WO2013005402A1 - フラットパネルディスプレイ用ガラス基板およびその製造方法 - Google Patents

フラットパネルディスプレイ用ガラス基板およびその製造方法 Download PDF

Info

Publication number
WO2013005402A1
WO2013005402A1 PCT/JP2012/004201 JP2012004201W WO2013005402A1 WO 2013005402 A1 WO2013005402 A1 WO 2013005402A1 JP 2012004201 W JP2012004201 W JP 2012004201W WO 2013005402 A1 WO2013005402 A1 WO 2013005402A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass substrate
less
flat panel
ppm
Prior art date
Application number
PCT/JP2012/004201
Other languages
English (en)
French (fr)
Inventor
小山 昭浩
諭 阿美
学 市川
Original Assignee
AvanStrate株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AvanStrate株式会社 filed Critical AvanStrate株式会社
Priority to CN201280002421.7A priority Critical patent/CN103080032B/zh
Priority to KR1020127021417A priority patent/KR101409707B1/ko
Publication of WO2013005402A1 publication Critical patent/WO2013005402A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This invention relates to the glass substrate for flat panel displays, and its manufacturing method.
  • Thin flat panel displays with low power consumption such as thin film transistor (TFT) type liquid crystal displays and organic electroluminescence (EL) displays, have been widely used in recent years as displays for portable devices and the like.
  • TFT thin film transistor
  • EL organic electroluminescence
  • a glass substrate is used as a substrate for these displays.
  • TFT includes amorphous silicon ( ⁇ -Si) TFT and polysilicon (p-Si) TFT.
  • p-Si • TFTs can realize ultra-high-definition and beautiful screens, can achieve high durability of displays, can be made thin and light, and can have low power consumption. This is superior to ⁇ -Si ⁇ TFT.
  • high-temperature processing has been required for the production of p-Si • TFTs. Therefore, glass other than silica glass could not be used because heat shrinkage and thermal shock occurred in the glass substrate when manufacturing the p-Si • TFT. As a result, it has been difficult to apply p-Si.TFT to a liquid crystal display.
  • LTPS low-temperature polysilicon
  • the thermal shrinkage of the glass substrate can be suppressed by increasing the temperature in the low temperature viscosity region (low temperature viscosity property) represented by the glass transition point (hereinafter referred to as Tg) and the strain point (hereinafter referred to as this).
  • Tg and strain point are representatively described as “low temperature viscosity characteristic temperature”.
  • the degree of freedom of the manufacturing method is also decreased.
  • the devitrification temperature is increased and the liquid phase viscosity is decreased, for example, there is a problem that it becomes difficult to manufacture a glass substrate using an overflow downdraw method.
  • the present invention provides a flat panel display in which the amount of thermal shrinkage is reduced while suppressing a decrease in devitrification resistance, and does not cause a problem of pixel pitch deviation even when used in a display to which p-Si.TFT is applied.
  • An object of the present invention is to provide a glass substrate.
  • the glass substrate for flat panel display on which the first p-Si • TFT of the present invention is formed In mol% SiO 2 55-80% Al 2 O 3 3-20% B 2 O 3 3-15% RO (total amount of MgO, CaO, SrO, BaO) 3-25% Containing Substantially free of As 2 O 3 and Sb 2 O 3 , and It is composed of glass having a devitrification temperature of 1250 ° C. or lower, The heat shrinkage is 75 ppm or less.
  • the heat shrinkage rate is a value obtained by the following equation using the shrinkage amount of the glass substrate after heat treatment at a heating / cooling rate of 10 ° C./min and 550 ° C. for 2 hours. is there.
  • Thermal shrinkage (ppm) ⁇ Shrinkage of glass substrate after heat treatment / length of glass substrate before heat treatment ⁇ ⁇ 10 6
  • the subsequent “heat shrinkage rate” is similarly defined.
  • the glass substrate for flat panel display on which the second p-Si • TFT of the present invention is formed In mol% SiO 2 55-80% Al 2 O 3 3-20% B 2 O 3 3-15% RO (total amount of MgO, CaO, SrO, BaO) 3-25% Containing Substantially free of As 2 O 3 and Sb 2 O 3 , and It is a glass substrate composed of glass having a devitrification temperature of 1250 ° C.
  • the thermal contraction rate of the glass substrate is 75 ppm or less.
  • the present invention also provides: In mol%, SiO 2 is 55 to 80%, Al 2 O 3 is 3 to 20%, B 2 O 3 is 3 to 15%, and RO (total amount of MgO, CaO, SrO, BaO) is 3 to 25%. Melting a glass raw material prepared so as to be a glass having substantially no As 2 O 3 and Sb 2 O 3 and having a devitrification temperature of 1250 ° C.
  • the present invention further provides: In mol% SiO 2 55-80% Al 2 O 3 3-20% B 2 O 3 3-15% RO (total amount of MgO, CaO, SrO, BaO) 3-25% Containing Substantially free of As 2 O 3 and Sb 2 O 3 , and It is composed of glass having a devitrification temperature of 1250 ° C. or lower, The thermal shrinkage is 75 ppm or less, A glass substrate for flat panel displays is also provided.
  • the present invention even when used in a display to which p-Si • TFT is applied without deteriorating devitrification resistance, thermal shrinkage due to heat treatment during display manufacturing is suppressed, and pixel pitch deviation is suppressed.
  • the glass substrate which has the outstanding characteristic which does not produce this problem can be provided.
  • the glass substrate for display of the present embodiment is expressed in mol%, 55 to 80% of SiO 2 , 3 to 20% of Al 2 O 3 , 3 to 15% of B 2 O 3 , RO (MgO, CaO, The total amount of SrO and BaO is 3 to 25%, and the glass has a devitrification temperature of 1250 ° C. or lower.
  • the glass substrate for display of the present embodiment has a heat shrinkage rate of 75 ppm or less, preferably 60 ppm or less. The thermal contraction rate of the glass substrate can be suppressed by increasing the Tg and strain point of the glass.
  • the thermal shrinkage rate of the glass substrate can be reduced not only by increasing the Tg and strain point by adjusting the glass composition, but also by appropriately adjusting the conditions during slow glass cooling. If the glass composition is improved by simply focusing on increasing the Tg and strain point of the glass, the devitrification temperature may increase and the devitrification resistance may decrease.
  • the glass substrate of this embodiment can achieve a heat shrinkage rate of 75 ppm or less, preferably 60 ppm or less, by appropriately combining the adjustment of the glass composition and the adjustment of the conditions during the slow cooling of the glass. Therefore, a glass substrate having both a heat shrinkage rate of 75 ppm or less, preferably 60 ppm or less, and a devitrification temperature of 1250 ° C. or less can be realized.
  • the glass constituting the glass substrate of the present embodiment does not cause a problem of pixel pitch deviation by suppressing heat shrinkage due to heat treatment during flat panel display production while maintaining good devitrification resistance. It can have excellent properties. Furthermore, since the devitrification temperature is suppressed to 1250 ° C. or less, the glass constituting the glass substrate of the present embodiment can be easily formed using the downdraw method. Further, the glass for the glass substrate of this embodiment, the As 2 O 3 and Sb 2 O 3 does not substantially contained as a glass composition, environmental load can be reduced.
  • the glass which comprises the glass substrate of this embodiment can contain 5% or less of ZnO as an arbitrary component.
  • the content indicated in mole% of SiO 2 and Al 2 O 3 is, SiO 2 + Al 2 O 3 ⁇ 70%, more preferably, SiO 2 + Al 2 O 3 satisfy the ⁇ 75%
  • the heat shrinkage rate can be reduced by adjusting the glass composition and adjusting the conditions during glass production.
  • the condition during glass production is specifically that the glass is cooled at a necessary and sufficiently low rate in a temperature range from Tg to Tg-100 ° C. during slow cooling of the glass.
  • the thermal shrinkage rate is 75 ppm or less, preferably 65 ppm or less, more preferably 60 ppm or less, the glass substrate of this embodiment is used for a display to which p-Si • TFT is applied, and the display has a high definition. Even in some cases, the pitch deviation of the pixels can be sufficiently suppressed.
  • the thermal shrinkage rate is preferably 55 ppm or less, more preferably 50 ppm or less, further preferably 45 ppm or less, further preferably 43 ppm or less, further preferably 40 ppm or less, and further preferably 38 ppm or less.
  • the heat shrinkage rate is 0 to 75 ppm, preferably 0 to 65 ppm, more preferably 0 to 60 ppm, still more preferably 0 to 55 ppm, still more preferably 0 to 50 ppm, and even more preferably.
  • thermal shrinkage reduction treatment offline annealing
  • the heat shrinkage rate is, for example, 3 to 75 ppm, preferably 5 to 75 ppm, more preferably 5 to 65 ppm, still more preferably 8 to 55 ppm, and still more preferably 8 It is ⁇ 50 ppm, more preferably 10 to 45 ppm, further preferably 10 to 43 ppm, more preferably 10 to 40 ppm, and further preferably 15 to 38 ppm.
  • the glass constituting the glass substrate of the present embodiment has a devitrification temperature of 1250 ° C. or lower. As described above, by setting the devitrification temperature to 1250 ° C. or less, the glass constituting the glass substrate of this embodiment can be easily molded using the downdraw method. As a result, the surface quality of the glass substrate can be improved and the production cost of the glass substrate can be reduced. Moreover, when the devitrification temperature is too high, devitrification is likely to occur, and the devitrification resistance is lowered. Therefore, the devitrification temperature of the glass constituting the glass substrate of the present embodiment is preferably 1230 ° C. or lower, more preferably 1220 ° C. or lower, more preferably 1210 ° C.
  • the devitrification temperature of the glass constituting the glass substrate is preferably 1050 ° C. to 1250 ° C., more preferably 1110 ° C. to It is 1250 ° C, more preferably 1150 ° C to 1240 ° C, more preferably 1160 ° C to 1230 ° C, and still more preferably 1170 ° C to 1220 ° C.
  • the glass constituting the glass substrate of the present embodiment can have a strain point of 660 ° C. or higher.
  • the strain point is preferably 665 ° C or higher, more preferably 675 ° C or higher, further preferably 680 ° C or higher, further preferably 685 ° C or higher, and 690 ° C or higher. Is more preferable, 695 ° C. or higher is more preferable, and 700 ° C. or higher is more preferable.
  • the glass constituting the glass substrate of the present embodiment preferably has a liquidus viscosity of 10 4.0 dPa ⁇ s or more, and more preferably 10 4.5 dPa ⁇ s or more.
  • a liquidus viscosity 10 4.0 dPa ⁇ s or more
  • 10 4.5 dPa ⁇ s or more By setting the liquid phase viscosity to 10 4.0 dPa ⁇ s or more, it becomes easy to mold by the float process.
  • the moldability is further improved by setting the liquid phase viscosity to 10 4.5 dPa ⁇ s or more. Therefore, by setting the liquid phase viscosity in such a range, the glass constituting the glass substrate of the present embodiment can be easily molded using the downdraw method (particularly, the overflow downdraw method).
  • the liquid phase viscosity is more preferably 10 4.5 to 10 6.0 dPa ⁇ s, more preferably 10 4.5 to 10 5.9 dPa ⁇ s, and more preferably 10 4.6 to 10 5.8 dPa ⁇ s, more preferably 10 4.6 to 10 5.7 dPa ⁇ s, more preferably 10 4.7 to 10 5.7 dPa ⁇ s, more preferably 10 4. 0.8 to 10 5.6 dPa ⁇ s, more preferably 10 4.9 to 10 5.5 dPa ⁇ s.
  • the glass which comprises the glass substrate of this embodiment has favorable meltability. If the meltability is deteriorated, that is, the melting temperature is increased, the load on the melting tank is increased, and furthermore, the energy required for melting is increased, so that the production cost is increased. In addition, when the melting temperature is high, when electric melting is applied to the melting of the glass raw material, the current flows through the heat-resistant brick forming the melting tank, not the glass, and the melting tank may be damaged. In addition, the meltability of glass can be evaluated by the glass temperature (melting temperature) when the viscosity is 10 2.5 dPa ⁇ s. Therefore, the glass constituting the glass substrate of the present embodiment preferably has a melting temperature of 1680 ° C. or lower.
  • the melting temperature is preferably 1550 to 1650 ° C., preferably 1550 to 1645 ° C., more preferably 1580 to 1640 ° C., more preferably 1590 to 1630 ° C., and further preferably 1600 to 1620 ° C. ° C.
  • the glass constituting the glass substrate of the present embodiment preferably has an average coefficient of thermal expansion of less than 37 ⁇ 10 ⁇ 7 K ⁇ 1 in the range of 100 to 300 ° C., and is 28 ⁇ 10 ⁇ 7 K ⁇ 1 or more and 36 ⁇ . More preferably, it is less than 10 ⁇ 7 K ⁇ 1 , more preferably 30 ⁇ 10 ⁇ 7 K ⁇ 1 or more and less than 35 ⁇ 10 ⁇ 7 K ⁇ 1 , and 31 ⁇ 10 ⁇ 7 K ⁇ 1 or more. It is more preferably less than 5 ⁇ 10 ⁇ 7 K ⁇ 1 , and further preferably less than 32 ⁇ 10 ⁇ 7 K ⁇ 1 and less than 34 ⁇ 10 ⁇ 7 K ⁇ 1 .
  • the thermal expansion coefficient is too large, the thermal shock and the amount of thermal shrinkage increase in the heat treatment process during display manufacturing.
  • the thermal expansion coefficient is too small, it is difficult to match the thermal expansion coefficient of peripheral materials such as metals and organic adhesives formed on the glass substrate during display manufacturing, and the peripheral members may peel off. There is. In the p-Si • TFT manufacturing process, rapid heating and rapid cooling are repeated, and the thermal shock applied to the glass substrate increases. Furthermore, a large glass substrate tends to have a temperature difference (temperature distribution) in the heat treatment process, and the probability of destruction of the glass substrate increases.
  • the thermal expansion coefficient in the above range, the thermal stress resulting from the thermal expansion difference can be reduced, and as a result, the probability of breaking the glass substrate in the heat treatment step is lowered.
  • the average thermal expansion of the glass constituting the glass substrate in the range of 100 to 300 ° C.
  • the coefficient is preferably less than 55 ⁇ 10 ⁇ 7 K ⁇ 1 , more preferably less than 40 ⁇ 10 ⁇ 7 K ⁇ 1 , and more preferably 28 ⁇ 10 ⁇ 7 K ⁇ 1 or more and less than 40 ⁇ 10 ⁇ 7 K ⁇ 1.
  • it is 30 ⁇ 10 ⁇ 7 K ⁇ 1 or more and less than 39 ⁇ 10 ⁇ 7 K ⁇ 1 , more preferably 32 ⁇ 10 ⁇ 7 K ⁇ 1 or more and less than 38 ⁇ 10 ⁇ 7 K ⁇ 1. More preferably, it is 34 ⁇ 10 ⁇ 7 K ⁇ 1 or more and less than 38 ⁇ 10 ⁇ 7 K ⁇ 1 .
  • Tg of the glass substrate of this embodiment is preferably 720 ° C. or higher, more preferably 740 ° C. or higher, further preferably 745 ° C. or higher, further preferably 750 ° C. or higher, further preferably 755 ° C. or higher, and 760 ° C. or higher. Further preferred.
  • the density of the glass substrate of the present embodiment is preferably from 2.6 g / cm 3 or less, more preferably less than 2.5 g / cm 3, more preferably 2.45 g / cm 3 or less, 2.42 g / cm 3
  • the following is more preferable, and 2.4 g / cm 3 or less is even more preferable.
  • a glass substrate for flat display and a glass substrate for organic EL display provided with p-Si ⁇ TFT is required to be lightweight, it is preferably less than 2.5 g / cm 3 and is preferably 2.45 g / cm 3.
  • the following is more preferable, 2.42 g / cm 3 or less is more preferable, and 2.4 g / cm 3 or less is even more preferable.
  • the specific resistance of the glass melt is preferably 50 to 300 ⁇ ⁇ cm, more preferably 50 to 250 ⁇ ⁇ cm, still more preferably 80 to 240 ⁇ ⁇ cm, and more preferably 100 to 230 ⁇ ⁇ cm. cm is more preferable.
  • the Young's modulus of the glass substrate of the present embodiment is preferably 70 GPa or more, more preferably 73 GPa or more, further preferably 74 GPa or more, and further preferably 75 GPa or more.
  • the specific elastic modulus of the glass substrate of the present embodiment is preferably 28 GPa or more, more preferably 29 GPa or more, further preferably 30 GPa or more, and further preferably 31 GPa or more.
  • mol% is simply abbreviated as%.
  • SiO 2 is a skeleton component and an essential component. If the amount of SiO 2 is too small, there may be a decrease in acid resistance, a decrease in Tg and strain point, an increase in thermal expansion coefficient, and a decrease in resistance to buffered hydrofluoric acid (BHF). Moreover, it may be difficult to reduce the density. On the other hand, when the amount of SiO 2 is too large, the melting temperature becomes remarkably high and melting and molding may be difficult. In addition, the devitrification resistance may decrease. Further, the etching rate when slimming glass cannot be made sufficiently high.
  • BHF buffered hydrofluoric acid
  • the content of SiO 2 is preferably 55 to 80%, more preferably 60 to 78%, further preferably 62 to 78%, further preferably 65 to 78%, and further preferably 65 to 75%.
  • the content of SiO 2 is more preferably 67 to 73%, and more preferably 69 to 72%.
  • the content of SiO 2 is more preferably 62 to 78%, further preferably 62 to 74%, and further preferably 64 to 70%.
  • the content of SiO 2 is more preferably 65 to 73%, and more preferably 66 to 71%.
  • Al 2 O 3 is an essential component that suppresses phase separation and increases Tg and strain point. If the amount of Al 2 O 3 is too small, the glass is likely to undergo phase separation. In addition, there may be a decrease in heat resistance and an increase in thermal shrinkage due to a decrease in Tg and strain point, and a decrease in Young's modulus and acid resistance. Further, the glass etching rate cannot be increased sufficiently. On the other hand, when the amount of Al 2 O 3 is too large, the devitrification temperature of the glass rises, since the devitrification resistance decreases, moldability is deteriorated. Accordingly, the Al 2 O 3 content is preferably 3 to 20%, more preferably 5 to 18%, and even more preferably 5 to 15%.
  • the content of Al 2 O 3 is more preferably 7 to 13%, and further preferably 9 to 12%. Further, in order to sufficiently increase the etching rate when slimming glass, the content of Al 2 O 3 is more preferably 7 to 15%, further preferably 9 to 14%, further preferably 10 to 14%. preferable. On the other hand, in a glass substrate containing 3% or more of SrO + BaO, the content of Al 2 O 3 is more preferably 8 to 15%, further preferably 10 to 14%.
  • B 2 O 3 is an essential component that lowers the viscosity characteristic (high temperature viscosity characteristic) temperature in the high temperature range typified by the melting temperature and improves the meltability (hereinafter referred to as “high temperature viscosity characteristic” in this specification).
  • high temperature viscosity characteristic As “temperature”, “melting temperature” is representatively described.) If the amount of B 2 O 3 is too small, a decrease in meltability, a decrease in BHF resistance, a decrease in devitrification resistance, and an increase in thermal expansion coefficient may occur. In addition, the density may increase and it may be difficult to reduce the density.
  • the content of B 2 O 3 is preferably 3 to 15%, more preferably 3 to 13, and further preferably 3 to 10%.
  • the content of B 2 O 3 is more preferably 3% or more and less than 9.5%, more preferably 3.5% or more.
  • the content of B 2 O 3 is more preferably 5 to 13%, further preferably 5 to 12%, and less than 6 to 10% (6% or more and 10%). Less).
  • the content of B 2 O 3 is more preferably 3 to 9%, and further preferably 4 to 8%.
  • MgO MgO is a component that improves meltability.
  • MgO is a component that hardly increases the density among alkaline earth metals, and therefore, when the content is relatively increased, it becomes easy to reduce the density of the glass.
  • MgO is not essential.
  • MgO may be included.
  • Tg and strain point decrease heat resistance decrease
  • acid resistance decrease Young's modulus decrease may occur.
  • the devitrification temperature is increased and the devitrification resistance is decreased, it may be difficult to apply to the downdraw method.
  • the MgO content is preferably 0 to 15%, more preferably 0 to 10%.
  • the content of MgO is more preferably 0 to 5%, and 0 to less than 2% (0% or more and less than 2%) ) Is more preferable, 0 to 1.5% is more preferable, 0 to 1% is more preferable, 0 to 0.5% is preferable, and MgO is further substantially not included.
  • the content of MgO is more preferably 1 to 9%, and further preferably 2 to 8%.
  • CaO CaO is an effective component for improving the meltability of glass without rapidly increasing the devitrification temperature of the glass. Further, since CaO is a component that hardly increases the density among alkaline earth metals, relatively increasing the CaO amount makes it easier to reduce the density of the glass. If the amount of CaO is too small, a decrease in meltability and a decrease in devitrification resistance due to an increase in viscosity at high temperatures are likely to occur. On the other hand, if the amount of CaO is too large, the coefficient of thermal expansion tends to increase. For these reasons, the CaO content is preferably 0 to 20%, more preferably 0 to 18%.
  • the CgO content is more preferably 3.6 to 16%, further preferably 4 to 16%, more preferably 6 to 16% is more preferable, more than 7 to 16% (more than 7% and not more than 16%) is more preferable, 8 to 13% is further preferable, and 9 to 12% is more preferable.
  • the content of CaO is more preferably 0 to 10%, further preferably 0 to 5%, and further preferably 0 to 3%.
  • SrO is a component that can lower the devitrification temperature of glass. SrO is not an essential component, but if it is contained, it can be contained since it can improve devitrification resistance and meltability. However, if the amount of SrO is too large, the density will increase. Therefore, when it is desired to reduce the density, it is preferable that SrO is not substantially contained. Therefore, in the glass substrate of the present embodiment, the SrO content is preferably 0 to 10%, more preferably 0 to 8%. In order to further reduce the weight, the SrO content is preferably less than 3%, more preferably 2% or less, further preferably 1% or less, further preferably 0.5% or less, and SrO is substantially contained.
  • the content of SrO is preferably 0 to less than 3% (0% or more and less than 3%), more preferably 0 to 2%, further preferably 0 to 1%, further preferably 0 to 0.5%, More preferably, SrO is not substantially contained.
  • the SrO content is preferably 1 to 8%, more preferably 3 to 8%.
  • BaO BaO is a component that improves devitrification resistance and meltability. Moreover, by containing BaO, the thermal expansion coefficient increases and the density excessively increases. Therefore, in the glass substrate of the present embodiment, the BaO content is preferably 0 to 10%, more preferably 0 to 5%, further preferably 0 to 2%, and further preferably 0 to 1%. In addition, since there is a problem of environmental load, it is more preferable that BaO is not substantially contained.
  • Li 2 O and Na 2 O are components that improve the meltability, but increase the thermal expansion coefficient of the glass to break the substrate during heat treatment in display manufacturing, and greatly reduce the Tg and strain point of the glass. It is a component that excessively decreases the heat resistance. Therefore, in the glass substrate of the present embodiment, the content of Li 2 O and Na 2 O is preferably 0 to 0.3%, more preferably 0 to 0.2%, still more preferably 0 to 0.1%, More preferably, Li 2 O and Na 2 O are not substantially contained.
  • K 2 O K 2 O is a component that increases the basicity of the glass and exhibits clarity.
  • K 2 O is a component that improves the meltability and further reduces the specific resistance of the glass melt. Therefore, K 2 O is not an essential component, but when it is contained, it is possible to realize a reduction in specific resistance of the glass melt, improvement in meltability, and improvement in clarity.
  • the K 2 O content is preferably 0 to 0.8%, more preferably 0.01 to 0.5%, and even more preferably 0.1 to 0.3%.
  • ZrO 2 , TiO 2 are components that increase the chemical durability and Tg and strain point of glass.
  • ZrO 2 and TiO 2 are not essential components, but can be increased to increase Tg and strain point and improve acid resistance.
  • ZrO 2 and the amount of TiO 2 are too large, the devitrification temperature is remarkably increased, so that the devitrification resistance and the moldability may be lowered.
  • ZrO 2 may precipitate ZrO 2 crystals during the cooling process, which may cause deterioration of the quality of the glass as inclusions.
  • TiO 2 is a component that colors glass, and thus is not preferable for a display substrate.
  • the content of ZrO 2 and TiO 2 is preferably 0 to 5%, more preferably 0 to 3%, still more preferably 0 to 2%, and more preferably 0 to 1% is more preferable, and less than 0.5% is more preferable. More preferably, the glass substrate of the present embodiment does not substantially contain ZrO 2 and TiO 2 .
  • the ZnO content is preferably 5% or less, more preferably 3% or less, further preferably 2% or less, and further preferably 1% or less. More preferably, it is that the glass substrate of this embodiment does not contain ZnO substantially. In other words, the ZnO content is preferably 0 to 5%, more preferably 0 to 3%, further preferably 0 to 2%, and further preferably 0 to 1%. More preferably, it is that the glass substrate of this embodiment does not contain ZnO substantially.
  • P 2 O 5 may be included because it is a component that lowers the melting temperature and improves meltability, but is not an essential component. However, if the amount of P 2 O 5 is too large, non-uniformity of the glass becomes remarkable due to volatilization of P 2 O 5 during glass melting, and striae easily occur. Further, Tg and strain point are lowered, acid resistance is remarkably deteriorated, and milky white is likely to occur. Therefore, in the glass substrate of this embodiment, the P 2 O 5 content is preferably 3% or less, more preferably 1% or less, and even more preferably 0.5% or less. More preferably, the glass substrate of this embodiment is that it does not contain P 2 O 5 substantially. In other words, the content of P 2 O 5 is preferably 0 to 3%, more preferably 0 to 1%, and still more preferably 0 to 0.5%. More preferably, the glass substrate of this embodiment is that it does not contain P 2 O 5 substantially.
  • La 2 O 3 La 2 O 3 may be included.
  • the content of La 2 O 3 is preferably 0 to 1%, more preferably 0 to 0.5%, still more preferably 0 to 0.1%, and still more preferably, the glass substrate of the present embodiment is La 2 O 3 is not substantially contained.
  • the fining agent is not particularly limited as long as it has a small environmental load and is excellent in glass fining.
  • at least one selected from the group of Sn, Fe, Ce, Tb, Mo, and W metal oxides can be given. If there is too little fining agent, the foam quality will deteriorate. Therefore, the amount of fining agent added depends on the type of fining agent and the composition of the glass, but is, for example, 0.01 to 1%, preferably 0.05 to 1%, preferably 0.05 to 0.5%. More preferably, it is 0.05 to 0.3%, more preferably 0.05 to 0.2%.
  • SnO 2 is suitable. However, SnO 2 is a component that reduces the devitrification resistance of the glass. Therefore, for example, when SnO 2 is used as a fining agent, the content of SnO 2 is preferably 0.01 to 0.3%, more preferably 0.03 to 0.2%, and 0.05 to 0.15. % Is more preferable.
  • Fe 2 O 3 is a component that functions to lower the specific resistance in the high temperature region of the glass melt in addition to the function as a fining agent.
  • Fe 2 O 3 is not an essential component, but is preferably contained in a glass having a high melting temperature and difficult to melt in order to reduce the melting temperature and the specific resistance. If the amount of Fe 2 O 3 increases too much, the glass may be colored and the transmittance may decrease. Therefore, in the glass substrate of the present embodiment, the content of Fe 2 O 3 is preferably 0 to 0.1%, more preferably 0 to 0.08%, further preferably 0.001 to 0.05%, 0.005 to 0.03% is more preferable.
  • the temperature of the melting step is high, and thus the effect of Fe 2 O 3 as a fining agent tends to be lowered.
  • Fe 2 O 3 is used alone as a fining agent, the fining properties may be deteriorated and the foam quality of the glass substrate may be deteriorated. Therefore, it is preferably used in combination with SnO 2 .
  • As 2 O 3 and Sb 2 O 3 are components that are concerned about the environmental load. Accordingly, the glass for the glass substrate of this embodiment, as components, free of As 2 O 3 and Sb 2 O 3 substantially.
  • PbO and F are preferably substantially not contained due to environmental load problems.
  • composite parameters of the components included in the glass substrate of the present embodiment are as follows.
  • (SiO 2 + 2Al 2 O 3 ) / (2B 2 O 3 + RO) in such a range, both improvement in meltability and increase in Tg and strain point can be achieved. Alternatively, both improvement in devitrification resistance and an increase in Tg and strain point can be achieved.
  • the glass constituting the glass substrate of the present embodiment can easily achieve both high Tg and strain point and good meltability or devitrification resistance.
  • (SiO 2 + 2Al 2 O 3 ) / (2B 2 O 3 + RO) is more preferably 3.1 to 4.3, and still more preferably 3.3 to 3.65.
  • (SiO 2 + 2Al 2 O 3 ) / (2B 2 O 3 + RO) is preferably 2.5 to 10, and preferably 2.5 to 5 Is more preferably 2.8 to 5, more preferably 3 to 4, still more preferably 3.1 to 3.5.
  • RO Alkaline earth metal oxide
  • the RO content is preferably 3 to 25%, more preferably 4 to 20%.
  • the RO content is more preferably 5% or more and less than 14%, more preferably 6 to 14%, and more preferably 8 to 13%.
  • the RO content is more preferably 5% or more and less than 18%, and more preferably 8 to 17%.
  • CaO / RO In a glass containing less than 3% of SrO + BaO in order to reduce the weight, CaO / RO is preferably 0.5 or more, more preferably 0.7 or more, and even more preferably 0.85. 0.88 or more, more preferably 0.90 or more, further preferably 0.92 or more, and further preferably 0.95 or more.
  • CaO / RO is preferably 0.5 to 1, more preferably 0.7 to 1, more preferably more than 0.85 to 1, still more preferably 0.88 to 1, and 0.90 to 1 More preferred is 0.92-1, more preferred is 0.95-1.
  • Tg and a strain point can be raised by containing only CaO as a raw material rather than containing a plurality of alkaline earth metal oxides.
  • the obtained glass may contain other alkaline earth metal oxides as impurities.
  • the obtained glass has a CaO / RO value of, for example, about 0.98 to 1.
  • CaO is also a preferred component in that the raw material is inexpensive and is easily available.
  • SiO 2 - (Al 2 O 3/2) SiO 2 - If (Al 2 O 3/2) value is too small, although the etching rate is improved, in some cases devitrification resistance is decreased. On the other hand, if this value is too large, the etching rate may decrease. Accordingly, the glass constituting the glass of the present embodiment, SiO 2 - (Al 2 O 3/2) is preferably 69 or less, more preferably 60-68, more preferably 63-67. In addition, when slimming a glass substrate in display manufacturing, it is required to further increase the etching rate in order to improve the productivity.
  • SiO 2 - (Al 2 O 3/2) is preferably 69 or less, more preferably 50-68, more preferably 55-65, 57-63 are more Preferably, 58 to 62 is even more preferable.
  • the etching rate is preferably 50 ⁇ m / h or more.
  • the etching rate of the glass constituting the glass substrate is preferably 160 ⁇ m / h or less.
  • the etching rate is preferably 60 to 140 ⁇ m / h, more preferably 70 to 120 ⁇ m / h.
  • the etching rate is defined as measured under the following conditions.
  • the etching rate ( ⁇ m / h) is a unit time (1 hour) when a glass substrate is immersed in an etching solution at 40 ° C., which is a mixed acid having a HF ratio of 1 mol / kg and a HCl ratio of 5 mol / kg. ) Is expressed as a thickness reduction amount ( ⁇ m) of one surface of the glass substrate.
  • SiO 2 + 2Al 2 O 3 is preferably 80% or more, more preferably 80 to 100%, further preferably 85 to 98%, further preferably 89 to 97%. 90 to 96% is more preferable.
  • SiO 2 + 2Al 2 O 3 is more preferably 91 to 95%, and more preferably 91 to 93.5%.
  • SiO 2 + 2Al 2 O 3 is more preferably 91 to 96%.
  • Al 2 O 3 / SiO 2 is 0.05 to 0.35, preferably 0.07 to 0.30, and more preferably 0.10 to 0.25. preferable.
  • B 2 O 3 + P 2 O 5 is preferably 3 to 15%, more preferably 3 to 10%.
  • B 2 O 3 + P 2 O 5 is more preferably 3% or more and less than 9.5%, and 4% or more and 8. It is more preferably less than 9%, further preferably 5 to 8.5%, and further preferably 6 to 8%. Further, in order to improve the devitrification resistance, 5 to 13% is more preferable, 5 to 12% is more preferable, and 6 to less than 10% (6% or more and less than 10%) is further preferable. On the other hand, in a glass containing 3% or more of SrO + BaO, B 2 O 3 + P 2 O 5 is more preferably 3 to 9%, further preferably 4 to 8%.
  • CaO / B 2 O 3 is preferably 0.5 or more, more preferably 0.7 or more, more preferably 0.9 or more, and further more preferably 1.2.
  • More than 2 and 5 or less are more preferable, more than 1.2 and 3 or less are more preferable, 1.3 or more and 2.5 or less are more preferable, and 1.3 or more and 2 or less are more preferable. Further, in order to improve the meltability, 0.5 to 5 is preferable, 0.9 to 3 is more preferable, more than 1 is more preferably 2.5 or less, and more than 1 is more preferably 2 or less. More than .2 and 2 or less is more preferable, and more than 1.2 and 1.5 or less is more preferable.
  • SrO + BaO are components that can lower the devitrification temperature of glass. Although these components are not essential, when they are contained, the devitrification resistance and the meltability can be improved. However, if the amount of these components is too large, the density will increase. Therefore, it is difficult to reduce the density and reduce the weight. In addition, the thermal expansion coefficient may increase. Therefore, in the glass constituting the glass substrate of the present embodiment, SrO + BaO is preferably 10% or less. In order to further reduce the weight, it is more preferably 5% or less, further preferably less than 3%, and further preferably less than 2%. More preferably, it is that the glass which comprises the glass substrate of this embodiment does not contain SrO and BaO substantially.
  • SrO + BaO is preferably 0 to 10%, and for further weight reduction, 0 to 5% is more preferable, 0 to less than 3% (0% or more and less than 3%) is further preferable, and less than 0 to 2 % (0% or more and less than 2%) is more preferred, 0 to less than 1% (0% or more and less than 1%) is more preferred, and 0 to less than 0.5% (0% or more and less than 0.5%) is even more preferred. . More preferably, it is that the glass which comprises the glass substrate of this embodiment does not contain SrO and BaO substantially.
  • RO + ZnO + B 2 O 3 When RO + ZnO + B 2 O 3 is too small, the viscosity of the high temperature region is increased, melting of clarity and glass tends to decrease. On the other hand, when there is too much RO + ZnO + B 2 O 3 , Tg and strain point are likely to decrease. Therefore, in the glass constituting the glass substrate of the present embodiment, RO + ZnO + B 2 O 3 is preferably 7 to 30%, more preferably 10 to 27%. In order to further reduce the weight, in the glass containing less than 3% of SrO + BaO, RO + ZnO + B 2 O 3 is more preferably 12-22%, further preferably 14-21%, more preferably 16-20%. Further preferred.
  • RO + ZnO + B 2 O 3 is more preferably 12 to 27%, further preferably 14 to 25%, and further preferably 17 to 23%.
  • RO + ZnO + B 2 O 3 is more preferably 13 to 27%, and further preferably 15 to 25%.
  • R 2 O is a component that increases the basicity of the glass, facilitates the oxidization of the fining agent, and exhibits fining properties. Further, R 2 O, so is a component to facilitate achieve meltability improved and specific resistance decrease of the glass, it may be included. R 2 O is not an essential component, but when it is contained, it is possible to reduce specific resistance, improve clarity and improve meltability. However, when R 2 O content is too high, decrease excessively Tg and strain point further, there is a case where the thermal expansion coefficient is increased. Therefore, in the glass constituting the glass substrate of the present embodiment, R 2 O is preferably 0 to 0.8%, more preferably 0.01 to 0.5%, and further preferably 0.1 to 0.3%. .
  • K 2 O / R 2 O Since K 2 O has a higher molecular weight than Li 2 O and Na 2 O, it is difficult to elute from the glass substrate. Therefore, when R 2 O is contained, it is preferable to contain K 2 O at a higher ratio. K 2 O is preferably contained in a higher ratio than Li 2 O (K 2 O> Li 2 O is satisfied). K 2 O is preferably contained in a higher ratio than Na 2 O (K 2 O> Na 2 O is satisfied). K 2 O / R 2 O is preferably 0.5 or more, preferably 0.6 or more, more preferably 0.7 or more, further preferably 0.8 or more, and further preferably 0.95 or more. In other words, K 2 O / R 2 O is preferably 0.5 to 1, preferably 0.6 to 1, more preferably 0.7 to 1, still more preferably 0.8 to 1, and 0.95 to 1 is more preferable.
  • the glass substrate of the present embodiment is a display substrate.
  • the glass substrate of the present embodiment is suitable for a glass substrate for a flat panel display on which p-Si • TFT is formed.
  • the glass substrate of this embodiment is suitable for the glass substrate for liquid crystal displays, and the glass substrate for organic EL displays.
  • it is suitable for a glass substrate for p-Si ⁇ TFT liquid crystal display and a glass substrate for organic EL display.
  • it is suitable for the glass substrate for displays, such as a portable terminal in which high definition is calculated
  • the glass substrate of this embodiment is suitable for the glass substrate for oxide semiconductor thin film flat panel displays.
  • the glass substrate of this embodiment is suitable for the glass substrate used for the flat panel display manufactured by forming an oxide semiconductor thin film and TFT on the substrate surface.
  • the size of the glass substrate of the present embodiment is not particularly limited because it can be appropriately changed according to the size of the display to be applied.
  • the length in the width direction can be, for example, 500 mm to 3500 mm, preferably 1000 mm to 3500 mm, and more preferably 2000 mm to 3500 mm.
  • the length in the longitudinal direction can be, for example, 500 mm to 3500 mm, preferably 1000 mm to 3500 mm, and more preferably 2000 mm to 3500 mm.
  • the thickness of the glass substrate of the present embodiment is not particularly limited because it can be appropriately changed according to the size of the display to be applied. However, if the glass substrate is too thin, the strength of the glass substrate itself decreases. For example, breakage during liquid crystal display manufacturing is likely to occur. On the other hand, an excessively thick glass substrate is not preferable for a display that is required to be thin. Moreover, since the weight of a glass substrate will become heavy when a glass substrate is too thick, the weight reduction of a liquid crystal display will become difficult. Therefore, the thickness of the glass substrate of this embodiment is preferably 0.1 mm to 1.1 mm, more preferably 0.1 mm to 0.7 mm, still more preferably 0.3 to 0.7 mm, and 0.3 to 0. More preferably, 5 mm.
  • the glass substrate of the present embodiment includes a melting step for melting a glass raw material to produce a molten glass, a forming step for forming the molten glass into a glass plate, and a slow cooling step for gradually cooling the glass plate. It can be manufactured by the method of including.
  • the glass plate has a heat shrinkage rate of 75 ppm or less, preferably 60 ppm or less. Further, the glass constituting the glass substrate has a devitrification temperature of 1250 ° C.
  • the glass substrate of the present embodiment can be manufactured using a known glass substrate manufacturing method.
  • a known method can be used as the molding method, it is preferable to use a float method or a downdraw method, and particularly preferably an overflow downdraw method.
  • the glass substrate molded by the downdraw method has extremely high smoothness because its main surface is a hot-molded surface. Therefore, a polishing step for the glass substrate surface after molding is not required, so that the manufacturing cost can be reduced and the productivity can be improved.
  • both main surfaces of the glass substrate formed using the downdraw method have a uniform composition, the etching can be performed uniformly when the etching process is performed.
  • a glass substrate having a surface state free from microcracks can be obtained by molding using the downdraw method. As a result, the strength of the glass substrate itself can be improved.
  • the downdraw method it is desirable to perform slow cooling so that the temperature of the glass plate is maintained within a temperature range from Tg to Tg-100 ° C. for 20 to 120 seconds.
  • the downdraw method it is desirable to perform slow cooling so that the glass plate is cooled in a temperature range from Tg to Tg-100 ° C. in 20 to 120 seconds. If it is less than 20 seconds, the amount of heat shrinkage may not be sufficiently reduced.
  • slow cooling is performed so that the temperature of the glass plate is maintained within the temperature range from Tg to Tg-100 ° C. for 20 to 120 seconds. It is preferably performed, more preferably 30 to 120 seconds, and still more preferably 50 to 100 seconds. In other words, it is preferable to perform slow cooling so that the glass plate is cooled in a temperature range from Tg to Tg-100 ° C. in 20 to 120 seconds, more preferably in 30 to 120 seconds, More preferably, the cooling is performed in 50 to 100 seconds.
  • the average cooling rate at the center of the glass plate is 50 to 300 ° C./min within the temperature range of Tg to Tg ⁇ 100 ° C. If the average cooling rate exceeds 300 ° C./min, the amount of heat shrinkage may not be sufficiently reduced. On the other hand, when it is less than 50 ° C./min, productivity is lowered and the glass manufacturing apparatus (slow cooling furnace) is enlarged. Therefore, the preferable range of the average cooling rate for reducing the thermal shrinkage while maintaining the cost and productivity is 50 to 300 ° C./min, more preferably 50 to 200 ° C./min, and 60 to 120 ° C. / Min is more preferred.
  • the thermal shrinkage rate can be reduced by separately providing a thermal shrinkage reduction treatment (offline annealing) step after the slow cooling step.
  • a thermal shrinkage reduction treatment offline annealing
  • beta-OH value is preferably set to 0.05 ⁇ 0.40 mm -1, and more preferably 0.10 ⁇ 0.35 mm -1 0.10 to 0.30 mm ⁇ 1 is more preferable, and 0.10 to 0.25 mm ⁇ 1 is more preferable.
  • the ⁇ -OH value can be adjusted by selecting the raw material.
  • the ⁇ -OH value can be increased or decreased by selecting a raw material with a high water content (for example, a hydroxide raw material) or adjusting the content of a raw material that reduces the moisture content in the glass such as chloride. it can. Further, the ⁇ -OH value can be adjusted by adjusting the ratio of gas heating combustion (oxygen combustion heating) and electric heating (direct current heating) used for glass melting. Furthermore, the ⁇ -OH value can be increased by increasing the amount of water in the furnace atmosphere or by bubbling water vapor against the molten glass during melting. Note that the ⁇ -OH value of glass is obtained by the following equation in the infrared absorption spectrum of glass.
  • ⁇ -OH value (1 / X) log10 (T1 / T2)
  • X Glass wall thickness (mm)
  • T1 Transmittance (%) at a reference wavelength of 2600 nm
  • T2 Minimum transmittance (%) near the hydroxyl absorption wavelength of 2800 nm
  • Examples of the glass substrate for a flat panel display of the present embodiment obtained from the above disclosure include the following first to third glass substrates. Further, examples of the manufacturing method of the glass substrate of the present embodiment obtained from the above contents include the following first to third manufacturing methods.
  • a glass substrate for the first flat panel display In mol% SiO 2 55-80% Al 2 O 3 3-20% B 2 O 3 3-15% RO (total amount of MgO, CaO, SrO, BaO) 3-25% Containing Substantially free of As 2 O 3 and Sb 2 O 3 , and It is composed of glass having a devitrification temperature of 1250 ° C. or lower, The thermal shrinkage is 75 ppm or less, A glass substrate is mentioned.
  • the glass substrate included in the first flat panel display glass substrate examples include a glass substrate having a heat shrinkage rate of 60 ppm or less. That is, In mol% SiO 2 55-80% Al 2 O 3 3-20% B 2 O 3 3-15% RO (total amount of MgO, CaO, SrO, BaO) 3-25% Containing Substantially free of As 2 O 3 and Sb 2 O 3 , and It is composed of glass having a devitrification temperature of 1250 ° C. or lower, The thermal shrinkage is 60 ppm or less, A glass substrate is also mentioned.
  • the first to third flat panel display glass substrates are suitable for flat panel display glass substrates on which p-Si • TFTs are formed.
  • the first to third flat panel display glass substrates are suitable for glass substrates for liquid crystal displays on which p-Si • TFTs are formed.
  • the first to third glass substrates for flat panel displays are also suitable as glass substrates for organic EL displays.
  • the first to third flat panel display glass substrates are also suitable as display glass substrates on which oxide semiconductor thin film transistors are formed.
  • SiO 2 is 55 to 80%
  • Al 2 O 3 is 3 to 20%
  • B 2 O 3 is 3 to 15%
  • RO total amount of MgO, CaO, SrO, BaO
  • Melting a glass raw material prepared so as to be a glass having substantially no As 2 O 3 and Sb 2 O 3 and having a devitrification temperature of 1250 ° C. or lower to produce a molten glass Process A molding step of molding the molten glass into a glass plate; A slow cooling step of slow cooling the glass plate, The thermal shrinkage of the glass plate is 75 ppm or less, A manufacturing method is mentioned.
  • SiO 2 is 55 to 80%
  • Al 2 O 3 is 3 to 20%
  • B 2 O 3 is 3 to 15%
  • RO total amount of MgO, CaO, SrO, BaO
  • Melting a glass raw material prepared so as to be a glass having substantially no As 2 O 3 and Sb 2 O 3 and having a devitrification temperature of 1250 ° C. or lower to produce a molten glass Process A molding step of molding the molten glass into a glass plate; A slow cooling step of slow cooling the glass plate, The thermal shrinkage of the glass plate is 60 ppm or less, A manufacturing method is mentioned.
  • SiO 2 is 62 to 74%
  • Al 2 O 3 is 3 to 20%
  • B 2 O 3 is 3 to 15%
  • CaO is more than 7 to 16%
  • La 2 O 3 is 0 to 1%
  • CaO / B 2 O 3 A melting step for producing a molten glass by satisfying a relationship of> 1.2, melting a glass raw material prepared so as to be a glass having a strain point of 665 ° C. or higher and a devitrification temperature of 1250 ° C. or lower; , A molding step of molding the molten glass into a glass plate; A slow cooling step of slowly cooling the glass plate; The manufacturing method containing is mentioned.
  • SiO 2 is 65 to 74%
  • Al 2 O 3 is 3 to 20%
  • B 2 O 3 is 3 to less than 8.9%
  • CaO is more than 7 to 16%
  • La 2 O 3 is 0 to 1
  • the manufacturing method containing is mentioned.
  • the slow cooling step in the first to third manufacturing methods of the glass substrate for flat panel display it is preferable to perform a heat shrinkage reduction process for controlling the cooling rate of the glass plate to reduce the heat shrinkage rate.
  • the slow cooling step it is more preferable to perform a heat shrinkage reduction treatment in which the average cooling rate of the central portion of the glass plate is 50 to 300 ° C./min within a temperature range of Tg to Tg-100 ° C.
  • the first glass substrate is In mol% SiO 2 55-80% Al 2 O 3 3-20% B 2 O 3 3-15% RO (total amount of MgO, CaO, SrO, BaO) 3-25% Containing Substantially free of As 2 O 3 and Sb 2 O 3 , and It is composed of glass having a devitrification temperature of 1250 ° C. or lower, The thermal shrinkage is 75 ppm or less, It is a glass substrate.
  • Example 1-1 to 1-24 and Comparative Examples 1-1 to 1-6 Sample glasses of Examples 1-1 to 1-24 and Comparative Examples 1-1 to 1-6 were prepared according to the following procedure so that the glass compositions shown in Tables 1-1 and 1-2 were obtained. About the obtained sample glass and sample glass substrate, devitrification temperature, Tg, average thermal expansion coefficient in the range of 100 to 300 ° C., thermal contraction rate, density, strain point, melting temperature (viscosity is 10 2.5 dPa ⁇ s Glass temperature), liquid phase viscosity, and specific resistance at 1550 ° C. were measured.
  • the blended batch was melted and clarified in a platinum crucible.
  • the crucible was held in an electric furnace set at 1575 ° C. for 4 hours to melt the batch.
  • the electric furnace was heated to 1640 ° C. and held for 2 hours to clarify the glass melt.
  • the glass melt was poured out on the iron plate outside the furnace and cooled and solidified to obtain a glass body.
  • the glass body was subsequently subjected to a slow cooling operation. In the slow cooling operation, this glass body was held in another electric furnace set at 800 ° C. for 2 hours, then cooled to 740 ° C. for 2 hours and further to 660 ° C. for 2 hours, and then the electric furnace was turned off. , By cooling to room temperature.
  • the glass body that had undergone this slow cooling operation was used as a sample glass.
  • the sample glass was used for measurement of characteristics (devitrification temperature, melting temperature, specific resistance, density, thermal expansion coefficient, Tg and strain point) that are not affected by the slow cooling conditions and / or cannot be measured in the form of a substrate. .
  • the sample glass was cut, ground and polished to produce a sample glass substrate of 30 mm ⁇ 40 mm ⁇ 0.7 mm whose upper and lower surfaces are mirror surfaces.
  • the sample glass substrate was used for ⁇ -OH measurement, which was not affected by the slow cooling conditions.
  • sample glass substrate was formed into a rectangular parallelepiped having a width of 5 mm and a length of 20 mm by using a normal glass processing technique, and this was held at Tg for 30 minutes, and then cooled to Tg-100 ° C. at 100 ° C./minute, to room temperature. By allowing to cool, a sample glass substrate for heat shrinkage measurement was obtained.
  • the sample glass was pulverized and passed through a 2380 ⁇ m sieve to obtain glass particles that remained on the 1000 ⁇ m sieve.
  • the glass particles were immersed in ethanol, subjected to ultrasonic cleaning, and then dried in a thermostatic bath.
  • the dried glass particles were placed on a platinum boat having a width of 12 mm, a length of 200 mm, and a depth of 10 mm so that the glass particles had a substantially constant thickness.
  • This platinum boat was compared with Examples 1-1 to 1-6, 1-8 to 1-24 and Comparative Examples 1-1, 1-3 to 1-5 at 1080 to 1320 ° C., Examples 1-7, For Examples 1-2 and 1-6, the glass was kept in an electric furnace having a temperature gradient of 1140 to 1380 ° C. for 5 hours, and then removed from the furnace to remove devitrification generated in the glass into a 50 ⁇ optical microscope. And observed. The maximum temperature at which devitrification was observed was defined as the devitrification temperature.
  • the melting temperature of the sample glass was measured using a platinum ball pulling type automatic viscosity measuring device. From the measurement results, the temperature at a viscosity of 10 2.5 dPa ⁇ s was calculated to obtain the melting temperature.
  • the specific resistance at the time of melting of the sample glass was measured by a four-terminal method using a 4192A LF impedance analyzer manufactured by HP. From the measurement results, the specific resistance value at 1550 ° C. was calculated.
  • the sample glass was processed into a cylindrical shape having a diameter of 5 mm and a length of 20 mm to obtain a test piece.
  • a differential thermal dilatometer (Thermo Plus2 TMA8310) was used to measure the temperature and the amount of expansion / contraction of the test piece. The heating rate at this time was 5 ° C./min.
  • the average thermal expansion coefficient and Tg in the temperature range of 100 to 300 ° C. were measured.
  • the Tg in the present application means that the glass body is held in another electric furnace set at 800 ° C. for 2 hours, then cooled to 740 ° C. for 2 hours, further cooled to 660 ° C. for 2 hours, and then the electric furnace It is the value measured about the sample glass which turned off the power supply and cooled to room temperature.
  • strain point The sample glass was cut and ground into a 3 mm square and 55 mm long prismatic shape to obtain a test piece.
  • the test piece was measured using a beam bending measuring apparatus (manufactured by Tokyo Kogyo Co., Ltd.), and the strain point was determined by calculation according to the beam bending method (ASTM C-598).
  • the sample glass was mirror-polished to produce a plate sample of 5 ⁇ 30 ⁇ 30 mm. Using this sample, the density of the glass was measured by the Archimedes method.
  • Thermal shrinkage The thermal shrinkage rate was obtained by the following formula using the amount of shrinkage of the glass substrate after heat treatment was performed at 550 ° C. for 2 hours on the sample glass substrate for heat shrinkage measurement.
  • Thermal shrinkage (ppm) ⁇ Shrinkage of glass substrate after heat treatment / length of glass substrate before heat treatment ⁇ ⁇ 10 6
  • the amount of shrinkage was measured by the following method.
  • the glass substrate was immersed in a 40 ° C. etching solution of a mixed acid having a HF ratio of 1 mol / kg and a HCl ratio of 5 mol / kg for 1 hour, and the thickness reduction ( ⁇ m) of one surface of the glass substrate was measured.
  • the etching rate ( ⁇ m / h) was determined as the amount of decrease ( ⁇ m) per unit time (1 hour).
  • the glass substrates obtained in Examples 1-1 to 1-24 also satisfied the conditions of the first glass substrate of the present invention in terms of thermal shrinkage and devitrification temperature. Therefore, it can be said that the glass substrate obtained in this example is a glass substrate having excellent characteristics that can be used for a display to which p-Si • TFT is applied.
  • the glass obtained in Comparative Examples 1-1 to 1-6 did not satisfy the conditions of the first glass substrate of the present invention in terms of heat shrinkage rate or devitrification temperature.
  • the melting temperature exceeded 1680 degreeC, and the favorable meltability was not obtained.
  • the glass substrates obtained in Comparative Examples 1-1 to 1-6 were not suitable for displays to which p-Si ⁇ TFT was applied.
  • Example 1-25 The glass raw material prepared to have the composition shown in Example 1-4 was melted at 1560 to 1640 ° C. using a continuous melting apparatus equipped with a refractory brick melting tank and a platinum alloy clarification tank (regulation tank). The mixture was clarified at 1620 to 1670 ° C., stirred at 1440 to 1530 ° C., and then formed into a thin plate having a thickness of 0.7 mm by the overflow down draw method.
  • the glass substrate for liquid crystal displays (or for organic EL displays) was obtained by cooling at an average rate of minutes. In addition, about each characteristic of the said description, it measured using the obtained glass substrate. In addition, regarding the characteristics (density, strain point, expansion coefficient, and Tg) that cannot be measured in the substrate form, the glass substrate was re-melted according to the sample preparation method, sample glass was prepared, and the characteristics were measured. .
  • the glass substrate of Example 1-25 obtained as described above had a melting temperature of 1610 ° C., a ⁇ -OH value of 0.20 mm ⁇ 1 , a Tg of 754 ° C., a strain point of 697 ° C., and a thermal shrinkage of 51 ppm.
  • the other characteristics were the same as those of Example 1-4.
  • the glass substrate of Example 1-25 has a Tg of 720 ° C. or higher and a melting temperature of 1680 ° C. or lower, and a high Tg and strain point and good meltability are realized. It was. Furthermore, the heat shrinkage rate and the devitrification temperature also satisfied the conditions of the first glass substrate of the present invention.
  • the glass substrate of Example 1-25 has a ⁇ -OH value that is about 0.1 mm ⁇ 1 larger than that of Example 1-4, so that Tg is 2 to 3 ° C. lower than that of Example 1-4. A sufficiently high Tg can be realized. Therefore, it can be said that the glass substrate obtained in Example 1-25 is a glass substrate having excellent characteristics that can be used for a display to which p-Si • TFT is applied.
  • Example 1-26 A glass substrate was prepared in the same manner as in Example 1-25 using the glass raw material prepared so as to have the glass composition shown in Example 1-12, and each characteristic was measured.
  • the glass substrate of Example 1-26 obtained as described above had a melting temperature of 1585 ° C., a ⁇ -OH value of 0.21 mm ⁇ 1 , a Tg of 761 ° C., a strain point of 710 ° C., and a heat shrinkage of 31 ppm.
  • the other characteristics were the same as those of Example 1-12.
  • the glass substrate of Example 1-26 has a Tg of 720 ° C. or higher and a melting temperature of 1680 ° C. or lower, and a high Tg and strain point and good meltability are realized. It was. Furthermore, the heat shrinkage rate and the devitrification temperature also satisfied the conditions of the first glass substrate of the present invention.
  • the glass substrate of Example 1-26 has a ⁇ -OH value of about 0.1 mm ⁇ 1 larger than that of Example 1-12, so that Tg is 2 to 3 ° C. lower than that of Example 1-12. A sufficiently high Tg can be realized. Therefore, the glass substrate obtained in Example 1-26 can be said to be a glass substrate having excellent characteristics that can be used for a display to which p-Si • TFT is applied.
  • ⁇ Second glass substrate> An example is given and demonstrated about a 2nd glass substrate.
  • the second glass substrate is In mol% SiO 2 62-74% Al 2 O 3 3-20% B 2 O 3 3-15% CaO over 7 ⁇ 16% La 2 O 3 0 to 1% BaO 0 to less than 1%, Containing
  • the strain point is 665 ° C. or higher, and It is composed of glass having a devitrification temperature of 1250 ° C. or lower. It is a glass substrate.
  • Sample glasses of the examples and comparative examples were prepared so as to have the glass compositions shown in Table 2 in the same manner as the examples and comparative examples of the first glass substrate, and each characteristic was measured.
  • ⁇ Third glass substrate> An example is given and demonstrated about a 3rd glass substrate.
  • Sample glasses of the examples and comparative examples were prepared in the same manner as the examples and comparative examples of the first glass substrate so that the glass compositions shown in Table 3 were obtained, and each characteristic was measured.
  • the first aspect of the present invention is: In mol% SiO 2 55-80% Al 2 O 3 3-20% B 2 O 3 3-15% RO (total amount of MgO, CaO, SrO, BaO) 3-25% Containing Substantially free of As 2 O 3 and Sb 2 O 3 , and It is composed of glass having a devitrification temperature of 1250 ° C. or lower, The thermal shrinkage is 75 ppm or less, Provided is a glass substrate for flat panel display on which p-Si • TFT is formed.
  • the heat shrinkage rate is a value obtained by the following equation using the shrinkage amount of the glass substrate after heat treatment at a heating / cooling rate of 10 ° C./min and 550 ° C. for 2 hours. is there.
  • Thermal shrinkage (ppm) ⁇ Shrinkage of glass substrate after heat treatment / length of glass substrate before heat treatment ⁇ ⁇ 10 6
  • the “heat shrinkage rate” is similarly defined.
  • the second aspect of the present invention is: The thermal shrinkage is 60 ppm or less, There is provided a glass substrate for flat panel display on which the p-Si • TFT according to the first aspect is formed.
  • the third aspect of the present invention is: In mol% SiO 2 62-74% Al 2 O 3 3-20% B 2 O 3 3-15% CaO over 7 ⁇ 16% La 2 O 3 0 to 1% BaO 0 to less than 1%, Containing
  • the strain point is 665 ° C. or higher, and Composed of glass having a devitrification temperature of 1250 ° C. or lower, Provided is a glass substrate for a flat panel display on which a p-Si • TFT is formed.
  • the thermal shrinkage of the glass substrate is 75 ppm or less, Provided is a glass substrate for a flat panel display on which a p-Si • TFT is formed.
  • the sixth aspect of the present invention is:
  • the strain point of the glass is 680 ° C. or higher.
  • a glass substrate for a flat panel display on which the p-Si • TFT according to any one of the first to fifth aspects is formed.
  • the seventh aspect of the present invention is In the glass, the content represented by mol% of SiO 2 , Al 2 O 3 , B 2 O 3 and RO is Satisfying the relationship of (SiO 2 + 2 ⁇ Al 2 O 3 ) / (2 ⁇ B 2 O 3 + RO)> 3.0, Provided is a glass substrate for a flat panel display on which the p-Si • TFT according to any one of the first to sixth aspects is formed.
  • the eighth aspect of the present invention is In the glass, the content represented by mol% of SiO 2 and Al 2 O 3 is Satisfying the relationship of SiO 2 + 2Al 2 O 3 ⁇ 80%, Provided is a glass substrate for a flat panel display on which the p-Si • TFT according to any one of the first to seventh aspects is formed.
  • the ninth aspect of the present invention provides The glass contains ZnO as an optional component, In the glass, the content shown by mol% of B 2 O 3 , RO and ZnO B 2 O 3 + RO + ZnO ⁇ 20% Satisfy the relationship There is provided a glass substrate for a flat panel display on which the p-Si • TFT according to any one of the first to eighth aspects is formed.
  • the tenth aspect of the present invention provides The liquid phase viscosity of the glass is 10 4.5 dPa ⁇ s or more, and was obtained by molding the glass by a downdraw method.
  • a glass substrate for a flat panel display on which the p-Si • TFT according to any one of the first to ninth aspects is formed.
  • the eleventh aspect of the present invention is A glass substrate for a liquid crystal display, There is provided a glass substrate for a flat panel display on which the p-Si • TFT according to any one of the first to tenth aspects is formed.
  • the twelfth aspect of the present invention provides In mol%, SiO 2 is 55 to 80%, Al 2 O 3 is 3 to 20%, B 2 O 3 is 3 to 15%, and RO (total amount of MgO, CaO, SrO, BaO) is 3 to 25%. Melting a glass raw material prepared so as to be a glass having substantially no As 2 O 3 and Sb 2 O 3 and a devitrification temperature of 1250 ° C.
  • the thirteenth aspect of the present invention provides The thermal shrinkage of the glass plate is 60 ppm or less, A method for producing a glass substrate for a flat panel display on which the p-Si • TFT according to the twelfth aspect is formed is provided.
  • the fourteenth aspect of the present invention provides In the melting step, molten glass is produced so that ⁇ -OH is 0.05 to 0.40 mm ⁇ 1 , In the slow cooling step, the glass plate is cooled at an average rate of 50 to 300 ° C./min within a temperature range from the glass transition point (Tg) to Tg-100 ° C.
  • Tg glass transition point
  • a method for producing a glass substrate for a flat panel display on which the p-Si • TFT according to the twelfth or thirteenth aspect is formed is provided.
  • the fifteenth aspect of the present invention provides In mol% SiO 2 55-80% Al 2 O 3 3-20% B 2 O 3 3-15% RO (total amount of MgO, CaO, SrO, BaO) 3-25% Containing Substantially free of As 2 O 3 and Sb 2 O 3 , and It is composed of glass having a devitrification temperature of 1250 ° C. or lower, The thermal shrinkage is 75 ppm or less, A glass substrate for a flat panel display is provided.
  • the sixteenth aspect of the present invention provides The thermal shrinkage is 60 ppm or less, A glass substrate for a flat panel display according to the fifteenth aspect is provided.
  • the glass substrate for flat panel display of the present invention is suitable for a flat panel display using p-Si, and particularly for a glass substrate for liquid crystal display and a glass substrate for organic EL display using p-Si ⁇ TFT. Especially, it is suitable for the glass substrate for displays, such as a portable terminal in which high definition is calculated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Liquid Crystal (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

 本発明のフラットパネルディスプレイ用ガラス基板は、モル%表示で、SiOを55~80%、Alを3~20%、Bを3~15%、RO(MgO、CaO、SrO、BaOの合量)を3~25%含有し、AsおよびSbを実質的に含有せず、かつ、失透温度が1250℃以下のガラスから構成され、熱収縮率が75ppm以下である。ただし、前記熱収縮率とは、昇降温速度が10℃/min、550℃で2時間保持の熱処理が施された後のガラス基板の収縮量を用いて、次式にて求められる値である。熱収縮率(ppm)={熱処理後のガラス基板の収縮量/熱処理前のガラス基板の長さ}×10

Description

フラットパネルディスプレイ用ガラス基板およびその製造方法
 本発明は、フラットパネルディスプレイ用ガラス基板と、その製造方法とに関する。
 薄膜トランジスタ(TFT)型液晶ディスプレイおよび有機エレクトロルミネッセンス(EL)ディスプレイ等の、薄型で消費電力が少ないフラットパネルディスプレイは、近年、携帯機器等のディスプレイとして広く用いられている。これらのディスプレイ用の基板には、一般に、ガラス基板が用いられている。
 TFTには、アモルファスシリコン(α-Si)・TFTと、ポリシリコン(p-Si)・TFTとが存在する。p-Si・TFTは、超高精細で美しい画面を実現できること、ディスプレイの高い耐久性を実現できること、ディスプレイの薄型・軽量化が可能であること、および、低消費電力化が可能であること等の点で、α-Si・TFTよりも優れている。しかし、従来、p-Si・TFTの製造には、高温処理が必要であった。そのため、p-Si・TFTを製造する際にガラス基板に熱収縮および熱衝撃が生じるので、シリカガラス以外のガラスを使用することができなかった。その結果、液晶ディスプレイにp-Si・TFTを適用することが困難であった。
 しかし、近年、熱処理温度が低減された低温ポリシリコン(LTPS)TFTが開発されたので、フラットパネルディスプレイにp-Si・TFTを適用することが可能となった。これにより、携帯機器等の小型機器のディスプレイであっても、高精細で美しい画面を実現できるようになった。
 ただし、未だにp-Si・TFTの製造には400~600℃の高温の熱処理が必要である。従来のディスプレイ用ガラス基板の場合、歪点が十分に高くないものが多く、p-Si・TFT製造時の熱処理によって大きな熱収縮が発生して画素のピッチズレを引き起こすという問題が発生しやすい。さらに、近年、ますます高精細化が求められている。したがって、このような画素のピッチズレを抑制するために、ディスプレイ製造時のガラス基板の熱収縮を低減することが強く求められている。従来、このような熱収縮の問題を考慮して開発されたディスプレイ用ガラス基板が報告されている(特許文献1~3)。
特開2002-3240号公報 特開2004-315354号公報 特開2007-302550号公報
 ここで、ガラス基板の熱収縮は、ガラス転移点(以下Tgと記す。)および歪点で代表される低温粘性域での特性(低温粘性特性)温度を高くすることで抑制できる(以下、本明細書では、「低温粘性特性温度」として、「Tgおよび歪点」を代表して記載する。)。しかし、単にガラスのTgおよび歪点を高くすることだけに着目してガラス組成の改良を行うと、ガラスの耐失透性が悪化しやすいという問題が起こる。また、耐失透性が悪くなる、すなわち失透温度が高くなり液相粘度が低下すると、製法の自由度も低下してしまう。失透温度が高くなり、液相粘度が低下すると、例えば、オーバーフローダウンドロー法を使用したガラス基板の製造が困難になるという問題が生じる。
 そこで、本発明は、耐失透性の低下を抑えつつ熱収縮量が低減された、p-Si・TFTが適用されるディスプレイに用いられても画素のピッチズレの問題を生じさせない、フラットパネルディスプレイ用ガラス基板を提供することを目的とする。
 本発明の第1のp-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板は、
 モル%表示で、
SiO 55~80%
Al 3~20%
 3~15%
RO(MgO、CaO、SrO、BaOの合量) 3~25%
を含有し、
 AsおよびSbを実質的に含有せず、かつ、
 失透温度が1250℃以下であるガラスから構成され、
 熱収縮率が75ppm以下である。
 ただし、前記熱収縮率とは、昇降温速度が10℃/min、550℃で2時間保持の熱処理が施された後のガラス基板の収縮量を用いて、以下の式にて求められる値である。
熱収縮率(ppm)
  ={熱処理後のガラス基板の収縮量/熱処理前のガラス基板の長さ}×10
 以降の「熱収縮率」も、同様に定義される。
 また、「AsおよびSbを実質的に含有しない」とは、ガラス原料中にAsおよびSbが主成分である原料を添加しないことを意味しており、AsおよびSbの含有率が、それぞれ、好ましくは0.1%以下、より好ましくは0.05%以下、さらに好ましくは0.01%以下であることをいう。以下、「ある成分が実質的に含有されない」とは、同じ内容を意味する。
 本発明の第2のp-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板は、
 モル%表示で、
SiO 55~80%
Al 3~20%
 3~15%
RO(MgO、CaO、SrO、BaOの合量) 3~25%
を含有し、
 AsおよびSbを実質的に含有せず、かつ、
 失透温度が1250℃以下であるガラスから構成されたガラス基板であり、
 Tgで30分保持した後、Tg-100℃まで100℃/分で冷却し、室温まで放冷後、昇降温速度が10℃/min、550℃で2時間保持の熱処理が施された後の前記ガラス基板の熱収縮率が75ppm以下である。
 また、本発明は、
 モル%でSiOが55~80%、Alが3~20%、Bが3~15%、RO(MgO、CaO、SrO、BaOの合量)が3~25%であり、AsおよびSbを実質的に含有せず、かつ、失透温度が1250℃以下であるガラスとなるように調合したガラス原料を熔融して、熔融ガラスを生成する熔融工程と、
 前記熔融ガラスをガラス板へと成形する成形工程と、
 前記ガラス板を徐冷する徐冷工程と、を含み、
 前記ガラス板の熱収縮率が75ppm以下である、
p-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板の製造方法も提供する。
 本発明は、さらに、
 モル%表示で、
SiO 55~80%
Al 3~20%
 3~15%
RO(MgO、CaO、SrO、BaOの合量) 3~25%
を含有し、
 AsおよびSbを実質的に含有せず、かつ、
 失透温度が1250℃以下であるガラスから構成され、
 熱収縮率が75ppm以下である、
フラットパネルディスプレイ用ガラス基板も提供する。
 本発明によれば、耐失透性を悪化させることなく、p-Si・TFTが適用されるディスプレイに用いられる場合であっても、ディスプレイ製造時の熱処理による熱収縮が抑制されて画素のピッチズレの問題を生じさせない、優れた特性を有するガラス基板を提供できる。
 本実施の形態のディスプレイ用ガラス基板は、モル%表示で、SiOを55~80%、Alを3~20%、Bを3~15%、RO(MgO、CaO、SrO、BaOの合量)を3~25%含有し、かつ、失透温度が1250℃以下のガラスから構成されている。本実施の形態のディスプレイ用ガラス基板は、75ppm以下、好ましくは60ppm以下の熱収縮率を有する。ガラス基板の熱収縮率は、ガラスのTgおよび歪点を高くすることで抑制できる。さらに、ガラス基板の熱収縮率は、ガラス組成の調整によるTgおよび歪点の上昇だけでなく、ガラス徐冷時の条件を適宜調整することによっても、低減させることができる。単にガラスのTgおよび歪点を高くすることだけに着目してガラス組成の改良を行うと、失透温度が上昇して耐失透性が低下する場合がある。しかし、本実施形態のガラス基板は、ガラス組成の調整とガラス徐冷時の条件の調整とを適宜組み合わせることによって、熱収縮率75ppm以下、好ましくは60ppm以下を実現することが可能である。したがって、75ppm以下、好ましくは60ppm以下の熱収縮率と、1250℃以下の失透温度との両方を備えたガラス基板が実現できる。
 このように、本実施形態のガラス基板を構成するガラスは、耐失透性を良好に維持しつつ、フラットパネルディスプレイ製造時の熱処理による熱収縮が抑制されて画素のピッチズレの問題を生じさせない、優れた特性を有することができる。さらに、失透温度が1250℃以下に抑えられることにより、本実施形態のガラス基板を構成するガラスはダウンドロー法を用いて成形されやすくなるという効果も得られる。さらに、本実施形態のガラス基板を構成するガラスは、AsおよびSbをガラス組成として実質的に含有しないので、環境負荷も低減できる。
 また、本実施形態のガラス基板を構成するガラスは、ZnOを任意成分として5%以下で含有することができる。その場合、SiOおよびAlのモル%で示す含有率が、SiO+Al≧70%、より好ましくは、SiO+Al≧75%を満たし、かつ、RO、ZnOおよびBのモル%で示す含有率が、RO+ZnO+B=7~30%、より好ましくは7~25%を満たすことが好ましい。
 上述のとおり、熱収縮率は、ガラス組成の調整と、ガラス製造時の条件の調整とによって、低減させることができる。なお、ガラス製造時の条件とは、具体的には、ガラス徐冷時に、TgからTg-100℃までとなる温度領域でガラスを必要かつ十分な低い速度で冷却することである。熱収縮率を75ppm以下、好ましくは65ppm以下、より好ましくは60ppm以下とすることにより、本実施形態のガラス基板がp-Si・TFTが適用されるディスプレイに用いられ、さらにそのディスプレイが高精細である場合でも、画素のピッチズレを十分に抑制することができる。画素のピッチズレをより確実に抑制するために、熱収縮率は55ppm以下が好ましく、50ppm以下がより好ましく、45ppm以下がさらに好ましく、43ppm以下がさらに好ましく、40ppm以下がさらに好ましく、38ppm以下がさらに好ましい。言い換えると、熱収縮率は0~75ppmであり、好ましくは0~65ppmであり、より好ましくは0~60ppmであり、さらに好ましくは0~55ppmであり、さらに好ましくは0~50ppmであり、さらに好ましくは0~45ppmであり、さらに好ましくは0~43ppmであり、さらに好ましくは0~40ppmであり、さらに好ましくは0~38ppmである。なお、熱収縮率を0ppmにしようとすると、徐冷工程を極めて長くすることや、徐冷工程後に熱収縮低減処理(オフラインアニール)を施すことが求められるが、生産性が低下し、コストが高騰してしまう。生産性およびコストを鑑みると、熱収縮率は、例えば3~75ppmであり、好ましくは5~75ppmであり、より好ましくは5~65ppmであり、さらに好ましくは8~55ppmであり、さらに好ましくは8~50ppmであり、さらに好ましくは10~45ppmであり、さらに好ましくは10~43ppmであり、さらに好ましくは10~40ppmであり、さらに好ましくは15~38ppmである。
 本実施形態のガラス基板を構成するガラスは、1250℃以下の失透温度を有する。上述のとおり、失透温度を1250℃以下とすることで、本実施形態のガラス基板を構成するガラスはダウンドロー法を用いて成形しやすくなるという効果が得られる。その結果、ガラス基板の表面品位を向上できるとともに、ガラス基板の生産コストを低減することができる。また、失透温度が高すぎると、失透が生じやすく、耐失透性が低下する。したがって、本実施形態のガラス基板を構成するガラスの失透温度は、好ましくは1230℃以下、より好ましくは1220℃以下、より好ましくは1210℃以下、さらに好ましくは1200℃以下とする。他方、高歪点や低密度などのフラットパネルディスプレイ用基板の特性を実現するためには、ガラス基板を構成するガラスの失透温度が、好ましくは1050℃~1250℃、より好ましくは1110℃~1250℃、さらに好ましくは1150℃~1240℃、一層好ましくは1160℃~1230℃、より一層好ましくは1170℃~1220℃である。
 本実施形態のガラス基板を構成するガラスは、歪点を660℃以上とすることができる。フラットパネルディスプレイ製造時の熱収縮をより確実に抑制するために、歪点は665℃以上が好ましく、675℃以上がより好ましく、680℃以上がさらに好ましく、685℃以上がさらに好ましく、690℃以上がさらに好ましく、695℃以上がさらに好ましく、700℃以上がさらに好ましい。
 本実施形態のガラス基板を構成するガラスは、液相粘度が104.0dPa・s以上であることが好ましく、104.5dPa・s以上であることがより好ましい。液相粘度を104.0dPa・s以上とすることにより、フロート法で成形しやすくなる。また、液相粘度を104.5dPa・s以上とすることにより、さらに成形性が向上する。したがって、液相粘度をこのような範囲にすることで、本実施形態のガラス基板を構成するガラスは、ダウンドロー法(特にオーバーフローダウンドロー法)を用いて成形しやすくなる。その結果、ガラス基板の表面品位を向上できるとともに、ガラス基板の生産コストを低減することができる。液相粘度は、より好ましくは104.5~106.0dPa・sであり、より好ましくは104.5~105.9dPa・sであり、より好ましくは104.6~105.8dPa・sであり、より好ましくは104.6~105.7dPa・sであり、より好ましくは104.7~105.7dPa・sであり、より好ましくは104.8~105.6dPa・sであり、さらに好ましくは104.9~105.5dPa・sである。
 本実施形態のガラス基板を構成するガラスのその他の物性について、好ましい範囲は以下のとおりである。
 本実施形態のガラス基板を構成するガラスは、良好な熔解性を有していることが好ましい。熔解性が悪くなる、すなわち熔融温度が高くなると、熔解槽への負荷が大きくなり、さらに、熔解に要するエネルギーが大きくなるので製造コストが高くなってしまう。また、熔融温度が高いと、ガラス原料の熔解に電気熔解を適用する場合、ガラスではなく、熔解槽を形成する耐熱煉瓦に電流が流れてしまい、熔解槽が破損してしまうことがある。なお、ガラスの熔解性は、粘度が102.5dPa・sの時のガラス温度(熔融温度)によって評価できる。そこで、本実施形態のガラス基板を構成するガラスは、熔融温度が1680℃以下であることが好ましい。熔融温度を1680℃以下とすることで、本実施形態のガラス基板は良好な熔解性を有することができる。しかし、熔融温度が低すぎると、Tgおよび歪点が低くなりやすい。そのため、高Tgおよび高歪点を実現するためには、熔融温度がある程度の高さを有することが好ましい。したがって、熔融温度は、好ましくは1550~1650℃であり、好ましくは1550~1645℃であり、より好ましくは1580~1640℃であり、より好ましくは1590~1630℃であり、さらに好ましくは1600~1620℃である。
 本実施形態のガラス基板を構成するガラスは、100~300℃の範囲における平均熱膨張係数が37×10-7-1未満であることが好ましく、28×10-7-1以上36×10-7-1未満であることがより好ましく、30×10-7-1以上35×10-7-1未満であることがさらに好ましく、31×10-7-1以上34.5×10-7-1未満であることがさらに好ましく、32×10-7-1以上34×10-7-1未満であることがさらに好ましい。熱膨張係数が大きすぎると、ディスプレイ製造時の熱処理工程において、熱衝撃や熱収縮量が増大する。他方、熱膨張係数が小さすぎると、ディスプレイ製造時にガラス基板上に形成される金属および有機系接着剤などの周辺材料の熱膨張係数との整合がとりにくくなり、周辺部材が剥離してしまう虞がある。また、p-Si・TFT製造工程では、急加熱と急冷とが繰り返され、ガラス基板にかかる熱衝撃は大きくなる。さらに、大型のガラス基板は、熱処理工程において、温度差(温度分布)がつきやすく、ガラス基板の破壊確率が高くなる。熱膨張係数を上記範囲とすることで、熱膨張差から生じる熱応力を低減することができ、結果として、熱処理工程におけるガラス基板の破壊確率が低下する。なお、ガラス基板上に形成される金属、有機系接着剤などの周辺材料と熱膨張係数との整合を重視する観点からは、ガラス基板を構成するガラスの100~300℃の範囲における平均熱膨張係数が55×10-7-1未満が好ましく、40×10-7-1未満がより好ましく、28×10-7-1以上40×10-7-1未満であることがさらに好ましく、30×10-7-1以上39×10-7-1未満であることが一層好ましく、32×10-7-1以上38×10-7-1未満であることがより一層好ましく、34×10-7-1以上38×10-7-1未満であることがさらに一層好ましい。
 Tgが低すぎると、耐熱性が低下し、また、熱処理工程において熱収縮が大きくなる。したがって、本実施形態のガラス基板のTgは、720℃以上が好ましく、740℃以上がより好ましく、745℃以上がさらに好ましく、750℃以上がさらに好ましく、755℃以上がさらに好ましく、760℃以上がさらに好ましい。
 密度が高すぎると、ガラス基板の軽量化が困難となり、ディスプレイの軽量化が困難になることがある。したがって、本実施形態のガラス基板の密度は、2.6g/cm以下が好ましく、2.5g/cm未満がより好ましく、2.45g/cm以下がさらに好ましく、2.42g/cm以下が一層好ましく、2.4g/cm以下がより一層好ましい。特に、p-Si・TFTを備えるフラットディスプレイ用ガラス基板や有機ELディスプレイ用ガラス基板は、軽量化が求められているため、2.5g/cm未満が好適であり、2.45g/cm以下がさらに好ましく、2.42g/cm以下が一層好ましく、2.4g/cm以下がより一層好ましい。
 ガラス融液の比抵抗が低すぎると、ガラス原料の熔解に電気熔解を利用する場合、ガラス原料の熔解に必要な電流値が過大になる。したがって、設備上の制約が生じる場合がある。さらに、電極の消耗が多くなるという問題が生じる場合がある。一方、比抵抗が高すぎると、熔解時に、ガラス原料ではなく、熔解槽を形成する耐熱煉瓦に電流が流れてしまい、熔解槽が破損してしまうおそれがある。したがって、本実施形態のガラス基板を構成するガラスの1550℃における比抵抗は、50~300Ω・cmが好ましく、50~250Ω・cmがより好ましく、80~240Ω・cmがさらに好ましく、100~230Ω・cmがさらに好ましい。
 ヤング率および比弾性率(ヤング率/密度)が低すぎると、ディスプレイ製造時に自重によるガラス基板の撓みによって、ガラス基板が破損しやすくなる。特に、幅方向2000mm以上の大型のガラス基板では、撓みによる破損の問題が顕著となる。そこで、本実施形態のガラス基板のヤング率は、70GPa以上が好ましく、73GPa以上がより好ましく、74GPa以上がさらに好ましく、75GPa以上がさらに好ましい。また、本実施形態のガラス基板の比弾性率は、28GPa以上が好ましく、29GPa以上がより好ましく、30GPa以上がさらに好ましく、31GPa以上がさらに好ましい。
 次に、本実施形態のガラス基板のガラス成分について説明する。なお、以下、モル%を単に%と略記する。
 (SiO
 SiOは、骨格成分であり、必須成分である。SiO量が少なすぎると、耐酸性低下、Tgおよび歪点の低下、熱膨張係数増加および耐バッファードフッ酸(BHF)低下が起こる場合がある。また、低密度化を図ることが困難となる場合もある。一方、SiO量が多すぎると、熔融温度が著しく高くなり、熔解および成形が困難になる場合がある。また、耐失透性が低下する場合もある。また、ガラスをスリミングする場合のエッチング速度を十分に速くできない。そこで、SiOの含有率は、55~80%が好ましく、60~78%がより好ましく、62~78%がさらに好ましく、65~78%がさらに好ましく、65~75%がさらに好ましい。なお、より軽量化を図るためにSrO+BaOを3%未満しか含まないガラス基板においては、SiOの含有率は、67~73%がさらに好ましく、69~72%がさらに好ましい。さらに、ガラスをスリミングする場合のエッチング速度を十分に速くするためには、SiOの含有率は、62~78%がより好ましく、62~74%がさらに好ましく、64~70%がさらに好ましい。他方、SrO+BaOを3%以上含有するガラス基板においては、SiOの含有率は、65~73%がさらに好ましく、66~71%がさらに好ましい。
 (Al
 Alは、分相を抑制し、Tgおよび歪点を上昇させる必須成分である。Al量が少なすぎると、ガラスが分相しやすくなる。また、Tgおよび歪点の低下による耐熱性の低下や熱収縮率の増大、およびヤング率低下および耐酸性の低下が起こる場合もある。また、ガラスのエッチング速度を十分に速くできない。一方、Al量が多すぎると、ガラスの失透温度が上昇して、耐失透性が低下するので、成形性が悪化する。したがって、Alの含有率は、3~20%が好ましく、5~18%がより好ましく、5~15%がさらに好ましい。なお、より軽量化を図るためにSrO+BaOを3%未満しか含まないガラス基板においては、Alの含有率は、7~13%がさらに好ましく、9~12%がさらに好ましい。さらに、ガラスをスリミングする場合のエッチング速度を十分に速くするためには、Alの含有率は、7~15%がさらに好ましく、9~14%がさらに好ましく、10~14%がさらに好ましい。他方、SrO+BaOを3%以上含有するガラス基板においては、Alの含有率は、8~15%がさらに好ましく、10~14%がさらに好ましい。
 (B
 Bは、熔融温度に代表される高温度域での粘性特性(高温粘性特性)温度を低下させ、熔解性を改善する必須成分である(以下、本明細書では、「高温粘性特性温度」として、「熔融温度」を代表して記載する。)。B量が少なすぎると、熔解性低下、耐BHF低下、耐失透性低下および熱膨張係数増加が起こる場合がある。また、密度が増加して、低密度化を図ることが困難となる場合もある。一方、B量が多すぎると、Tgおよび歪点の低下、耐酸性低下およびヤング率低下が起こる場合がある。また、ガラス熔解時のBの揮発により、ガラスの不均質が顕著となり、脈理が発生しやすくなる。そこで、Bの含有率は、3~15%が好ましく、3~13がより好ましく、3~10%がさらに好ましい。なお、より軽量化を図るためにSrO+BaOを3%未満しか含まないガラス基板においては、Bの含有率は、3%以上9.5%未満がさらに好ましく、3.5%以上9.2%未満がさらに好ましく、4%以上8.9%未満がさらに好ましく、5~8.5%がさらに好ましく、6~8%がさらに好ましい。さらに、失透温度の上昇を防止するためには、Bの含有率は、5~13%がより好ましく、5~12%がさらに好ましく、6~10未満%(6%以上10%未満)がさらに好ましい。他方、SrO+BaOを3%以上含有するガラス基板においては、Bの含有率は、3~9%がさらに好ましく、4~8%がさらに好ましい。
 (MgO)
 MgOは、熔解性を向上させる成分である。また、MgOは、アルカリ土類金属の中では密度を増加させにくい成分であるので、その含有率を相対的に増加させると、ガラスの低密度化を図りやすくなる。本実施形態のガラス基板において、MgOは必須ではない。しかし、MgOを含有させることにより、熔解性の向上および切粉発生の抑制を実現できるので、MgOが含まれていてもよい。しかし、MgO量が多すぎると、Tgおよび歪点低下、耐熱性低下、耐酸性低下およびヤング率低下が起こる場合がある。また、失透温度が高くなり、耐失透性が低下するので、ダウンドロー法に適用し難くなる場合がある。したがって、本実施形態のガラス基板では、MgOの含有率は0~15%が好ましく、0~10%がより好ましい。なお、より軽量化を図るためにSrO+BaOを3%未満しか含まないガラス基板においては、MgOの含有率は、0~5%がさらに好ましく、0~2未満%(0%以上2%未満)がさらに好ましく、0~1.5%がさらに好ましく、0~1%がさらに好ましく、0~0.5%が好ましく、MgOが実質的に含有されないことがさらに好ましい。他方、SrO+BaOを3%以上含有するガラス基板においては、MgOの含有率は、1~9%がさらに好ましく、2~8%がさらに好ましい。
 (CaO)
 CaOは、ガラスの失透温度を急激に上げることなくガラスの熔解性を向上させるのに有効な成分である。また、CaOは、アルカリ土類金属の中では密度を増加させにくい成分であるので、CaO量を相対的に増加させると、ガラスの低密度化を図りやすくなる。CaO量が少なすぎると、高温時の粘性上昇による熔解性低下および耐失透性低下が起こりやすくなる。一方、CaO量が多すぎると、熱膨張係数の増加が起こりやすくなる。これらの理由から、CaOの含有率は、0~20%が好ましく、0~18%が好ましい。なお、より軽量化を図るためにSrO+BaOを3%未満しか含まないガラス基板においては、CgOの含有率は、3.6~16%がより好ましく、4~16%がさらに好ましく、6~16%がさらに好ましく、7超~16%(7%を超えて16%以下)がさらに好ましく、8~13%がさらに好ましく、9~12%がさらに好ましい。他方、SrO+BaOを3%以上含有するガラス基板においては、CaOの含有率は、0~10%がさらに好ましく、0~5%がさらに好ましく、0~3%がさらに好ましい。
 (SrO)
 SrOは、ガラスの失透温度を下げることができる成分である。SrOは、必須成分ではないが、含有させると耐失透性向上および熔解性向上が実現できるので、含まれていてもよい。しかし、SrO量が多すぎると、密度が上昇してしまう。したがって、密度を低下させたい場合には、実質的にSrOを含有させないことが好ましい。したがって、本実施形態のガラス基板では、SrOの含有率は0~10%が好ましく、0~8%がより好ましい。なお、より軽量化を図るためには、SrOの含有率は、3%未満が好ましく、2%以下がより好ましく、1%以下がさらに好ましく、0.5%以下がさらに好ましく、SrOが実質的に含まれないことがさらに好ましい。言い換えると、SrOの含有率は0~3未満%(0%以上3%未満)が好ましく、0~2%がより好ましく、0~1%がさらに好ましく、0~0.5%がさらに好ましく、SrOが実質的に含まれないことがさらに好ましい。他方、熔解性を向上させたい場合には、SrOの含有率は、1~8%がさらに好ましく、3~8%がさらに好ましい。
 (BaO)
 BaOは、耐失透性および熔解性を向上させる成分である。また、BaOを含有させることにより、熱膨張係数が増大すると共に密度が過度に増加してしまう。したがって、本実施形態のガラス基板では、BaOの含有率は0~10%が好ましく、0~5%がより好ましく、0~2%がさらに好ましく、0~1%がさらに好ましい。なお、環境負荷の問題があるため、BaOが実質的に含まれないことがさらに好ましい。
 (LiO、NaO)
 LiOおよびNaOは、熔解性を向上させる成分であるが、ガラスの熱膨張係数を大きくして、ディスプレイ製造における熱処理時に基板を破損したり、ガラスのTgおよび歪点を大きく低下させて、過度に耐熱性を低下させる成分である。したがって、本実施形態のガラス基板では、LiOおよびNaOの含有率は0~0.3%が好ましく、0~0.2%がより好ましく、0~0.1%がさらに好ましく、LiOおよびNaOが実質的に含有されないことがさらに好ましい。
 (KO)
 KOは、ガラスの塩基性度を高め、清澄性を発揮させる成分である。また、KOは、熔解性を向上させ、さらにガラス融液の比抵抗を低下させる成分である。したがって、KOは、必須成分ではないが、含有させるとガラス融液の比抵抗低下、熔解性向上および清澄性向上を実現できる。しかし、KO量が多すぎると、熱膨張係数が増大したり、歪点およびTgが大きく低下して耐熱性が過度に低下する場合がある。そのため、本実施形態のガラス基板では、KOの含有率は0~0.8%が好ましく、0.01~0.5%がより好ましく、0.1~0.3%がさらに好ましい。
 (ZrO、TiO
 ZrOおよびTiOは、ガラスの化学的耐久性およびTgおよび歪点を上昇させる成分である。ZrOおよびTiOは、必須成分ではないが、含有させることでTgおよび歪点の上昇と、耐酸性向上とを実現できる。しかし、ZrO量およびTiO量が多くなりすぎると、失透温度が著しく上昇するため、耐失透性および成形性が低下する場合がある。特に、ZrOは、冷却過程でZrOの結晶を析出する場合があり、これがインクルージョンとしてガラスの品質悪化を引き起こすことがある。また、TiOは、ガラスを着色させる成分なので、ディスプレイ用基板には好ましくない。以上の理由から、本実施形態のガラス基板では、ZrOおよびTiOの含有率は、それぞれ、0~5%が好ましく、0~3%がより好ましく、0~2%がさらに好ましく、0~1%がさらに好ましく、0.5%未満がさらに好ましい。さらに好ましくは、本実施形態のガラス基板が、ZrOおよびTiOを実質的に含有しないことである。
 (ZnO)
 ZnOは、耐BHF性および熔解性を向上させる成分であるので含まれていてもよいが、必須成分ではない。しかし、ZnO量が多くなりすぎると、失透温度上昇、Tgおよび歪点の低下、および密度上昇が起こる場合がある。そのため、本実施形態のガラス基板では、ZnOの含有率は、5%以下が好ましく、3%以下がより好ましく、2%以下がさらに好ましく、1%以下がさらに好ましい。さらに好ましくは、本実施形態のガラス基板が、ZnOを実質的に含有しないことである。言い換えると、ZnOの含有率は、0~5%が好ましく、0~3%がより好ましく、0~2%がさらに好ましく、0~1%がさらに好ましい。さらに好ましくは、本実施形態のガラス基板が、ZnOを実質的に含有しないことである。
 (P
 Pは、熔融温度を低下させ、熔解性を向上させる成分であるので含まれていてもよいが、必須成分ではない。しかし、P量が多すぎると、ガラス熔解時のPの揮発によりガラスの不均質が顕著となり、脈理が発生しやすくなる。また、Tgおよび歪点が低下すると共に、耐酸性が著しく悪化したり、乳白が生じやすくなったりする。そのため、本実施形態のガラス基板では、Pの含有率は、3%以下が好ましく、1%以下がより好ましく、0.5%以下がさらに好ましい。さらに好ましくは、本実施形態のガラス基板が、Pを実質的に含有しないことである。言い換えると、Pの含有率は、0~3%が好ましく、0~1%がより好ましく、0~0.5%がさらに好ましい。さらに好ましくは、本実施形態のガラス基板が、Pを実質的に含有しないことである。
 (La
 Laは、含まれていてもよい。しかし、La量が多くなりすぎると、失透温度が上昇するとともに、密度が上昇してしまう。したがって、Laの含有率は、0~1%が好ましく、0~0.5%がより好ましく、0~0.1%がさらに好ましく、さらに好ましくは、本実施形態のガラス基板がLaを実質的に含有しないことである。
 (清澄剤)
 清澄剤としては、環境への負荷が小さく、ガラスの清澄性に優れたものであれば特に制限されない。例えば、Sn、Fe、Ce、Tb、MoおよびWの金属酸化物の群から選ばれる少なくとも1種を挙げることができる。清澄剤が少なすぎると、泡品質が悪化する。したがって、清澄剤の添加量は、清澄剤の種類やガラスの組成にもよるが、例えば、0.01~1%、好ましくは0.05~1%、好ましくは0.05~0.5%、より好ましくは0.05~0.3%、さらに好ましくは0.05~0.2%の範囲とすることが適当である。清澄剤としては、SnOが好適である。しかし、SnOは、ガラスの耐失透性を低下させる成分である。そのため、例えば清澄剤としてSnOが用いられる場合は、SnOの含有率は0.01~0.3%が好ましく、0.03~0.2%がより好ましく、0.05~0.15%がさらに好ましい。
 (Fe
 Feは、清澄剤としての働きの他に、ガラス融液の高温域での粘性を低下させ、比抵抗を低下させる働きを行う成分である。Feは必須成分ではないが、熔融温度が高く、熔解が困難なガラスにおいては、熔融温度や比抵抗を低下させるために含有させることが好ましい。Fe量が多くなりすぎると、ガラスが着色して透過率が低下する場合がある。そのため、本実施形態のガラス基板では、Feの含有率は0~0.1%が好ましく、0~0.08%がより好ましく、0.001~0.05%がさらに好ましく、0.005~0.03%がさらに好ましい。ここで、熔融温度が高いガラスにおいては、熔解工程の温度が高くなるので、Feの清澄剤としての効果は低下しやすい。そのため、清澄剤としてFeを単独で用いると清澄性が低下し、ガラス基板の泡品質が悪化する場合があるので、SnOと併用して用いることが好ましい。
 (含有されない成分)
 AsおよびSbは、環境への負荷が懸念される成分である。したがって、本実施形態のガラス基板を構成するガラスは、成分として、AsおよびSbを実質的に含有しない。
 (含有されないことが好ましい成分)
 PbOおよびFは、環境負荷の問題により、実質的に含有されないことが好ましい。
 また、本実施形態のガラス基板に含まれる成分の複合パラメータは、以下のとおりである。
 ((SiO+2Al)/(2B+RO))
 MgO+CaO+SrO+BaO=ROと表記した場合、(SiO+2Al)/(2B+RO)が2.5以上であることが好ましく、2.8以上であることがより好ましく、3.0超であることがさらに好ましい。(SiO+2Al)/(2B+RO)をこのような範囲とすることにより、熔解性の向上と、Tgおよび歪点の上昇とを両立できる。あるいは、耐失透性の向上と、Tgおよび歪点の上昇とを両立できる。したがって、本実施形態のガラス基板を構成するガラスは、高いTgおよび歪点と、良好な熔解性あるいは耐失透性とを両立しやすくなる。その効果をより確実に得るために、(SiO+2Al)/(2B+RO)は3.1~4.3がより好ましく、3.3~3.65がさらに好ましい。さらに、失透温度の上昇防止と十分なエッチング速度を実現するためには、(SiO+2Al)/(2B+RO)は2.5~10が好ましく、2.5~5がより好ましく、2.8~5がさらに好ましく、3超~4がさらに好ましく、3.1~3.5が一層好ましい。
 (アルカリ土類金属酸化物(RO:MgO+CaO+SrO+BaO))
 ROは、熔解性を向上させる成分である。RO量が少なすぎると、熔解性が悪化する場合がある。しかし、RO量が多すぎると、Tgおよび歪点の低下、密度上昇、ヤング率低下および熱膨張係数の増加が起こる場合がある。したがって、本実施形態のガラス基板を構成するガラスでは、ROの含有率は3~25%が好ましく、4~20%がより好ましい。なお、より軽量化を図るためにSrO+BaOを3%未満しか含まないガラスにおいては、ROの含有率は、5%以上14%未満がさらに好ましく、6~14%がさらに好ましく、8~13%がさらに好ましく、9~12%がさらに好ましい。他方、SrO+BaOを3%以上含有するガラス基板においては、ROの含有率は、5%以上18%未満がさらに好ましく、8~17%がさらに好ましい。
 (CaO/RO)
 より軽量化を図るためにSrO+BaOを3%未満しか含まないガラスにおいては、CaO/ROは、0.5以上が好ましく、0.7以上がより好ましく、0.85を超えることがさらに好ましく、0.88以上がさらに好ましく、0.90以上がさらに好ましく、0.92以上がさらに好ましく、0.95以上がさらに好ましい。言い換えると、CaO/ROは、0.5~1が好ましく、0.7~1がより好ましく、0.85超~1がさらに好ましく、0.88~1がさらに好ましく、0.90~1がさらに好ましく、0.92~1がさらに好ましく、0.95~1がさらに好ましい。CaO/ROをこのような範囲とすることで、耐失透性と熔解性とを両立することができる。さらに、低密度化を図ることができる。また、原料として、複数のアルカリ土類金属酸化物を含有させるよりもCaOのみを含有させた方が、Tgおよび歪点を上昇させることができる。なお、アルカリ土類金属酸化物としてCaOのみを原料として含有させた場合でも、得られるガラスには、他のアルカリ土類金属酸化物が不純物として含まれる場合がある。アルカリ土類金属酸化物としてCaOのみを原料として含有させた場合、得られるガラスのCaO/ROの値は、例えば0.98~1程度である。また、CaOは原料が安価であり、入手が容易であるという点でも、好ましい成分である。
 (SiO-(Al/2))
 SiO-(Al/2)の値が小さすぎると、エッチング速度は向上するものの、耐失透性が低下する場合がある。一方、この値が大きすぎると、エッチング速度が低下する場合がある。したがって、本実施形態のガラスを構成するガラスは、SiO-(Al/2)は69以下が好ましく、60~68がより好ましく、63~67がさらに好ましい。なお、ディスプレイ製造においてガラス基板をスリミングを行うような場合、その生産性を向上させるために、エッチング速度をさらに高めることが求められる。このような場合、さらにエッチング速度を向上させるために、SiO-(Al/2)は69以下が好ましく、50~68がより好ましく、55~65がさらに好ましく、57~63が一層好ましく、58~62がより一層好ましい。
 また、生産性よくガラス基板のエッチング(スリミング)を行うために、エッチング速度が50μm/h以上であることが好ましい。一方、過度にエッチング速度が高いと、パネル作製工程での薬液との反応で不都合が生じる虞があるため、ガラス基板を構成するガラスのエッチング速度は160μm/h以下であることが好ましい。エッチング速度は好ましくは60~140μm/h 、より好ましくは70~120μm/hである。本発明においては、上記エッチング速度は以下の条件で測定したものと定義する。

 エッチング速度(μm/h)は、HFの割合が1mol/kg、HClの割合が濃度5mol/kgの混酸である40℃のエッチング液にガラス基板を1時間浸漬した場合の、単位時間(1時間)当たりのガラス基板の一方の表面の厚み減少量(μm)として表す。 
 (SiO+2Al
 SiO+2Alが少なすぎると、Tgおよび歪点が低下しやすくなる。一方、SiO+2Alが多すぎると、耐失透性が悪化しやすくなる。したがって、本実施形態のガラス基板を構成するガラスでは、SiO+2Alは80%以上が好ましく、80~100%がより好ましく、85~98%がさらに好ましく、89~97%がさらに好ましく、90~96%がさらに好ましい。なお、より軽量化を図るためにSrO+BaOを3%未満しか含まないガラスにおいては、SiO+2Alは、91~95%がさらに好ましく、91~93.5%がさらに好ましい。他方、SrO+BaOを3%以上含有するガラスにおいては、SiO+2Alは、91~96%がより好ましい。
 (Al/SiO
 Al/SiOが0.35を超えると、耐失透性が悪化しやすくなる。他方、Al/SiOが0.05以下となるとTgおよび歪点を十分に上昇させることができない。したがって、本実施形態では、Al/SiOが0.05~0.35であり、0.07~0.30であることが好ましく、0.10~0.25であることがさらに好ましい。
 (B+P
 B+Pが少なすぎると、熔解性が低下しやすくなる。一方、B+Pが多すぎると、ガラス熔解時のB+Pの揮発により、ガラスの不均質が顕著となり、脈理が発生しやすくなる。さらに、Tgおよび歪点が低下しやすくなる。したがって、本実施形態のガラス基板を構成するガラスでは、B+Pは3~15%が好ましく、3~10%がより好ましい。なお、より軽量化を図るためにSrO+BaOを3%未満しか含まないガラスにおいては、B+Pは、3%以上9.5%未満がさらに好ましく、4%以上8.9%未満がさらに好ましく、5~8.5%がさらに好ましく、6~8%がさらに好ましい。さらに、耐失透性を向上させるには、5~13%がより好ましく、5~12%がさらに好ましいく、6~10未満%(6%以上10%未満)がさらに好ましい。他方、SrO+BaOを3%以上含有するガラスにおいては、B+Pは、3~9%がさらに好ましく、4~8%がさらに好ましい。
 (CaO/B
 なお、より軽量化を図るためにSrO+BaOを3%未満しか含まないガラスにおいては、CaO/Bが小さすぎると、Tgおよび歪点が低下しやすくなる。一方、CaO/Bが大きすぎると、熔解性が悪化しやすくなる。したがって、本実施形態では、CaO/Bは、0.5以上が好ましく、0.7以上がより好ましく、0.9以上がより好ましく、1.2を超えることがさらに好ましく、1.2を超えて5以下がさらに好ましく、1.2を超えて3以下がさらに好ましく、1.3以上2.5以下がさらに好ましく、1.3以上2以下がさらに好ましい。さらに、熔解性を向上させるには、0.5~5が好ましく、0.9~3がより好ましく、1を超えて2.5以下がさらに好ましく、1を超えて2以下がさらに好ましく、1.2を超えて2以下がさらに好ましく、1.2を超えて1.5以下がさらに好ましい。
 (SrO+BaO)
 SrOおよびBaOは、ガラスの失透温度を下げることができる成分である。これらの成分は必須ではないが、含有させると、耐失透性向上および熔解性向上を実現できる。しかし、これらの成分の量が多すぎると、密度が上昇してしまう。したがって、密度を低下させ、軽量化を図りがたくなる。また、熱膨張係数が増加する場合もある。したがって、本実施形態のガラス基板を構成するガラスでは、SrO+BaOは10%以下が好ましい。なお、より軽量化を図るためには、5%以下がより好ましく、3%未満がさらに好ましく、2%未満がさらに好ましい。さらに好ましくは、本実施形態のガラス基板を構成するガラスがSrOおよびBaOを実質的に含有しないことである。言い換えると、SrO+BaOは0~10%が好ましく、より軽量化を図るためには、0~5%がより好ましく、0~3未満%(0%以上3%未満)がさらに好ましく、0~2未満%(0%以上2%未満)がさらに好ましく、0~1未満%(0%以上1%未満)がさらに好ましく、0~0.5未満%(0%以上0.5%未満)が一層好ましい。さらに好ましくは、本実施形態のガラス基板を構成するガラスがSrOおよびBaOを実質的に含有しないことである。
 (RO+ZnO+B
 RO+ZnO+Bが少なすぎると、高温域の粘性が高くなり、清澄性およびガラスの熔解性が低下しやすくなる。一方、RO+ZnO+Bが多すぎると、Tgおよび歪点が低下しやすくなる。したがって、本実施形態のガラス基板を構成するガラスでは、RO+ZnO+Bが7~30%が好ましく、10~27%がより好ましい。なお、より軽量化を図るためにSrO+BaOを3%未満しか含まないガラスにおいては、RO+ZnO+Bは、12~22%がさらに好ましく、14~21%がさらに好ましく、16~20%がさらに好ましい。さらに、熔解性を向上させるためには、RO+ZnO+Bは、12~27%がさらに好ましく、14~25%がさらに好ましく、17~23%がさらに好ましい。他方、SrO+BaOを3%以上含有するガラスにおいては、RO+ZnO+Bは、13~27%がより好ましく、15~25%がさらに好ましい。
 (アルカリ金属酸化物(RO:LiO+NaO+KO))
 ROは、ガラスの塩基性度を高め、清澄剤の酸化を容易にして、清澄性を発揮させる成分である。また、ROは、ガラスの熔解性向上および比抵抗低下を実現しやすくする成分であるので、含まれていてもよい。ROは必須成分ではないが、含有させると、比抵抗低下、清澄性向上および熔解性向上を実現できる。しかし、RO量が多すぎると、Tgおよび歪点が過度に低下し、さらに、熱膨張係数が増大する場合もある。したがって、本実施形態のガラス基板を構成するガラスでは、ROは0~0.8%が好ましく、0.01~0.5%がより好ましく、0.1~0.3%がさらに好ましい。
 (KO/RO)
 KOは、LiOおよびNaOと比較して分子量が大きいため、ガラス基板から溶出しにくい。そのため、ROを含有させる場合には、KOをより高い比率で含有させることが好ましい。KOは、LiOよりも高い比率で含有される(KO>LiOを満たす)ことが好ましい。KOは、NaOよりも高い比率で含有される(KO>NaOを満たす)ことが好ましい。KO/ROは、0.5以上が好ましく、0.6以上が好ましく、0.7以上がより好ましく、0.8以上がさらに好ましく、0.95以上がさらに好ましい。言い換えると、KO/ROは、0.5~1が好ましく、0.6~1が好ましく、0.7~1がより好ましく、0.8~1がさらに好ましく、0.95~1がさらに好ましい。
 本実施形態のガラス基板を構成するガラスは、上記各成分を適宜組み合わせることによって実現することができるので、組成の組み合わせは限定されないが、一例として、以下のような組み合わせを挙げることができる:
SiO 62~74%
Al 3~20%
 3~15%
CaO 7超~16%
La 0~1%
BaO 0~1未満%(0%以上1%未満)、
を含有し、
歪点が665℃以上であり、
かつ、
 B、PおよびCaOのモル%で示す含有率が、B+P=3~15%、および、CaO/B>1.2の関係を満たす。
 あるいは、一例として、以下のような組み合わせも挙げることができる:
SiO 65~74%
Al 3~20%
 3~8.9未満%(3%以上8.9%未満)
CaO 7超~16%
La 0~1%
が含有され、
BaOが実質的に含有されず、かつ、
 B、PおよびCaOのモル%で示す含有率が、B+P=3~9.5%、および、CaO/B>1.2の関係を満たす。
 本実施形態のガラス基板は、ディスプレイ用基板である。本実施形態のガラス基板は、具体的には、p-Si・TFTが形成されるフラットパネルディスプレイ用のガラス基板に好適である。また、本実施形態のガラス基板は、液晶ディスプレイ用ガラス基板および有機ELディスプレイ用ガラス基板に好適である。特に、p-Si・TFT液晶ディスプレイ用ガラス基板および有機ELディスプレイ用ガラス基板に好適である。中でも、高精細が求められる携帯端末などのディスプレイ用ガラス基板に好適である。あるいは、本実施形態のガラス基板は、酸化物半導体薄膜フラットパネルディスプレイ用ガラス基板に好適である。さらに詳細には、本実施形態のガラス基板は、基板表面に酸化物半導体薄膜・TFTを形成して製造されるフラットパネルディスプレイに用いられるガラス基板に好適である。
 本実施形態のガラス基板の大きさは、適用されるディスプレイのサイズに応じて適宜変更可能であるので、特に限定されない。幅方向の長さは、例えば500mm~3500mmとでき、1000mm~3500mmが好ましく、2000mm~3500mmがより好ましい。縦方向の長さは、例えば500mm~3500mmとでき、1000mm~3500mmが好ましく、2000mm~3500mmがより好ましい。より大きいガラス基板を使用するほど、液晶ディスプレイや有機ELディスプレイの生産性が向上する。
 本実施形態のガラス基板の厚さは、適用されるディスプレイのサイズに応じて適宜変更可能であるので、特に限定されない。しかし、ガラス基板が薄すぎると、ガラス基板自体の強度が低下する。例えば、液晶ディスプレイ製造時の破損が生じやすくなる。一方、ガラス基板が厚すぎることは、薄型化が求められるディスプレイには好ましくない。また、ガラス基板が厚すぎるとガラス基板の重量が重くなるため、液晶ディスプレイの軽量化が困難となる。したがって、本実施形態のガラス基板の厚さは、0.1mm~1.1mmが好ましく、0.1mm~0.7mmがより好ましく、0.3~0.7mmがさらに好ましく、0.3~0.5mmがさらに好ましい。
 本実施形態のガラス基板は、ガラス原料を熔融して熔融ガラスを生成する熔解工程と、前記熔融ガラスをガラス板へと成形する成形工程と、前記ガラス板を徐冷する徐冷工程と、を含む方法によって製造できる。なお、前記ガラス板では、熱収縮率が75ppm以下、好ましくは60ppm以下である。また、前記ガラス基板を構成するガラスは、失透温度が1250℃以下であり、かつ、モル%でSiO:55~80%、Al:3~20%、B:3~15%、RO(MgO、CaO、SrO、BaOの合量):3~25%をガラス組成として含有し、AsおよびSbをガラス組成として実質的に含有しない。
 本実施形態のガラス基板は、公知のガラス基板の製造方法を使用して製造できる。成形方法も、公知の方法が使用できるが、フロート法あるいはダウンドロー法を使用することが好ましく、特にオーバーフローダウンドロー法を使用することが好ましい。ダウンドロー法によって成形されたガラス基板は、その主表面が熱間成形された表面であるために、極めて高い平滑性を有している。したがって、成形後のガラス基板表面の研磨工程が不要となるので、製造コストを低減することができ、さらに生産性も向上させることができる。さらに、ダウンドロー法を使用して成形されたガラス基板の両主表面は均一な組成を有しているので、エッチング処理を行った際に、均一にエッチングを行うことができる。加えて、ダウンドロー法を使用して成形することで、マイクロクラックのない表面状態を有するガラス基板を得ることができる。その結果、ガラス基板自体の強度も向上させることができる。
 熱収縮率が75ppm以下、好ましくは60ppm以下のガラス基板を製造するために、徐冷時の条件を適宜調整することが望ましい。例えば、ダウンドロー法を使用する場合は、ガラス板の温度を、TgからTg-100℃までの温度範囲内で20~120秒維持するように、徐冷を行うことが望ましい。言い換えると、ダウンドロー法を使用する場合は、ガラス板が、TgからTg-100℃までの温度範囲を20~120秒で冷却されるように、徐冷を行うことが望ましい。20秒未満であると、熱収縮量を十分低減することができない場合がある。一方、120秒を超えると、生産性が低下すると共に、ガラス製造装置(徐冷炉)が大型化してしまう。したがって、コストおよび生産性を維持しつつ、熱収縮率を低下させるためには、ガラス板の温度を、TgからTg-100℃までの温度範囲内で20~120秒維持するように徐冷を行うことが好ましく、30~120秒維持することがより好ましく、50~100秒維持することがさらに好ましい。言い換えると、ガラス板が、TgからTg-100℃までの温度範囲内で20~120秒で冷却されるように徐冷を行うことが好ましく、30~120秒で冷却されることがより好ましく、50~100秒で冷却されることがさらに好ましい。あるいは、ガラス板の中央部の平均冷却速度を、TgからTg-100℃の温度範囲内において、50~300℃/分とするように徐冷を行うことが好ましい。平均冷却速度が、300℃/分を超えると、熱収縮量を十分低減することができない場合がある。一方、50℃/分未満であると、生産性が低下すると共に、ガラス製造装置(徐冷炉)が大型化してしまう。したがって、コストおよび生産性を維持しつつ、熱収縮率を低下させるための平均冷却速度の好ましい範囲は、50~300℃/分であり、50~200℃/分がより好ましく、60~120℃/分がさらに好ましい。他方、徐冷工程後に熱収縮低減処理(オフラインアニール)工程を別途設けることで、熱収縮率を小さくすることもできる。しかし、徐冷工程とは別にオフラインアニール工程を設けると、生産性が低下し、コストが高騰してしまうという問題点がある。そのため、上述したように、徐冷工程においてガラス板の冷却速度を制御するという熱収縮低減処理(オンラインアニール)を施すことによって、熱収縮率を所定範囲内におさめることがより好ましい。
 また、ガラスの水分量を示すβ-OH値は、その値が小さいほどTgおよび歪点が高くなる傾向にある。他方、β-OH値が大きいほど、熔融温度を低下させる傾向にある。Tgおよび歪点の上昇と熔解性の向上を両立するために、β-OH値は、0.05~0.40mm-1とすることが好ましく、0.10~0.35mm-1がより好ましく、0.10~0.30mm-1がさらに好ましく、0.10~0.25mm-1がさらに好ましい。β-OH値は、原料の選択により調整することができる。例えば、含水量の高い原料(例えば水酸化物原料)を選択したり、塩化物等のガラス中の水分量を減少させる原料の含有量を調整することで、β-OH値を増減させることができる。また、ガラス熔解に用いるガス加熱燃焼(酸素燃焼加熱)と電気加熱(直接通電加熱)の比率を調整することでβ―OH値を調整することができる。さらに、炉内雰囲気中の水分量を増加させたり、熔解時に熔融ガラスに対して水蒸気をバブリングすることで、β-OH値を増加させることができる。なお、ガラスのβ-OH値は、ガラスの赤外線吸収スペクトルにおいて次式によって求められる。
β-OH値=(1/X)log10(T1/T2)
   X :ガラス肉厚(mm)
   T1:参照波長2600nmにおける透過率(%)
   T2:水酸基吸収波長2800nm付近における最小透過率(%)
 上記開示内容から得られる本実施形態のフラットパネルディスプレイ用ガラス基板として、例えば以下の第1~第3のガラス基板を挙げることができる。また、上記内容から得られる本実施形態のガラス基板の製造方法として、例えば以下の第1~第3の製造方法を挙げることができる。
 第1のフラットパネルディスプレイ用ガラス基板として、
 モル%表示で、
SiO 55~80%
Al 3~20%
 3~15%
RO(MgO、CaO、SrO、BaOの合量) 3~25%
を含有し、
 AsおよびSbを実質的に含有せず、かつ、
 失透温度が1250℃以下であるガラスから構成され、
 熱収縮率が75ppm以下である、
ガラス基板が挙げられる。
 前記第1のフラットパネルディスプレイ用ガラス基板に含まれるガラス基板の例として、熱収縮率が60ppm以下であるガラス基板も挙げられる。すなわち、
 モル%表示で、
SiO 55~80%
Al 3~20%
 3~15%
RO(MgO、CaO、SrO、BaOの合量) 3~25%
を含有し、
 AsおよびSbを実質的に含有せず、かつ、
 失透温度が1250℃以下であるガラスから構成され、
 熱収縮率が60ppm以下である、
ガラス基板も挙げられる。
 第2のフラットパネルディスプレイ用ガラス基板として、
 モル%表示で、
SiO 62~74%
Al 3~20%
 3~15%
CaO 7超~16%
La 0~1% 
BaO 0~1未満%、
を含有し、
 B、PおよびCaOのモル%で示す含有率が、B+P=3~15%、およびCaO/B>1.2の関係を満たし、
 歪点が665℃以上であり、かつ、
 失透温度が1250℃以下であるガラスから構成される、
ガラス基板が挙げられる。
 第3のフラットパネルディスプレイ用ガラス基板として、
 モル%表示で、
SiO 65~74%
Al 3~20%
 3~8.9未満%
CaO 7超~16%
La 0~1% 
を含有し、
 BaOを実質的に含有せず、
 B、PおよびCaOのモル%で示す含有率が、B+P=3~9.5%、および、CaO/B>1.2の関係を満たし、かつ、
 失透温度が1250℃以下であるガラスから構成される、
ガラス基板が挙げられる。
 前記第1~第3のフラットパネルディスプレイ用ガラス基板は、p-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板に好適である。特に、前記第1~第3のフラットパネルディスプレイ用ガラス基板は、p-Si・TFTが形成される液晶ディスプレイ用ガラス基板に好適である。あるいは、前記第1~第3のフラットパネルディスプレイ用ガラス基板は、有機ELディスプレイ用ガラス基板にも好適である。あるいは、前記第1~第3のフラットパネルディスプレイ用ガラス基板は、酸化物半導体薄膜トランジスタが形成されるディスプレイ用ガラス基板にも好適である。
 フラットパネルディスプレイ用ガラス基板の第1の製造方法として、
 モル%でSiOが55~80%、Alが3~20%、Bが3~15%、RO(MgO、CaO、SrO、BaOの合量)が3~25%であり、AsおよびSbを実質的に含有せず、かつ、失透温度が1250℃以下であるガラスとなるように調合したガラス原料を熔融して、熔融ガラスを生成する熔融工程と、
 前記熔融ガラスをガラス板へと成形する成形工程と、
 前記ガラス板を徐冷する徐冷工程と、を含み、
 前記ガラス板の熱収縮率が75ppm以下である、
製造方法が挙げられる。
 前記第1の製造方法の例として、
 モル%でSiOが55~80%、Alが3~20%、Bが3~15%、RO(MgO、CaO、SrO、BaOの合量)が3~25%であり、AsおよびSbを実質的に含有せず、かつ、失透温度が1250℃以下であるガラスとなるように調合したガラス原料を熔融して、熔融ガラスを生成する熔融工程と、
 前記熔融ガラスをガラス板へと成形する成形工程と、
 前記ガラス板を徐冷する徐冷工程と、を含み、
 前記ガラス板の熱収縮率が60ppm以下である、
製造方法が挙げられる。
 フラットパネルディスプレイ用ガラス基板の第2の製造方法として、
 モル%でSiOが62~74%、Alが3~20%、Bが3~15%、CaOが7超~16%、Laが0~1%、BaOが0~1未満%であり、B、PおよびCaOのモル%で示す含有率がB+P=3~15%、および、CaO/B>1.2の関係を満たし、歪点が665℃以上であり、かつ、失透温度が1250℃以下のガラスとなるように調合したガラス原料を熔融して、熔融ガラスを生成する熔融工程と、
 前記熔融ガラスをガラス板へと成形する成形工程と、
 前記ガラス板を徐冷する徐冷工程と、
を含む製造方法が挙げられる。
 フラットパネルディスプレイ用ガラス基板の第3の製造方法として、
 モル%でSiOが65~74%、Alが3~20%、Bが3~8.9未満%、CaOが7超~16%、Laが0~1%であり、BaOが実質的に含有されず、B、PおよびCaOのモル%で示す含有率がB+P=3~9.5%、および、CaO/B>1.2の関係を満たし、かつ、失透温度が1250℃以下であるガラスとなるように調合したガラス原料を熔融して、熔融ガラスを生成する熔融工程と、
 前記熔融ガラスをガラス板へと成形する成形工程と、
 前記ガラス板を徐冷する徐冷工程と、
を含む製造方法が挙げられる。
 前記フラットパネルディスプレイ用ガラス基板の第1~第3の製造方法における前記徐冷工程において、ガラス板の冷却速度を制御して熱収縮率を低減させる熱収縮低減処理を施すことが好ましい。また、前記徐冷工程において、ガラス板の中央部の平均冷却速度を、TgからTg-100℃の温度範囲内において、50~300℃/分とする熱収縮低減処理を施すことがより好ましい。
 次に、本発明のガラス基板について、実施例を挙げて詳細に説明する。なお、本発明は以下の例によって限定されるものではない。
<第1のガラス基板>
 第1のガラス基板について、実施例を挙げて説明する。なお、第1のガラス基板とは、
 モル%表示で、
SiO 55~80%
Al 3~20%
 3~15%
RO(MgO、CaO、SrO、BaOの合量) 3~25%
を含有し、
 AsおよびSbを実質的に含有せず、かつ、
 失透温度が1250℃以下であるガラスから構成され、
 熱収縮率が75ppm以下である、
ガラス基板である。
 (実施例1-1~1-24および比較例1-1~1-6)
 表1-1および1-2に示すガラス組成になるように、実施例1-1~1-24および比較例1-1~1-6の試料ガラスを以下の手順に従って作製した。得られた試料ガラスおよび試料ガラス基板について、失透温度、Tg、100~300℃の範囲における平均熱膨張係数、熱収縮率、密度、歪点、熔融温度(粘度が102.5dPa・sの時のガラス温度)、液相粘度、および、1550℃における比抵抗を測定した。
 (試料ガラスの作製)
 まず、表1に示すガラス組成となるように、通常のガラス原料である、シリカ、アルミナ、酸化ホウ素、炭酸カリウム、塩基性炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、二酸化スズおよび三酸化二鉄を用いて、ガラス原料バッチ(以下バッチと呼ぶ)を調合した。なお、ガラスで400gとなる量で調合した。
 前記調合したバッチは、白金ルツボの中で熔融および清澄した。まず、このルツボを1575℃に設定した電気炉で4時間保持して、バッチを熔融した。次に、その電気炉を1640℃まで昇温し、2時間保持することでガラス融液の清澄を行なった。その後、ガラス融液を炉外で鉄板上に流し出し、冷却固化してガラス体を得た。このガラス体に対し、引き続いて徐冷操作を施した。徐冷操作は、このガラス体を800℃に設定した別の電気炉の中で2時間保持した後、740℃まで2時間、更に660℃まで2時間で冷却後、その電気炉の電源を切り、室温まで冷却することによって行なった。この徐冷操作を経たガラス体を試料ガラスとした。前記試料ガラスは、徐冷条件に影響されず、かつ/または、基板状では測定できない特性(失透温度、熔融温度、比抵抗、密度、熱膨張係数、Tgおよび歪点)の測定に用いた。
 また、上記試料ガラスを切断、研削および研磨加工を施して、上下面が鏡面である30mm×40mm×0.7mmの試料ガラス基板を作製した。前記試料ガラス基板は、徐冷条件に影響されない、β-OHの測定に用いた。
 さらに、前記試料ガラス基板に通常のガラス加工技術を用い、幅5mm、長さ20mmの直方体とし、これをTgで30分保持した後、Tg-100℃まで100℃/分で冷却し、室温まで放冷することで、熱収縮測定用試料ガラス基板とした。
 (失透温度の測定方法)
 前記試料ガラスを粉砕し、2380μmのふるいを通過し、1000μmのふるい上に留まったガラス粒を得た。このガラス粒をエタノールに浸漬し、超音波洗浄した後、恒温槽で乾燥させた。乾燥させたガラス粒を、幅12mm、長さ200mm、深さ10mmの白金ボート上に、前記ガラス粒25gをほぼ一定の厚さになるように入れた。この白金ボートを、実施例1-1~1-6、1-8~1-24および比較例1-1、1-3~1-5については1080~1320℃、実施例1-7、比較例1-2および1-6については1140~1380℃の温度勾配をもった電気炉内に5時間保持し、その後、炉から取り出して、ガラス内部に発生した失透を50倍の光学顕微鏡にて観察した。失透が観察された最高温度を、失透温度とした。
 (熔融温度)
 前記試料ガラスの熔融温度は、白金球引き上げ式自動粘度測定装置を用いて測定した。前記測定結果より、粘度102.5dPa・sの時の温度を算出し、熔融温度を得た。
 (液相粘度)
 前記熔融温度の測定結果より、前記失透温度での粘性を算出し、液相粘度を得た。
 (比抵抗)
 前記試料ガラスの熔融時の比抵抗は、HP社製 4192A LF インピーダンス・アナライザーを用いて、四端子法にて測定した。前記測定結果より、1550℃での比抵抗値を算出した。
 (100~300℃の範囲における平均熱膨張係数およびTgの測定方法)
 前記試料ガラスを、φ5mm、長さ20mmの円柱状に加工して、試験片とした。この試験片に対し、示差熱膨張計(Thermo Plus2 TMA8310)を用いて、昇温過程における温度と試験片の伸縮量を測定した。この時の昇温速度は5℃/minとした。前記温度と試験片の伸縮量との測定結果を元に100~300℃の温度範囲における平均熱膨張係数およびTgを測定した。なお、本願でのTgとは、ガラス体を800℃に設定した別の電気炉の中で2時間保持した後、740℃まで2時間、更に660℃まで2時間で冷却後、その電気炉の電源を切り、室温まで冷却した試料ガラスについて測定した値である。
 (歪点)
 前記試料ガラスを、3mm角、長さ55mmの角柱形状に切断・研削加工して、試験片とした。この試験片に対して、ビーム曲げ測定装置(東京工業株式会社製)を用いて測定を行い、ビーム曲げ法(ASTM C-598)に従い、計算により歪点を求めた。
 (密度)
 前記試料ガラスを、鏡面研磨して5×30×30mmの板状サンプルを作製した。このサンプルを用いて、アルキメデス法によってガラスの密度を測定した。
 (熱収縮率)
 熱収縮率は、前記熱収縮測定用試料ガラス基板に対して550℃で2時間の熱処理を施し、熱処理後のガラス基板の収縮量を用いて、以下の式にて求めた。
熱収縮率(ppm)
  ={熱処理後のガラス基板の収縮量/熱処理前のガラス基板の長さ}×10
 本実施例では、具体的に、以下の方法によって収縮量の測定を行った。
 前記熱収縮用試料ガラスについて、示差熱膨張計(理学株式会社製サーモフレックスTMA8140型)を用い、室温から550℃まで昇温し、2時間保持した後、室温まで冷却し、熱処理前後での試料ガラスの収縮量を測定した。この時の、昇降温速度は10℃/minに設定した。
 (エッチング速度)
 ガラス基板をHFの割合が1mol/kg、HClの割合が5mol/kgの混酸の40℃のエッチング液に1時間浸漬し、ガラス基板の一方の表面の厚み減少量(μm)を測定した。単位時間(1時間)当たりの減少量(μm)としてエッチング速度(μm/h)を求めた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1-1~1-24で得られたガラス基板は、熱収縮率および失透温度も本発明の第1のガラス基板の条件を満たしていた。したがって、本実施例で得られたガラス基板は、p-Si・TFTが適用されるディスプレイにも用いることが可能な、優れた特性を備えたガラス基板であるといえる。一方、比較例1-1~1-6で得られたガラスは、熱収縮率または失透温度が本発明の第1のガラス基板の条件を満たしていなかった。さらに比較例2のガラスについては、熔融温度が1680℃を超えており、良好な熔解性も得られなかった。このように、比較例1-1~1-6で得られたガラス基板は、p-Si・TFTが適用されるディスプレイには適していなかった。
 (実施例1-25)
 実施例1-4に示す組成となるよう調合したガラス原料を、耐火煉瓦製の熔解槽と白金合金製の清澄槽(調整槽)を備えた連続熔解装置を用いて、1560~1640℃で熔解し、1620~1670℃で清澄し、1440~1530℃で攪拌した後にオーバーフローダウンドロー法により厚さ0.7mmの薄板状に成形し、TgからTg-100℃の温度範囲内において、100℃/分の平均速度で冷却を行い、液晶ディスプレイ用(または有機ELディスプレイ用)ガラス基板を得た。なお、前記記載の各特性については、得られたガラス基板を用いて測定した。なお、基板状では測定出来ない特性(密度、歪点、膨張係数およびTg)に関しては、前記試料作製方法に準じて、前記ガラス基板を再熔融し、試料ガラスを作製して、特性を測定した。
 上記のように得られた実施例1-25のガラス基板の熔融温度は1610℃、β-OH値は0.20mm-1で、Tgは754℃、歪点は697℃、熱収縮率は51ppmであり、他の特性は実施例1-4と同等であった。このように、実施例1-25のガラス基板は、720℃以上のTgと、1680℃以下の熔融温度とを有しており、高いTgおよび歪点と、良好な熔解性とが実現されていた。さらに、熱収縮率および失透温度も、本発明の第1のガラス基板の条件を満たしていた。なお、実施例1-25のガラス基板は、実施例1-4よりもβ-OH値が0.1mm-1程度大きいため、実施例1-4と比較するとTgは2~3℃低くなるが、十分に高いTgを実現できている。したがって、実施例1-25で得られたガラス基板は、p-Si・TFTが適用されるディスプレイにも用いることが可能な、優れた特性を備えたガラス基板であるといえる。
 (実施例1-26)
 実施例1-12に示すガラス組成となるよう調合したガラス原料を用いて実施例1-25と同様にしてガラス基板を作製し、各特性を測定した。
 上記のように得られた実施例1-26のガラス基板の熔融温度は1585℃、β-OH値は0.21mm-1で、Tgは761℃、歪点は710℃、熱収縮率は31ppmであり、他の特性は実施例1-12と同等であった。このように、実施例1-26のガラス基板は、720℃以上のTgと、1680℃以下の熔融温度とを有しており、高いTgおよび歪点と、良好な熔解性とが実現されていた。さらに、熱収縮率および失透温度も、本発明の第1のガラス基板の条件を満たしていた。なお、実施例1-26のガラス基板は、実施例1-12よりもβ-OH値が0.1mm-1程度大きいため、実施例1-12と比較するとTgは2~3℃低くなるが、十分に高いTgを実現できている。したがって、実施例1-26で得られたガラス基板は、p-Si・TFTが適用されるディスプレイにも用いることが可能な、優れた特性を備えたガラス基板であるといえる。
<第2のガラス基板>
 第2のガラス基板について、実施例を挙げて説明する。なお、第2のガラス基板とは、
 モル%表示で、
SiO 62~74%
Al 3~20%
 3~15%
CaO 7超~16%
La 0~1%
BaO 0~1未満%、
を含有し、
 B、PおよびCaOのモル%で示す含有率が、B+P=3~15%、およびCaO/B>1.2の関係を満たし、
 歪点が665℃以上であり、かつ、
 失透温度が1250℃以下であるガラスから構成される、
ガラス基板である。
 第1のガラス基板の実施例および比較例と同様の方法で、表2に示すガラス組成となるように実施例および比較例の試料ガラスを作製し、各特性を測定した。
Figure JPOXMLDOC01-appb-T000003
<第3のガラス基板>
 第3のガラス基板について、実施例を挙げて説明する。なお、第3のガラス基板とは、
 モル%表示で、
SiO 65~74%
Al 3~20%
 3~8.9未満%
CaO 7超~16%
La 0~1%
を含有し、
 BaOを実質的に含有せず、
 B、PおよびCaOのモル%で示す含有率が、B+P=3~9.5%、および、CaO/B>1.2の関係を満たし、かつ、
 失透温度が1250℃以下であるガラスから構成される、
ガラス基板である。
 第1のガラス基板の実施例および比較例と同様の方法で、表3に示すガラス組成となるように実施例および比較例の試料ガラスを作製し、各特性を測定した。
Figure JPOXMLDOC01-appb-T000004
<本発明の実施形態のまとめ>
 上記開示から、本発明は以下の態様を提供する。
 本発明の第1の態様は、
 モル%表示で、
SiO 55~80%
Al 3~20%
 3~15%
RO(MgO、CaO、SrO、BaOの合量) 3~25%
を含有し、
 AsおよびSbを実質的に含有せず、かつ、
 失透温度が1250℃以下であるガラスから構成され、
 熱収縮率が75ppm以下である、
p-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板を提供する。
 ただし、前記熱収縮率とは、昇降温速度が10℃/min、550℃で2時間保持の熱処理が施された後のガラス基板の収縮量を用いて、以下の式にて求められる値である。
熱収縮率(ppm)
  ={熱処理後のガラス基板の収縮量/熱処理前のガラス基板の長さ}×10
 以降の本発明の態様においても、「熱収縮率」は同様に定義される。
 また、「AsおよびSbを実質的に含有しない」とは、ガラス原料中にAsおよびSbが主成分である原料を添加しないことを意味しており、AsおよびSbの含有率が、それぞれ、好ましくは0.1%以下、より好ましくは0.05%以下、さらに好ましくは0.01%以下であることをいう。以降の本発明の態様においても、「ある成分が実質的に含有されない」とは、同じ内容を意味する。
 本発明の第2の態様は、
 熱収縮率が60ppm以下である、
前記第1の態様に記載のp-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板を提供する。
 本発明の第3の態様は、
 モル%表示で、
SiO 62~74%
Al 3~20%
 3~15%
CaO 7超~16%
La 0~1%
BaO 0~1未満%、
を含有し、
 B、PおよびCaOのモル%で示す含有率が、B+P=3~15%、およびCaO/B>1.2の関係を満たし、
 歪点が665℃以上であり、かつ、
 失透温度が1250℃以下であるガラスから構成される、
p-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板を提供する。
 本発明の第4の態様は、
 モル%表示で、
SiO 65~74%
Al 3~20%
 3~8.9未満%
CaO 7超~16%
La 0~1%
を含有し、
 BaOを実質的に含有せず、
 B、PおよびCaOのモル%で示す含有率が、B+P=3~9.5%、および、CaO/B>1.2の関係を満たし、かつ、
 失透温度が1250℃以下であるガラスから構成される、
p-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板を提供する。
 本発明の第5の態様は、
 モル%表示で、
SiO 55~80%
Al 3~20%
 3~15%
RO(MgO、CaO、SrO、BaOの合量) 3~25%
を含有し、
 AsおよびSbを実質的に含有せず、かつ、
 失透温度が1250℃以下であるガラスから構成されたガラス基板であり、
 Tgで30分保持した後、Tg-100℃まで100℃/分で冷却し、室温まで放冷後、昇降温速度が10℃/min、550℃で2時間保持の熱処理が施された後の前記ガラス基板の熱収縮率が75ppm以下である、
p-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板を提供する。
 本発明の第6の態様は、
 前記ガラスの歪点が680℃以上である、
前記第1~第5の態様の何れか1つの態様に記載のp-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板を提供する。
 本発明の第7の態様は、
 前記ガラスにおいて、SiO、Al、BおよびROのモル%で表す含有率が、
(SiO+2×Al)/(2×B+RO)>3.0の関係を満たす、
前記第1~第6の態様の何れか1つの態様に記載のp-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板を提供する。
 本発明の第8の態様は、
 前記ガラスにおいて、SiOおよびAlのモル%で表す含有率が、
SiO+2Al≧80%の関係を満たす、
前記第1~第7の態様の何れか1つの態様に記載のp-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板を提供する。
 本発明の第9の態様は、
 前記ガラスがZnOを任意の成分として含有し、
 前記ガラスにおいて、B、ROおよびZnOのモル%で示す含有率が、
+RO+ZnO<20%
の関係を満たす、
前記第1~第8の態様の何れか1つの態様に記載のp-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板を提供する。
 本発明の第10の態様は、
 前記ガラスの液相粘度が104.5dPa・s以上であり、前記ガラスをダウンドロー法によって成形することによって得られた、
前記第1~第9の態様の何れか1つの態様に記載のp-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板を提供する。
 本発明の第11の態様は、
 液晶ディスプレイ用ガラス基板である、
前記第1~第10の態様の何れか1つの態様に記載のp-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板を提供する。
 本発明の第12の態様は、
 モル%でSiOが55~80%、Alが3~20%、Bが3~15%、RO(MgO、CaO、SrO、BaOの合量)が3~25%であり、AsおよびSbを実質的に含有せず、かつ、失透温度が1250℃以下であるガラスとなるように調合したガラス原料を熔融して、熔融ガラスを生成する熔融工程と、
 前記熔融ガラスをガラス板へと成形する成形工程と、
 前記ガラス板を徐冷する徐冷工程と、を含み、
 前記ガラス板の熱収縮率が75ppm以下である、
p-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板の製造方法を提供する。
 本発明の第13の態様は、
 前記ガラス板の熱収縮率が60ppm以下である、
前記第12の態様に記載のp-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板の製造方法を提供する。
 本発明の第14の態様は、
 前記熔融工程では、β-OHが0.05~0.40mm-1となるように熔融ガラスを生成し、
 前記徐冷工程では、前記ガラス板をガラス転移点(Tg)からTg-100℃までの温度範囲内において、50~300℃/分の平均速度で冷却する、
前記第12又は13の態様に記載のp-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板の製造方法を提供する。
 本発明の第15の態様は、
 モル%表示で、
SiO 55~80%
Al 3~20%
 3~15%
RO(MgO、CaO、SrO、BaOの合量) 3~25%
を含有し、
 AsおよびSbを実質的に含有せず、かつ、
 失透温度が1250℃以下であるガラスから構成され、
 熱収縮率が75ppm以下である、
フラットパネルディスプレイ用ガラス基板を提供する。
 本発明の第16の態様は、
 熱収縮率が60ppm以下である、
前記第15の態様に記載のフラットパネルディスプレイ用ガラス基板を提供する。
 本発明のフラットパネルディスプレイ用ガラス基板は、p-Siが用いられるフラットパネルディスプレイに好適であり、特に、p-Si・TFTが用いられる液晶ディスプレイ用のガラス基板および有機ELディスプレイ用のガラス基板に好適であり、中でも、高精細が求められる携帯端末などのディスプレイ用ガラス基板に好適である。

Claims (14)

  1.  モル%表示で、
    SiO 55~80%
    Al 3~20%
     3~15%
    RO(MgO、CaO、SrO、BaOの合量) 3~25%
    を含有し、
     AsおよびSbを実質的に含有せず、かつ、
     失透温度が1250℃以下であるガラスから構成され、
     熱収縮率が75ppm以下である、
    p-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板。
     ただし、前記熱収縮率とは、昇降温速度が10℃/min、550℃で2時間保持の熱処理が施された後のガラス基板の収縮量を用いて、以下の式にて求められる値である。
    熱収縮率(ppm)
      ={熱処理後のガラス基板の収縮量/熱処理前のガラス基板の長さ}×10
  2.  熱収縮率が60ppm以下である、
    請求項1に記載のp-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板。
  3.  前記ガラスの歪点が680℃以上である、
    請求項1又は2に記載のp-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板。
  4.  前記ガラスにおいて、SiO、Al、BおよびROのモル%で表す含有率が、
    (SiO+2×Al)/(2×B+RO)>3.0の関係を満たす、
    請求項1~3の何れか1項に記載のp-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板。
  5.  前記ガラスにおいて、SiOおよびAlのモル%で表す含有率が、
    SiO+2Al≧80%の関係を満たす、
    請求項1~4の何れか1項に記載のp-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板。
  6.  前記ガラスがZnOを任意の成分として含有し、
     前記ガラスにおいて、B、ROおよびZnOのモル%で示す含有率が、
    +RO+ZnO<20%
    の関係を満たす、
    請求項1~5の何れか1項に記載のp-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板。
  7.  前記ガラスの液相粘度が104.5dPa・s以上であり、前記ガラスをダウンドロー法によって成形することによって得られた、
    請求項1~6の何れか1項に記載のp-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板。
  8.  液晶ディスプレイ用ガラス基板である、
    請求項1~7の何れか1項に記載のp-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板。
  9.  モル%でSiOが55~80%、Alが3~20%、Bが3~15%、RO(MgO、CaO、SrO、BaOの合量)が3~25%であり、AsおよびSbを実質的に含有せず、かつ、失透温度が1250℃以下であるガラスとなるように調合したガラス原料を熔融して、熔融ガラスを生成する熔融工程と、
     前記熔融ガラスをガラス板へと成形する成形工程と、
     前記ガラス板を徐冷する徐冷工程と、を含み、
     前記ガラス板の熱収縮率が75ppm以下である、
    p-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板の製造方法。
     ただし、前記熱収縮率とは、昇降温速度が10℃/min、550℃で2時間保持の熱処理が施された後のガラス板の収縮量を用いて、以下の式にて求められる値である。
    熱収縮率(ppm)
      ={熱処理後のガラス板の収縮量/熱処理前のガラス板の長さ}×10
  10.  前記ガラス板の熱収縮率が60ppm以下である、
    請求項9に記載のp-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板の製造方法。
  11.  前記熔融工程では、β-OHが0.05~0.40mm-1となるように熔融ガラスを生成し、
     前記徐冷工程では、前記ガラス板をガラス転移点(Tg)からTg-100℃までの温度範囲内において、50~300℃/分の平均速度で冷却する、
    請求項9又は10に記載のp-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板の製造方法。
  12.  モル%表示で、
    SiO 55~80%
    Al 3~20%
     3~15%
    RO(MgO、CaO、SrO、BaOの合量) 3~25%
    を含有し、
     AsおよびSbを実質的に含有せず、かつ、
     失透温度が1250℃以下であるガラスから構成され、
     熱収縮率が75ppm以下である、
    フラットパネルディスプレイ用ガラス基板。
     ただし、前記熱収縮率とは、昇降温速度が10℃/min、550℃で2時間保持の熱処理が施された後のガラス基板の収縮量を用いて、以下の式にて求められる値である。
    熱収縮率(ppm)
      ={熱処理後のガラス基板の収縮量/熱処理前のガラス基板の長さ}×10
  13.  熱収縮率が60ppm以下である、
    請求項12に記載のフラットパネルディスプレイ用ガラス基板。
  14.  モル%表示で、
    SiO 55~80%
    Al 3~20%
     3~15%
    RO(MgO、CaO、SrO、BaOの合量) 3~25%
    を含有し、
     AsおよびSbを実質的に含有せず、かつ、
     失透温度が1250℃以下であるガラスから構成されたガラス基板であり、
     Tgで30分保持した後、Tg-100℃まで100℃/分で冷却し、室温まで放冷後、昇降温速度が10℃/min、550℃で2時間保持の熱処理が施された後の前記ガラス基板の熱収縮率が75ppm以下である、
    p-Si・TFTが形成されるフラットパネルディスプレイ用ガラス基板。
     
PCT/JP2012/004201 2011-07-01 2012-06-28 フラットパネルディスプレイ用ガラス基板およびその製造方法 WO2013005402A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280002421.7A CN103080032B (zh) 2011-07-01 2012-06-28 平面面板显示器用玻璃基板及其制造方法
KR1020127021417A KR101409707B1 (ko) 2011-07-01 2012-06-28 평판 디스플레이용 유리 기판 및 그의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011147759 2011-07-01
JP2011-147759 2011-07-01
JP2012059133 2012-03-15
JP2012-059133 2012-03-15

Publications (1)

Publication Number Publication Date
WO2013005402A1 true WO2013005402A1 (ja) 2013-01-10

Family

ID=47436767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004201 WO2013005402A1 (ja) 2011-07-01 2012-06-28 フラットパネルディスプレイ用ガラス基板およびその製造方法

Country Status (6)

Country Link
US (2) US8853113B2 (ja)
JP (2) JPWO2013005402A1 (ja)
KR (1) KR101409707B1 (ja)
CN (1) CN103080032B (ja)
TW (1) TWI570087B (ja)
WO (1) WO2013005402A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015003856A (ja) * 2013-05-24 2015-01-08 日本電気硝子株式会社 強化ガラス板の製造方法
WO2015072429A1 (ja) * 2013-11-13 2015-05-21 旭硝子株式会社 板ガラスの製造方法
JP2016106067A (ja) * 2011-07-01 2016-06-16 AvanStrate株式会社 フラットパネルディスプレイ用ガラス基板およびその製造方法
WO2020209271A1 (ja) * 2019-04-12 2020-10-15 Agc株式会社 無アルカリガラス及びガラス板

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614171B2 (ja) * 2010-08-23 2014-10-29 日本電気硝子株式会社 ガラス板の製造方法
KR101409534B1 (ko) * 2011-07-01 2014-06-19 아반스트레이트 가부시키가이샤 평판 디스플레이용 유리 기판 및 그의 제조 방법
KR102147509B1 (ko) 2013-03-14 2020-08-25 코닝 인코포레이티드 연성 유리 및 고분자 복합 구조의 제조 및 절단을 위한 방법 및 장치
CN115417596A (zh) 2014-10-31 2022-12-02 康宁股份有限公司 对玻璃进行尺寸稳定的快速蚀刻
JP6742593B2 (ja) * 2015-01-05 2020-08-19 日本電気硝子株式会社 支持ガラス基板の製造方法及び積層体の製造方法
WO2019181706A1 (ja) * 2018-03-20 2019-09-26 Agc株式会社 基板、液晶アンテナ及び高周波デバイス
WO2021019654A1 (ja) * 2019-07-29 2021-02-04 Agc株式会社 支持ガラス基板
US11773006B1 (en) 2022-11-10 2023-10-03 Corning Incorporated Glasses for high performance displays

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263473A (ja) * 1993-01-22 1994-09-20 Corning Inc 高液相線粘度ガラスおよびそれを用いた基板
JP2002003240A (ja) * 2000-06-19 2002-01-09 Nippon Electric Glass Co Ltd 液晶ディスプレイ用ガラス基板
JP2005330176A (ja) * 2003-12-26 2005-12-02 Asahi Glass Co Ltd 無アルカリガラスおよび液晶ディスプレイパネル
JP2008105860A (ja) * 2005-01-31 2008-05-08 Nippon Sheet Glass Co Ltd ガラスの製造方法
JP2008184335A (ja) * 2006-01-12 2008-08-14 Nippon Electric Glass Co Ltd 無アルカリガラス基板
JP2009196879A (ja) * 2008-01-21 2009-09-03 Nippon Electric Glass Co Ltd ガラス基板の製造方法及びガラス基板
JP2011020864A (ja) * 2009-07-13 2011-02-03 Nippon Electric Glass Co Ltd ガラス基板の製造方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3083586B2 (ja) * 1991-04-26 2000-09-04 旭硝子株式会社 無アルカリガラス
US5116788A (en) * 1991-08-12 1992-05-26 Corning Incorporated Alkaline earth aluminoborosilicate glasses for flat panel displays
US5116787A (en) * 1991-08-12 1992-05-26 Corning Incorporated High alumina, alkaline earth borosilicate glasses for flat panel displays
DE69508706T2 (de) * 1994-11-30 1999-12-02 Asahi Glass Co Ltd Alkalifreies Glas und Flachbildschirm
JP4250208B2 (ja) * 1994-11-30 2009-04-08 旭硝子株式会社 ディスプレイ基板用無アルカリガラス及び液晶ディスプレイパネル
US6060168A (en) 1996-12-17 2000-05-09 Corning Incorporated Glasses for display panels and photovoltaic devices
JP4445176B2 (ja) * 1999-06-29 2010-04-07 Hoya株式会社 液晶パネル用ガラス基板およびガラス組成物
DE19939789A1 (de) * 1999-08-21 2001-02-22 Schott Glas Alkalifreie Aluminoborosilicatgläser und deren Verwendungen
DE10000838B4 (de) * 2000-01-12 2005-03-17 Schott Ag Alkalifreies Aluminoborosilicatglas und dessen Verwendungen
DE10064804C2 (de) * 2000-12-22 2003-03-20 Schott Glas Alkalifreie Aluminoborosilicatgläser und ihre Verwendung
JP3988456B2 (ja) * 2001-12-21 2007-10-10 日本電気硝子株式会社 ガラス及びディスプレイ用ガラス基板
JP2004315354A (ja) 2003-03-31 2004-11-11 Asahi Glass Co Ltd 無アルカリガラス
DE112004000553T5 (de) 2003-03-31 2006-03-02 Asahi Glass Co., Ltd. Alkalifreies Glas
JP4941872B2 (ja) * 2003-09-02 2012-05-30 日本電気硝子株式会社 液晶ディスプレイ用透明無アルカリガラス基板
WO2005063642A1 (ja) 2003-12-26 2005-07-14 Asahi Glass Company, Limited 無アルカリガラス、その製造方法および液晶ディスプレイパネル
JP4737709B2 (ja) * 2004-03-22 2011-08-03 日本電気硝子株式会社 ディスプレイ基板用ガラスの製造方法
CN1268567C (zh) * 2005-02-06 2006-08-09 河南安彩高科股份有限公司 一种无碱金属的玻璃组合物及其制法和应用
DE102005019958B4 (de) * 2005-04-29 2010-02-18 Schott Ag Blitzlicht-Leuchtquelle mit Hüllenglas
CN101208276B (zh) * 2005-06-28 2012-04-25 康宁股份有限公司 硼硅铝酸盐玻璃的澄清
CN101370742B (zh) * 2006-01-12 2012-06-13 日本电气硝子株式会社 无碱玻璃基板
CN103172259B (zh) * 2006-02-10 2015-10-21 康宁股份有限公司 具有高的热稳定性和化学稳定性的玻璃组合物及其制备方法
JP5088670B2 (ja) 2006-04-11 2012-12-05 日本電気硝子株式会社 ディスプレイ用ガラス基板
JP5703535B2 (ja) * 2006-05-23 2015-04-22 日本電気硝子株式会社 無アルカリガラス基板
US7534734B2 (en) * 2006-11-13 2009-05-19 Corning Incorporated Alkali-free glasses containing iron and tin as fining agents
JP5808069B2 (ja) * 2007-02-16 2015-11-10 日本電気硝子株式会社 太陽電池用ガラス基板
JP5435394B2 (ja) * 2007-06-08 2014-03-05 日本電気硝子株式会社 強化ガラス基板及びその製造方法
US8187715B2 (en) * 2008-05-13 2012-05-29 Corning Incorporated Rare-earth-containing glass material and substrate and device comprising such substrate
RU2010154445A (ru) 2008-05-30 2012-07-10 Фостер Вилер Энергия Ой (Fi) Способ и система для генерации энергии путем сжигания в чистом кислороде
JP5333984B2 (ja) * 2008-06-27 2013-11-06 日本電気硝子株式会社 無アルカリガラス
JP5757451B2 (ja) * 2009-03-18 2015-07-29 日本電気硝子株式会社 無アルカリガラス
JP5537144B2 (ja) * 2009-12-16 2014-07-02 AvanStrate株式会社 ガラス組成物とそれを用いたフラットパネルディスプレイ用ガラス基板
TWI478889B (zh) * 2010-10-06 2015-04-01 Corning Inc 具有高熱與化學穩定性的無鹼玻璃組合物
CN102030475B (zh) * 2010-10-15 2012-07-25 北京工业大学 用于tft-lcd的环保型无碱铝硼硅酸盐玻璃
KR101409707B1 (ko) * 2011-07-01 2014-06-19 아반스트레이트 가부시키가이샤 평판 디스플레이용 유리 기판 및 그의 제조 방법
CN104039727A (zh) * 2011-12-29 2014-09-10 日本电气硝子株式会社 无碱玻璃

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263473A (ja) * 1993-01-22 1994-09-20 Corning Inc 高液相線粘度ガラスおよびそれを用いた基板
JP2002003240A (ja) * 2000-06-19 2002-01-09 Nippon Electric Glass Co Ltd 液晶ディスプレイ用ガラス基板
JP2005330176A (ja) * 2003-12-26 2005-12-02 Asahi Glass Co Ltd 無アルカリガラスおよび液晶ディスプレイパネル
JP2008105860A (ja) * 2005-01-31 2008-05-08 Nippon Sheet Glass Co Ltd ガラスの製造方法
JP2008184335A (ja) * 2006-01-12 2008-08-14 Nippon Electric Glass Co Ltd 無アルカリガラス基板
JP2009196879A (ja) * 2008-01-21 2009-09-03 Nippon Electric Glass Co Ltd ガラス基板の製造方法及びガラス基板
JP2011020864A (ja) * 2009-07-13 2011-02-03 Nippon Electric Glass Co Ltd ガラス基板の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016106067A (ja) * 2011-07-01 2016-06-16 AvanStrate株式会社 フラットパネルディスプレイ用ガラス基板およびその製造方法
JP2015003856A (ja) * 2013-05-24 2015-01-08 日本電気硝子株式会社 強化ガラス板の製造方法
KR20160014581A (ko) * 2013-05-24 2016-02-11 니폰 덴키 가라스 가부시키가이샤 강화 유리판의 제조 방법
KR102144705B1 (ko) * 2013-05-24 2020-08-14 니폰 덴키 가라스 가부시키가이샤 강화 유리판의 제조 방법
WO2015072429A1 (ja) * 2013-11-13 2015-05-21 旭硝子株式会社 板ガラスの製造方法
WO2020209271A1 (ja) * 2019-04-12 2020-10-15 Agc株式会社 無アルカリガラス及びガラス板
CN113661148A (zh) * 2019-04-12 2021-11-16 Agc株式会社 无碱玻璃和玻璃板
CN113661148B (zh) * 2019-04-12 2023-09-29 Agc株式会社 无碱玻璃和玻璃板

Also Published As

Publication number Publication date
JPWO2013005402A1 (ja) 2015-02-23
TW201305081A (zh) 2013-02-01
KR20130054226A (ko) 2013-05-24
CN103080032A (zh) 2013-05-01
US20140249018A1 (en) 2014-09-04
US20130023400A1 (en) 2013-01-24
JP2016106067A (ja) 2016-06-16
CN103080032B (zh) 2016-07-06
JP6348100B2 (ja) 2018-06-27
TWI570087B (zh) 2017-02-11
KR101409707B1 (ko) 2014-06-19
US8853113B2 (en) 2014-10-07
US9469564B2 (en) 2016-10-18

Similar Documents

Publication Publication Date Title
JP6149094B2 (ja) フラットパネルディスプレイ用ガラス基板およびその製造方法
JP6348100B2 (ja) フラットパネルディスプレイ用ガラス基板およびその製造方法
JP6420282B2 (ja) フラットパネルディスプレイ用ガラス基板及びその製造方法
JP6375265B2 (ja) フラットパネルディスプレイ用ガラス基板及びその製造方法
JP2013212943A (ja) フラットパネルディスプレイ用ガラス基板の製造方法
JP2017178711A (ja) 磁気記録媒体用ガラス基板及びその製造方法
WO2014208523A1 (ja) 無アルカリガラス
TW201318999A (zh) 平板顯示器用玻璃基板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012529840

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201280002421.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20127021417

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807276

Country of ref document: EP

Kind code of ref document: A1