WO2013002492A1 - 건식 볼 밀링을 이용한 질소산화물 제거용 촉매의 제조 방법 - Google Patents

건식 볼 밀링을 이용한 질소산화물 제거용 촉매의 제조 방법 Download PDF

Info

Publication number
WO2013002492A1
WO2013002492A1 PCT/KR2012/004024 KR2012004024W WO2013002492A1 WO 2013002492 A1 WO2013002492 A1 WO 2013002492A1 KR 2012004024 W KR2012004024 W KR 2012004024W WO 2013002492 A1 WO2013002492 A1 WO 2013002492A1
Authority
WO
WIPO (PCT)
Prior art keywords
tio
catalyst
preparation example
nitrogen oxides
ball milling
Prior art date
Application number
PCT/KR2012/004024
Other languages
English (en)
French (fr)
Inventor
홍성호
조성필
신창훈
양복연
신상우
홍성창
박광희
김성수
이상문
권동욱
Original Assignee
한국전력기술 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력기술 주식회사 filed Critical 한국전력기술 주식회사
Priority to CN201280027497.5A priority Critical patent/CN103596680A/zh
Priority to US14/116,875 priority patent/US20140105803A1/en
Publication of WO2013002492A1 publication Critical patent/WO2013002492A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • B01D53/565Nitrogen oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten

Definitions

  • the present invention discloses a method for producing a catalyst for removing nitrogen oxides using dry ball milling. More specifically, the present invention is a dry ball milling of crystalline vanadium pentoxide (V 2 O 5 ) and crystalline titanium dioxide (TiO 2 ) to remove nitrogen oxides inevitably generated in the process of burning fossil fuel and waste. Disclosed are a process for preparing a denitrification catalyst applicable to Selective Catalytic Reduction (SCR) technology.
  • SCR Selective Catalytic Reduction
  • Nitrogen oxides (NOx) emitted from the burning of fossil fuels are known as major air pollutants, causing photochemical smog, ozone depletion and warming.
  • NOx-related environmental legislation has recently been strengthened, and the demand for a new type of high-efficiency NOx removal system that is eco-friendly and economical to proactively cope with the enhanced environmental legislation is increasing.
  • Catalytic methods are widely used due to their low cost and high efficiency.
  • One of the most effective methods for removing nitrogen oxides is Selective Catalytic Reduction (SCR) using ammonia as a reducing agent. Typical SCR reactions are as follows.
  • the reaction proceeds in a denitrification catalyst, which is currently commercialized and is being studied.
  • the SCR catalyst is a V / TiO 2 catalyst having titanium dioxide as a support and vanadium (V, Vanadium) as an active metal.
  • titanium dioxide In order to enhance the durability and performance of the catalyst, titanium dioxide generally contains tungsten (W) or molybdenum (Mo, Molybdenum).
  • the most widely known method for producing such a V / TiO 2 catalyst is a wet immersion method.
  • the manufacturing method is generally as follows.
  • the vanadium precursor is dissolved in a predetermined amount of water to prepare an aqueous vanadium precursor solution.
  • the vanadium precursor uses ammonium metavanadate (Nm 4 VO 3 ). Titanium dioxide, a carrier, is added to this aqueous solution, mixed well, and then dried and calcined to prepare a catalyst.
  • This method is easy to control the content of vanadium, can be produced in large quantities and is mainly applied to the production of industrial catalysts.
  • the solubility of the vanadium precursor the pH of the aqueous solution of the vanadium precursor, drying and firing conditions, the state in which the supported active material is exposed to the surface is greatly changed, and thus the performance of the prepared catalyst is also changed.
  • the step of preparing the precursor aqueous solution is very difficult.
  • water must be heated to increase the solubility of ammonium metavanadate, and oxalic acid (COOH) 2 must be added, and various operations and additives are required, such as adding a neutralizer to neutralize the pH of the aqueous solution. Do.
  • a large power is required when mixing the precursor aqueous solution and titanium dioxide.
  • the wet impregnation method requires a facility for supplying purified water because the raw materials in a powder form are mixed in a wet manner and then dried and calcined, and a drying facility for evaporating them is required.
  • a facility for producing an aqueous solution of vanadium precursor is a factor that increases the manufacturing cost.
  • various by-products are generated from additives including ammonium metavanadate, and thus a facility for treating the catalyst is required.
  • the present invention produces a denitration catalyst by ball milling to solve this problem.
  • Ball milling has been applied to the synthesis of a variety of stable and metastable materials, including crystalline and quasi-crystalline amorphous alloys, since they were used in the commercial process for the production of oxygen-dispersed nickel alloys in the 1960s. .
  • Japanese Patent No. 2824507 has a titanium-aluminum-based intermetallic compound powder by ball milling titanium powder and aluminum powder in a mill container to produce a titanium-aluminum-based intermetallic compound powder used as a lightweight heat-resistant material.
  • Disclosed is a method of manufacturing.
  • US Patent Publication No. 2009-0060810 A1 Korean Patent Publication No. 2007-99177
  • a method for producing a selective reduction catalyst for flue gas denitrification by wet ball milling which is fired by milling or by ball milling after drying and firing.
  • the precursor aqueous solution must be separately prepared, and a process of removing the slurry by adding titanium oxide to the precursor aqueous solution and then drying is required.
  • One aspect of the present invention is to provide a method for producing a denitration catalyst economically by a simple manufacturing process as compared to the conventional wet immersion method or wet ball milling.
  • Another aspect of the present invention is to provide a method for preparing a denitration catalyst which can exhibit the same or better performance with a lower vanadium content than the conventional wet impregnation method.
  • One aspect of the present invention is a mixture of powdered crystalline titanium dioxide (TiO 2 ) and powdered crystalline vanadium pentoxide (V 2 O 5 ) to obtain a mixture, the ball-drying the mixture to obtain a ball milled mixture And it provides a method for producing a denitration catalyst for removing nitrogen oxides comprising the step of firing the ball milled mixture.
  • the denitrification catalyst prepared according to the present invention can be used in various fields for the removal of nitrogen oxides, for example, it can be used to remove nitrogen oxides in the exhaust gas in selective catalytic reduction.
  • the method for producing the denitration catalyst according to the present invention is simpler than the conventional method for preparing the denitration catalyst prepared by the wet impregnation method using vanadium and titanium dioxide. Therefore, according to the present invention, it is possible to shorten the time required for preparing the catalyst and to reduce the catalyst manufacturing cost.
  • the method for producing a denitration catalyst according to the present invention exhibits better denitrification efficacy even with the same vanadium content as compared to the conventional denitrification catalyst production method, thereby reducing the amount of installation when installed in the denitrification facility.
  • FIG. 1 is a view schematically showing a catalyst manufacturing method by dry ball milling according to an embodiment of the present invention.
  • FIG. 2 is a view schematically showing a method of preparing a catalyst by a wet impregnation method as an example of a known technique.
  • FIG 3 is a view schematically showing a process of manufacturing a catalyst excluding ball milling according to Comparative Production Example 7 of the present invention.
  • XRD 4 is an X-ray diffraction analysis (XRD) of a catalyst prepared according to an embodiment of the present invention.
  • One aspect of the present invention is a mixture of powdered crystalline titanium dioxide (TiO 2 ) and powdered crystalline vanadium pentoxide (V 2 O 5 ) to obtain a mixture, the ball-drying the mixture to obtain a ball milled mixture And it provides a method for producing a denitration catalyst for removing nitrogen oxides comprising the step of firing the ball milled mixture.
  • the crystal phase of TiO 2 used is anatase or a mixed form of anatase and rutile. More specifically, the crystal phase of titanium dioxide may be in a form in which anatase: rutile is mixed in a weight ratio of about 70:30 to 100: 0.
  • At least one cocatalyst component selected from the group consisting of tungsten, molybdenum, and lanthanum may be added to improve the performance and durability of the denitrification catalyst.
  • TiO 2 may further comprise 1 to 10% by weight of one or more components selected from the group consisting of WO 3 , MoO 3 , and LaO 3 , based on the content of TiO 2 .
  • the content of V 2 O 5 is 0.1 to 5% by weight relative to TiO 2 based on the content of vanadium atoms.
  • crystalline vanadium pentoxide is used to distinguish it from amorphous vanadium pentoxide and is interpreted to include both crystalline and powdered vanadium pentoxide commonly used in the art.
  • the term "powder form” is a term used to exclude a solution state dissolved in a solvent, and titanium dioxide or vanadium pentoxide in powder form includes all of titanium dioxide or vanadium pentoxide commonly used in the art in powder form. It is interpreted to include, and the size or shape of the powder is not particularly limited.
  • the material or size of the ball, ball milling conditions are not particularly limited, and in one embodiment of the present invention, the ball powder mass ratio (BPMR) of 1: 1 to 100: 1 for 10 to 10 hours for 0.5 to 24 hours. It is carried out at a rotation speed of 1000 rpm. In one embodiment, ball milling can be performed for 3 to 24 hours. Although the ball milling will be described in more detail in the following Preparation Examples, the present invention is not limited thereto, and the ball mill is commercially available in the art.
  • BPMR ball powder mass ratio
  • the firing process of the present invention is carried out according to methods and conditions known in the art.
  • the catalyst can be prepared by calcining for about 4-12 hours in an air or oxygen atmosphere in the temperature range of about 300-800 ° C.
  • firing for example, a tube type, a convection type or a grate type furnace, a rotary kiln, or the like may be used, but is not limited thereto.
  • the method for producing the denitration catalyst by dry ball milling of the present invention is very economical in that no additional facility or process is required compared to the conventional wet impregnation method:
  • a drying furnace for drying the mixture and a heat source or power required for drying are required.
  • a crystalline form of TiO 2 is used as a carrier and crystalline form of a powder is used as vanadium as an active material.
  • V 2 O 5 a simple process of dry ball milling two crystalline materials is used.
  • the present invention is very economical in that no additional apparatus or heat source used in the above-described wet impregnation method is required (see FIG. 1).
  • the denitrification catalyst prepared according to the present invention can be effectively applied to the removal of nitrogen oxides contained in exhaust gas. Accordingly, another aspect of the present invention provides a method for the selective catalytic reduction reaction of a nitrogen oxide containing flue gas in the presence of a catalyst and a reducing agent prepared according to the method of the present invention to remove nitrogen oxides in the flue gas.
  • the exhaust gas containing nitrogen oxides in the presence of the catalyst and reducing agent ammonia according to the present invention is subjected to selective catalyst at a temperature of about 150 to 450 ° C. and a space velocity (GHSV) of about 1,000 to 120,000 hr ⁇ 1 .
  • GHSV space velocity
  • Ammonia is typically used as a reducing agent for the selective reduction of nitrogen oxides, in which the molar ratio of NH 3 / NO x can be adjusted to be in the range of 0.6 to 1.2.
  • the source of ammonia used as the reducing agent is not particularly limited as long as it can be converted into ammonia in the selective reduction reaction and participate in the reaction, but ammonia water or ammonia gas or urea may be mentioned.
  • the carrier uses TiO 2 (hereinafter TiO 2 (A)) whose crystal phase is anatase.
  • 20 g of titanium dioxide (TiO 2 (A)) in powder form is prepared.
  • 0.7142 g of crystalline vanadium pentoxide (V 2 O 5 ) powder is prepared such that 2 wt% of titanium dioxide is based on the content of vanadium atoms.
  • Both materials are fed together with a ball into a ball milling device.
  • the material used was Zirconia, and balls of 20 mm, 10 mm and 5 mm diameters were put in a weight ratio of 50:25:25, respectively.
  • BPMR ball to powder mass ratio
  • the milling speed is 340 rpm and milling for 3 hours. After completion of ball milling the mixture is calcined in a tubular furnace with air atmosphere at 400 ° C. for 4 hours. The temperature increase rate at this time is 10 degreeC / min.
  • the catalyst of the present invention thus prepared is referred to as "V [2] -TiO 2 (A) _BM".
  • []" is a vanadium atom reference content, the unit is% by weight, "A” represents an anatase crystal phase, and "BM" represents ball milling.
  • TiO 2 (AR) a substance in which the crystalline phase is a mixture of anatase and rutile (hereinafter referred to as TiO 2 (AR), wherein "A” represents an anatase crystal phase and “R” represents a rutile crystal phase) as a TiO 2 carrier.
  • A represents an anatase crystal phase
  • R represents a rutile crystal phase
  • a catalyst was prepared using an anatase crystalline TiO 2 carrier (hereinafter referred to as TiO 2 (W), wherein “W” represents tungsten) containing 10% of WO 3 in TiO 2 carrier by weight. do.
  • TiO 2 (W) anatase crystalline TiO 2 carrier
  • W represents tungsten
  • a catalyst was prepared in the same manner as in Preparation Example 1, except that TiO 2 (W) was used as the TiO 2 carrier.
  • the catalyst thus prepared is referred to as "V [2] -TiO 2 (W) _BM".
  • a catalyst is prepared using TiO 2 (hereinafter referred to as TiO 2 (Mo), wherein “Mo” represents molybdenum) in the anatase crystal phase containing 10% MoO 3 by weight in a TiO 2 carrier.
  • TiO 2 (Mo) TiO 2 (Mo)
  • a catalyst was prepared as in Preparation Example 1, except that TiO 2 (Mo) was used as the TiO 2 carrier.
  • the catalyst thus prepared is referred to as "V [2] -TiO 2 (Mo) _BM".
  • the catalyst was prepared using TiO 2 (hereinafter referred to as TiO 2 (La), wherein “La” represents lanthanum) in the anatase crystal phase containing 10% La 2 O 3 by weight in the TiO 2 carrier.
  • TiO 2 (La) TiO 2 (La)
  • a catalyst was prepared in the same manner as in Preparation Example 1, except that TiO 2 (La) was used as the TiO 2 carrier.
  • the catalyst thus prepared is referred to as "V [2] -TiO 2 (La) _BM".
  • the content of vanadium is TiO based on the vanadium atom. 2 of 4 weight%, 6 weight%, and 10 weight%.
  • TiO 2 (A) 20 g of crystalline phase 2 O 5 A catalyst was prepared in the same manner as in Preparation Example 1 except that the powder was ball milled by mixing 1.4284 g, 2.8568 g, and 3.5710 g, respectively. The catalyst thus prepared was referred to as "V [4] -TiO. 2 (A) _BM ",” V [6] -TiO 2 (A) _BM ",” V [10] -TiO 2 (A) _BM ".
  • V [4] -TiO 2 (A) _BM catalyst was prepared in the same manner as in Preparation Example 6, but the ball milling time was 30 minutes, 1 hour, 3 hours (Preparation Example 6), 10 hours, and 24 hours, respectively.
  • a catalyst was prepared as in Preparation Example 6 except for the ball milling time.
  • the catalyst thus prepared is referred to as "V [4] -TiO 2 (A) _BM (0.5)”, “V [4] -TiO 2 (A) _BM (1)", “V [4] -TiO 2 (A) _BM (3) "," V [4] -TiO 2 (A) _BM (10) ", and” V [4] -TiO 2 (A) _BM (24) ".
  • FIG. 1 An aqueous solution of a vanadium precursor is prepared so as to be 2% by weight of TiO 2 (A) based on the content of vanadium atoms.
  • the vanadium precursor uses ammonium metavanadate. 0.9186 g of ammonium metavanadate powder is dissolved in 50 mL of distilled water heated to 60 ° C. In order to increase the solubility of ammonium metavanadate, oxalic acid is mixed with little stirring, and added until the pH of the aqueous solution reaches 2.5. 20 g of TiO 2 (A) powder is added to this aqueous solution little by little to prepare a slurry.
  • the slurry is mixed well and the water is evaporated using a rotary vacuum evaporator. After moisture evaporation is complete, further drying is performed at 100 ° C. for 24 hours in a drying furnace to further remove moisture in the pores. It is then calcined in a tubular furnace with air atmosphere at 400 ° C. for 4 hours. The temperature increase rate at this time is 10 ° C / min.
  • the catalyst thus prepared is referred to as "V [2] / TiO 2 (A)".
  • a catalyst was prepared as in Comparative Preparation Example 1, except that TiO 2 (AR) was used as the TiO 2 carrier.
  • the catalyst thus prepared is referred to as "V [2] / TiO 2 (AR)".
  • a catalyst was prepared as in Comparative Preparation Example 1, except that TiO 2 (W) was used as the TiO 2 carrier.
  • the catalyst thus prepared is referred to as "V [2] / TiO 2 (W)".
  • a catalyst was prepared as in Comparative Preparation Example 1, except that TiO 2 (Mo) was used as the TiO 2 carrier.
  • the catalyst thus prepared is referred to as "V [2] / TiO 2 (Mo)".
  • a catalyst was prepared as in Comparative Preparation Example 1, except that TiO 2 (La) was used as the TiO 2 carrier.
  • the catalyst thus prepared is referred to as "V [2] / TiO 2 (La)".
  • a catalyst was prepared as in Comparative Preparation Example 1, except that the content of vanadium was increased to 4 wt% of TiO 2 (A).
  • the catalyst thus prepared is referred to as "V [4] / TiO 2 (A)".
  • the nitrogen oxide removal activity of the catalyst prepared in Preparation Example and Comparative Preparation Example was confirmed.
  • Activity experiments are carried out at 200, 220, 250, 270, or 300 ° C. using a catalytic powder tester.
  • the particle size of the catalyst to be evaluated is uniform as all within the range of 300 ⁇ 425 ⁇ m.
  • the volume of catalyst particles is 0.5 mL and the total flow rate of gas entering the experimental apparatus is 500 mL / min. Therefore, the space velocity in the catalyst experiment is 60,000hr -1 .
  • Nitrogen oxide concentration is 400 ppm
  • oxygen is 3%
  • moisture is 6%
  • concentration of ammonia is 400 ppm.
  • Nitrogen oxide removal activities of the catalysts prepared according to Preparation Examples 1 to 5 and Comparative Preparation Examples 1 to 5 were carried out at 200, 220, 250, 270, or 300 ° C., and the results are shown in Table 1 below.
  • Preparation Example 1 As shown in Table 1, the removal rate of nitrogen oxide at 200-300 ° C. of Preparation Example 1 and Comparative Preparation Example 1 using TiO 2 (A) as a carrier was almost the same or Preparation Example 1 was slightly higher. However, in view of the manufacturing process aspects, Preparation Example 1 is much simpler, and there is no drying process, so it is economical to reduce the energy input to the manufacturing.
  • the nitrogen oxide removal rate of Preparation Example 2 which uses TiO 2 (AR) in which anatase and rutile are mixed, is about 1 to 5% higher than that of Comparative Preparation Example 2.
  • Nitrogen oxide removal rates of Preparation Example 4 and Preparation Example 5 using TiO 2 (Mo) and TiO 2 (La) containing molybdenum and lanthanum were 4 to 13% higher than those of Comparative Preparation Example 4 and Comparative Preparation Example 5, respectively. 8 ⁇ 42% higher.
  • the catalyst prepared according to the present invention has superior nitrogen oxide removal activity than the catalyst prepared by the conventional wet impregnation method, based on the catalyst having the same content of vanadium.
  • Nitrogen oxide removal activities for the catalysts prepared in Preparation Example 1 and Preparation Example 6 and Comparative Preparation Example 1 and Comparative Preparation Example 6 were performed at 200, 220, 250, 270, or 300 ° C., and the results are shown in Table 2 below. Indicated.
  • Comparative Production Example 7 is a case in which the ball milling time is 0 because V 2 O 5 and TiO 2 (A) are mixed in a mortar and fired immediately.
  • the ball milling process was performed. Preferably at least about 3 hours. However, even if the ball milling time is less than 3 hours, it is meaningful in that the catalyst can be prepared by a very simple process compared to the wet impregnation method of Comparative Preparation Example 6.
  • Comparative Production Example 7 was lower in efficiency than Comparative Production Example 6 as well as Production Example 7. Therefore, it can be seen that an excellent denitration catalyst cannot be obtained by a simple mixing method of V 2 O 5 and TiO 2 in which the ball milling process is excluded.
  • Crystal structure analysis was performed using X-ray diffraction (XRD, X-ray Diffraction) to observe the crystal structure of the catalyst prepared in Preparation Example 7, Comparative Preparation Example 6, and Comparative Preparation Example 7.
  • This vanadium crystalline phase is not found in the catalyst. This is presumed to form the amorphous V 2 O 5 as a result of pulverizing the crystal phase V 2 O 5 uniformly dispersed on the surface of the support by ball milling for a predetermined time or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

본 발명은 배가스 등에 함유된 질소산화물(NOx) 제거용 탈질 촉매의 제조 방법을 개시한다. 본 발명의 일 구현예에서는 분말 형태의 결정상 이산화티타늄(TiO2) 및 분말 형태의 결정상 오산화바나듐(V2O5)를 건식 볼 밀링하여 선택적 촉매 환원에 의한 질소 산화물 제거용 V2O5(오산화바나듐)-TiO2(이산화티타늄)계 탈질 촉매를 제공한다.

Description

건식 볼 밀링을 이용한 질소산화물 제거용 촉매의 제조 방법
본 발명은 건식 볼 밀링을 이용한 질소산화물 제거용 촉매의 제조 방법을 개시한다. 보다 구체적으로, 본 발명은 결정상의 오산화바나듐(V2O5)과 결정상의 이산화티타늄(TiO2)을 건식 볼 밀링하여 화석연료 및 폐기물을 연소하는 과정에서 필연적으로 발생되는 질소산화물을 제거하기 위한 선택적 촉매환원(Selective Catalytic Reduction, SCR) 기술에 적용할 수 있는 탈질 촉매를 제조하는 방법을 개시한다.
화석연료의 연소로부터 배출되는 질소산화물(NOx)은 광화학스모그, 오존층 파괴, 온난화를 유발하는, 주요 대기오염물질로 알려져 있다. 이에 따라 최근 NOx 관련 환경법규가 강화되고 있어 강화된 환경법규에 능동적으로 대처하기 위한 환경친화적이고, 경제적인 새로운 형태의 고효율 NOx 제거 시스템에 대한 요구가 높아지고 있으며, 이에 따라 질소산화물을 제거하기 위한 다양한 방법들이 개발되어 사용되고 있다. 이 중 촉매적인 방법들이 낮은 비용과 높은 효율로 인하여 널리 이용되고 있는데, 질소산화물을 제거할 수 있는 가장 효과적인 방법 중 하나가 암모니아를 환원제로 사용하는 선택적 촉매환원(Selective Catalytic Reduction, SCR)이다. 일반적인 SCR 반응은 다음과 같다.
[반응식 1]
4NO + 4NH3 + O2 → 4N2 + 6H2O
[반응식 2]
2NO2 + 4NH3 + O2 → 3N2 + 6H2O
[반응식 3]
NO + NO2 + 2NH3 → 2N2 + 3H2O
이 반응은 탈질 촉매에서 진행되는데, 현재 상용화되어 있고, 또한 연구되고 있는 SCR 촉매는 이산화티타늄을 담체(Support)로 하고 바나듐(V, Vanadium)을 활성금속으로 하는 V/TiO2 촉매이다. 촉매의 내구성과 성능을 증진시키기 위하여 일반적으로 이산화티타늄은 텅스텐(W, Tungsten) 또는 몰리브덴(Mo, Molybdenum)을 함유한다.
이러한 V/TiO2 촉매의 제조 방법 중 가장 널리 알려진 것은 습윤합침법이다. 그 제조방법은 일반적으로 다음과 같다. 일정량의 물에 바나듐 전구체를 녹여 바나듐 전구체 수용액을 준비한다. 일반적으로 바나듐 전구체는 암모늄 메타바나데이트(Ammonium metavanadate, NH4VO3)를 사용한다. 이 수용액에 담체인 이산화티타늄을 넣고 충분히 혼합한 다음 건조와 소성(Calcination)을 거쳐 촉매를 제조한다. 이 방법은 바나듐의 함량을 조절하기가 용이하고, 대량 제조가 가능하여 주로 공업용 촉매 제조에 적용된다.
그러나, 바나듐 전구체의 용해도, 바나듐 전구체 수용액의 pH, 건조 및 소성조건 등에 따라 담지된 활성물질이 표면에 노출된 상태가 크게 달라지고, 그에 따라 제조되는 촉매의 성능도 달라진다. 특히 전구체 수용액을 제조하는 단계가 매우 까다롭다. 즉 암모늄 메타바나데이트의 용해도를 높이기 위해 물을 가열하고, 또한 옥산살(Oxalic Acid, (COOH)2)를 첨가하여야 하며, 수용액의 pH를 중화시키기 위해 중화제를 넣는 등 여러 가지 조작과 첨가물이 필요하다. 또한, 전구체 수용액과 이산화티타늄을 혼합할 때에는 큰 동력이 필요하다. 수용액에서 물의 양이 많으면 이산화티타늄 표면에 바나듐이 고르게 분포하여 분산도가 높아지지만, 건조시 많은 열량이 투입되어야 한다. 반대로, 물의 양이 적으면 건조시 열량이 적게 필요하지만, 이산화티타늄과 전구체 간의 혼합이 원활하지 않으므로 고른 분산도를 얻기 위해서는 혼합에 충분한 시간이 필요하다. 또한 이산화티타늄과 전구체 수용액을 혼합할 때 물의 양에 따라 혼합물의 점도가 달라져 혼합기에서의 동력에 영향을 미치게 된다. 이렇듯 습윤함침법은 분말상태의 원료를 습식으로 혼합한 후 이를 건조하고 소성하기 때문에 정제된 물을 공급할 수 있는 설비가 필요하고, 이를 증발시킬 수 있는 건조시설이 필요하다. 또한 바나듐 전구체 수용액을 제조할 수 있는 설비가 필요하여 제조시 비용을 증가시키는 요인이 된다. 또한 촉매를 소성시킬 때에 암모늄 메타바나데이트를 비롯한 첨가물에서 여러 가지 부산물이 발생되어 이를 처리할 수 있는 설비가 필요하다.
본 발명은 이러한 문제점을 해결하기 위하여 볼 밀링에 의하여 탈질 촉매를 제조한다. 볼 밀링은 상업공정에서 1960년대에 산소 분산 니켈 합금의 생산을 위해 사용되기 시작한 이후로 결정상(Crystalline) 및 준결정상(Quasi-crystalline)의 비정질 합금을 포함한 다양한 안정, 준안정성 물질의 합성에 적용되었다. 이러한 적용예로서 일본특허 제2824507호는 경량 내열 재료로 사용되는 티탄-알루미늄계 금속간 화합물 분말을 제조하기 위하여 티탄 분말과 알루미늄 분말을 밀 용기 내에서 볼 밀링하여 티탄-알루미늄계 금속간 화합물 분말을 제조하는 방법을 개시하고 있다.
1990년대에 들어서 볼 밀링을 금속뿐만 아니라 세라믹, 폴리머 및 복합 재료에 적용시키기 위한 연구가 수행되어 왔으며, 촉매를 제조하는 공정에까지 적용되고 있다. 미국특허공개 2009-0060810 A1(한국특허공개 제2007-99177호)는 바나듐 전구체 수용액을 제조하고, 이 수용액에 티타니아 지지체를 첨가하여 슬러리를 제조한 다음 건조하는 단계를 포함하여, 건조된 물질을 볼 밀링하여 소성하거나, 건조 및 소성 후 볼 밀링하는 습식 볼 밀링에 의하여 배연 탈질용 선택적 환원 촉매를 제조하는 방법을 개시하고 있다. 이러한 습식 볼 밀링의 경우 전구체 수용액을 별도로 제조하여야 하고, 전구체 수용액에 티타늄 산화물을 첨가하여 슬러리를 제거한 다음 건조하는 공정이 필요하다.
본 발명의 한 측면은 기존의 습윤합침법이나 습식 볼 밀링에 비하여 단순한 제조 공정에 의하여 경제적으로 탈질 촉매를 제조하는 방법을 제공하기 위한 것이다.
본 발명의 다른 측면은 기존의 습윤함침법에 비하여 적은 바나듐 함량으로도 동일하거나 더 우수한 성능을 발휘할 수 있는 탈질 촉매의 제조방법을 제공하기 위한 것이다.
본 발명의 한 면은 분말 형태의 결정상 이산화티타늄(TiO2) 및 분말 형태의 결정상 오산화바나듐(V2O5)을 혼합하여 혼합물을 얻고, 상기 혼합물을 건식으로 볼 밀링하여 볼 밀링한 혼합물을 얻고, 그리고 상기 볼 밀링한 혼합물을 소성하는 단계를 포함하는 질소산화물 제거용 탈질 촉매의 제조 방법을 제공하는 것이다.
본 발명에 따라 제조된 탈질 촉매는 질소산화물 제거를 위하여 다양한 분야에서 사용될 수 있는 데, 예를 들면 선택적 촉매환원에서 배가스 중의 질소산화물을 제거하기 위하여 사용될 수 있다.
본 발명에 따른 탈질 촉매의 제조 방법은 바나듐와 이산화티타늄을 이용하여 습윤함침법으로 제조되는 기존의 탈질 촉매 제조방법에 비하여 간단하다. 따라서, 본 발명에 따르면 촉매 제조에 필요한 시간을 단축하고, 촉매 제조 비용을 절감할 수 있다. 또한, 본 발명에 따른 탈질 촉매의 제조 방법은 기존의 탈질 촉매 제조 방법에 비하여 동일한 바나듐 함량으로도 보다 우수한 탈질 효능을 나타내므로 탈질 설비에 장착 시의 설치량을 줄일 수 있다.
도 1은 본 발명의 일 구현예에 따른 건식 볼 밀링에 의한 촉매 제조 방법을 개략적으로 도시한 도면이다.
도 2는 공지 기술의 일 예로서 습윤함침법으로 촉매를 제조하는 방법을 개략적으로 도시한 도면이다.
도 3은 본 발명의 비교제조예 7에 따라 볼 밀링을 배제하고 촉매를 제조하는 공정을 개략적으로 도시한 도면이다.
도 4는 본 발명의 실시예에 따라 제조된 촉매의 X선 회절 분석(XRD) 결과이다.
본 발명의 한 면은 분말 형태의 결정상 이산화티타늄(TiO2) 및 분말 형태의 결정상 오산화바나듐(V2O5)을 혼합하여 혼합물을 얻고, 상기 혼합물을 건식으로 볼 밀링하여 볼 밀링한 혼합물을 얻고, 그리고 상기 볼 밀링한 혼합물을 소성하는 단계를 포함하는 질소산화물 제거용 탈질 촉매의 제조 방법을 제공하는 것이다.
본 발명의 일 구현예에 따르면, 사용되는 TiO2의 결정상이 아나타제 또는 아나타제와 루타일의 혼합 형태인 것이다. 보다 구체적으로, 이산화티타늄의 결정상은 아나타제 : 루타일이 약 70:30∼100:0의 중량비로 혼합된 형태일 수 있다.
본 발명의 일 구현예에서, 탈질 촉매의 성능과 내구성을 향상시키기 위하여 텅스텐, 몰리브덴, 및 란탄으로 이루어진 군으로부터 선택되는 조촉매 성분을 하나 이상 추가로 첨가할 수 있다. 일 구현예에서는, TiO2는 WO3, MoO3, 및 LaO3로 이루어진 군으로부터 선택되는 하나 이상의 성분을 TiO2의 함량을 기준으로 1 내지 10중량% 추가로 포함할 수 있다.
본 발명의 일 구현예에서, V2O5의 함량은 바나듐 원자의 함량을 기준으로 TiO2에 대하여 0.1~5중량%이다.
본 명세서에서 "결정상" 오산화바나듐은 무정형 오산화바나듐과 구별되게 하기 위하여 사용되는 용어로서, 당업계에서 통상적으로 사용되는 결정, 분말상의 오산화바나듐을 모두 포함하는 것으로 해석된다.
본 명세서에서 "분말 형태"란 용매에 용해되어 있는 용액 상태를 배제하기 위하여 사용되는 용어로서, 분말 형태의 이산화티타늄 또는 오산화바나듐은 분말 형태로 당업계에서 통상적으로 사용되는 이산화티타늄 또는 오산화바나듐을 모두 포함하는 것으로 해석되며, 분말의 크기나 형태는 특별히 제한되지 않는다.
본 발명에서 볼의 재질이나 크기, 볼 밀링 조건이 특별히 제한되는 것은 아니며, 본 발명의 일 구현예에서, 1:1 내지 100:1의 BPMR(ball powder mass ratio)로 0.5~24시간 동안 10~1000 rpm의 회전속도로 수행된다. 일 구현예에서는, 볼 밀링은 3~24시간 동안 수행될 수 있다. 볼 밀링의 수행에 대하여 하기의 제조예에서 보다 구체적으로 설명하겠으나, 이에 한정되지 않으며 당업계에서 상용화되고 있는 볼 밀링에 따라 본 발명의 구현이 가능하다.
또한, 본 발명의 소성 공정은 당업계에 공지된 방법 및 조건에 따라 실시된다. 전형적으로는 약 300∼800℃의 온도 범위의 공기 또는 산소 분위기 하에서 약 4∼12시간 동안 소성시켜 촉매를 제조할 수 있다. 소성 시, 예를 들면 튜브(tube)형, 컨벡션(convection)형 또는 화격자형 로, 로터리킬른(Rotary Kiln) 등을 사용할 수 있으나 이에 제한되는 것은 아니다.
아래에 기재한 바와 같이, 본 발명의 건식 볼 밀링에 의한 탈질 촉매의 제조 방법은 기존의 습윤함침법에 비하여 추가 시설이나 공정이 필요하지 않다는 점에서 매우 경제적인 방법이다:
습윤함침법은 바나듐 전구체인 암모늄 메타바나데이트를 용해시키기 위한 정제수 및 이를 위한 설비를 필요로 한다. 또한, 암모늄 메타바나데이트의 용해도를 높이기 위하여 이를 포함하는 정제수를 가열하여야 하는데, 이때 가열을 위한 설비와 열원이나 동력이 필요하다. 또한, 암모늄 메타바나데이트 수용액의 석출을 방지하기 위하여 수용액의 pH를 조정해야 하므로, 옥산살과 같은 pH 조절 물질과 이의 투입장치와 저장장치가 필요하다. 암모늄 메타바나데이트는 수용액 상태로 TiO2 담체와 혼합되며, 혼합물은 점성을 갖게 되어 혼합시 용매나 분말의 혼합물보다 훨씬 많은 동력이 요구된다. 추가로, 이 혼합물을 건조하기 위한 건조로 및 건조에 필요한 열원 또는 동력이 필요하다. 그러나, 상기한 바와 같이, 본 발명에 따른 제조 방법은 질소산화물을 제거하기 위한 탈질 촉매를 제조하기 위하여, 담체로는 분말 형태의 결정상 TiO2를 사용하고, 활성물질로서의 바나듐으로는 분말 형태의 결정상 V2O5를 이용하여, 결정상의 두 물질을 건식으로 볼 밀링하는 단순한 공정을 사용한다. 따라서, 전술한 습윤함침법에서 사용되는 추가적인 장치나 열원을 필요로 하지 않다는 점에서(도 1 참조), 본 발명은 매우 경제적이다.
본 발명에 따라 제조된 탈질 촉매는 배가스 내에 함유된 질소산화물의 제거에 효과적으로 적용될 수 있다. 따라서, 본 발명의 다른 한 면은 본 발명의 방법에 따라 제조된 촉매 및 환원제의 존재 하에서 질소산화물이 함유된 배가스를 선택적 촉매환원 반응시켜 배가스 내의 질소산화물을 제거하는 방법을 제공한다.
일 구현예에서, 본 발명에 따른 촉매 및 환원제인 암모니아의 존재 하에서 질소산화물이 함유된 배가스를 약 150∼450℃의 온도 및 약 1,000∼120,000 hr-1의 공간속도(GHSV)의 조건에서 선택적 촉매 환원 반응시킨다. 질소산화물의 선택적 환원 반응에 의한 제거를 위하여 전형적으로 암모니아를 환원제로 사용하는데, 이때 NH3/NOx의 몰 비는 일반적으로 0.6∼1.2의 범위가 되도록 조절할 수 있다. 환원제로 사용되는 암모니아의 공급원(source)은 선택적 환원 반응 시 암모니아로 전환되어 반응에 참여할 수 있는 종류이면 특별히 한정되지 않으나, 암모니아수 또는 암모니아 가스 또는 우레아(urea)를 예로 들 수 있다.
이하에 기재된 제조예 및 실시예을 통하여 본 발명을 보다 구체적으로 설명하기로 한다. 이들 제조예 및 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 제한되는 것으로 해석되어서는 안 된다.
실시예
하기 제조예 1 내지 7은 도 1에 개략적으로 도시된 공정에 따라 촉매를 제조하는 것이다.
제조예 1: V[2]-TiO2(A)_BM 촉매의 제조
담체는 결정상이 아나타제인 TiO2(이하 TiO2(A))를 사용한다. 분말 형태의 이산화티타늄(TiO2(A)) 20 g을 준비한다. 별도로 바나듐 원자의 함량을 기준으로 이산화티타늄의 2중량%가 되도록 결정상의 오산화바나듐(V2O5) 분말 0.7142 g을 준비한다. 이 두 재료를 볼 밀링 장치에 볼(Ball)과 함께 투입한다. 사용된 볼의 재질은 지르코니아(Zirconia)이며, 직경이 20 mm, 10 mm, 5 mm의 볼을 각각 50:25:25의 중량비로 넣는다. 이때의 BPMR(ball to powder mass ratio, 볼과 혼합물의 중량비)은 50:1이다. 밀링 속도는 340 rpm이며, 3시간 동안 밀링을 실시한다. 볼 밀링 완료 후 혼합물을 400℃에서 4시간 동안 공기분위기로 관형로에서 소성시킨다. 이때의 승온 속도는 10℃/분이다. 이렇게 제조된 본 발명의 촉매는 "V[2]-TiO2(A)_BM"로 표기한다. 여기에서, "[ ]"는 바나듐 원자 기준 함량으로 단위는 중량%이며, "A"는 아나타제 결정상을, "BM"은 볼 밀링을 나타낸다.
제조예 2: V[2]-TiO2(AR)_BM 촉매의 제조
TiO2 담체로서 결정상이 아나타제와 루타일이 혼합된 물질(이하, TiO2(AR)이라 함, 여기서, "A"는 아나타제 결정상을, "R"은 루타일 결정상을 나타냄)을 사용한 것을 제외하고는 제조예 1과 같이 촉매를 제조하였다. TiO2(AR)의 아나타제와 루타일의 중량 비율은 약 75:25이다. 이렇게 제조된 촉매를 "V[2]-TiO2(AR)_BM"로 표기한다.
제조예 3: V[2]-TiO2(W)_BM 촉매의 제조
본 제조예에서는 TiO2 담체에 중량 기준으로 WO3을 10% 함유하는 아나타제 결정상의 TiO2 담체(이하, TiO2(W)라 함, 여기서 "W"는 텅스텐을 나타냄)를 이용하여 촉매를 제조한다. TiO2 담체로서 TiO2(W)를 사용한 것을 제외하고는 제조예 1과 같이 촉매를 제조하였다. 이렇게 제조된 촉매를 "V[2]-TiO2(W)_BM"로 표기한다.
제조예 4: V[2]-TiO2(Mo)_BM 촉매의 제조
본 제조예에서는 TiO2 담체에 중량 기준으로 MoO3을 10% 함유하는 아나타제 결정상의 TiO2(이하, TiO2(Mo)라 함, 여기서 "Mo"는 몰리브덴을 나타냄)를 이용하여 촉매를 제조한다. TiO2 담체로서 TiO2(Mo)을 사용한 것을 제외하고는 제조예 1과 같이 촉매를 제조하였다. 이렇게 제조된 촉매를 "V[2]-TiO2(Mo)_BM"로 표기한다.
제조예 5: V[2]-TiO2(La)_BM 촉매의 제조
본 제조예에서는 TiO2 담체에 중량 기준으로 La2O3를 10% 함유하는 아나타제 결정상의 TiO2(이하, TiO2(La)라 함, 여기서 "La"는 란탄을 나타냄)를 이용하여 촉매를 제조한다. TiO2 담체로서 TiO2(La)을 사용한 것을 제외하고는 제조예 1과 같이 촉매를 제조하였다. 이렇게 제조된 촉매를 "V[2]-TiO2(La)_BM"로 표기한다.
제조예 6: 바나듐 함량을 달리한 V-TiO2(A)_BM 촉매의 제조
본 제조예에서는 바나듐의 함량을 바나듐 원자 기준으로 TiO2 4 중량%, 6 중량%, 10 중량%가 되도록 한다. TiO2(A) 20 g에 결정상의 V2O5 분말을 각각 1.4284 g, 2.8568 g, 3.5710 g 혼합하여 볼 밀링하는 것을 제외하고는 제조예 1과 같이 촉매를 제조한다. 이렇게 제조된 촉매를 "V[4]-TiO2(A)_BM", "V[6]-TiO2(A)_BM", "V[10]-TiO2(A)_BM"로 표기한다.
제조예 7: 볼 밀링 시간을 달리한 V-TiO2(A)_BM 촉매의 제조
제조예 6과 같이 V[4]-TiO2(A)_BM 촉매를 제조하되, 볼 밀링 시간을 각각 30분, 1시간, 3시간(제조예 6), 10시간, 24시간으로 한다. 볼 밀링 시간을 제외하고는 제조예 6과 같이 촉매를 제조한다. 이렇게 제조된 촉매를 "V[4]-TiO2(A)_BM(0.5)", "V[4]-TiO2(A)_BM(1)", "V[4]-TiO2(A)_BM(3)", "V[4]-TiO2(A)_BM(10)", "V[4]-TiO2(A)_BM(24)"로 표기한다.
비교제조예 1: 습윤함침법에 의한 V[2]/TiO2(A) 촉매의 제조
습윤함침법으로 제조되는 촉매의 제조 공정은 도 2에 개략적으로 도시된다. 바나듐 원자의 함량을 기준으로 TiO2(A)의 2중량%가 되도록 바나듐 전구체 수용액을 제조한다. 바나듐 전구체는 암모늄 메타바나데이트를 사용한다. 0.9186 g의 암모늄 메타바나데이트 분말을 60℃로 가열된 증류수 50 mL에 투입하여 용해시킨다. 암모늄 메타바나데이트의 용해도를 높이기 위하여 옥살산을 조금씩 저어가면서 혼합하여, 수용액의 pH가 2.5가 될 때까지 투입한다. 이 수용액에 20 g의 TiO2(A) 분말을 조금씩 투입하며 혼합하여 슬러리 형태로 제조한다. 이 슬러리를 충분히 혼합한 다음 회전진공증발기(Rotary Vacuum Evaporator)를 사용하여 수분을 증발시킨다. 수분 증발 완료 후 공극 내의 수분을 더 제거하기 위하여 건조로에서 100℃로 24시간 동안 추가 건조시킨다. 그 다음, 400℃에서 4시간 동안 공기분위기로 관형로에서 소성시킨다. 이때의 승온속도는 10℃/분이다. 이렇게 제조된 촉매를 "V[2]/TiO2(A)"로 표기한다.
비교제조예 2: 습윤함침법에 의한 V[2]/TiO2(AR) 촉매의 제조
TiO2 담체로서 TiO2(AR)를 사용한 것을 제외하고는 비교제조예 1과 같이 촉매를 제조하였다. 이렇게 제조된 촉매를 "V[2]/TiO2(AR)"로 표기한다.
비교제조예 3: 습윤함침법에 의한 V[2]/TiO2(W) 촉매의 제조
TiO2 담체로서 TiO2(W)를 사용한 것을 제외하고는 비교제조예 1과 같이 촉매를 제조하였다. 이렇게 제조된 촉매를 "V[2]/TiO2(W)"로 표기한다.
비교제조예 4: 습윤함침법에 의한 V[2]/TiO2(Mo) 촉매의 제조
TiO2 담체로서 TiO2(Mo)를 사용한 것을 제외하고는 비교제조예 1과 같이 촉매를 제조하였다. 이렇게 제조된 촉매를 "V[2]/TiO2(Mo)"로 표기한다.
비교제조예 5: 습윤함침법에 의한 V[2]/TiO2(La) 촉매의 제조
TiO2 담체로서 TiO2(La)를 사용한 것을 제외하고는 비교제조예 1과 같이 촉매를 제조하였다. 이렇게 제조된 촉매를 "V[2]/TiO2(La)"로 표기한다.
비교제조예 6: 습윤함침법에 의한 V[4]/TiO2(A) 촉매의 제조
바나듐의 함량을 TiO2(A)의 4 중량%로 증가시킨 것을 제외하고는 비교제조예 1과 같이 촉매를 제조하였다. 이렇게 제조된 촉매를 "V[4]/TiO2(A)"로 표기한다.
비교제조예 7: 단순 혼합에 의한 V[2]-TiO2(A)_Mortar 촉매의 제조
본 비교예에서는 볼 밀링 공정을 배제하고 TiO2(A)와 V2O5 분말을 단순 혼합하여 촉매를 제조하여 제조예 1에서 얻어진 촉매와 비교하기 위한 것이다. 개략적인 제조 공정은 도 3에 도시된 바와 같다. 구체적으로, 제조예 1에 기재된 함량의 TiO2(A)와 결정질의 V2O5 분말을 막자사발에서 혼합한다. 혼합된 물질을 제조예 1에 기재된 바와 같이 소성한다. 이렇게 제조된 촉매를 "V[2]-TiO2(A)_Mortar"로 표기한다.
실시예 1~4: 촉매의 질소산화물 제거 활성 비교 실험
상기한 제조예와 비교제조예에서 제조된 촉매의 질소산화물 제거 활성을 확인한다. 활성 실험은 촉매 분말 실험장치를 사용하여 200, 220, 250, 270, 또는 300℃에서 실시된다. 평가되는 촉매의 입자의 크기는 모두 300~425㎛의 범위 내로서 균일하다. 촉매 입자의 부피는 0.5 mL이며, 실험장치로 유입되는 가스의 전체 유량은 500 mL/min이다. 따라서 촉매 실험시 공간속도 60,000hr-1이다. 유입되는 가스 중 질소산화물의 농도는 400 ppm, 산소는 3%, 수분은 6%이며, 투입되는 암모니아의 농도는 400 ppm이다.
실시예 1
제조예 1 내지 5와 비교제조예 1 내지 5에 따라 제조된 촉매의 질소산화물 제거 활성을 200, 220, 250, 270, 또는 300℃에서 실시하였으며, 그 결과를 하기 표 1에 나타내었다.
표 1
Figure PCTKR2012004024-appb-T000001
표 1에 나타난 바와 같이, TiO2(A)를 담체로 하는 제조예 1과 비교제조예 1의 200~300℃에서의 질소산화물 제거율은 거의 비슷하거나 제조예 1이 약간 높았다. 그러나, 제조공정 측면을 고려할 때, 제조예 1이 훨씬 간단하고, 또한 건조 과정이 없으므로 제조에 투입되는 에너지를 줄일 수 있어 경제적이다.
한편, 아나타제와 루타일이 혼재되어 있는 TiO2(AR)을 담체로 하는 제조예 2의 질소산화물 제거율은 비교제조예 2의 성능보다 약 1~5%정도 높다. 또한 텅스텐을 포함하는 TiO2(W)를 담체로 하는 제조예 3의 질소산화물 제거율은 비교제조예 3의 성능보다 최대 12%까지 높다. 몰리브덴과 란탄을 포함하는 TiO2(Mo)와 TiO2(La)를 담체로 하는 제조예 4와 제조예 5의 질소산화물 제거율은 비교제조예 4와 비교제조예 5의 성능보다 각각 4~13%, 8~42%정도 높다.
따라서, 동일한 함량의 바나듐이 담지된 촉매를 기준으로 볼 때, 본 발명에 따라 제조된 촉매는 기존의 습윤함침법으로 제조된 촉매보다 우수한 질소산화물 제거 활성을 갖는다는 것을 확인할 수 있다.
실시예 2: 바나듐 함량에 따른 질소산화물 제거 활성 비교
제조예 1 및 제조예 6과 비교제조예 1 및 비교제조예 6에서 제조된 촉매에 대한 질소산화물 제거 활성을 200, 220, 250, 270, 또는 300℃에서 실시하였으며, 그 결과를 하기 표 2에 나타내었다.
표 2
Figure PCTKR2012004024-appb-T000002
표 2에 나타난 바와 같이, 제조예 1과 비교제조예 1에서 제조된 촉매의 질소산화물 제거율은 거의 비슷하거나 제조예 1의 경우가 높다. 바나듐 함량이 4 중량%인 경우, 즉 제조예 6의 V[4]-TiO2(A)_BM 촉매인 경우는 비교제조예 6의 V[4]/TiO2(A) 촉매의 질소산화물 제거율보다 1~5% 정도 높다.
실시예 3: 볼 밀링 시간에 따른 질소산화물 제거 활성 비교
제조예 7과 비교제조예 6 및 비교제조예 7에서 제조된 촉매에 대한 질소산화물 제거 활성을 200, 220, 250, 270, 또는 300℃에서 실시하였으며, 그 결과를 하기 표 3에 나타내었다. 비교제조예 7은 V2O5와 TiO2(A)를 막자사발에서 혼합하여 바로 소성한 것이므로, 볼 밀링 시간이 0인 경우이다.
표 3
Figure PCTKR2012004024-appb-T000003
표 3에 나타난 바와 같이, 볼 밀링 시간이 길어질수록 제조된 촉매의 질소산화물 제거율이 높아지며, 기존의 습윤함침법에 따라 제조된 비교제조예 6의 경우보다 질소산화물 제거율이 우수한 촉매를 얻기 위해서는 볼 밀링을 약 3시간 이상 수행하는 것이 바람직하다. 하지만, 볼 밀링 시간이 3시간 미만인 경우라 하더라도, 비교제조예 6의 습윤함침법에 비하여 매우 간단한 공정으로 촉매를 제조할 수 있다는 점에서 의의가 있다.
비교제조예 7은, 제조예 7은 물론 비교제조예 6보다도 효율이 낮았다. 따라서, 볼 밀링 공정이 배제된 V2O5와 TiO2의 단순 혼합 방법으로는 우수한 탈질 촉매를 얻을 수 없음을 알 수 있다.
실시예 4: X-선 회절분석법
제조예 7, 비교제조예 6, 및 비교제조예 7에서 제조된 촉매의 결정구조를 관찰하기 위하여 X-선 회절분석법(XRD, X-ray Diffraction)를 이용하여 결정구조 분석을 수행하였다. XRD 패턴은 Rigaku Co.의 D/Max-III(3kW) 회전분석기(Diffractometer)에 의하여 분석되었다. X-선원(Radiation source)으로는 Cu Kα(λ= 0.1506nm)가 사용되었으며, 2θ = 10~90°의 범위에서 4°/min의 주사속도에 의하여 측정하였으며, 그 결과를 도 4에 나타내었다.
도 4에서 확인할 수 있는 바와 같이, 비교제조예 6(V[4]/TiO2)보다 질소산화물 제거율이 낮은 제조예 7의 V[4]-TiO2 BM(0.5)와 V[4]-TiO2 BM(1)과 비교제조예 7은 2 Theta가 약 20.29˚인 지점에서 바나듐의 결정상인 V2O5의 피크가 발견된다. 그러나, 비교제조예 6보다 질소산화물 제거율이 높은 제조예 7의 V[4]-TiO2 BM(3), V[4]-TiO2 BM(10), 및 V[4]-TiO2 BM(24) 촉매에서는 이러한 바나듐 결정상이 발견되지 않는다. 이는 일정 시간 이상의 볼 밀링에 의하여 결정상의 V2O5가 분쇄되어 지지체 표면에 고르게 분산된 결과 비결정상의 V2O5를 형성한 것으로 추정된다.

Claims (8)

  1. 분말 형태의 결정상 이산화티타늄(TiO2) 및 분말 형태의 결정상 오산화바나듐(V2O5)을 혼합하여 혼합물을 얻고;
    상기 혼합물을 건식으로 볼 밀링하여 볼 밀링한 혼합물을 얻고; 그리고
    상기 볼 밀링한 혼합물을 소성하는:
    단계를 포함하는 질소산화물 제거용 탈질 촉매의 제조 방법.
  2. 제1항에 있어서, 상기 TiO2의 결정상이 아나타제, 또는 아나타제와 루타일의 혼합 형태인 것을 특징으로 하는 탈질 촉매의 제조 방법.
  3. 제1항에 있어서, 상기 TiO2는 텅스텐, 몰리브덴, 및 란탄으로 이루어진 군으로부터 선택되는 성분을 하나 이상 추가로 포함하는 것을 특징으로 하는 탈질 촉매의 제조 방법.
  4. 제1항에 있어서, 상기 V2O5의 함량은 바나듐 원자의 함량을 기준으로 TiO2에 대하여 0.1~5중량%인 것을 특징으로 하는 탈질 촉매의 제조 방법.
  5. 제1항에 있어서, 상기 볼 밀링 단계는 1:1 내지 100:1의 BPMR(ball powder mass ratio)로 0.5~24시간 동안 10~1000 rpm의 회전속도로 수행되는 것을 특징으로 하는 탈질 촉매의 제조 방법.
  6. 제1항에 있어서, 상기 소성 단계는 300~800℃의 온도에서 4~12시간 동안 공기 또는 산소 분위기 하의 소성로에서 소성되는 것을 특징으로 하는 탈질 촉매의 제조 방법.
  7. 제1항에 있어서, 상기 탈질 촉매는 선택적 촉매환원에 의한 질소 산화물 제거용 탈질 촉매인, 탈질 촉매의 제조 방법.
  8. 제1항 내지 제7항 중 어느 하나의 항에 따라 제조된 촉매 및 환원제의 존재 하에서, 질소 산화물이 함유된 배가스로부터 선택적 촉매 환원에 의하여 질소 산화물을 제거하는 방법.
PCT/KR2012/004024 2011-06-27 2012-05-22 건식 볼 밀링을 이용한 질소산화물 제거용 촉매의 제조 방법 WO2013002492A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280027497.5A CN103596680A (zh) 2011-06-27 2012-05-22 使用干法球磨制备去除氮氧化物的催化剂的方法
US14/116,875 US20140105803A1 (en) 2011-06-27 2012-05-22 Method for preparing catalyst for removing nitrogen oxides using dry ball milling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0062201 2011-06-27
KR1020110062201A KR101102714B1 (ko) 2011-06-27 2011-06-27 건식 볼 밀링을 이용한 질소산화물 제거용 촉매의 제조 방법

Publications (1)

Publication Number Publication Date
WO2013002492A1 true WO2013002492A1 (ko) 2013-01-03

Family

ID=45613756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004024 WO2013002492A1 (ko) 2011-06-27 2012-05-22 건식 볼 밀링을 이용한 질소산화물 제거용 촉매의 제조 방법

Country Status (4)

Country Link
US (1) US20140105803A1 (ko)
KR (1) KR101102714B1 (ko)
CN (1) CN103596680A (ko)
WO (1) WO2013002492A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196883A1 (en) 2013-06-05 2014-12-11 Uniwersytet Jagielloński A monolithic catalyst for simultaneous removal of nox and carbon particles, especially from off-gases of carbon power plants as well as the manner of production of the monolithic catalyst for simultaneous removal of nox and carbon particles, especially from off-gases of carbon power plants

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9242211B2 (en) * 2011-05-30 2016-01-26 The Babcock & Wilcox Company Catalysts possessing an improved resistance to poisoning
CN104827022A (zh) * 2015-04-27 2015-08-12 苏州统明机械有限公司 一种用于陶瓷的镍铬合金涂层及其制备方法
RU2019103479A (ru) * 2016-07-15 2020-08-17 Умикоре Аг Унд Ко. Кг Способ получения катализатора на основе ванадия
CN107282034A (zh) * 2017-06-22 2017-10-24 清华大学 一种宽温度烟气脱硝催化剂的制备方法及其应用
US11426709B2 (en) * 2018-08-28 2022-08-30 Umicore Ag & Co. Kg Catalyst for use in the selective catalytic reduction (SCR) of nitrogen oxides
KR102476636B1 (ko) * 2020-12-22 2022-12-12 한국에너지기술연구원 저온 활성이 개선된 scr 촉매, 이의 제조 방법, 및 배가스 정화용 촉매
CN112808264A (zh) * 2021-01-05 2021-05-18 北京工业大学 一种钒钼钛复合氧化物低温scr催化剂的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050101985A (ko) * 2004-04-20 2005-10-25 한양대학교 산학협력단 금속니켈이 도핑된 이산화티타늄 분말 및 그 제조방법
KR20060128570A (ko) * 2005-06-11 2006-12-14 (주) 파나텍 광촉매성 피막 형성방법 및 이를 이용한 환경친화성 건자재제조방법
KR20070099177A (ko) * 2006-04-03 2007-10-09 한국전력기술 주식회사 볼 밀링의 도입에 의하여 넓은 온도 대역에서 우수한질소산화물의 제거활성을 갖는 바나듐/티타니아계 촉매의제조방법 및 이의 사용방법
KR20090090523A (ko) * 2008-02-21 2009-08-26 성균관대학교산학협력단 환원제용 산화티타늄 광촉매의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050101985A (ko) * 2004-04-20 2005-10-25 한양대학교 산학협력단 금속니켈이 도핑된 이산화티타늄 분말 및 그 제조방법
KR20060128570A (ko) * 2005-06-11 2006-12-14 (주) 파나텍 광촉매성 피막 형성방법 및 이를 이용한 환경친화성 건자재제조방법
KR20070099177A (ko) * 2006-04-03 2007-10-09 한국전력기술 주식회사 볼 밀링의 도입에 의하여 넓은 온도 대역에서 우수한질소산화물의 제거활성을 갖는 바나듐/티타니아계 촉매의제조방법 및 이의 사용방법
KR20090090523A (ko) * 2008-02-21 2009-08-26 성균관대학교산학협력단 환원제용 산화티타늄 광촉매의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LORENZO DALL'ACQUA ET AL., J.MATER.CHEM., vol. 8, no. 6, 30 June 1998 (1998-06-30), pages 1441 - 1446 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196883A1 (en) 2013-06-05 2014-12-11 Uniwersytet Jagielloński A monolithic catalyst for simultaneous removal of nox and carbon particles, especially from off-gases of carbon power plants as well as the manner of production of the monolithic catalyst for simultaneous removal of nox and carbon particles, especially from off-gases of carbon power plants

Also Published As

Publication number Publication date
KR101102714B1 (ko) 2012-01-05
US20140105803A1 (en) 2014-04-17
CN103596680A (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
WO2013002492A1 (ko) 건식 볼 밀링을 이용한 질소산화물 제거용 촉매의 제조 방법
KR100767563B1 (ko) 볼 밀링의 도입에 의하여 넓은 온도 대역에서 우수한질소산화물의 제거활성을 갖는 바나듐/티타니아계 촉매의제조방법 및 이의 사용방법
WO2017010775A1 (ko) 질소산화물 제거용 scr 촉매 및 그의 제조방법
WO2021246630A1 (ko) 철 이온이 교환된 이산화티타늄 지지체에 담지된 오산화바나듐-삼산화텅스텐 촉매 및 이를 이용한 질소산화물 제거방법
JP2008049290A (ja) 窒素酸化物を浄化する触媒、方法、及び装置
JP4113090B2 (ja) 排ガス処理方法
KR100911797B1 (ko) 질소 산화물 제거용 촉매, 그 제조 방법 및 질소 산화물의제거 방법
WO2018021512A1 (ja) 排ガス処理触媒、排ガス処理触媒の製造方法及び排ガス処理システム
JP2005144299A (ja) 窒素酸化物除去用触媒および窒素酸化物除去方法
KR100456748B1 (ko) 배기가스 처리용 촉매, 그 제조방법 및 배기가스 처리방법
JP2008049288A (ja) 複合酸化物及びその製造方法、並びに、窒素酸化物を浄化する触媒、方法、及び装置
JP3815813B2 (ja) 排ガス中の一酸化窒素酸化触媒、およびこれを用いた排ガス中の窒素酸化物除去方法
CN108355656A (zh) 烟气预氧化催化剂及其制备方法和应用以及低温烟气脱硝方法
JP2001286734A (ja) 塩素化有機化合物の分解方法および燃焼排ガスの処理方法
JP3749078B2 (ja) 脱硝触媒および脱硝方法
JPS6312348A (ja) アンモニアによる窒素酸化物の接触還元用触媒
JP3893014B2 (ja) 排ガス処理用触媒、その製造方法および排ガス処理方法
JP2001286733A (ja) 塩素化有機化合物の分解方法および燃焼排ガスの処理方法
JP3795720B2 (ja) 排ガスの処理方法
KR20020058179A (ko) 이산화황을 포함하고 있는 배가스 중의 질소산화물을저온에서 제거하기 위한 선택적 환원촉매
WO2023113465A1 (ko) 선택적 촉매환원반응용 탈질촉매 및 이의 제조방법
JP2004290753A (ja) 耐熱性脱硝触媒
JPH01317545A (ja) 脱硝触媒の製造方法
JP3739659B2 (ja) 排ガス処理用触媒、排ガスの処理方法、および排ガス処理用触媒の製造方法
JP3825216B2 (ja) 排ガスの処理方法および触媒担持セラミックフィルター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804121

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14116875

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804121

Country of ref document: EP

Kind code of ref document: A1