film was adjusted so that the initial charge capacity of the positive electrode was 2 mAh / cm 2 . Then, after drying in vacuum for 12 hours, it was pressure-molded at 3 t / cm 2 . This was cut into a square 20 mm long and 20 mm wide to obtain a positive electrode.
  • Graphite was used as the negative electrode active material.
  • a slurry was prepared by setting the mass ratio of the negative electrode active material, the conductivity-imparting agent, and the binder to 91/1/8, and the slurry was applied onto the Cu current collector.
  • the thickness of the coating film was adjusted so that the initial charge capacity of the negative electrode was 2.2 mAh / cm 2 .
  • pressure molding was performed at 1.5 t / cm 2 . This was cut into a square of 20 mm length and 20 mm width to obtain a negative electrode.
  • the positive electrode and the negative electrode were arranged opposite to each other with no electrical contact through a separator, and arranged in a coin cell.
  • the inside of the coin cell was filled with an electrolyte and sealed.
  • a polypropylene porous film was used as the separator.
  • As the electrolyte a solution in which LiPF 6 as a supporting salt was dissolved at a concentration of 1 mol / l in a solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at 30:70 (volume%) was used. did. This produced the secondary battery.
  • Examples 2 to 26, Comparative Examples 1 and 2 A second active material having the composition shown in Table 1 was prepared in the same manner as in Example 1. Otherwise, a secondary battery was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • MnO 2 as a raw material for Mn
  • NiO as a raw material for Ni
  • Li 2 CO 3 as a raw material for Li
  • TiO 2 as a raw material for Ti
  • Cr 2 O 3 as a raw material for Cr
  • CoO as a raw material for Co
  • Al Al
  • Al (OH) 3 Mg (OH) 2 as a Mg raw material
  • B 2 O 3 as a B raw material
  • SiO as a Si raw material
  • Ca (OH) 2 as a Ca raw material Fe 2 O 3 was used as a raw material for Fe
  • CuO was used as a raw material for Cu.
  • Examples 27 to 49, Comparative Examples 3 and 4 The active material shown in Table 2 as the first active material was prepared in the same manner as in Example 1 using the same raw materials as those shown in Examples 2 to 26 and Comparative Examples 1 and 2. Further, using Li [Li 0.2 Ni 0.25 Mn 0.55 ] O 2 as the second active material, using the same raw materials as those shown in Examples 2 to 26 and Comparative Examples 1 and 2, Prepared in the same manner as in Example 1. Otherwise, a secondary battery was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Examples 50 to 57, Comparative Examples 5 and 6 Li [Ni 0.5 Mn 1.36 Ti 0.12 Mg 0.02 ] O 4 was used as the first active material, and the same raw materials as those shown in Examples 2 to 26 and Comparative Examples 1 and 2 were used. In the same manner as in Example 1. Further, Li [Li 0.15 Ni 0.25 Al 0.03 Mn 0.57 ] O 2 is used as the second active material, and the same raw materials as those shown in Examples 2 to 26 and Comparative Examples 1 and 2 are used.
  • a secondary battery was prepared and evaluated in the same manner as in Example 1 except that the first active material and the second active material were mixed in the ratio shown in Table 3 and used as the positive electrode active material.
  • Table 3 shows the capacity retention ratio and discharge energy per mass of active material at the 200th cycle (battery capacity ⁇ discharge average voltage of the battery). Note that the active material mass refers to the total mass of the mass of the first active material and the mass of the second active material.
  • Example 61 and Comparative Example 10 using Li 4 Ti 5 O 12 as the negative electrode active material the charge voltage was set to 3.3 V and the discharge voltage was set to 1.5 V in the capacity retention rate measurement. The results are shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 寿命特性の向上した二次電池用活物質を提供する。Li[M1M22-m-nM3]O(M1はNi、Cr、Fe、Co及びCuから選択される少なくとも一種である。M2はMn、Ti及びSiから選択される少なくとも一種であり、Mnを含む。M3はLi、B、Mg、Al、Na及びCaから選択される少なくとも一種である。0≦p、0<m、0<n、m+n<2である。)で表される第一の活物質と、Li[LiMn1-a-x-z]O(XはNi、Cr、Fe、Co及びCuから選択される少なくとも一種である。ZはAl、Mg、B、Si、Na、Ca及びTiから選択される少なくとも一種である。0≦q、0<a、0<x、0≦z、a+x+z<1である。)で表される第二の活物質と、を含む二次電池用活物質。

Description

二次電池用活物質
 本実施形態は二次電池用活物質に関する。
 リチウム二次電池及びリチウムイオン二次電池(以下、二次電池とする)は、小型で大容量である特徴を有しており、携帯電話、ノート型パソコン等の電源として広く用いられている。
 二次電池用活物質として、現在、正極にはコバルト酸リチウム(LiCoO)が主に利用されている。しかし、LiCoOは充電状態の安全性が必ずしも充分ではない上、Co原料の価格が高く、これに代わる新たな二次電池用活物質の探索が精力的に進められている。
 一方、二次電池のエネルギー密度を高める方法として、二次電池の動作電位を上昇させる方法が有効である。コバルト酸リチウムやマンガン酸リチウムを正極の活物質として用いた二次電池では、動作電位は4V級(平均動作電位=3.6~3.8V:対リチウム電位)である。これは、Coイオン又はMnイオンの酸化還元反応(Co3+←→Co4+又はMn3+←→Mn4+)によって発現電位が規定されるためである。
 これに対し、例えばマンガン酸リチウムのMnをNi等により置換したスピネル構造を有する化合物(スピネル化合物)を活物質として用いることにより、5V級の動作電位を実現できることが知られている。具体的には、LiNi0.5Mn1.5等のスピネル化合物を用いることにより、4.5V以上の領域に電位プラトーを示すことが知られている(特許文献1)。このようなスピネル化合物においてMnは4価の状態で存在し、Mn3+←→Mn4+の酸化還元に代わり、Ni2+←→Ni4+の酸化還元によって動作電位が規定される。また、Li[CoMn]O、Li[Fe0.5Mn1.5]O、Li[CrMn]O、Li[CuMn2-x]O等も同様に、Li金属に対して4.5V以上の電位で充放電することが知られている。Li[Ni0.5Mn1.5]Oは容量が130mAh/g以上であり、平均動作電圧はLi金属に対して4.6V以上である。Li[Ni0.5Mn1.5]Oを用いた場合には正極に蓄積できるエネルギー密度は、LiCoOよりも高い。また、Li[Ni0.5Mn1.5]O等のスピネル化合物は、-20℃のような低温においても、90%以上のエネルギー密度が得られる。スピネル化合物はイオン伝導性が高いため、広範囲の温度と充放電レートで使用可能である。
 エネルギー密度の高い他の二次電池用活物質としては、LiNiO、Li[Ni0.8Co0.2]O等のNiを主体とした層状構造の複合酸化物が挙げられる。これらの材料は、放電容量が200mAh/g程度と高容量である特徴を有するが、充電時の結晶安定性が低く、充電状態における電池の信頼性が課題である。また、充放電範囲が3Vから4.3V程度であり、特に3.8V以下の領域が大きいために、LiCoOを使用した二次電池と比較して低電位である。
 また、エネルギー密度の高い他の二次電池用活物質としては、Li[CrLi(1/3-x/3)Mn(2/3-2x/3)]O、Li[NiLi(1/3-2x/3)Mn(2/3-x/3)]O等の層状構造を有する活物質が報告されている(非特許文献1、非特許文献2)。これらの材料は、LiMOの形で示され、Li層とM層とO層の層状構造を有する材料である。これらの材料は、充電終止電圧が4.8V程度であり、他の層状構造を有する活物質よりも充電終止電圧が高いため、エネルギー密度が高い特徴がある。しかし、これらの材料は45℃のような高温、0.025Cのような低い充放電レートにおいては、200mAh/g以上の高容量が得られるが、20℃のような低温、0.5C以上のような高い充放電レートにおいては、10~30%程度容量が低下する。これは、Mnを含有する層状構造のイオン伝導性や電子伝導性が低いことに起因すると推測されている。
 さらに、他の技術として、二種類の二次電池用活物質を混合して使用する技術が報告されている。例えば、特許文献2には、LiMnとLi(NiCo1-x)O(0≦x≦1)との混合物が開示されている。また、特許文献3には、LiNi0.5Mn1.5等のスピネル材料と、Li[Ni0.33Li0.1Mn0.57]O等の材料との混合物が開示されている。
特開平9-147867号公報 特許第2996234号公報 特許第4458232号公報
Journal of The Electrochemical Society, 149 (11) A1454-A1459 (2002) Electrochemical and State Letters, 4 (11) A191-A194 (2001)
 しかしながら、前記二次電池用活物質はいずれも寿命特性が十分ではなく、更なる寿命特性の改善が求められている。本実施形態は、寿命特性の向上した二次電池用活物質を提供することを目的とする。
 本実施形態に係る二次電池用活物質は、下記式(I)
  Li[M1M22-m-nM3]O  (I)
(式(I)中、M1はNi、Cr、Fe、Co及びCuからなる群から選択される少なくとも一種である。M2はMn、Ti及びSiからなる群から選択される少なくとも一種であり、かつ少なくともMnを含む。M3はLi、B、Mg、Al、Na及びCaからなる群から選択される少なくとも一種である。0≦p、0<m、0<n、m+n<2である。)
で表される第一の活物質と、
 下記式(II)
  Li[LiMn1-a-x-z]O  (II)
(式(II)中、XはNi、Cr、Fe、Co及びCuからなる群から選択される少なくとも一種である。ZはAl、Mg、B、Si、Na、Ca及びTiからなる群から選択される少なくとも一種である。0≦q、0<a、0<x、0≦z、a+x+z<1である。)
で表される第二の活物質と、を含む。
 本実施形態に係る二次電池用活物質の製造方法は、下記式(I)
  Li[M1M22-m-nM3]O  (I)
(式(I)中、M1はNi、Cr、Fe、Co及びCuからなる群から選択される少なくとも一種である。M2はMn、Ti及びSiからなる群から選択される少なくとも一種であり、かつ少なくともMnを含む。M3はLi、B、Mg、Al、Na及びCaからなる群から選択される少なくとも一種である。0≦p、0<m、0<n、m+n<2である。)
で表される第一の活物質と、
 下記式(II)
  Li[LiMn1-a-x-z]O  (II)
(式(II)中、XはNi、Cr、Fe、Co及びCuからなる群から選択される少なくとも一種である。ZはAl、Mg、B、Si、Na、Ca及びTiからなる群から選択される少なくとも一種である。0≦q、0<a、0<x、0≦z、a+x+z<1である。)
で表される第二の活物質と、を混合する工程を含む。
 本実施形態によれば、寿命特性の向上した二次電池用活物質を提供することができる。
本実施形態に係る二次電池の一例の断面図である。
 本実施形態に係る二次電池用活物質は、下記式(I)
  Li[M1M22-m-nM3]O  (I)
(式(I)中、M1はNi、Cr、Fe、Co及びCuからなる群から選択される少なくとも一種である。M2はMn、Ti及びSiからなる群から選択される少なくとも一種であり、かつ少なくともMnを含む。M3はLi、B、Mg、Al、Na及びCaからなる群から選択される少なくとも一種である。0≦p、0<m、0<n、m+n<2である。)
で表される第一の活物質と、
 下記式(II)
  Li[LiMn1-a-x-z]O  (II)
(式(II)中、XはNi、Cr、Fe、Co及びCuからなる群から選択される少なくとも一種である。ZはAl、Mg、B、Si、Na、Ca及びTiからなる群から選択される少なくとも一種である。0≦q、0<a、0<x、0≦z、a+x+z<1である。)
で表される第二の活物質と、を含む。
 本実施形態に係る二次電池用活物質においては、第一の活物質よりも第二の活物質の方が、容量が大きい。したがって、活物質の質量あたりの容量を増加させることが第二の活物質を混合することの一つの目的である。一方、第二の活物質はイオン伝導性が低くレート特性が低いため、高い充放電レートでは電解液等に負荷がかかり十分な寿命特性が得られない。そこで、高い充放電レートと広い温度範囲で使用可能な第一の活物質を混合することにより、イオン伝導性が低い第二の活物質の課題を補うことができる。さらに、高いエネルギー密度を有する第二の活物質を第一の活物質と混合して使用することにより、広範囲の充放電レート、広範囲の温度において二次電池の長寿命化を図ることができる。
 前記式(I)において0.4≦m<1.1である場合、前記式(I)で表される第一の活物質は5V級スピネルと呼ばれる活物質であり、Li、B、Mg、Al、Na及びCaからなる群から選択される少なくとも一種がドープされている。一方、前記式(II)で表される第二の活物質はMnを含有する層状構造を有する活物質である。
 5V級スピネルの特徴は、Liに対して4.5Vから5.2Vの電圧範囲でLiの放出吸蔵が行われる点である。また、Mnを主体としているため安価であり、充電時のLi放出時の結晶安定性が高いため、二次電池としての安全性が高い。さらに、スピネル構造に起因してリチウムイオン伝導性が高いため、高い充放電レートでの使用が可能である。一方、Mnを含有する層状構造を有する活物質は、放電容量が200mAh/g以上であり、充電終止電圧が4.8V程度である。しかし、イオン伝導性が低いために高い充放電レートでの使用に課題がある。また、過充電時の結晶の構造安定性が低い。
 そこで、Mnを含有する層状構造を有する活物質に5V級スピネルを混合することにより、イオン伝導性の低さを補うことができる。また、5V級スピネルは充電終止電圧が4.8Vから5.2V程度であるが、この電圧はMnを含有する層状構造を有する活物質の充電終止電圧と非常に近いため、層状構造の充電時の結晶構造不安定性に起因する容量低下が起こりにくい。
 一方、活物質の混合物においては、活物質界面の劣化により活物質間の電気的接触が低下し、電極内の抵抗が上昇する傾向がある。これに対し、第一の活物質のMnの一部を置換して、Li、B、Mg、Al、Na及びCaからなる群から選択される少なくとも一種をドープすることにより寿命特性が改善される。これらの元素のドープの結果、第一の活物質の界面の劣化が抑制され、第一の活物質と、第二の活物質との接触抵抗の上昇が抑制され、良好な寿命特性が得られる。
 このように、本実施形態に係る二次電池用活物質によれば、該二次電池用活物質を二次電池に用いた場合、高容量で、高電圧で動作し、寿命特性の向上した二次電池を提供することができる。
 [二次電池用活物質]
 以下、本実施形態に係る二次電池用活物質の詳細を示す。
 前記式(I)において、M1はNi、Cr、Fe、Co及びCuからなる群から選択される少なくとも一種である。M1を含むことにより高容量の二次電池が得られる。高エネルギー密度、高起電力及び高容量を示す二次電池が得られる点、また容量維持率向上の観点から、M1はNiを少なくとも含むことが好ましい。
 前記式(I)において、M2はMn、Ti及びSiからなる群から選択される少なくとも一種であり、かつ少なくともMnを含む。M2を含むことにより高容量の二次電池が得られる。M2はMn以外にTiを含むことが好ましい。
 前記式(I)において、M3はLi、B、Mg、Al、Na及びCaからなる群から選択される少なくとも一種である。M3を含むことにより、第一の活物質界面の劣化が抑制され、寿命特性が改善される。M3はNa、Al及びMgからなる群から選択される少なくとも一種であることが好ましい。
 前記式(I)において、mは0<mである。0.4≦m<1.1であることが好ましく、0.4<m<0.9であることがより好ましく、0.4<m<0.6であることがさらに好ましい。mが前記範囲内であることにより、Liに対して4.5V以上の電位でLiの挿入脱離が行われる。
 前記式(I)において、nは0<nである。0<n≦0.1であることが好ましく、0<n≦0.05であることがより好ましく、0<n≦0.02であることがさらに好ましい。nが前記範囲内であることにより、寿命特性が改善される。
 前記式(I)において、m+n<2である。0.4≦m+n≦1.2であることが好ましく、0.4≦m+n≦0.9であることがより好ましく、0.5≦m+n≦0.7であることがさらに好ましい。m+nが前記範囲内であることにより、寿命特性が改善される。
 前記式(I)において、pは0≦pである。pは充放電によるLiの挿入脱離によって変化し、0≦p≦2の範囲で変化することができ、0≦p≦1.2の範囲で変化することもでき、通常0≦p≦1の範囲で変化する。
 前記式(II)において、XはNi、Cr、Fe、Co及びCuからなる群から選択される少なくとも一種である。Xを含むことにより高容量の活物質が得られる。高エネルギー密度、高起電力及び高容量を示す二次電池が得られ、かつ容量維持率向上の観点から、XはNiを少なくとも含むことが好ましい。
 前記式(II)において、ZはAl、Mg、B、Si、Na、Ca及びTiからなる群から選択される少なくとも一種である。Zは任意成分であるが、Zを含むことにより寿命特性がより向上するため好ましい。ZはAl、Mg及びBからなる群から選択される少なくとも一種であることが好ましい。
 前記式(II)において、aは0<aである。0.1≦a≦0.3であることが好ましく、0.12≦a≦0.27であることがより好ましく、0.15≦a≦0.25であることがさらに好ましい。aが前記範囲内であることにより、高容量の二次電池が得られ、かつ寿命特性が向上する。
 前記式(II)において、xは0<xである。0.1≦x<0.4であることが好ましく、0.15≦x≦0.35であることがより好ましく、0.2≦x≦0.3であることがさらに好ましい。xが前記範囲内であることにより、高容量の二次電池が得られ、かつ寿命特性が向上する。
 前記式(II)において、zは0≦zである。0<z<0.3であることが好ましく、0<z≦0.2であることがより好ましく、0<z≦0.1であることがさらに好ましい。xが前記範囲内であることにより寿命特性が向上する。
 前記式(II)において、a+x+z<1である。0.2≦a+x+z≦0.5であることが好ましく、0.23≦a+x+z≦0.47であることがより好ましく、0.25≦a+x+z≦0.45であることがさらに好ましい。a+x+zが前記範囲内であることにより高容量の二次電池が得られ、かつ寿命特性が向上する。
 前記式(II)において、qは0≦qである。qは充放電によるLiの挿入脱離によって変化し、0≦q≦1の範囲で変化することができる。
 本実施形態に係る二次電池用活物質に含まれる前記第一の活物質の質量と前記第二の活物質の質量との合計に対する、前記第二の活物質の質量の割合は、3質量%以上、90質量%以下であることが好ましい。このような混合比率とすることで、寿命特性が向上し、かつ充放電を繰り返した後も高いエネルギー密度を確保することができる。前記割合は3質量%以上、60質量%以下であることがより好ましく、4質量%以上、30質量%以下であることがさらに好ましく、5質量%以上、18質量%以下であることが特に好ましい。
 次に、本実施形態に係る二次電池用活物質の調製方法について説明する。第一の活物質及び第二の活物質の原料としては特に限定されない。Li原料としては、例えばLiCO、LiOH、LiO、LiSO等を用いることができるが、LiCO、LiOH等のリチウム塩が好ましい。Mn原料としては、電解二酸化マンガン(EMD)・Mn、Mn、CMD(chemical manganese dioxide)等の種々のMn酸化物、MnCO、MnSO等を用いることができる。Ni原料としては、NiO、Ni(OH)、NiSO、Ni(NO等を用いることができる。Ti原料としては、Ti、TiO等のTi酸化物、Ti炭酸塩、Ti水酸化物、Ti硫酸塩、Ti硝酸塩等を用いることができる。Cr原料としては、Cr等のCr酸化物、Cr炭酸塩、Cr水酸化物、Cr硫酸塩、Cr硝酸塩等を用いることができる。Fe原料としては、Fe、Fe等のFe酸化物、Fe(OH)、FeCO、Fe(NO等を用いることができる。Co原料としては、CoO、Co(OH)、CoCO等を用いることができる。Cu原料としては、CuO、Cu(OH)、CuCO等を用いることができる。Si原料としては、SiO、Si(OH)等を用いることができる。Al原料としては、Al、Al(OH)等を用いることができる。Mg原料としては、MgO、Mg(OH)等を用いることができる。B原料としては、B等を用いることができる。Na原料としては、NaOH、NaO等を用いることができる。Ca原料としては、Ca(OH)、CaO等を用いることができる。
 前記各元素の原料の焼成時において、元素拡散が起こりにくい場合がある。この場合、原料焼成後、各元素の酸化物が異相として残留することがある。これを回避するために、各元素の原料を水溶液中に一度溶解混合させた後、水酸化物、硫酸塩、炭酸塩、硝酸塩等で析出させた混合物を原料として用いることが可能である。また、このような混合物を焼成した混合酸化物を用いることも可能である。このような混合物を原料として用いた場合、各元素が原子レベルで拡散しており、異相の少ない結晶の作製が容易となる。
 これらの原料を目的の元素組成比となるように秤量して混合する。混合は、ボールミル等により粉砕混合することで行うことができる。得られた混合粉を500℃から1200℃の温度で、空気中又は酸素中で焼成することにより第一の活物質及び第二の活物質が得られる。焼成温度は、それぞれの元素を拡散させるために高温である方が好ましい。しかし、焼成温度が高すぎると酸素欠損が生じ、電池特性が低下する場合がある。したがって、焼成温度は500℃から900℃であることが好ましい。前記第一の活物質と前記第二の活物質とを混合することにより、本実施形態に係る二次電池用活物質が得られる。
 なお、第一の活物質を調製する際には、前記式(I)においてp=1として調製する。また、第二の活物質を調製する際には、前記式(II)においてq=1として調製する。第一の活物質と第二の活物質との両方共にLiは含まれえるが、原料としてLiをp=1、q=1から余剰に添加する場合には、Liの余剰分はそれぞれ前記式(I)におけるnの分、前記式(II)におけるaの分となる。
 第一の活物質の平均粒子径は0.1μm~50μmであることが、寿命特性向上の観点から好ましい。第一の活物質の平均粒子径は1μm~30μmであることがより好ましい。第二の活物質の平均粒子径は0.1μm~50μmであることが、寿命特性向上の観点から好ましい。第二の活物質の平均粒子径は0.5μm~20μmであることがより好ましい。なお、第一の活物質及び第二の活物質の平均粒子径は、レーザー回折式粒度分布装置により測定した値である。
 本実施形態に係る二次電池用活物質の比表面積は、0.01m/g以上、20m/g以下であることが好ましい。比表面積を0.01m/g以上とすることにより、電解液と二次電池用活物質との間のイオン伝導性が向上する。また、比表面積を20m/g以下とすることにより、必要な結着剤量が少なく、容量密度が向上する。二次電池用活物質の比表面積は、0.05m/g以上、10m/g以下であることがより好ましい。なお、比表面積はBET法により測定した値である。
 本実施形態に係る二次電池用活物質は、二次電池用正極活物質としても二次電池用負極活物質としても用いることができるが、二次電池用正極活物質として用いることが好ましい。また、本実施形態に係る二次電池用活物質は、リチウム二次電池、リチウムイオン二次電池のいずれにも使用することができる。
 [二次電池用活物質の製造方法]
 本実施形態に係る二次電池用活物質の製造方法は、下記式(I)
  Li[M1M22-m-nM3]O  (I)
(式(I)中、M1はNi、Cr、Fe、Co及びCuからなる群から選択される少なくとも一種である。M2はMn、Ti及びSiからなる群から選択される少なくとも一種であり、かつ少なくともMnを含む。M3はLi、B、Mg、Al、Na及びCaからなる群から選択される少なくとも一種である。0≦p、0<m、0<n、m+n<2である。)
で表される第一の活物質と、
 下記式(II)
  Li[LiMn1-a-x-z]O  (II)
(式(II)中、XはNi、Cr、Fe、Co及びCuからなる群から選択される少なくとも一種である。Zは、Al、Mg、B、Si、Na、Ca及びTiからなる群から選択される少なくとも一種である。0≦q、0<a、0<x、0≦z、a+x+z<1である。)
で表される第二の活物質と、を混合する工程を含む。
 第一の活物質と第二の活物質の調製方法は前記の通りである。前記第一の活物質と前記第二の活物質とを混合することで、本実施形態に係る二次電池用活物質を製造することができる。前記第一の活物質と前記第二の活物質との混合方法は特に限定されない。
 [二次電池用電極]
 本実施形態に係る二次電池用電極は、本実施形態に係る二次電池用活物質を含む。本実施形態に係る二次電池用電極は、本実施形態に係る二次電池用活物質を電極集電体上に付与することで作製することができる。例えば、本実施形態に係る二次電池用活物質を用いて二次電池用正極を作製する場合には、本実施形態に係る二次電池用活物質と、導電性付与剤と、結着剤とを混合し、混合物を正極集電体上に塗布することで作製することができる。導電性付与剤としては、例えば炭素材料の他、Al等の金属物質、導電性酸化物の粉末等を用いることができる。結着剤としてはポリフッ化ビニリデン(PVDF)、アクリル系樹脂、ポリテトラフロロエチレン樹脂等を用いることができる。正極集電体としてはAl等を主体とする金属薄膜を用いることができる。
 導電性付与剤の添加量は1~10質量%とすることができる。該添加量を1質量%以上とすることにより十分な導電性を保つことができる。また、該添加量を10質量%以下とすることにより活物質質量の割合を大きくすることができるため、質量あたりの容量を大きくすることができる。結着剤の添加量は1~10質量%とすることができる。該添加量を1質量%以上とすることにより電極剥離の発生を防ぐことができる。また、該添加量を10質量%以下とすることにより活物質質量の割合を大きくすることができるため、質量あたりの容量を大きくすることができる。
 なお、本実施形態に係る二次電池用活物質を用いて二次電池用負極を作製する場合にも、前記二次電池用正極を作製する方法と同様の方法により作製することができる。
 [二次電池]
 本実施形態に係る二次電池は、本実施形態に係る二次電池用電極を備える。例えば、本実施形態に係る二次電池用電極である二次電池用正極と、リチウムを吸蔵放出可能な負極活物質を備える負極とを備える。該二次電池用正極と該負極との間には電気的接続を起こさないようにセパレータが挟まれ、該二次電池用正極と該負極とはリチウムイオン伝導性の電解液に浸った状態であり、これらが外装体である電池ケースの中に密閉されている。
 本実施形態に係る二次電池の構成の一例を図1に示す。正極集電体3上に本実施形態に係る二次電池用活物質を含む正極活物質層1が形成され、正極が構成されている。また、負極集電体4上に負極活物質層2が形成され、負極が構成されている。これらの正極と負極とは、電解液に浸漬された状態でセパレータ5を介して対向配置されている。これらは外装体6、7内に収容されている。正極は正極タブ9と、負極は負極タブ8と接続されている。
 正極と負極に電圧を印加することにより正極活物質からリチウムイオンが脱離し、負極活物質にリチウムイオンが吸蔵され、充電状態となる。また、正極と負極の電気的接触を電池外部で起こすことにより、充電時とは逆に負極活物質からリチウムイオンが放出され、正極活物質にリチウムイオンが吸蔵されることにより放電が起こる。
 本実施形態に係る二次電池に用いられる電解液としては、溶媒に支持塩としてのリチウム塩を溶解させた溶液を用いることができる。該溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ-ブチロラクトン等のγ-ラクトン類、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3-プロパンスルトン、アニソール、N-メチルピロリドン、フッ素化カルボン酸エステル等の非プロトン性有機溶媒等を用いることができる。これらは一種のみを用いてもよく、二種以上を併用してもよい。これらのうち、高電圧での安定性や、溶媒の粘度の観点から、溶媒としては環状カーボネートと鎖状カーボネートとの混合溶液を使用することが好ましい。
 リチウム塩としては、例えばLiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、LiC(CFSO、LiN(CFSO、LiN(CSO、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl、イミド類等が挙げられる。これらは一種のみを用いてもよく、二種以上を併用してもよい。
 支持塩であるリチウム塩の濃度は、例えば0.5~1.5mol/Lとすることができる。リチウム塩の濃度を0.5mol/L以上とすることにより十分な電気伝導率を得ることができる。また、リチウム塩の濃度を1.5mol/L以下とすることにより密度と粘度の増加を抑制することができる。
 なお、電解液の溶媒にポリマー等を添加して電解液をゲル状に固化したポリマー電解質を用いてもよい。
 負極活物質としては、リチウムを吸蔵放出可能な材料を用いることができる。負極活物質としては、例えば、本実施形態に係る二次電池用活物質、黒鉛、ハードカーボン、ソフトカーボン、非晶質炭素等の炭素材料、Li金属、Si、Sn、Al、SiO等のSi酸化物、Sn酸化物、LiTi12、TiO等のTi酸化物、V含有酸化物、Sb含有酸化物、Fe含有酸化物、Co含有酸化物等を用いることができる。これらの負極活物質は一種のみを用いてもよく、二種以上を併用してもよい。本実施形態に係る二次電池においては、負極活物質は黒鉛、SiO、Si、ハードカーボン及びLiTi12からなる群から選択される少なくとも一種であることが好ましい。
 負極は、例えば前記負極活物質と、導電性付与剤と、結着剤とを混合し、混合物を負極集電体上に塗布することで作製することができる。導電性付与剤としては、例えば炭素材料の他、導電性酸化物の粉末等を用いることができる。結着剤としてはポリフッ化ビニリデン(PVDF)、アクリル系樹脂、スチレンブタジエンゴム、イミド系樹脂、イミドアミド系樹脂、ポリテトラフロロエチレン樹脂等を用いることができる。負極集電体としてはAl、Cu等を主体とする金属薄膜を用いることができる。
 本実施形態に係る二次電池は、本実施形態に係る二次電池用電極を用いて組み立てることで製造することができる。例えば、乾燥空気又は不活性ガス雰囲気下において、本実施形態に係る二次電池用電極である二次電池用正極と負極とを、セパレータを介して電気的接触がない状態で対向配置させる。セパレータとしてはポリエチレン、ポリプロピレン(PP)、ポリイミド、ポリアミド等からなる微多孔質膜を用いることができる。
 前記正極と負極とをセパレータを挟んで対向配置させたものを、円筒状又は積層状にする。これを外装体内に収納し、正極活物質、負極活物質の両方が電解液に接するように電解液に浸す。外装体としては、電池缶、合成樹脂と金属箔との積層体からなるラミネートフィルム等を用いることができる。正極、負極それぞれに、正極タブ、負極タブを接続し、これらの電極タブが外装体外部に通ずるようにして、外装体を密閉することで二次電池を作製することができる。
 セパレータを挟んで対向配置されている正極及び負極の形態としては、巻回型、積層型等が挙げられる。また、二次電池の形式としてはコイン型、ラミネート型等が挙げられる。二次電池の形状としては、角型、円筒型等が挙げられる。
 [実施例1]
 (第一の活物質の調製)
 第一の活物質として、Li[Ni0.5Mn1.45Al0.05]Oを調製した。原料として、MnO、NiO、Al(OH)及びLiCOを目的の元素組成比になるように秤量し、粉砕混合した。混合後の粉末を500~1000℃で12時間焼成した。これにより、第一の活物質を調製した。第一の活物質の結晶構造をX線回折によって評価したところ、ほぼ単相のスピネル構造であることが確認された。また、第一の活物質の元素組成をICPにより確認したところ、原料仕込み量から算出される元素組成と一致した。
 (第二の活物質の調製)
 第二の活物質として、Li[Li0.12Ni0.25Mn0.63]Oを調製した。原料として、MnO、NiO及びLiCOを目的の元素組成比になるように秤量し、粉砕混合した。混合後の粉末を500~1000℃で12時間焼成した。これにより、第二の活物質を調製した。第二の活物質の結晶構造をX線回折によって評価したところ、ほぼ単相の層状構造であることが確認された。また、第二の活物質の元素組成をICPにより確認したところ、原料仕込み量から算出される元素組成と一致した。
 (正極の作製)
 前記第一の活物質の質量と前記第二の活物質の質量との合計に対する、前記第二の活物質の質量の割合が20質量%となるように、前記第一の活物質と前記第二の活物質とを混合した。本実施例ではこの混合物を正極活物質として用いた。前記混合物と、導電性付与剤である炭素とを混合し、結着剤であるポリフッ化ビニリデン(PVDF)を溶解させたN-メチルピロリドンに分散させ、スラリーを得た。なお、前記混合物、前記導電性付与剤、前記結着剤の質量比は90/5/5であった。Al集電体上に該スラリーを塗布した。塗布膜の厚さは、正極の初回充電容量が2mAh/cmとなるように調整した。その後、真空中で12時間乾燥させた後、3t/cmで加圧成形した。これを縦20mm、横20mmの正方形に切り出して正極を得た。
 (負極の作製)
 負極活物質には黒鉛を用いた。前記正極と同様の方法で、負極活物質と導電性付与剤と結着剤との質量比を91/1/8としてスラリーを調製し、Cu集電体上に該スラリーを塗布した。塗布膜の厚さは、負極の初回充電容量が2.2mAh/cmとなるように調整した。その後、真空中で12時間乾燥させた後、1.5t/cmで加圧成形した。これを縦20mm、横20mmの正方形に切り出して負極を得た。
 (二次電池の作製)
 前記正極と前記負極とをセパレータを介して電気的接触がない状態で対向配置させ、コインセル内に配置した。該コインセル内を電解液で満たして密閉した。セパレータにはポリプロピレンの多孔質フィルムを使用した。電解液には、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とを30:70(体積%)で混合した溶媒に、支持塩としてのLiPFを1mol/lの濃度で溶解させた溶液を使用した。これにより、二次電池を作製した。
 (容量維持率の測定)
 作製した二次電池を45℃の恒温槽内に配置した。充電電流8mAの定電流で4.8Vまで充電した後、4.8Vで定電圧充電を行い、1回の合計の充電時間を2時間とした。その後、放電電流8mAの定電流で3.0Vまで放電した。この充放電サイクルを200サイクル繰り返した。200サイクル目の放電容量と、初回の放電容量との比率を容量維持率として算出した。結果を表1に示す。
 [実施例2~26、比較例1、2]
 表1に示す組成の第二の活物質を実施例1と同様の方法で調製した。それ以外は実施例1と同様に二次電池を作製し、評価を行った。結果を表1に示す。なお、Mnの原料としてMnO、Niの原料としてNiO、Liの原料としてLiCO、Tiの原料としてTiO、Crの原料としてCr、Coの原料としてCoO、Alの原料としてAl(OH)、Mgの原料としてMg(OH)、Bの原料としてB、Naの原料としてNa(OH)、Siの原料としてSiO、Caの原料としてCa(OH)、Feの原料としてFe、Cuの原料としてCuOを用いた。また、実施例2~26、比較例1、2で調製した第二の活物質の結晶構造をX線回折によって評価したところ、ほぼ単相の層状構造であることが確認された。また、実施例2~26、比較例1、2で調製した第二の活物質の元素組成をICPにより確認したところ、原料仕込み量から算出される元素組成と一致した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、前記式(II)を満たす第二の活物質を用いた実施例1~26では高い容量維持率が得られ、寿命特性が良好であった。一方、前記式(II)を満たしていない第二の活物質を用いた比較例1、2では、良好な寿命特性は得られなかった。
 [実施例27~49、比較例3、4]
 第一の活物質として表2に示す活物質を、実施例2~26、比較例1、2で示した原料と同様の原料を用いて、実施例1と同様の方法で調製した。また、第二の活物質としてLi[Li0.2Ni0.25Mn0.55]Oを、実施例2~26、比較例1、2で示した原料と同様の原料を用いて、実施例1と同様の方法で調製した。それ以外は実施例1と同様に二次電池を作製し、評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、比較例3、4に対して、前記式(I)を満たす第一の活物質を用いた実施例27~49では、容量維持率が高かった。第一の活物質にLi、B、Mg、Al、Na及びCaからなる群から選択される少なくとも一種であるM3を添加することによって、第一の活物質界面の劣化が抑制され、導電性の低い第二の活物質との電気的接触が保たれ、寿命特性が改善したと推定される。
 [実施例50~57、比較例5、6]
 第一の活物質としてLi[Ni0.5Mn1.36Ti0.12Mg0.02]Oを、実施例2~26、比較例1、2で示した原料と同様の原料を用いて、実施例1と同様の方法で調製した。また、第二の活物質としてLi[Li0.15Ni0.25Al0.03Mn0.57]Oを、実施例2~26、比較例1、2で示した原料と同様の原料を用いて、実施例1と同様の方法で調製した。前記第一の活物質と前記第二の活物質とを表3に示す割合で混合し、正極活物質として用いた以外は実施例1と同様に二次電池を作製し、評価を行った。
 容量維持率と、200サイクル目の活物質質量あたりの放電エネルギー(電池容量×電池の放電平均電圧)とを表3に示す。なお、活物質質量とは第一の活物質の質量と第二の活物質の質量との合計の質量を示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、第一の正極活物質と第二の正極活物質との両方ともを用いた実施例50~57において、容量維持率が高く、かつ200サイクル後の放電エネルギーが高いことがわかった。
 [実施例58~61、比較例7~10]
 第一の活物質としてLi[Ni0.48Co0.04Mn1.470.01]Oを、実施例2~26、比較例1、2で示した原料と同様の原料を用いて、実施例1と同様の方法で調製した。また、第二の活物質としてLi[Li0.15Ni0.25Al0.03Mn0.57]Oを、実施例2~26、比較例1、2で示した原料と同様の原料を用いて、実施例1と同様の方法で調製した。前記第一の活物質と前記第二の活物質とを表4に示す割合で混合し、正極活物質として用いた。また、負極活物質として表4に記載の材料を用いた。それ以外は実施例1と同様に二次電池を作製し、評価を行った。なお、負極活物質としてLiTi12を用いた実施例61、比較例10では、容量維持率の測定において、充電電圧を3.3V、放電電圧を1.5Vとした。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、第一の正極活物質と第二の正極活物質との両方ともを用いた実施例58~61においては、負極活物質としていずれの活物質を用いた場合においても容量維持率が高く、かつ200サイクル後の放電エネルギーが高いことがわかった。
 この出願は、2011年7月13日に出願された日本出願特願2011-154753を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
1    正極活物質層
2    負極活物質層
3    正極集電体
4    負極集電体
5    セパレータ
6、7  外装体
8    負極タブ
9    正極タブ

Claims (17)

  1.  下記式(I)
      Li[M1M22-m-nM3]O  (I)
    (式(I)中、M1はNi、Cr、Fe、Co及びCuからなる群から選択される少なくとも一種である。M2はMn、Ti及びSiからなる群から選択される少なくとも一種であり、かつ少なくともMnを含む。M3はLi、B、Mg、Al、Na及びCaからなる群から選択される少なくとも一種である。0≦p、0<m、0<n、m+n<2である。)
    で表される第一の活物質と、
     下記式(II)
      Li[LiMn1-a-x-z]O  (II)
    (式(II)中、XはNi、Cr、Fe、Co及びCuからなる群から選択される少なくとも一種である。ZはAl、Mg、B、Si、Na、Ca及びTiからなる群から選択される少なくとも一種である。0≦q、0<a、0<x、0≦z、a+x+z<1である。)
    で表される第二の活物質と、を含む二次電池用活物質。
  2.  前記式(I)において、0.4≦m<1.1である請求項1に記載の二次電池用活物質。
  3.  前記式(I)において、0<n≦0.1である請求項1又は2に記載の二次電池用活物質。
  4.  前記式(I)において、0≦p≦2である請求項1から3のいずれか1項に記載の二次電池用活物質。
  5.  前記式(II)において、0.1≦a≦0.3である1から4のいずれか1項に記載の二次電池用活物質。
  6.  前記式(II)において、0.1≦x<0.4である請求項1から5のいずれか1項に記載の二次電池用活物質。
  7.  前記式(II)において、0<z<0.3である請求項1から6のいずれか1項に記載の二次電池用活物質。
  8.  前記式(II)において、0.2≦a+x+z≦0.5である請求項1から7のいずれか1項に記載の二次電池用活物質。
  9.  前記式(II)において、0≦q≦1である請求項1から8のいずれか1項に記載の二次電池用活物質。
  10.  前記式(I)において、M1が少なくともNiを含む請求項1から9のいずれか1項に記載の二次電池用活物質。
  11.  前記式(II)において、Xが少なくともNiを含む請求項1から10のいずれか1項に記載の二次電池用活物質。
  12.  前記二次電池用活物質に含まれる前記第一の活物質の質量と前記第二の活物質の質量との合計に対する、前記第二の活物質の質量の割合が、3質量%以上、90質量%以下である請求項1から11のいずれか1項に記載の二次電池用活物質。
  13.  前記二次電池用活物質が二次電池用正極活物質である請求項1から12のいずれか1項に記載の二次電池用活物質。
  14.  請求項1から13のいずれか1項に記載の二次電池用活物質を含む二次電池用電極。
  15.  請求項14に記載の二次電池用電極を備える二次電池。
  16.  負極活物質を含む負極を備え、
     前記負極活物質が黒鉛、SiO、Si、ハードカーボン及びLiTi12からなる群から選択される少なくとも一種である請求項15に記載の二次電池。
  17.  下記式(I)
      Li[M1M22-m-nM3]O  (I)
    (式(I)中、M1はNi、Cr、Fe、Co及びCuからなる群から選択される少なくとも一種である。M2はMn、Ti及びSiからなる群から選択される少なくとも一種であり、かつ少なくともMnを含む。M3はLi、B、Mg、Al、Na及びCaからなる群から選択される少なくとも一種である。0≦p、0<m、0<n、m+n<2である。)
    で表される第一の活物質と、
     下記式(II)
      Li[LiMn1-a-x-z]O  (II)
    (式(II)中、XはNi、Cr、Fe、Co及びCuからなる群から選択される少なくとも一種である。ZはAl、Mg、B、Si、Na、Ca及びTiからなる群から選択される少なくとも一種である。0≦q、0<a、0<x、0≦z、a+x+z<1である。)
    で表される第二の活物質と、を混合する工程を含む二次電池用活物質の製造方法。
PCT/JP2012/065309 2011-07-13 2012-06-15 二次電池用活物質 WO2013008581A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/130,056 US9356284B2 (en) 2011-07-13 2012-06-15 Active material for secondary battery
JP2013523869A JP5999090B2 (ja) 2011-07-13 2012-06-15 二次電池用活物質
CN201280034706.9A CN103703593B (zh) 2011-07-13 2012-06-15 二次电池用活性物质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-154753 2011-07-13
JP2011154753 2011-07-13

Publications (1)

Publication Number Publication Date
WO2013008581A1 true WO2013008581A1 (ja) 2013-01-17

Family

ID=47505879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065309 WO2013008581A1 (ja) 2011-07-13 2012-06-15 二次電池用活物質

Country Status (4)

Country Link
US (1) US9356284B2 (ja)
JP (1) JP5999090B2 (ja)
CN (1) CN103703593B (ja)
WO (1) WO2013008581A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167657A1 (ja) * 2013-04-10 2014-10-16 株式会社 日立製作所 リチウムイオン二次電池用正極材料およびリチウムイオン二次電池
WO2015019729A1 (ja) * 2013-08-09 2015-02-12 株式会社日立製作所 リチウムイオン二次電池用正極材料
JP2015195177A (ja) * 2014-03-24 2015-11-05 日亜化学工業株式会社 非水電解液二次電池用正極活物質
WO2018123604A1 (ja) * 2016-12-27 2018-07-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016001116T5 (de) * 2015-03-10 2017-11-30 The University Of Tokyo Elektrolytlösung
CN108432001B (zh) * 2015-11-11 2021-08-17 住友化学株式会社 正极活性物质的制造方法、正极活性物质、正极和锂离子二次电池
CN105609715B (zh) * 2015-12-18 2018-07-06 浙江天能能源科技股份有限公司 一种铝钛共掺杂的镍锰酸锂锂离子电池正极材料及其制备方法
US11177500B2 (en) * 2017-01-17 2021-11-16 Sila Nanotechnologies, Inc. Electrolytes for improved performance of cells with high-capacity anodes based on micron-scale moderate volume-changing particles
CN114566633A (zh) * 2022-03-04 2022-05-31 中化国际(控股)股份有限公司 一种新型无钴正极材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323140A (ja) * 1999-05-17 2000-11-24 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池正極材料及びそれを用いた非水電解液二次電池
JP2001068109A (ja) * 1999-08-25 2001-03-16 Mitsubishi Chemicals Corp リチウム二次電池用正極材料及びその製造方法、リチウム二次電池用正極、並びにリチウム二次電池
JP2003229130A (ja) * 2001-11-27 2003-08-15 Nec Corp 二次電池用正極活物質およびそれを用いた二次電池用正極および二次電池
JP2005085720A (ja) * 2003-09-11 2005-03-31 Nec Corp リチウムイオン二次電池用正極およびリチウムイオン二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2158242C (en) 1995-09-13 2000-08-15 Qiming Zhong High voltage insertion compounds for lithium batteries
KR100309769B1 (ko) * 1999-06-17 2001-11-01 김순택 리튬 이차 전지용 양극 활물질과 그 제조 방법
JP2004259511A (ja) * 2003-02-25 2004-09-16 Shin Kobe Electric Mach Co Ltd リチウム二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323140A (ja) * 1999-05-17 2000-11-24 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池正極材料及びそれを用いた非水電解液二次電池
JP2001068109A (ja) * 1999-08-25 2001-03-16 Mitsubishi Chemicals Corp リチウム二次電池用正極材料及びその製造方法、リチウム二次電池用正極、並びにリチウム二次電池
JP2003229130A (ja) * 2001-11-27 2003-08-15 Nec Corp 二次電池用正極活物質およびそれを用いた二次電池用正極および二次電池
JP2005085720A (ja) * 2003-09-11 2005-03-31 Nec Corp リチウムイオン二次電池用正極およびリチウムイオン二次電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167657A1 (ja) * 2013-04-10 2014-10-16 株式会社 日立製作所 リチウムイオン二次電池用正極材料およびリチウムイオン二次電池
WO2015019729A1 (ja) * 2013-08-09 2015-02-12 株式会社日立製作所 リチウムイオン二次電池用正極材料
WO2015019482A1 (ja) * 2013-08-09 2015-02-12 株式会社日立製作所 リチウムイオン二次電池用正極材料
JP2015195177A (ja) * 2014-03-24 2015-11-05 日亜化学工業株式会社 非水電解液二次電池用正極活物質
WO2018123604A1 (ja) * 2016-12-27 2018-07-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質

Also Published As

Publication number Publication date
US9356284B2 (en) 2016-05-31
CN103703593A (zh) 2014-04-02
US20140138575A1 (en) 2014-05-22
JP5999090B2 (ja) 2016-09-28
JPWO2013008581A1 (ja) 2015-02-23
CN103703593B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
JP4696557B2 (ja) リチウム二次電池用活物質材料、その製造方法及びこれに用いる原材料並びにリチウム二次電池
JP4539816B2 (ja) リチウム二次電池用正極及びリチウム二次電池
JP5999090B2 (ja) 二次電池用活物質
JP5641560B2 (ja) 二次電池用正極活物質及びそれを使用した二次電池
JP4853608B2 (ja) リチウム二次電池
WO2012014793A1 (ja) リチウムイオン二次電池
JP5169850B2 (ja) 非水電解液二次電池
JP5495300B2 (ja) リチウムイオン二次電池
JP3675439B2 (ja) 二次電池用正極活物質およびそれを用いた二次電池用正極および二次電池
JP5278994B2 (ja) リチウム二次電池
JP2004241339A (ja) 二次電池用電解液および非水電解液二次電池
JP6007904B2 (ja) 二次電池用活物質およびそれを使用した二次電池
JP4192477B2 (ja) 二次電池用正極活物質およびそれを用いた二次電池用正極および二次電池
JP6607188B2 (ja) 正極及びそれを用いた二次電池
JP4458232B2 (ja) リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP5046602B2 (ja) 二次電池用正極、およびそれを用いた二次電池
JP5459757B2 (ja) 二次電池用正極活物質およびそれを使用した二次電池
JP2004014270A (ja) 二次電池
JP2012243461A (ja) 二次電池
JP5942852B2 (ja) 二次電池用正極活物質及びそれを使用した二次電池
JP5447615B2 (ja) 電解液および非水電解液二次電池
JP4867153B2 (ja) 非水電解液二次電池用の正極活物質、二次電池用正極および非水電解液二次電池
JP4265171B2 (ja) 二次電池
JP4991225B2 (ja) 二次電池用正極活物質、それを用いた二次電池用正極および二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811653

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14130056

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013523869

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811653

Country of ref document: EP

Kind code of ref document: A1