WO2012173149A1 - 作業機械の動力回生装置 - Google Patents

作業機械の動力回生装置 Download PDF

Info

Publication number
WO2012173149A1
WO2012173149A1 PCT/JP2012/065151 JP2012065151W WO2012173149A1 WO 2012173149 A1 WO2012173149 A1 WO 2012173149A1 JP 2012065151 W JP2012065151 W JP 2012065151W WO 2012173149 A1 WO2012173149 A1 WO 2012173149A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
control valve
return oil
signal
work machine
Prior art date
Application number
PCT/JP2012/065151
Other languages
English (en)
French (fr)
Inventor
聖二 土方
藤島 一雄
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011133610A external-priority patent/JP5515087B2/ja
Priority claimed from JP2011201176A external-priority patent/JP5589234B2/ja
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to KR1020137032724A priority Critical patent/KR101928597B1/ko
Priority to EP12800776.2A priority patent/EP2722530B1/en
Priority to US14/117,961 priority patent/US9284718B2/en
Priority to CN201280029162.7A priority patent/CN103597220B/zh
Publication of WO2012173149A1 publication Critical patent/WO2012173149A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/22Dredgers or soil-shifting machines for special purposes for making embankments; for back-filling
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2091Control of energy storage means for electrical energy, e.g. battery or capacitors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2095Control of electric, electro-mechanical or mechanical equipment not otherwise provided for, e.g. ventilators, electro-driven fans
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • E02F9/268Diagnosing or detecting failure of vehicles with failure correction follow-up actions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a power regeneration device for a work machine, and more particularly to a power regeneration device for a work machine that recovers energy by return pressure oil from a hydraulic actuator.
  • a construction machine in which a hydraulic motor is driven by a return fluid from a hydraulic actuator to recover energy, and a return flow from a boom is branched to a regeneration side and a control valve side in order to improve operability.
  • a hydraulic motor is driven by a return fluid from a hydraulic actuator to recover energy
  • a return flow from a boom is branched to a regeneration side and a control valve side in order to improve operability.
  • the amount of regenerative power increases if the boom is raised and lowered frequently, such as gravel loading work on a dump truck.
  • the power storage device may be overcharged, leading to deterioration or damage of the device.
  • a method of arranging a large capacity power storage device and using it with a margin can be considered.
  • the power storage device is a very expensive component, and its price is almost proportional to the capacity, so it is desired to reduce the capacity of the power storage device.
  • the present invention has been made based on the above-described matters, and provides a power regeneration device for a work machine that can prevent overcharging of the power storage device without increasing the capacity of the power storage device.
  • a first invention includes an engine, a hydraulic pump driven by the engine, a control valve for supplying pressure oil from the hydraulic pump to a hydraulic cylinder, and the control valve.
  • a power regeneration device for a work machine comprising an operating device for controlling, an oil passage connected to a bottom hydraulic chamber of the hydraulic cylinder and through which return oil that returns to the tank when the hydraulic cylinder is reduced is provided in the oil passage.
  • a branch portion for diverting the oil passage into a plurality of oil passages, a regenerative conduit for guiding return oil to the tank via a hydraulic motor connected to the branch portion and connected to a generator controlled by an inverter,
  • a control valve line that is connected to the branch portion and guides return oil to the tank via the control valve, an operation amount detection means that detects an operation amount of the operation device, and electric power generated by the generator
  • a storage device for storing, a charge amount detecting means for detecting a charge amount of the power storage device, a flow rate of return oil flowing through the regenerative conduit side and the control valve conduit side according to a charge amount signal from the charge amount detecting means
  • the flow rate calculation means for calculating the flow rate of the return oil flowing through the first flow rate control means, the first flow rate control means for controlling the flow rate of the control valve line based on the calculation result of the flow rate calculation means, and the calculation result of the flow rate calculation means
  • a second flow rate control means for controlling the flow rate of the regenerative pipe.
  • the second invention includes an engine, a hydraulic pump driven by the engine, a control valve for switching and supplying the hydraulic oil from the hydraulic pump to a hydraulic cylinder, and an operation device for controlling the control valve.
  • an oil path connected to the bottom hydraulic chamber of the hydraulic cylinder and through which return oil that returns to the tank when the hydraulic cylinder is reduced flows, and the oil path provided in the oil path is divided into a plurality of oil paths.
  • a control valve line for guiding return oil to the tank, an operation amount detection means for detecting an operation amount of the operation device, a power storage device for storing the power generated by the generator, and a charge amount of the power storage device are detected.
  • a plurality of characteristics of a meter-out flow rate from the hydraulic cylinder with respect to an operation amount of the operating device when the hydraulic cylinder is reduced and a charge amount signal from the charge amount detection unit are stored.
  • a characteristic selection means for outputting any one of a plurality of characteristics of the stored meter-out flow rate in response to the charge amount signal, an operation amount and a meter-out flow rate output by the characteristic selection means,
  • Flow rate calculating means for calculating the flow rate of the return oil flowing through the regenerative pipeline side and the flow rate of the return oil flowing through the control valve pipeline side based on the relationship and the operation amount detected by the operation amount detection unit,
  • First flow rate control means for controlling the flow rate of the control valve line based on the calculation result of the flow rate calculation means; and the regeneration based on the calculation result of the flow rate calculation means.
  • Shall and a second flow rate control means for controlling the flow rate of the road.
  • the third invention is the first or second invention, wherein the flow rate calculation means is configured to determine the flow rate of the return oil flowing through the regenerative pipe line and the flow rate while the lowering operation signal in the operation device is detected.
  • the distribution characteristic with the flow rate of the return oil flowing on the control valve pipe side is fixed.
  • the flow rate calculation means stores a characteristic of meter-out flow rate from the hydraulic cylinder with respect to an operation amount of the operating device when the hydraulic cylinder is reduced.
  • an operation amount signal from the operation amount detection means is input, and a flow rate of the return oil flowing through the control valve line side is calculated from the stored meter-out flow rate characteristics according to the operation amount signal.
  • the flow rate calculation means and the characteristics of the meter-out flow rate from the hydraulic cylinder with respect to the operation amount of the operating device when the hydraulic cylinder is reduced are stored, and the operation amount signal from the operation amount detection means is input.
  • the second flow rate calculation for calculating the flow rate of the return oil flowing through the regenerative pipeline side from the stored meter-out flow rate characteristics in accordance with the manipulated variable signal.
  • a correction signal calculation means for inputting a charge amount signal from the charge amount detection means and calculating a correction characteristic in accordance with the charge amount signal.
  • the correction signal from the correction signal calculation means allows the first signal to be corrected.
  • the output signal of the first flow rate calculation means and the output signal of the second flow rate calculation means are corrected.
  • the fifth invention is characterized in that, in the first invention, an electromagnetic proportional valve for controlling a pilot pressure to the control valve is provided in order to control a flow rate of the return oil flowing through the control valve pipe side.
  • the present invention further comprises abnormality detection means for detecting abnormality of the generator and the inverter, and the abnormality detection means detects abnormality of the generator or the inverter.
  • the characteristic selection means outputs the characteristic of the meter-out flow rate that makes the flow rate of the return oil flowing through the regenerative pipe side zero, to the second flow rate calculation means, and the return oil flowing through the control valve pipe side
  • the meter-out flow rate characteristic is increased to the first flow rate calculating means for increasing the flow rate of the return flow by the amount of decrease in the flow rate of the return oil on the regenerative pipeline side.
  • a seventh invention according to the fourth invention further comprises an abnormality detection means for detecting an abnormality in the generator and the inverter, and the abnormality detection means detects an abnormality in the generator or the inverter.
  • the correction signal calculation means corrects the flow rate of the return oil flowing through the regenerative pipe side based on the operation amount in the second flow rate control means to zero, and sets the operation amount in the first flow rate control means to the operation amount. It is characterized in that the flow rate of the return oil flowing on the control valve line side is corrected so as to increase by the flow rate decrease in the second flow rate control means.
  • FIG. 1 is a perspective view showing a hydraulic excavator provided with a first embodiment of a power regeneration device for a work machine according to the present invention. It is the schematic of the control system which shows 1st Embodiment of the motive power regeneration apparatus of the working machine of this invention. It is one metering characteristic figure with which the characteristic selection circuit in the controller in 1st Embodiment of the motive power regeneration apparatus of the working machine of this invention is provided. It is a flowchart figure which shows the processing content of the controller in 1st Embodiment of the motive power regeneration apparatus of the working machine of this invention. It is a block diagram of a controller which constitutes a 1st embodiment of a power regeneration device of a working machine of the present invention.
  • FIG. 1 is a perspective view showing a hydraulic excavator provided with a first embodiment of a power regeneration device for a work machine according to the present invention
  • FIG. 2 shows a first embodiment of a power regeneration device for a work machine according to the present invention. It is the schematic of a control system.
  • a hydraulic excavator 1 includes an articulated work device 1A having a boom 1a, an arm 1b, and a bucket 1c, and a vehicle body 1B having an upper swing body 1d and a lower traveling body 1e.
  • the boom 1a is rotatably supported by the upper swing body 1d and is driven by a boom cylinder (hydraulic cylinder) 3a.
  • the upper turning body 1d is provided on the lower traveling body 1e so as to be turnable.
  • the arm 1b is rotatably supported by the boom 1a and is driven by an arm cylinder (hydraulic cylinder) 3b.
  • the bucket 1c is rotatably supported by the arm 1b and is driven by a bucket cylinder (hydraulic cylinder) 3c.
  • the driving of the boom cylinder 3a, the arm cylinder 3b, and the bucket cylinder 3c is controlled by an operating device 4 (see FIG. 2) installed in the cab of the upper swing body 1d and outputting a hydraulic signal.
  • This control system includes a control valve 2, an operation device 4, an electromagnetic proportional valve 8, a pilot check valve 10, an inverter 13, a chopper 14, a power storage device 15, a pressure sensor 16, and a voltage detector 17. And a controller 9 as a control device.
  • the hydraulic power source device includes a hydraulic pump 6, a pilot oil pump 7 for supplying pilot pressure oil, and a tank 6A.
  • the hydraulic pump 6 and the pilot oil pump 7 are coupled by the same drive shaft, and are driven by an engine 50 connected in series with the drive shaft.
  • the oil passage 30 that supplies the pressure oil from the hydraulic pump 6 to the boom cylinder 3a is provided with a control valve 2 that controls the direction and flow rate of the pressure oil in the oil passage.
  • the control valve 2 switches the spool position by supplying pilot pressure oil to the pilot pressure receiving portions 2a and 2b, supplies pressure oil from the hydraulic pump 6 to the hydraulic actuator 3a, and drives the boom 1a. .
  • the spool position of the control valve 2 is switched by operating the operation lever or the like of the operation device 4.
  • the operating device 4 is provided with a pilot valve 5, and the operation lever or the like is moved through a pilot primary oil passage (not shown) from the pilot oil pump 7 by a tilting operation (boom raising direction operation) in the direction a in the figure.
  • the supplied pilot primary pressure oil is supplied to the pilot pressure receiving part 2a of the control valve 2 through the pilot secondary side oil passage 20a.
  • the pilot valve 5 receives pilot primary pressure oil supplied from a pilot oil pump 7 through a pilot primary side oil passage (not shown) by tilting operation (boom lowering direction operation) in the direction b of the operation lever or the like.
  • the pressure is received by the pilot check valve 10 through the pilot secondary side oil passage 20c.
  • the pressure sensor 16 is attached to the pilot secondary side oil passage 20c.
  • the pressure sensor 16 functions as a signal conversion means that detects the lower pilot pressure Pb of the pilot valve 5 of the operating device 4 and converts it into an electrical signal corresponding to the pressure.
  • the converted electrical signal is sent to the controller 9. It is configured to allow output.
  • pilot secondary side oil passage 20b is connected to the pilot pressure receiving part 2b of the control valve 2, and the other end side of the pilot secondary side oil passage 20b is connected to the two-position two-port electromagnetic proportional valve 8. Connected to the output port.
  • a pilot oil passage 20 for supplying pressure oil from the pilot oil pump 7 is connected to the input side port of the electromagnetic proportional valve 8.
  • the power regeneration device 70 includes an oil passage 31, a branch portion 32, a regeneration conduit 33, a control valve conduit 34, a pressure sensor 16, a controller 9, an inverter 13, and a chopper. 14, a power storage device 15, and a voltage detector 17.
  • the oil passage 31 is an oil passage through which oil (return oil) returning to the tank 6A when the boom cylinder 3a is contracted flows, and is connected to the bottom side hydraulic chamber of the boom cylinder 3a.
  • the oil passage 31 is provided with a branch portion 32 that divides the oil passage 31 into a plurality of oil passages.
  • a regenerative pipe 33 and a control valve pipe 34 are connected to the branch portion 32.
  • the regenerative pipe 33 includes a pilot check valve 10 and a hydraulic motor 11 installed on the downstream side of the pilot check valve 10 and connected to a generator 12, and is connected to the bottom hydraulic chamber via the hydraulic motor 11. Is returned to the tank 6A.
  • the generator 12 is rotated to generate regenerative power, which is generated via the inverter 13 and the chopper 14 for boosting.
  • the electricity is stored in the electricity storage device 15.
  • a capacitor is described as an example of power storage device 15.
  • SOC State ofgeCharge
  • the SOC value can be confirmed by detecting the voltage of the capacitor.
  • a voltage detector 17 is provided in the power storage device 15, and a signal detected by the voltage detector 17 is input to the controller 9.
  • the pilot check valve 10 is provided to prevent inadvertent flow of pressure oil (boom drop) from the oil passage 31 to the regenerative conduit 33, such as prevention of leakage of the regenerative conduit 33, and normally the regenerative conduit. 33 is shut off.
  • the pilot check valve 10 is guided with the lower pilot pressure Pb of the pilot valve 5 of the operation device 4 when the boom lowering operation is performed by the operator, and the amount of operation of the operation device 4 during the boom lowering operation is given. It is set so as to be opened by an operation signal (pilot pressure Pb) output when reaching a fixed amount. As a result, when the operation amount of the operation device 4 becomes a predetermined value or more, the return oil is supplied to the hydraulic motor 11.
  • the rotation speeds of the hydraulic motor 11 and the generator 12 during the boom lowering operation are controlled by the inverter 13.
  • the rotational speed of the hydraulic motor 11 is controlled by the inverter 13 in this way, the flow rate of oil passing through the hydraulic motor 11 can be adjusted, so that the flow rate of return oil flowing from the bottom hydraulic chamber to the regenerative pipeline 33 can be adjusted.
  • the inverter 13 in the present embodiment functions as a flow rate control unit that controls the flow rate of the regenerative pipe 33.
  • the control valve line 34 guides the return oil from the bottom side hydraulic chamber to the tank 6A via the control valve 2 (spool type directional switching valve) which is a flow rate adjusting means.
  • An operation signal (hydraulic signal) output from the pilot oil pump 7 via the electromagnetic proportional valve 8 during the boom lowering operation is input to one pilot pressure receiving part 2b of the control valve 2, and the other pilot pressure receiving part 2a is input with the pilot pressure Pa of the pilot valve 5 from the operating device 4 during the boom raising operation.
  • the spool of the control valve 2 moves according to operation signals input to these two pilot pressure receiving portions 2a and 2b, and switches the direction and flow rate of the pressure oil supplied from the hydraulic pump 6 to the boom cylinder 3a.
  • the electromagnetic proportional valve 8 outputs an operation signal corresponding to the operation amount of the operation device 4 during the boom lowering operation to the pilot pressure receiving portion 2b of the control valve 2, and thereby passes through the control valve 2 from the bottom side hydraulic chamber.
  • the flow rate of the return oil (that is, the flow rate of the return oil flowing through the control valve pipe 34) is adjusted. That is, the electromagnetic proportional valve 8 in the present embodiment functions as a flow rate control unit that controls the flow rate of the control valve pipe line 34.
  • the pressure oil output from the pilot oil pump 7 is input to the input port of the electromagnetic proportional valve 8 in the present embodiment.
  • a command value output from an electromagnetic proportional valve output value calculation unit 104 (see FIG. 5) described later of the controller 9 is input to the operation unit of the electromagnetic proportional valve 8.
  • the port position of the electromagnetic proportional valve 8 is adjusted in accordance with the command value, whereby the pressure of the pressure oil supplied from the pilot oil pump 7 to the pressure receiving portion 2b of the control valve 2 is adjusted as appropriate.
  • the controller 9 inputs the lower pilot pressure Pb of the pilot valve 5 of the operating device 4 from the pressure sensor 16 and the SOC value of the power storage device 15 from the voltage detector 17, and performs calculations according to these input values. By outputting a control command to the electromagnetic proportional valve 8 and the inverter 13, the flow rate of the return oil passing through the regenerative conduit 33 and the control valve conduit 34 is controlled.
  • the pilot pressure Pb generated from the pilot valve 5 is detected by the pressure sensor 16 and input to the controller 9.
  • the controller 9 outputs a control command to the electromagnetic proportional valve 8 according to the input pilot pressure according to a predetermined table.
  • the pilot pressure is applied to the pilot pressure receiving portion 2b of the control valve 2, and the control valve 2 is switched.
  • the pressure oil from the hydraulic pump 6 is guided to the oil passage 30 of the boom cylinder 3a, and the boom cylinder 3a is contracted.
  • the return flow rate discharged from the bottom side oil chamber of the boom cylinder 3a is guided to the tank 6A through the oil passage 31 and the control valve 2.
  • the pilot pressure Pb is guided from the pilot valve 5 to the pilot check valve 10 via the pilot secondary side oil passage 20c as an operating pressure, so that the pilot check valve 10 opens.
  • a part of the return flow discharged from the bottom side oil chamber of the boom cylinder 3a is guided to the hydraulic motor 11, and the generator 12 connected to the hydraulic motor 11 performs a power generation operation.
  • the generated electric energy is stored in the power storage device 15.
  • the controller 9 determines the state from the input pilot pressure Pb signal and SOC signal, and determines the command value to the electromagnetic proportional valve 8 and the control command value to the inverter 13 which is the control device of the generator 12. Calculate and output.
  • the return flow rate discharged from the bottom side oil chamber of the boom cylinder 3a in the boom lowering operation is guided to the control valve 2 side (control valve side flow rate) and the regeneration hydraulic motor 11 side (regeneration side flow rate). Therefore, an appropriate regenerative operation is performed while ensuring operability.
  • FIG. 3 is a metering characteristic diagram provided in the characteristic selection circuit in the controller according to the first embodiment of the power regeneration device for a work machine of the present invention.
  • the metering diagram indicated by a thin solid line shows the relationship between the lever operation amount of the operating device 4 and the flow rate of return oil flowing through the control valve line 34 (control valve line flow rate Q1).
  • the metering diagram indicated by the broken line shows the relationship between the lever operation amount of the operating device 4 and the flow rate of the return oil flowing through the regenerative pipeline 33 (regenerative pipeline flow rate Q2).
  • a metering diagram indicated by a thick solid line is a composite of the above two metering diagrams and indicates the total flow rate of the control valve pipe flow rate Q1 and the regenerative pipe flow rate Q2.
  • the total flow rate is the control valve pipe. It matches the flow rate Q1. In other words, at this time, all the return oil from the bottom side hydraulic chamber flows into the control valve line 34, and the regenerative line 33 is closed by the pilot check valve 10.
  • the lever operation amount of the controller device 4 is equal to or greater than the second set value L2 (a value greater than the first set value) (hereinafter sometimes referred to as a “full regenerative region”)
  • the total flow rate is the regenerative pipe. This is consistent with the road flow rate Q2.
  • all the return oil from the bottom hydraulic chamber flows into the regenerative pipe 33, and the control valve pipe 34 is closed by the control valve 2.
  • the operation returns to both the regenerative conduit 33 and the control valve conduit 34. Oil is being poured.
  • the lever operation amount of the operating device 4 increases from the first set value L1 to the second set value L2
  • the control valve pipe flow rate Q1 is zero from the total flow rate q1 at the first set value L1.
  • the regeneration pipe flow rate Q2 is set so as to gradually increase from zero toward the total flow rate q2 at the second set value L2.
  • FIG. 4 is a flowchart showing the processing contents of the controller in the first embodiment of the power regeneration device for a work machine of the present invention.
  • a start state for example, the operator turns on a key of a hydraulic excavator (not shown).
  • step (S1) it is determined whether or not the boom lowering lever is operated. Specifically, the determination is made based on the presence or absence of a signal of the pilot pressure Pb input from the pressure sensor 16. If it is determined that the boom lowering lever is operated, the process proceeds to step (S2). If NO is determined, the process is repeated until YES is determined.
  • step (S2) it is determined whether the SOC value exceeds the set value. Specifically, the determination is based on the magnitude of the voltage value of power storage device 15 input from voltage detector 17 and a preset value. If the SOC value does not exceed the set value, NO is determined and the process proceeds to step (S3). If the SOC value is also exceeded, YES is determined and the process proceeds to step (S4).
  • step (S3) a predetermined distribution between the regenerative pipeline flow rate and the control valve pipeline flow rate is maintained.
  • step (S4) the distribution between the predetermined regenerative pipe flow rate and the control valve pipe flow rate is changed. Specifically, the regenerative pipeline flow rate is decreased and the control valve pipeline flow rate is increased. When the SOC exceeds the reference value, the regenerative pipeline flow rate is reduced, so that overcharging of the power storage device 15 due to regenerative power can be prevented.
  • step (S1) returns to step (S3) from step (S3) and step (S4), and each step is repeated.
  • FIG. 5 is a block diagram of a controller constituting the first embodiment of the power regeneration device for a work machine according to the present invention.
  • FIG. 6A is a block diagram of the controller in the first embodiment of the power regeneration device for the work machine according to the present invention.
  • FIG. 6B is still another metering characteristic diagram for explaining the characteristic selection circuit in the controller in the first embodiment of the power regeneration device for the work machine of the present invention. is there.
  • FIG. 5 to FIG. 6B the same reference numerals as those shown in FIG. 1 to FIG.
  • the controller 9 shown in FIG. 5 includes a characteristic selection calculation unit 100, a first flow rate calculation unit 102, a second flow rate calculation unit 101 (flow rate calculation means), a motor command value calculation unit 103, and an electromagnetic proportional valve output value calculation unit. 104.
  • the characteristic selection calculation unit 100 detects the SOC from the voltage value of the capacitor that is the power storage device 15 detected by the voltage detection sensor 17, and uses the detected SOC and a preset set value. The metering characteristic is selected and output based on the comparison result.
  • FIG. 6A shows metering characteristics that are selected when the SOC is lower than a preset value, that is, when the charge amount of the power storage device 15 is low. This metering characteristic ensures operability by flowing the flow rate to the control valve as much as possible in the fine operation range where operability is required, and in the full regeneration region where operability is not so much, a large flow rate is flowed to the regeneration side. Indicates that regenerative control is performed.
  • FIG. 6B shows that the metering characteristic in which the distribution between the regenerative pipe flow rate and the control valve pipe flow rate shown in FIG. 6A is changed is selected according to the SOC value. Specifically, as the SOC value increases, the metering characteristic of a predetermined distribution pattern is selected to increase the control valve line flow rate and decrease the regenerative line flow rate. Yes. In other words, the distribution pattern a is selected when the SOC value is low, and the distribution pattern is switched to b, c, and d as the SOC value increases. As described above, as the SOC value increases, the control valve pipe flow rate is increased and the regenerative pipe flow rate is decreased. Therefore, the regenerative amount can be suppressed without changing the return flow rate of the boom cylinder 3a.
  • the first flow rate calculation unit 102 returns to the control valve line 34 side based on the metering diagram output from the characteristic selection calculation unit 100 and the operation amount of the operation device 4 during the boom lowering operation.
  • the second flow rate calculation unit 101 is a part for calculating the oil flow rate Q1, and the second flow rate calculation unit 101 is based on the metering diagram output from the characteristic selection calculation unit 100 and the operation amount of the operation device 4 during the boom lowering operation. This is a part for calculating the flow rate Q2 of the return oil flowing on the 33 side.
  • Detection values of the pressure sensor 16 are input to the first flow rate calculation unit 102 and the second flow rate calculation unit 101, and the first flow rate calculation unit 102 and the second flow rate calculation unit 101 are based on the detection values.
  • the operation amount is calculated. After calculating the operation amount of the controller device 4 based on the detection value of the pressure sensor 16, the flow rates Q1 and Q2 corresponding to the calculated operation amount are calculated based on the metering diagram output from the characteristic selection calculation unit 100.
  • the target flow rate is set for each of the pipe lines 33 and 34.
  • the first flow rate calculation unit 102 outputs the calculated control valve pipe flow rate Q1 to the electromagnetic proportional valve output value calculation unit 104, and the second flow rate calculation unit 101 supplies the calculated regenerative pipe flow rate Q2 to the motor command value calculation unit 103. Output.
  • the motor command value calculation unit 103 calculates the number of revolutions of the hydraulic motor 11 necessary to suck the regenerative pipe flow rate Q2 calculated by the second flow rate calculation unit 101 by the hydraulic motor 11 of the regenerative pipe 33, and the hydraulic motor This is a part for outputting to the inverter 13 a rotation speed command value for rotating 11 at the calculated rotation speed.
  • the inverter 13 to which the rotation speed command value calculated by the motor command value calculation unit 103 is input rotates the hydraulic motor 11 and the generator 12 based on the rotation speed command value, whereby the second flow rate is supplied to the regenerative pipe 33.
  • the return oil having the flow rate calculated by the calculation unit 101 flows.
  • the electromagnetic proportional valve output value calculation unit 104 outputs the output value of the electromagnetic proportional valve 8 necessary for passing the control valve line flow rate Q1 calculated by the first flow rate calculation unit 102 through the control valve 2 of the control valve line 34. (That is, a command value for calculating the pressure (pilot pressure) of the hydraulic signal output from the proportional solenoid valve 8 to the pilot pressure receiving portion 2b of the control valve 2) and outputting the calculated output value from the proportional solenoid valve 8 Is output to the electromagnetic proportional valve 8.
  • the electromagnetic proportional valve 8 to which the output value calculated by the electromagnetic proportional valve output value calculation unit 104 is input outputs an operation signal to the control valve 2 based on the output value, whereby the first flow rate is supplied to the control valve line 34.
  • the return oil having the flow rate calculated by the calculation unit 102 flows.
  • the pilot pressure Pb of the pilot valve 5 of the operating device 4 is detected by the pressure sensor 16 and input to the controller 9.
  • the pilot pressure Pb is input to the first flow rate calculation unit 102 and the second flow rate calculation unit 101 as a lever operation amount of the controller device 4.
  • the voltage value of the capacitor which is the power storage device 15 is constantly detected by the voltage detection sensor 17 and is input to the controller 9.
  • This SOC signal is input to the characteristic selection calculation unit 100.
  • the characteristic selection calculation unit 100 when the SOC is low, that is, when the charge amount of the power storage device 15 is low, the metering characteristic is selected so as to flow the flow rate to the regeneration side as much as possible and suppress the flow rate on the control valve side. It is output to the flow rate calculation unit 102 and the second flow rate calculation unit 101.
  • the characteristic selection calculation unit 100 selects a metering characteristic that suppresses the regenerative pipe flow rate and increases the control valve pipe flow rate. .
  • the metering characteristics output to the first flow rate calculation unit 102 and the second flow rate calculation unit 101 are changed.
  • the control valve pipe flow rate Q1 and the regenerative pipe flow rate Q2 corresponding to the lever operation amount of the operating device 4 are output, and the electromagnetic proportional valve output value calculation unit 104 is output.
  • the motor command value calculation unit 103 calculates and outputs control commands to the electromagnetic proportional valve 8 and the inverter 13.
  • the regenerative pipe flow rate is suppressed according to the operation amount of the operation device 4 and the state of the SOC, Charging can be prevented and the capacity of the power storage device 15 can be reduced. Further, since the control valve pipe flow rate can be changed, the boom lowering speed desired by the operator can be secured.
  • FIG. 7 is a block diagram of a controller constituting a second embodiment of the power regeneration device for a work machine according to the present invention.
  • the same reference numerals as those shown in FIGS. 1 to 6B are the same or corresponding parts, and the description of those parts is omitted.
  • the characteristic selection calculation unit 100 of the controller 9 outputs the metering characteristic selected in accordance with the SOC signal, and the first flow rate calculation unit 102 and the first flow rate calculation unit 102 are output based on this metering characteristic.
  • the flow rate calculation unit 101 calculates the control valve pipe flow rate Q1 and the regenerative pipe flow rate Q2, and outputs a control command from the controller 9 to the electromagnetic proportional valve 8 and the inverter 13 in order to realize these flow rates. For this reason, during the boom lowering operation, for example, if the SOC value changes, the selected metering characteristic changes, which may cause a sudden change in operability.
  • a power regeneration device for a work machine that does not cause a sudden change in operability even if the SOC value changes.
  • a correction signal calculation unit 120 includes a correction signal calculation unit 120, a first flow rate calculation unit 112 and a second flow rate calculation unit 111 (flow rate calculation means), a multiplier 113, a subtractor 114, an adder 115, A motor command value calculation unit 103 and an electromagnetic proportional valve output value calculation unit 104 are provided.
  • the first flow rate calculation unit 112 has the control valve line flow rate characteristic of the metering diagram shown in FIG. 3 set in advance, and inputs the operation amount of the operating device 4 during the boom lowering operation, and the control valve line
  • the flow rate Q1 ′ of the return oil flowing to the 34 side is calculated and output to the adder 115.
  • the second flow rate calculation unit 111 is set in advance so that the regenerative pipeline flow rate characteristic of the metering diagram shown in FIG. 3 is set, and returns to the regenerative pipeline 33 side based on the operation amount of the operating device 4 during the boom lowering operation.
  • the oil flow Q2 ′ is calculated and output to the multiplier 113 and the subtractor 114.
  • correction signal calculation unit 120 detects the SOC from the voltage value of the capacitor that is power storage device 15 detected by voltage detection sensor 17, and a correction signal that is set in advance according to the detected SOC. Is output to the multiplier 113.
  • the flow rate output Q2 'of the second flow rate calculation unit 111 is corrected by this correction signal.
  • the maximum value of the output of the correction signal calculation unit 120 is 1.
  • the signal 1 is continuously output and is multiplied by the flow rate value Q2 'of the second flow rate calculation unit 111 by the multiplier 113. That is, in a state where the SOC is low, the output signal Q ⁇ b> 2 ′ of the second flow rate calculator 111 becomes the input value Q ⁇ b> 2 of the motor command value calculator 103 as it is.
  • the output of the correction signal calculation unit 120 outputs a value smaller than 1 with 0 as a lower limit value.
  • the output signal Q2 'of the second flow rate calculation unit 111 is corrected to decrease steplessly at the output of the multiplier 113, so that the regenerative flow rate can be suppressed.
  • the subtractor 114 and the adder 115 perform an operation of increasing the control valve side flow rate by reducing the regenerative flow rate.
  • the subtractor 114 inputs the output of the multiplier 113 and the output of the second flow rate calculation unit 111 and inputs the output signal to the adder 115.
  • the subtractor 114 calculates the flow rate difference before and after correction by the second flow rate calculation unit 111, and the adder 115 outputs the flow rate difference calculated by the subtractor 114 to the output of the first flow rate calculation unit 112. To increase the flow rate on the control valve side. Thereby, since the sum total of the output of the 2nd flow volume calculating part 111 and the 1st flow volume calculating part 112 does not change, the bottom flow volume of the boom cylinder 3a desired can be ensured.
  • the adder 115 outputs the calculated control valve pipe flow rate Q1 to the electromagnetic proportional valve output value calculation unit 104, and the multiplier 113 outputs the calculated regenerative pipe flow rate Q2 to the motor command value calculation unit 103.
  • the pilot pressure Pb of the pilot valve 5 of the operating device 4 is detected by the pressure sensor 16 and input to the controller 9.
  • the pilot pressure Pb is input to the first flow rate calculation unit 112 and the second flow rate calculation unit 111 as a lever operation amount of the operating device 4, and a flow rate signal corresponding to the lever operation amount is output to the first flow rate calculation unit 112 and the second flow rate. Output from the calculation unit 111.
  • the SOC signal is input to the correction signal calculation unit 120, and a signal for correcting the flow rate value Q2 ′ of the second flow rate calculation unit 111 that is the regeneration side flow rate is output from the correction signal calculation unit 120 according to the state of the SOC. . Since the output signal of the correction signal calculation unit 120 changes continuously according to the state of the SOC, the output correction value Q2 of the second flow rate calculation unit 111 also changes continuously.
  • the decrease in the regeneration side flow rate is added to the control valve side flow rate.
  • the output values of the second flow rate calculation unit 111 and the first flow rate calculation unit 112 are corrected as described above, and the control valve pipe flow rate Q1 and the regenerative pipe flow rate Q2 are generated.
  • Control commands to the electromagnetic proportional valve 8 and the inverter 13 are calculated and output by the electromagnetic proportional valve output value calculation unit 104 and the motor command value calculation unit 103 to which the respective target flow rates are input.
  • the regeneration-side flow rate can be continuously changed according to the state of the SOC, so that the operability suddenly changes. Can be prevented, and a good operation desired by the operator can be ensured.
  • FIG. 8 is a flowchart showing the processing contents of the controller in the third embodiment of the power regeneration device for work machine of the present invention.
  • the same reference numerals as those shown in FIGS. 1 to 7 are the same or corresponding parts, and the description thereof is omitted.
  • a start state for example, the operator turns on a key of a hydraulic excavator (not shown).
  • step (S101) it is determined whether or not the boom lowering lever is operated. Specifically, the determination is made based on the presence or absence of a signal of the pilot pressure Pb input from the pressure sensor 16. If it is determined that there is no boom lowering lever operation, the process proceeds to step (S102), and if it is determined YES, the process proceeds to step (S105).
  • step (S102) it is determined whether the SOC value exceeds the set value. Specifically, the determination is based on the magnitude of the voltage value of power storage device 15 input from voltage detector 17 and a preset value. If the SOC value does not exceed the set value, NO is determined and the process proceeds to step (S103). If the SOC value is also exceeded, YES is determined and the process proceeds to step (S104).
  • step (S103) the distribution pattern is maintained without changing the settings of the predetermined regenerative pipe flow rate and the control valve pipe flow rate.
  • This distribution pattern is, for example, the case of the distribution pattern a in FIG. 6B and indicates that the regeneration side flow rate is increased as much as possible.
  • step (S104) a predetermined distribution between the regenerative pipe flow rate and the control valve pipe flow rate is changed. Specifically, it is set to decrease the regenerative pipeline flow rate and increase the control valve pipeline flow rate, and retain the distribution pattern.
  • This distribution pattern is, for example, the case of the distribution patterns b, c, and d in FIG. 6B.
  • the SOC exceeds the reference value, the regenerative line flow rate is reduced, so that overcharging of the power storage device 15 due to regenerative power is prevented. be able to.
  • step (S105) the boom lowering lever is operated in step (S101). In this case, the distribution pattern set in step (S103) or step (S104) is held.
  • step (S101) returns to step (S103) and step (S104), and each step is repeated.
  • the flow rate distribution is not changed while the lever operation signal is input, that is, during the boom lowering operation. Therefore, it is possible to prevent a sudden change in characteristics and to secure a good operation desired by the operator.
  • FIG. 9 is a schematic diagram of a control system showing a fourth embodiment of a power regeneration device for a work machine according to the present invention
  • FIG. 10 shows an inverter constituting the fourth embodiment of a power regeneration device for a work machine according to the present invention.
  • FIG. 11 is a block diagram of a controller constituting a fourth embodiment of the power regeneration device for a work machine according to the present invention
  • FIG. 12 is a power regeneration device for the work machine according to the present invention.
  • Fig. 13 is a metering characteristic diagram for explaining a characteristic selection circuit in the controller according to the fourth embodiment.
  • FIG. 13 is a flowchart showing the processing contents of the controller in the fourth embodiment of the power regeneration device for a work machine according to the present invention. It is. 9 to 13, the same reference numerals as those shown in FIGS. 1 to 8 are the same or corresponding parts, and the description thereof is omitted.
  • the device when there is an abnormality in the generator 12 or the inverter 13 that controls the generator 12, if the return oil is caused to flow into the regenerative pipe 33, the device excessively generates heat, and the machine There is a possibility that the service life of the work machine may be reduced due to a reduction in the service life or a mechanical shock.
  • overcharging of the power storage device 15 can be prevented without increasing the capacity of the power storage device 15, and the generator 12 or this can be controlled.
  • a power regeneration device for a work machine that can ensure good operability even when an abnormality occurs in the inverter 13 that performs the operation.
  • a control system showing a fourth embodiment of the power regeneration device for a work machine of the present invention shown in FIG. 9 is configured in substantially the same manner as in the first embodiment, but the following forms are different.
  • the pilot secondary oil passage 20c is provided with a two-port two-position electromagnetic switching valve 85 for switching between communication / blocking of the oil passage, and pilot check of pilot pressure oil generated by the pilot valve 5 of the operating device 4 is performed.
  • Supply to the valve 10 can be controlled by a command from the controller 9. Specifically, when a command signal from the controller 9 is input to the operation portion of the electromagnetic switching valve 85, the port is switched, the pilot secondary side oil passage 20c is shut off, and the command signal is not input.
  • the port that communicates with the pilot secondary side oil passage 20c is selected.
  • the inverter 13 is provided with an abnormality detection unit capable of detecting an abnormality of the generator 12 and the inverter 13 described later, and an abnormality signal detected by the abnormality detection unit is output to the controller 9.
  • the inverter 13 in this embodiment will be described with reference to FIG.
  • the inverter 13 controls the drive of the communication driver 13a that is a communication interface with other devices such as the controller 9, the inverter circuit 13d having a switching element (for example, IGBT (insulated gate bipolar transistor)), and the inverter circuit 13d.
  • command) to the driver circuit 13c and controls ON / OFF of the switching element in the inverter circuit 13d are provided.
  • the control circuit 13b includes a motor command value output from the controller 9 and rotational position information (resolver signal) output from a position sensor 90 (for example, a magnetic pole position sensor) for detecting the rotational position of the generator 12.
  • a position sensor 90 for example, a magnetic pole position sensor
  • Current information output from the current sensor 91 for detecting the current generated by the generator 12 and temperature information output from the temperature sensor 92 for detecting the temperature of the inverter circuit 13d are input.
  • the control circuit 13b functions as a control unit for controlling the generator 12 based on the input information, and detects whether an abnormality has occurred in the driver circuit 13c, the inverter circuit 13d, the generator 12 or the like.
  • Is functioning as A known method is used as a method of detecting an abnormality in the device such as the driver circuit 13c, the inverter circuit 13d, and the generator 12, and when the control circuit 13b detects these abnormalities, an abnormality detection signal is sent to that effect. Is output to the controller 9 as follows.
  • the target rotational speed (target speed) and target torque value of the generator 12 calculated from the motor command value, and the actual rotational speed of the generator 12 (position sensor 90).
  • target speed the target rotational speed
  • position sensor 90 the actual rotational speed of the generator 12
  • the controller 9 in the present embodiment has substantially the same configuration as that of the controller 9 in the first embodiment shown in FIG. 5, except that an abnormal signal from the inverter 13 is input to the characteristic selection calculation unit 100A.
  • the difference is that the electromagnetic switching valve 85 includes a cutoff signal output unit 105 that outputs a command signal.
  • characteristic selection calculation unit 100A detects the SOC from the voltage value of power storage device 15 detected by voltage detection sensor 17, and the detected SOC is preset. The metering characteristic is selected and output based on the result of comparison with the set value. When an abnormal signal is input from the inverter 13, the metering characteristic shown in FIG. 12 is selected and output.
  • FIG. 12 shows the metering characteristic of the regenerative pipe flow rate Q2 and the metering characteristic of the control valve pipe flow rate Q1, which are not related to the SOC value.
  • the metering characteristic of the regenerative pipeline flow rate Q2 is set so that the meter-out flow rate of the regenerative pipeline 33 becomes zero with respect to all manipulated variables.
  • the metering characteristic of the control valve pipe flow rate Q1 is set to coincide with the metering characteristic showing the total flow rate in FIG. That is, when an abnormal signal from the inverter 13 is input to the characteristic selection calculation unit 100A, the entire amount of return oil from the bottom hydraulic chamber flows to the control valve line 34, and the regenerative line 33 before and after the input of the abnormal signal. And a metering characteristic in which the total flow rate of the return oil flowing through the control valve line 34 remains unchanged is output from the characteristic selection calculation unit 100A.
  • the shutoff signal output unit 105 inputs the regenerative pipe flow rate Q2 calculated by the second flow rate computing unit 101, and shuts off the electromagnetic switching valve 85 when the regenerative pipe flow rate Q2 is less than or equal to zero. This is the part that outputs the command signal.
  • the electromagnetic switching valve 85 to which the shut-off command signal has been input is switched to a port that shuts off the pilot secondary side oil passage 20c, whereby the pilot check valve 10 shown in FIG. 9 is deactivated.
  • the regenerative pipeline 33 is blocked, and the flow rate of the return oil flowing through the regenerative pipeline 33 becomes zero.
  • the flow rate of the return oil flowing on the control valve line 34 side is increased by the decrease in the flow rate of the return oil on the regeneration line 33 side.
  • steps S204 to S206 are the same as the processing contents of steps S2 to S4 in the first embodiment shown in FIG.
  • the start state is, for example, a state in which the operator turns on a key of a hydraulic excavator (not shown).
  • step (S201) it is determined whether or not the boom lowering lever is operated. Specifically, the determination is made based on the presence or absence of a signal of the pilot pressure Pb input from the pressure sensor 16. If it is determined that the boom lowering lever is operated, the process proceeds to step (S202). If NO is determined, the process is repeated until it is determined YES.
  • step (S202) it is determined whether or not an abnormal signal is input from the inverter 13. Specifically, the characteristic selection calculation unit 100A of the controller 9 makes a determination based on the presence or absence of an abnormality detection signal from the inverter 13. If it is determined that an abnormality detection signal has been input, the process proceeds to step (S203). If it is determined NO, the process proceeds to step (S204).
  • step (S203) the distribution between the regenerative pipe flow and the control valve pipe flow is determined so that the regenerative flow is zero and the total flow is the control valve flow.
  • the characteristic selection calculation unit 100A shown in FIG. 11 outputs the metering characteristic at the time of detecting the abnormality of the inverter 13 to the second flow rate calculation unit 101 and the first flow rate calculation unit 102, and outputs a cutoff signal.
  • the unit 105 outputs a cutoff command signal to the electromagnetic switching valve 85.
  • step (S204) to step (S206) is the same as the flow of steps S2 to S4 in the first embodiment shown in FIG.
  • step (S203) similarly to step (S205) and step (S206), the process returns to step (S201), and each step is repeated.
  • the characteristic selection calculation unit 100A causes the second flow rate calculation unit 101 to provide a metering characteristic in which the meter-out flow rate of the regenerative pipe 33 becomes zero with respect to all manipulated variables.
  • the metering characteristic that matches the total flow rate of the control valve pipe flow rate Q1 and the regenerative pipe flow rate Q2 is output to the first flow rate calculation unit 102.
  • the second flow rate calculation unit 101 outputs the regenerative pipe flow rate Q2 to zero and outputs it to the motor command value calculation unit 103 and the cutoff signal output unit 105 regardless of the operation amount of the operation device 4 based on the metering characteristics. Further, the first flow rate calculation unit 102 outputs the control valve pipe flow rate Q1 calculated based on the operation amount of the controller device 4 and the metering characteristic that matches the total flow rate to the electromagnetic proportional valve output value calculation unit 104.
  • the electromagnetic switching valve 85 since the shut-off signal is output from the shut-off signal output unit 105 to the electromagnetic switching valve 85, the electromagnetic switching valve 85 is driven to the shut-off position and shuts off the pilot secondary side oil passage 20c. For this reason, the pilot check valve 10 is kept closed regardless of the operation amount of the operating device 4, and the return oil from the bottom side hydraulic chamber does not flow into the regenerative conduit 33 (hydraulic motor 11).
  • the power regeneration device for a work machine of the present invention when an abnormality occurs in the generator 12 or the inverter 13 that controls the generator 12, the return oil from the bottom hydraulic chamber is returned. Is prevented from flowing into the regenerative pipe 33, so that it is possible to prevent a decrease in the machine life due to excessive heat generation of the device and a decrease in the operability of the work machine due to the occurrence of a mechanical shock. As a result, it is possible to provide a power regeneration device for a work machine that can ensure good operability even when an abnormality occurs in the generator 12 or the inverter 13 that controls the generator 12.
  • FIG. 14 is a block diagram of a controller constituting a fifth embodiment of the power regeneration device for a work machine according to the present invention.
  • the same reference numerals as those shown in FIGS. 1 to 13 are the same or corresponding parts, and the description thereof is omitted.
  • the configuration is almost the same as in the fourth embodiment, but the configuration of the controller 9 is different.
  • the controller 9 in the present embodiment has substantially the same configuration as that of the controller 9 in the second embodiment shown in FIG. 7, except that an abnormal signal from the inverter 13 is input to the correction signal calculation unit 120A.
  • the difference is that the electromagnetic switching valve 85 includes a cutoff signal output unit 105 that outputs a command signal.
  • correction signal calculation unit 120A detects the SOC from the voltage value of power storage device 15 detected by voltage detection sensor 17, and according to the detected SOC. A preset correction signal is calculated and the correction signal is output to the multiplier 113. When an abnormal signal is input from the inverter 13, zero is output to the multiplier 113 as the correction signal.
  • the shut-off signal output unit 105 is a part that inputs the regenerative pipe flow rate Q2 calculated by the multiplier 113 and outputs a shut-off command signal to the electromagnetic switching valve 85 when the regenerative pipe flow rate Q2 is less than or equal to zero.
  • the others are the same as in the fourth embodiment.
  • the correction signal calculation unit 120 ⁇ / b> A outputs zero as a correction signal to the multiplier 113.
  • the correction signal corrects the flow rate Q2 ′ of the return oil flowing through the regenerative pipeline 33 based on the operation amount calculated by the second flow rate calculation unit 111, and sets the zero signal as the regenerative pipeline flow rate Q2 to the motor command value calculation unit. 103, the cutoff signal output unit 105, and the subtracter 114.
  • the subtractor 114 calculates a flow rate difference before and after correction of the flow rate Q 2 ′, which is the output of the second flow rate calculation unit 111 by the multiplier 113, and outputs the output to the adder 115.
  • the adder 115 adds the flow rate Q1 ′ of the return oil flowing on the control valve line 34 side based on the operation amount calculated by the first flow rate calculation unit 112 and the flow rate difference calculated by the subtractor 114, and adds the control valve It outputs to the proportional valve output value calculating part 104 as the pipe flow rate Q1. For this reason, the sum total of the output of the 2nd flow volume calculating part 111 and the 1st flow volume calculating part 112 does not change.
  • the opening command of the total flow rate is output to the electromagnetic proportional valve 8
  • the entire amount of return oil from the bottom side oil chamber flows into the control valve line 34.
  • the total flow rate of the regenerative pipe flow rate Q2 and the control valve pipe flow rate Q1 remains unchanged.
  • the cutoff signal output unit 105 outputs a cutoff signal to the electromagnetic switching valve 85
  • the electromagnetic switching valve 85 is driven to the cutoff position and pilot secondary The side oil passage 20c is shut off. As a result, the return oil from the bottom hydraulic chamber can be prevented from flowing into the regenerative pipeline 33.

Abstract

 作業機械の動力回生装置において、油圧シリンダ3aのボトム側油圧室に接続され油圧シリンダ3aの縮小時にタンク6Aに戻る戻り油が流通する油路31と、油路31に設けられ当該油路31を複数の油路に分流する分岐部32と、分岐部32に接続され、発電機12が接続された油圧モータ11を介して戻り油をタンク6Aに導く回生管路33と、分岐部32に接続され、制御弁2を介して戻り油をタンク6Aに導く制御弁管路34と、操作装置4の操作量を検出する操作量検出手段16と、発電機12によって発電された電力を蓄える蓄電装置15と、蓄電装置15の充電量を検出する充電量検出手段17と、充電量検出手段17からの充電量信号に応じて、回生管路33側を流れる戻り油の流量及び制御弁管路34側を流れる戻り油の流量をそれぞれ演算する流量演算手段9を備える。

Description

作業機械の動力回生装置
 本発明は、作業機械の動力回生装置に係わり、特に油圧アクチュエータからの戻り圧油によりエネルギを回収する作業機械の動力回生装置に関する。
 油圧アクチュエータからの戻り流体により油圧モータを駆動してエネルギを回収すると共に、操作性を向上するためブームからの戻り流量を回生側と制御弁側とに分岐する建設機械が開示されている。(例えば、特許文献1参照)。
特開2007-107616号公報
 上記特許文献のように建設機械が油圧ショベルの場合、例えばダンプへの砂利積み作業などブーム上げ下げ動作を頻繁に行う作業を行うと、回生動力量が増加する。この結果、蓄電装置が過充電になり装置の劣化や破損などを招くおそれが生じる。このような蓄電装置の過充電を防ぐためには、大容量の蓄電装置を配設し余裕を持って使用する方法が考えられる。
 しかし、例えば、ハイブリッド式油圧ショベルの構成部品において、蓄電装置は非常に高価な部品であり、容量にその価格がほぼ比例するため、蓄電装置の容量を小さくすることが望まれている。
 本発明は、上述の事柄に基づいてなされたもので、蓄電装置の容量を増加させることなく、蓄電装置の過充電が防止できる作業機械の動力回生装置を提供するものである。
 上記の目的を達成するために、第1の発明は、エンジンと、前記エンジンによって駆動される油圧ポンプと、前記油圧ポンプからの圧油を油圧シリンダに切換え供給する制御弁と、前記制御弁を制御する操作装置とを備える作業機械の動力回生装置において、前記油圧シリンダのボトム側油圧室に接続され当該油圧シリンダの縮小時にタンクに戻る戻り油が流通する油路と、前記油路に設けられ当該油路を複数の油路に分流する分岐部と、前記分岐部に接続され、インバータにより制御される発電機が接続された油圧モータを介して戻り油をタンクに導く回生管路と、前記分岐部に接続され、前記制御弁を介して戻り油をタンクに導く制御弁管路と、前記操作装置の操作量を検出する操作量検出手段と、前記発電機によって発電された電力を蓄える蓄電装置と、前記蓄電装置の充電量を検出する充電量検出手段と、前記充電量検出手段からの充電量信号に応じて、前記回生管路側を流れる戻り油の流量及び前記制御弁管路側を流れる戻り油の流量をそれぞれ演算する流量演算手段と、前記流量演算手段の演算結果に基づいて前記制御弁管路の流量を制御する第1流量制御手段と、前記流量演算手段の演算結果に基づいて前記回生管路の流量を制御する第2流量制御手段とを備えるものとする。
 また、第2の発明は、エンジンと、前記エンジンによって駆動される油圧ポンプと、前記油圧ポンプからの圧油を油圧シリンダに切換え供給する制御弁と、前記制御弁を制御する操作装置とを備える作業機械の動力回生装置において、前記油圧シリンダのボトム側油圧室に接続され当該油圧シリンダの縮小時にタンクに戻る戻り油が流通する油路と、前記油路に設けられ当該油路を複数の油路に分流する分岐部と、前記分岐部に接続され、発電機が接続された油圧モータを介して戻り油をタンクに導く回生管路と、前記分岐部に接続され、前記制御弁を介して戻り油をタンクに導く制御弁管路と、前記操作装置の操作量を検出する操作量検出手段と、前記発電機によって発電された電力を蓄える蓄電装置と、前記蓄電装置の充電量を検出する充電量検出手段と、前記油圧シリンダが縮小される場合における前記操作装置の操作量に対する前記油圧シリンダからのメータアウト流量の複数の特性が記憶されると共に、前記充電量検出手段からの充電量信号が入力され、前記充電量信号に応じて前記記憶されたメータアウト流量の複数の特性のいずれか1つを出力する特性選択手段と、前記特性選択手段により出力された操作量とメータアウト流量との関係及び前記操作量検出手段で検出される前記操作量に基づいて、前記回生管路側を流れる戻り油の流量及び前記制御弁管路側を流れる戻り油の流量をそれぞれ演算する流量演算手段と、前記流量演算手段の演算結果に基づいて前記制御弁管路の流量を制御する第1流量制御手段と、前記流量演算手段の演算結果に基づいて前記回生管路の流量を制御する第2流量制御手段とを備えるものとする。
 更に、第3の発明は、第1又は第2の発明において、前記流量演算手段は、前記操作装置における下げ操作信号が検出されている間は、前記回生管路側を流れる戻り油の流量と前記制御弁管路側を流れる戻り油の流量との配分特性を固定化させていることを特徴とする。
 また、第4の発明は、第1の発明において、前記流量演算手段は、前記油圧シリンダが縮小される場合における前記操作装置の操作量に対する前記油圧シリンダからのメータアウト流量の特性が記憶されると共に、前記操作量検出手段からの操作量信号が入力され、前記操作量信号に応じて前記記憶されたメータアウト流量の特性から、前記制御弁管路側を流れる戻り油の流量を演算する第1流量演算手段と、前記油圧シリンダが縮小される場合における前記操作装置の操作量に対する前記油圧シリンダからのメータアウト流量の特性が記憶されると共に、前記操作量検出手段からの操作量信号が入力され、前記操作量信号に応じて前記記憶されたメータアウト流量の特性から、前記回生管路側を流れる戻り油の流量を演算する第2流量演算手段と、前記充電量検出手段からの充電量信号が入力され、前記充電量信号に応じて補正特性を演算する補正信号演算手段とを備え、前記補正信号演算手段からの補正信号により、前記第1流量演算手段の出力信号と前記第2流量演算手段の出力信号とが補正されることを特徴とする。
 更に、第5の発明は、第1の発明において、前記制御弁管路側を流れる戻り油の流量を制御する為に、前記制御弁へのパイロット圧を制御する電磁比例弁を設けたことを特徴とする。
 また、第6の発明は、第2の発明において、前記発電機及び前記インバータの異常を検出するための異常検出手段をさらに備え、前記異常検出手段によって、前記発電機又は前記インバータの異常が検出されたとき、前記特性選択手段は、前記回生管路側を流れる戻り油の流量をゼロにする前記メータアウト流量の特性を前記第2流量演算手段へ出力し、前記制御弁管路側を流れる戻り油の流量を前記回生管路側の戻り油の流量の低下分増加させる前記メータアウト流量の特性を前記第1流量演算手段に出力することを特徴とする。
 更に、第7の発明は、第4の発明において、前記発電機及び前記インバータの異常を検出するための異常検出手段をさらに備え、前記異常検出手段によって、前記発電機又は前記インバータの異常が検出されたとき、前記補正信号演算手段は、前記第2流量制御手段における前記操作量に基づく前記回生管路側を流れる戻り油の流量をゼロに補正し、前記第1流量制御手段における前記操作量に基づく前記制御弁管路側を流れる戻り油の流量を前記第2流量制御手段における流量低下分増加するように補正することを特徴とする。
 本発明によれば、蓄電装置の容量を増加させることなく、蓄電装置の過充電を防止することができる。この結果生産性の向上が図れる。
本発明の作業機械の動力回生装置の第1の実施の形態を備えた油圧ショベルを示す斜視図である。 本発明の作業機械の動力回生装置の第1の実施の形態を示す制御システムの概略図である。 本発明の作業機械の動力回生装置の第1の実施の形態におけるコントローラ内の特性選択回路が備える一のメータリング特性図である。 本発明の作業機械の動力回生装置の第1の実施の形態におけるコントローラの処理内容を示すフローチャート図である。 本発明の作業機械の動力回生装置の第1の実施の形態を構成するコントローラのブロック図である。 本発明の作業機械の動力回生装置の第1の実施の形態におけるコントローラ内の特性選択回路を説明する他のメータリング特性図である。 本発明の作業機械の動力回生装置の第1の実施の形態におけるコントローラ内の特性選択回路を説明する更に他のメータリング特性図である。 本発明の作業機械の動力回生装置の第2の実施の形態を構成するコントローラのブロック図である。 本発明の作業機械の動力回生装置の第3の実施の形態におけるコントローラの処理内容を示すフローチャート図である。 本発明の作業機械の動力回生装置の第4の実施の形態を示す制御システムの概略図である。 本発明の作業機械の動力回生装置の第4の実施の形態を構成するインバータ及びその周辺のハードウェア構成の概略図である。 本発明の作業機械の動力回生装置の第4の実施の形態を構成するコントローラのブロック図である。 本発明の作業機械の動力回生装置の第4の実施の形態におけるコントローラ内の特性選択回路を説明するメータリング特性図である。 本発明の作業機械の動力回生装置の第4の実施の形態におけるコントローラの処理内容を示すフローチャート図である。 本発明の作業機械の動力回生装置の第5の実施の形態を構成するコントローラのブロック図である。
 <第1の実施の形態>
 以下、本発明の作業機械の動力回生装置の実施の形態を図面を用いて説明する。図1は本発明の作業機械の動力回生装置の第1の実施の形態を備えた油圧ショベルを示す斜視図、図2は本発明の作業機械の動力回生装置の第1の実施の形態を示す制御システムの概略図である。
 図1において、油圧ショベル1は、ブーム1a、アーム1b及びバケット1cを有する多関節型の作業装置1Aと、上部旋回体1d及び下部走行体1eを有する車体1Bとを備えている。ブーム1aは、上部旋回体1dに回動可能に支持されていて、ブームシリンダ(油圧シリンダ)3aにより駆動される。上部旋回体1dは下部走行体1e上に旋回可能に設けられている。
 アーム1bは、ブーム1aに回動可能に支持されていて、アームシリンダ(油圧シリンダ)3bにより駆動される。バケット1cは、アーム1bに回動可能に支持されていて、バケットシリンダ(油圧シリンダ)3cにより駆動される。ブームシリンダ3a、アームシリンダ3b、及びバケットシリンダ3cの駆動は、上部旋回体1dの運転室(キャブ)内に設置され油圧信号を出力する操作装置4(図2参照)によって制御されている。
 図2に示す実施の形態においては、ブーム1aを操作するブームシリンダ3aに関する制御システムのみを示している。この制御システムは、制御弁2と、操作装置4と、電磁比例弁8と、パイロットチェック弁10と、インバータ13と、チョッパ14と、蓄電装置15と、圧力センサ16と、電圧検出器17とを備えており、制御装置としてコントローラ9を備えている。
 油圧源装置としては、油圧ポンプ6とパイロット圧油を供給するパイロット油ポンプ7とタンク6Aとを備えている。油圧ポンプ6とパイロット油ポンプ7とは同一の駆動軸で連結され、この駆動軸と直列に接続されたエンジン50によって駆動される。
 油圧ポンプ6からの圧油をブームシリンダ3aへ供給する油路30には、油路内の圧油の方向と流量を制御する制御弁2が設けられている。制御弁2は、そのパイロット受圧部2a、2bへのパイロット圧油の供給により、スプール位置を切り換えて、油圧ポンプ6からの圧油を油圧アクチュエータ3aに供給して、ブーム1aを駆動している。
 制御弁2のスプール位置は、操作装置4の操作レバー等の操作によって切換え操作される。操作装置4には、パイロット弁5が設けられていて、操作レバー等の図上a方向の傾動操作(ブーム上げ方向操作)により、パイロット油ポンプ7からの図示しないパイロット一次側油路を介して供給されるパイロット一次圧油を、パイロット二次側油路20aを通して制御弁2のパイロット受圧部2aに供給している。また、パイロット弁5は、操作レバー等の図上b方向の傾動操作(ブーム下げ方向操作)により、パイロット油ポンプ7からの図示しないパイロット一次側油路を介して供給されるパイロット一次圧油を、パイロット二次側油路20cを通してパイロットチェック弁10の受圧部に供給している。
 このパイロット二次側油路20cには、圧力センサ16が取り付けられている。この圧力センサ16は、操作装置4のパイロット弁5の下げ側パイロット圧Pbを検出してその圧力に対応する電気信号に変換する信号変換手段として機能するもので、変換した電気信号をコントローラ9に出力可能に構成されている。
 一方、制御弁2のパイロット受圧部2bには、パイロット二次側油路20bの一端側が接続され、パイロット二次側油路20bの他端側は、2位置2ポート型の電磁比例弁8の出力側ポートに接続されている。電磁比例弁8の入力側ポートは、パイロット油ポンプ7からの圧油を供給するパイロット油路20が接続されている。
 次に、動力回生装置70について説明する。動力回生装置70は、図2に示すように、油路31と、分岐部32と、回生管路33と、制御弁管路34と、圧力センサ16と、コントローラ9と、インバータ13と、チョッパ14と、蓄電装置15と、電圧検出器17とを備えている。
 油路31は、ブームシリンダ3aの縮小時にタンク6Aに戻る油(戻り油)が流通する油路であり、ブームシリンダ3aのボトム側油圧室に接続されている。油路31には当該油路31を複数の油路に分流する分岐部32が設けられている。分岐部32には、回生管路33と、制御弁管路34とが接続されている。
 回生管路33は、パイロットチェック弁10と、このパイロットチェック弁10の下流側に設置され発電機12が接続された油圧モータ11を備えており、当該油圧モータ11を介してボトム側油圧室からの戻り油をタンク6Aに導いている。ブーム下げ時における戻り油を回生管路33に導入して油圧モータ11を回転させると発電機12が回転して回生電力を発生させ、その電力はインバータ13、昇圧のためのチョッパ14を介して蓄電装置15に蓄電される。なお、本実施の形態においては、蓄電装置15としてキャパシタを例に説明する。
 蓄電装置15の充電量であるSOC(State of Charge)の値は、コントローラ9に入力されている。蓄電装置15がキャパシタの場合、SOCの値は、キャパシタの電圧を検出することで確認することができる。本実施の形態においては、蓄電装置15に電圧検出器17を設け、この電圧検出器17が検出した信号をコントローラ9に入力している。
 パイロットチェック弁10は、回生管路33の漏れ防止など、油路31から回生管路33への不用意な圧油流入(ブーム落下)を防止するために設けられていて、通常は回生管路33を遮断している。
 パイロットチェック弁10には、オペレータによってブーム下げ操作が行われたときに操作装置4のパイロット弁5の下げ側パイロット圧Pbが導かれていて、ブーム下げ操作時における操作装置4の操作量が所定量に達したときに出力される操作信号(パイロット圧Pb)によって開くように設定されている。これにより操作装置4の操作量が所定値以上になったときに油圧モータ11に戻り油が供給されるようになっている。
 また、ブーム下げ操作時における油圧モータ11及び発電機12の回転数はインバータ13によって制御されている。このように油圧モータ11の回転数をインバータ13で制御すると油圧モータ11を通過する油の流量を調整できるので、ボトム側油圧室から回生管路33に流れる戻り油の流量を調整することができる。すなわち、本実施の形態におけるインバータ13は、回生管路33の流量を制御する流量制御手段として機能している。
 制御弁管路34は、流量調整手段である制御弁2(スプール型方向切換弁)を介してボトム側油圧室からの戻り油をタンク6Aに導いている。制御弁2における一方のパイロット受圧部2bにはブーム下げ操作時にパイロット油ポンプ7から電磁比例弁8を介して出力される操作信号(油圧信号)が入力されており、また、他方のパイロット受圧部2aにはブーム上げ操作時に操作装置4からのパイロット弁5の上げ側パイロット圧Paが入力されている。制御弁2のスプールは、これら2つのパイロット受圧部2a、2bに入力される操作信号に応じて移動し、油圧ポンプ6からブームシリンダ3aに供給される圧油の方向及び流量を切り換える。
 電磁比例弁8は、ブーム下げ操作時における操作装置4の操作量に応じた操作信号を制御弁2のパイロット受圧部2bに出力するものであり、これによりボトム側油圧室から制御弁2を通過する戻り油の流量(すなわち、制御弁管路34を流れる戻り油の流量)を調整している。すなわち、本実施の形態における電磁比例弁8は、制御弁管路34の流量を制御する流量制御手段として機能している。
 本実施の形態における電磁比例弁8の入力ポートには、パイロット油ポンプ7から出力される圧油が入力されている。一方電磁比例弁8の操作部には、コントローラ9の後述する電磁比例弁出力値演算部104(図5参照)から出力される指令値が入力されている。この指令値に応じて電磁比例弁8のポート位置が調整され、これにより、パイロット油ポンプ7から制御弁2の受圧部2bに供給される圧油の圧力が適宜調整されている。
 コントローラ9は、圧力センサ16から操作装置4のパイロット弁5の下げ側パイロット圧Pbを、電圧検出器17から蓄電装置15のSOCの値をそれぞれ入力し、これらの入力値に応じた演算がなされ、電磁比例弁8及びインバータ13へ制御指令を出力することで、回生管路33と制御弁管路34とを通過する戻り油の流量を制御している。
 次に、操作装置4の操作による各部動作の概要を図2を用いて説明する。
 まず、操作装置4の操作レバーをa方向に傾動操作すると、パイロット弁5から生成されるパイロット圧Paが制御弁2のパイロット受圧部2aに導かれ、制御弁2が切換操作される。これにより、油圧ポンプ6からの圧油がブームシリンダ3aの油路31に導かれ、ブームシリンダ3aは伸長動作する。これに伴い、ブームシリンダ3aのロッド側油室から排出される戻り流量は、油路30、制御弁2を通ってタンク6Aに導かれる。このとき、パイロットチェック弁10には操作圧力が導かれないので、回生管路33は遮断された状態となっており、回生動作は行われない。
 次に、操作装置4の操作レバーをb方向に傾動操作すると、パイロット弁5から生成されるパイロット圧Pbが圧力センサ16で検出されコントローラ9に入力される。コントローラ9では予め決められたテーブルにより、入力されたパイロット圧に応じて電磁比例弁8に制御指令を出力する。この結果、制御弁2のパイロット受圧部2bにパイロット圧が加わり、制御弁2が切換操作される。これにより、油圧ポンプ6からの圧油がブームシリンダ3aの油路30に導かれ、ブームシリンダ3aは縮小動作する。これに伴い、ブームシリンダ3aのボトム側油室から排出される戻り流量は、油路31、制御弁2を通ってタンク6Aに導かれる。
 このとき、パイロット弁5からパイロット圧Pbがパイロット二次側油路20cを介してパイロットチェック弁10に操作圧として導かれるため、パイロットチェック弁10が開動作する。これにより、ブームシリンダ3aのボトム側油室から排出される戻り流量の一部が油圧モータ11に導かれ、油圧モータ11に接続された発電機12が発電動作を行う。発電された電気エネルギは蓄電装置15に蓄電される。
 一方、コントローラ9は、入力されたパイロット圧Pbの信号、及びSOCの信号から状態を判断し、電磁比例弁8への指令値および発電機12の制御装置であるインバータ13への制御指令値を算出・出力する。この結果、ブーム下げ動作においてブームシリンダ3aのボトム側油室から排出される戻り流量が、制御弁2側(制御弁側流量)と回生用の油圧モータ11側(回生側流量)とに導かれるので、操作性を確保しつつ適切な回生動作が行われる。
 ここで、コントローラ9のパイロット圧Pbに基づくブームシリンダ3aのボトム側油室から排出される戻り流量の関係を図3を用いて説明する。図3は、本発明の作業機械の動力回生装置の第1の実施の形態におけるコントローラ内の特性選択回路が備える一のメータリング特性図である。
 図3において、細い実線で示したメータリング線図は、操作装置4のレバー操作量と制御弁管路34側を流れる戻り油の流量(制御弁管路流量Q1)との関係を示したものであり、破線で示したメータリング線図は、操作装置4のレバー操作量と回生管路33側を流れる戻り油の流量(回生管路流量Q2)との関係を示したものである。また、太い実線で示したメータリング線図は、先の2つのメータリング線図を合成したものを示し、制御弁管路流量Q1と回生管路流量Q2の合計流量を示している。
 これらのメータリング線図が示すように、操作装置4のレバー操作量が第1設定値L1未満の場合(以下において「微操作域」と称することがある)には、合計流量は制御弁管路流量Q1と一致している。すなわち、このとき、ボトム側油圧室からの戻り油は全て制御弁管路34に流されるようになっており、回生管路33はパイロットチェック弁10によって閉じられている。
 また、操作装置4のレバー操作量が第2設定値L2(第1設定値よりも大きな値)以上の場合(以下において「フル回生域」と称することがある)には、合計流量は回生管路流量Q2と一致している。すなわち、このとき、ボトム側油圧室からの戻り油は全て回生管路33に流されるようになっており、制御弁管路34は制御弁2によって閉じられている。
 一方、操作量が第1設定値L1以上かつ第2設定値L2未満の場合(以下において「中間領域」と称することがある)には、回生管路33と制御弁管路34の双方に戻り油が流されている。具体的には、操作装置4のレバー操作量が第1設定値L1から第2設定値L2まで増加する間に、制御弁管路流量Q1は第1設定値L1のときの合計流量q1からゼロに向かって漸減しつつ、回生管路流量Q2はゼロから第2設定値L2のときの合計流量q2に向かって漸増するように設定されている。
 次に、本実施の形態において、コントローラ9が実行する蓄電装置15のSOCの状態に応じて回生管路流量と制御弁管路流量とを変える方法について、図4を用いて概要を説明する。図4は本発明の作業機械の動力回生装置の第1の実施の形態におけるコントローラの処理内容を示すフローチャート図である。
 まず、スタートの状態としては、例えば、オペレータが図示しない油圧ショベルのキーをONにした状態とする。
 ステップ(S1)では、ブーム下げレバー操作の有無を判断する。具体的には、圧力センサ16から入力されるパイロット圧Pbの信号の有無で判断する。ブーム下げレバー操作ありと判断されれば、ステップ(S2)へ進み、NOと判断された場合には、YESと判断されるまで繰り返される。
 ステップ(S2)では、SOCの値が設定されている値を超えているかどうかを判断する。具体的には、電圧検出器17から入力される蓄電装置15の電圧値と予め設定された値との大小で判断する。SOCの値が設定されている値を超えていない場合にはNOと判断されてステップ(S3)へ進み、同様に超えている場合にはYESと判断されてステップ(S4)へ進む。
 ステップ(S3)では、予め定められた回生管路流量と制御弁管路流量との配分が保持される。
 ステップ(S4)では、予め定められた回生管路流量と制御弁管路流量との配分が変更される。具体的には、回生管路流量を減少させ、制御弁管路流量を増加させる。SOCが基準値を上回った場合、回生管路流量を減らすので、回生電力による蓄電装置15の過充電を防ぐことができる。
 なお、ステップ(S3)とステップ(S4)からは、ステップ(S1)に戻り、各ステップが繰り返される。
 次に、本実施の形態におけるコントローラ9の制御について図を用いて説明する。図5は本発明の作業機械の動力回生装置の第1の実施の形態を構成するコントローラのブロック図、図6Aは本発明の作業機械の動力回生装置の第1の実施の形態におけるコントローラ内の特性選択回路を説明する他のメータリング特性図、図6Bは本発明の作業機械の動力回生装置の第1の実施の形態におけるコントローラ内の特性選択回路を説明する更に他のメータリング特性図である。図5乃至図6Bにおいて、図1乃至図4に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。
 図5に示すコントローラ9は、特性選択演算部100と、第1流量演算部102及び第2流量演算部101(流量演算手段)と、モータ指令値演算部103と、電磁比例弁出力値演算部104とを備えている。
 特性選択演算部100は、図5に示すように、電圧検出センサ17で検出される蓄電装置15であるキャパシタの電圧値からSOCを検出し、その検出したSOCと予め設定された設定値とを比較した結果により、メータリング特性を選択して出力するものである。
 図6Aは、予め設定された設定値よりSOCが低い場合、すなわち蓄電装置15の充電量が低い場合に選択されるメータリング特性を示している。このメータリング特性は、操作性が必要となる微操作域ではなるべく制御弁に流量を流すことで操作性を確保し、操作性がそれほど必要ではないフル回生域では回生側に多く流量を流し、回生制御を行うことを表している。
 図6Bは、SOCの値に応じて、図6Aで示した回生管路流量と制御弁管路流量との配分が変更されたメータリング特性が選択されることを示している。具体的には、SOCの値が上昇するに従い、制御弁管路流量を増加させて回生管路流量を減少させるように、予め決められた配分パターンのメータリング特性が選択されることを示している。すわなち、SOCの値が低い状態では配分パターンaが選択され、SOCの値が増加するにつれて配分パターンはb、c、dと切り替わって選択されることを示している。このように、SOCの値が増加するにつれて制御弁管路流量を増加させて回生管路流量を減少させるので、ブームシリンダ3aの戻り流量を変えずに回生量を抑えることが可能になる。
 図5に戻り、第1流量演算部102は、特性選択演算部100から出力されたメータリング線図とブーム下げ操作時における操作装置4の操作量に基づいて制御弁管路34側に流れる戻り油の流量Q1を演算する部分であり、第2流量演算部101は、特性選択演算部100から出力されたメータリング線図とブーム下げ操作時における操作装置4の操作量に基づいて回生管路33側を流れる戻り油の流量Q2を演算する部分である。
 第1流量演算部102及び第2流量演算部101には圧力センサ16の検出値が入力されており、第1流量演算部102及び第2流量演算部101は当該検出値に基づいて操作装置4の操作量を算出する。圧力センサ16の検出値に基づいて操作装置4の操作量を算出したら、当該算出した操作量に対応する流量Q1,Q2を特性選択演算部100から出力されたメータリング線図に基づいて算出し、各管路33,34の目標流量として設定する。第1流量演算部102は算出した制御弁管路流量Q1を電磁比例弁出力値演算部104に出力し、第2流量演算部101は算出した回生管路流量Q2をモータ指令値演算部103に出力する。
 モータ指令値演算部103は、第2流量演算部101で演算された回生管路流量Q2を回生管路33の油圧モータ11で吸い込むために必要な油圧モータ11の回転数を演算し、油圧モータ11を当該演算した回転数で回転させるための回転数指令値をインバータ13に出力する部分である。モータ指令値演算部103で演算された回転数指令値を入力したインバータ13は当該回転数指令値に基づいて油圧モータ11及び発電機12を回転させ、これにより回生管路33には第2流量演算部101で演算された流量の戻り油が流れる。
 電磁比例弁出力値演算部104は、第1流量演算部102で演算された制御弁管路流量Q1を制御弁管路34の制御弁2に通過させるために必要な電磁比例弁8の出力値(すなわち、電磁比例弁8から制御弁2のパイロット受圧部2bに出力される油圧信号の圧力(パイロット圧))を演算し、当該演算した出力値を電磁比例弁8から出力させるための指令値を電磁比例弁8に出力する部分である。電磁比例弁出力値演算部104で演算された出力値を入力した電磁比例弁8は当該出力値に基づいて操作信号を制御弁2に出力し、これにより制御弁管路34には第1流量演算部102で演算された流量の戻り油が流れる。
 次に、本実施の形態におけるブーム下げ操作がなされたときの各部動作について説明する。
 ブーム1aの下げ操作が行われると、操作装置4のパイロット弁5のパイロット圧Pbが、圧力センサ16により検出され、コントローラ9に入力されている。このパイロット圧Pbは、操作装置4のレバー操作量として第1流量演算部102及び第2流量演算部101に入力される。
 一方、SOC信号は、蓄電装置15であるキャパシタの電圧値が電圧検出センサ17で常時検出され、コントローラ9に入力されている。このSOC信号は、特性選択演算部100に入力されている。特性選択演算部100では、SOCが低い場合、すなわち蓄電装置15の充電量が低い場合に、なるべく回生側に流量を流し、制御弁側の流量を抑えるようなメータリング特性が選択され、第1流量演算部102及び第2流量演算部101に出力されている。
 ここで、検出しているSOC信号が増加した場合には、特性選択演算部100において、回生管路流量を抑え、制御弁管路流量を増加させるようなメータリング特性が選択されることになる。このことにより、第1流量演算部102及び第2流量演算部101に出力されるメータリング特性が変更される。
 第1流量演算部102及び第2流量演算部101では、操作装置4のレバー操作量に応じた制御弁管路流量Q1と回生管路流量Q2とが出力され、電磁比例弁出力値演算部104、モータ指令値演算部103で、電磁比例弁8及びインバータ13への制御指令が演算され出力される。
 上述した本発明の作業機械の動力回生装置の第1の実施の形態によれば、蓄電装置15の容量を増加させることなく、蓄電装置15の過充電を防止することができる。この結果、生産性の向上が図れる。
 また、上述した本発明の作業機械の動力回生装置の第1の実施の形態によれば、操作装置4の操作量、SOCの状態に応じて回生管路流量を抑えるため、蓄電装置15の過充電を防ぐことが可能となると共に、蓄電装置15の容量を小さくすることができる。また、制御弁管路流量も変更できるので、オペレータが望むブーム下げ速度も確保することができる。
 <第2の実施の形態>
 次に、本発明の作業機械の動力回生装置の第2の実施の形態について図7を用いて説明する。図7は本発明の作業機械の動力回生装置の第2の実施の形態を構成するコントローラのブロック図である。なお、図7において、図1乃至図6Bに示す符号と同符号のものは同一部分又は相当する部分であるので、その部分の説明を省略する。
 上述した第1の実施の形態においては、コントローラ9の特性選択演算部100が、SOC信号に応じて選択したメータリング特性を出力し、このメータリング特性を基に第1流量演算部102及び第2流量演算部101が制御弁管路流量Q1と回生管路流量Q2とを算出し、これら流量を実現させるためにコントローラ9から電磁比例弁8やインバータ13へ制御指令を出力している。このため、ブーム下げの動作中に、例えばSOCの値が変化すると、選択されていたメータリング特性が変化し、操作性の急変を招く可能性がある。本実施の形態においては、SOCの値が変化しても、操作性を急変させない作業機械の動力回生装置を提供する。
 図7に示すコントローラ9は、補正信号演算部120と、第1流量演算部112及び第2流量演算部111(流量演算手段)と、乗算器113と、減算器114と、加算器115と、モータ指令値演算部103と、電磁比例弁出力値演算部104とを備えている。
 第1流量演算部112は、図3に示すメータリング線図の制御弁管路流量特性が予め設定されていて、ブーム下げ操作時における操作装置4の操作量を入力して、制御弁管路34側に流れる戻り油の流量Q1’を演算し、加算器115へ出力する。第2流量演算部111は、図3に示すメータリング線図の回生管路流量特性が予め設定されていて、ブーム下げ操作時における操作装置4の操作量に基づく回生管路33側に流れる戻り油の流量Q2’を演算し、乗算器113と減算器114へ出力する。
 補正信号演算部120は、図7に示すように、電圧検出センサ17で検出される蓄電装置15であるキャパシタの電圧値からSOCを検出し、その検出したSOCに応じて予め設定された補正信号を演算し、乗算器113へ出力する。この補正信号により第2流量演算部111の流量出力Q2’が補正される。補正信号演算部120の出力の最大値は1であり、SOCが低い状態では、1の信号を出力し続け、乗算器113で第2流量演算部111の流量値Q2’に乗算される。つまりSOCが低い状態では、第2流量演算部111の出力信号Q2’は、そのまま、モータ指令値演算部103の入力値Q2となる。
 一方、SOC信号が増加して所定の値以上になると、補正信号演算部120の出力は0を下限値として、1より小さい値を出力する。これにより、第2流量演算部111の出力信号Q2’は乗算器113の出力において、無段階に減少補正されるので、回生流量を抑えることができる。
 減算器114と加算器115とは、回生流量を減少させた分、制御弁側流量を増やす演算を行うものである。減算器114は、乗算器113の出力と第2流量演算部111の出力とを入力し、出力信号を加算器115へ入力している。減算器114は、第2流量演算部111の補正前と補正後の流量差を演算するものであり、加算器115は、減算器114で演算された流量差を第1流量演算部112の出力に加算し、制御弁側流量を増やす演算を行う。これにより、第2流量演算部111と第1流量演算部112の出力の合計は変わらないため、所望するブームシリンダ3aのボトム流量を確保することができる。
 加算器115は算出した制御弁管路流量Q1を電磁比例弁出力値演算部104に出力し、乗算器113は算出した回生管路流量Q2をモータ指令値演算部103に出力する。
 次に、本実施の形態におけるブーム下げ操作がなされたときの各部動作について説明する。
 ブーム1aの下げ操作が行われると、操作装置4のパイロット弁5のパイロット圧Pbが、圧力センサ16により検出され、コントローラ9に入力されている。このパイロット圧Pbは、操作装置4のレバー操作量として第1流量演算部112及び第2流量演算部111に入力され、レバー操作量に応じた流量信号が第1流量演算部112及び第2流量演算部111から出力される。
 一方、SOC信号は、補正信号演算部120に入力され、SOCの状態により補正信号演算部120から回生側流量である第2流量演算部111の流量値Q2’を補正する信号が出力されている。補正信号演算部120の出力信号は、SOCの状態に応じて連続的に変化するため、第2流量演算部111の出力補正値Q2も連続的に変化する。
 減算器114及び加算器115では、回生側流量の減少分が制御弁側流量に加算される。これにより、第2流量演算部111と第1流量演算部112の出力の合計は変化しないため、所望するブームシリンダ3aのボトム流量を確保することができる。
 第2流量演算部111と第1流量演算部112の出力値は、上述したように補正され、制御弁管路流量Q1と回生管路流量Q2とが生成される。それぞれの目標流量が入力される電磁比例弁出力値演算部104、モータ指令値演算部103で、電磁比例弁8及びインバータ13への制御指令が演算され出力される。
 上述した本発明の作業機械の動力回生装置の第2の実施の形態によれば、蓄電装置15の容量を増加させることなく、蓄電装置15の過充電を防止することができる。この結果、生産性の向上が図れる。
 また、上述した本発明の作業機械の動力回生装置の第2の実施の形態によれば、SOCの状態に応じて回生側流量を連続的に変化させることが可能であるため、操作性の急変を防ぎ、オペレータの望む良好な動作を確保することができる。
 <第3の実施の形態>
 次に、本発明の作業機械の動力回生装置の第3の実施の形態について図8を用いて説明する。図8は本発明の作業機械の動力回生装置の第3の実施の形態におけるコントローラの処理内容を示すフローチャート図である。なお、図8において、図1乃至図7に示す符号と同符号のものは同一部分又は相当する部分であるので、その部分の説明を省略する。
 まず、スタートの状態としては、例えば、オペレータが図示しない油圧ショベルのキーをONにした状態とする。
 ステップ(S101)では、ブーム下げレバー操作の有無を判断する。具体的には、圧力センサ16から入力されるパイロット圧Pbの信号の有無で判断する。ブーム下げレバー操作なしと判断されれば、ステップ(S102)へ進み、YESと判断された場合には、ステップ(S105)へ進む。
 ステップ(S102)では、SOCの値が設定されている値を超えているかどうかを判断する。具体的には、電圧検出器17から入力される蓄電装置15の電圧値と予め設定された値との大小で判断する。SOCの値が設定されている値を超えていない場合にはNOと判断されてステップ(S103)へ進み、同様に超えている場合にはYESと判断されてステップ(S104)へ進む。
 ステップ(S103)では、予め定められた回生管路流量と制御弁管路流量との設定を変えずに配分パターンが保持される。この配分パターンは、例えば、図6Bの配分パターンaの場合であり、回生側流量をなるべく増加させることを示している。
 ステップ(S104)では、予め定められた回生管路流量と制御弁管路流量との配分が変更される。具体的には、回生管路流量を減少させ、制御弁管路流量を増加させるように設定し、配分パターンを保持する。この配分パターンは、例えば、図6Bの配分パターンb,c,dの場合であり、SOCが基準値を上回った場合、回生管路流量を減らすので、回生電力による蓄電装置15の過充電を防ぐことができる。
 ステップ(S105)では、ステップ(S101)でブーム下げレバー操作があった場合であり、この場合、ステップ(S103)またはステップ(S104)で設定された配分パターンを保持する。
 なお、ステップ(S103)とステップ(S104)からは、ステップ(S101)に戻り、各ステップが繰り返される。
 上述した本発明の作業機械の動力回生装置の第3の実施の形態によれば、蓄電装置15の容量を増加させることなく、蓄電装置15の過充電を防止することができる。
 また、上述した本発明の作業機械の動力回生装置の第3の実施の形態によれば、レバー操作信号が入力されている間、すなわちブーム下げ動作中には流量の配分を変えないため、操作性の急変を防ぎ、オペレータの望む良好な動作を確保することができる。
 <第4の実施の形態>
 次に、本発明の作業機械の動力回生装置の第4の実施の形態について図9乃至図13を用いて説明する。図9は本発明の作業機械の動力回生装置の第4の実施の形態を示す制御システムの概略図、図10は本発明の作業機械の動力回生装置の第4の実施の形態を構成するインバータ及びその周辺のハードウェア構成の概略図、図11は本発明の作業機械の動力回生装置の第4の実施の形態を構成するコントローラのブロック図、図12は本発明の作業機械の動力回生装置の第4の実施の形態におけるコントローラ内の特性選択回路を説明するメータリング特性図、図13は本発明の作業機械の動力回生装置の第4の実施の形態におけるコントローラの処理内容を示すフローチャート図である。なお、図9乃至図13において、図1乃至図8に示す符号と同符号のものは同一部分又は相当する部分であるので、その部分の説明を省略する。
 上述した第1の実施の形態においては、発電機12又はこれを制御するインバータ13に異常がある場合に、回生管路33に戻り油を流入させると、当該機器が過度に発熱して、機械寿命を低下させたり、機械的ショックが生じて作業機械の操作性を低下させる可能性がある。本実施の形態においては、上述した第1の実施の形態と同様に蓄電装置15の容量を増加させることなく、蓄電装置15の過充電を防止することができると共に、発電機12又はこれを制御するインバータ13の異常が生じた場合にも良好な操作性を確保できる作業機械の動力回生装置を提供する。
 図9に示す本発明の作業機械の動力回生装置の第4の実施の形態を示す制御システムは、大略第1の実施の形態と同様に構成されるが、以下の形態が異なる。まず、パイロット二次側油路20cに、該油路の連通/遮断を切換る2ポート2位置型の電磁切換弁85を設け、操作装置4のパイロット弁5が生成するパイロット圧油のパイロットチェック弁10への供給をコントローラ9の指令により制御可能としている。具体的には、電磁切換弁85の操作部にコントローラ9からの指令信号が入力されたときに、ポートが切換えられて、パイロット二次側油路20cが遮断され、指令信号が入力されない通常時は、パイロット二次側油路20cを連通するポートが選択されている。
 また、インバータ13に、後述する発電機12及びインバータ13の異常を検出可能とした異常検出部を設け、この異常検出部が検出した異常信号をコントローラ9に出力している。
 本実施の形態におけるインバータ13について、図10を用いて説明する。インバータ13は、コントローラ9等の他の機器との通信インターフェースである通信ドライバ13aと、スイッチング素子(例えば、IGBT(絶縁ゲート型バイポーラトランジスタ))を有するインバータ回路13dと、インバータ回路13dの駆動制御を行うドライバ回路13cと、ドライバ回路13cに制御信号(トルク指令)を出力してインバータ回路13dにおけるスイッチング素子のオン・オフを制御する制御回路13bとを備えている。
 制御回路13bには、コントローラ9から出力されるモータ指令値と、発電機12の回転位置を検出するための位置センサ90(例えば、磁極位置センサ)から出力される回転位置情報(レゾルバ信号)と、発電機12が発生する電流を検出するための電流センサ91から出力される電流情報と、インバータ回路13dの温度を検出するための温度センサ92から出力される温度情報が入力されている。制御回路13bは、これら入力情報に基づいて発電機12を制御する制御部として機能するとともに、ドライバ回路13c、インバータ回路13d及び発電機12等に異常が発生したか否かを検出する異常検出部として機能している。ドライバ回路13c、インバータ回路13d及び発電機12等の機器の異常を検出する方法としては公知のものを利用するものとし、制御回路13bがこれらの異常を検出した場合にはその旨を異常検出信号としてコントローラ9に出力する。
 制御回路13bによる公知の異常検出方法としては、例えば、モータ指令値から算出される発電機12の目標回転数(目標速度)及び目標トルク値と、発電機12の実際の回転数(位置センサ90の出力から算出可能)及び実際のトルク値(電流センサ91の出力から算出可能)との偏差が所定の値を超えた場合に異常が発生したと判定するものや、温度センサ92からの出力が所定の値以上に達した場合に異常が発生したと判定するものがある。なお、油圧モータ11に生じた異常が発電機12又はインバータ13の挙動に影響を与える場合には、上記構成により油圧モータ11の異常を検出することもできる。
 次に、本実施の形態におけるコントローラ9について、図11を用いて説明する。本実施の形態におけるコントローラ9は、図5に示す第1の実施の形態のコントローラ9と大略同様の構成であるが、特性選択演算部100Aにインバータ13からの異常信号が入力されることと、電磁切換弁85に指令信号を出力する遮断信号出力部105を備えたことが異なる。
 特性選択演算部100Aは、第1の実施の形態における特性選択部100と同様に、電圧検出センサ17で検出される蓄電装置15の電圧値からSOCを検出し、その検出したSOCと予め設定された設定値とを比較した結果により、メータリング特性を選択して出力するが、インバータ13からの異常信号が入力された時には、図12に示すメータリング特性を選択して出力する。
 図12は、SOCの値に関係のない回生管路流量Q2のメータリング特性と制御弁管路流量Q1のメータリング特性とを示している。回生管路流量Q2のメータリング特性は、回生管路33のメータアウト流量がすべての操作量に対してゼロになるように設定されている。また、制御弁管路流量Q1のメータリング特性は、図3の合計流量を示したメータリング特性と一致するように設定されている。つまり、インバータ13からの異常信号が特性選択演算部100Aに入力されると、ボトム側油圧室からの戻り油の全量が制御弁管路34に流れ、異常信号の入力の前後で回生管路33と制御弁管路34とを流れる戻り油の合計流量が不変となる、メータリング特性が特性選択演算部100Aから出力される。
 図11に戻り、遮断信号出力部105は、第2流量演算部101で演算された回生管路流量Q2を入力し、この回生管路流量Q2がゼロ以下のときに、電磁切換弁85に遮断指令信号を出力する部分である。遮断指令信号を入力した電磁切換弁85は、パイロット二次側油路20cを遮断するポートに切換えられ、これにより、図9に示すパイロットチェック弁10は不動作となる。この結果、回生管路33は遮断された状態となり、回生管路33側を流れる戻り油の流量はゼロになる。一方、制御弁管路34側を流れる戻り油の流量は、回生管路33側の戻り油の流量の低下分が増加されることになる。
 次に、本実施の形態におけるコントローラ9が実行する回生管路流量と制御弁管路流量とを変える処理内容について、図13を用いて概要を説明する。本実施の形態におけるコントローラ9の処理内容のうちステップS204~S206は、図4に示す第1の実施の形態におけるステップS2~S4の処理内容と同じなので、当該部分の説明は省略する。図13において、スタートの状態としては、例えば、オペレータが図示しない油圧ショベルのキーをONにした状態とする。
 ステップ(S201)では、ブーム下げレバー操作の有無を判断する。具体的には、圧力センサ16から入力されるパイロット圧Pbの信号の有無で判断する。ブーム下げレバー操作ありと判断されれば、ステップ(S202)へ進み、NOと判断された場合には、YESと判断されるまで繰り返される。
 ステップ(S202)では、インバータ13から異常信号が入力されているか否かを判断する。具体的には、コントローラ9の特性選択演算部100Aがインバータ13からの異常検出信号の有無で判断する。異常検出信号が入力されていると判断されれば、ステップ(S203)へ進み、NOと判断された場合には、ステップ(S204)へ進む。
 ステップ(S203)では、回生側流量をゼロとして、全流量を制御弁側流量とするように、回生管路流量と制御弁管路流量との配分が決定される。具合的には、図11に示す特性選択演算部100Aが、上述したインバータ13異常検出時のメータリング特性を第2流量演算部101と第1流量演算部102とへ出力すると共に、遮断信号出力部105が、電磁切換弁85へ遮断指令信号を出力する。
 ステップ(S204)からステップ(S206)でのフローは、図4に示す第1の実施の形態におけるステップS2~S4のフローと同じである。
 ステップ(S203)からは、ステップ(S205),ステップ(S206)と同様に、ステップ(S201)に戻り、各ステップが繰り返される。
 上述したステップ(S203)について図11を用いて詳細に説明する。 
 インバータ13からの異常信号が入力されると、特性選択演算部100Aは、第2流量演算部101に、回生管路33のメータアウト流量がすべての操作量に対してゼロになるメータリング特性を出力し、第1流量演算部102に、制御弁管路流量Q1と回生管路流量Q2との合計流量と一致するメータリング特性を出力する。
 第2流量演算部101は、メータリング特性に基づいて、操作装置4の操作量に関わらず、回生管路流量Q2をゼロとして、モータ指令値演算部103及び遮断信号出力部105に出力する。また、第1流量演算部102は、操作装置4の操作量と合計流量に一致するメータリング特性とに基づいて演算した制御弁管路流量Q1を電磁比例弁出力値演算部104に出力する。
 このとき、遮断信号出力部105から電磁切換弁85に遮断信号が出力されるので、電磁切換弁85は遮断位置に駆動してパイロット二次側油路20cを遮断する。このため、操作装置4の操作量に関わらずパイロットチェック弁10は閉じたまま保持され、ボトム側油圧室からの戻り油が回生管路33(油圧モータ11)に流れることはない。
 また、電磁比例弁8には合計流量の開度指令が出力されるため、ボトム側油室からの戻り油の全量が制御弁管路34に流入することになる。このため、インバータ13の異常検出の前後で、回生管路流量Q2と制御弁管路流量Q1との合計流量は不変となる。
 このようにインバータ13の異常検出信号が出力されている場合には、回生管路33にボトム側油圧室からの戻り油が流入することを防止することができる。
 上述した本発明の作業機械の動力回生装置の第4の実施の形態によれば、蓄電装置15の容量を増加させることなく、蓄電装置15の過充電を防止することができる。
 また、上述した本発明の作業機械の動力回生装置の第4の実施の形態によれば、発電機12又はこれを制御するインバータ13に異常が発生した場合に、ボトム側油圧室からの戻り油が回生管路33に流入することを防止するので、当該機器の過度の発熱による機械寿命の低下や、機械的ショックの発生による作業機械の操作性の低下を防止できる。この結果、発電機12又はこれを制御するインバータ13の異常が生じた場合にも良好な操作性を確保できる作業機械の動力回生装置を提供することができる。
 <第5の実施の形態>
 次に、本発明の作業機械の動力回生装置の第5の実施の形態について図14を用いて説明する。図14は本発明の作業機械の動力回生装置の第5の実施の形態を構成するコントローラのブロック図である。なお、図14において、図1乃至図13に示す符号と同符号のものは同一部分又は相当する部分であるので、その部分の説明を省略する。
 本実施の形態においては、大略第4の実施の形態と同様に構成されるが、コントローラ9の構成が異なる。本実施の形態におけるコントローラ9は、図7に示す第2の実施の形態のコントローラ9と大略同様の構成であるが、補正信号演算部120Aにインバータ13からの異常信号が入力されることと、電磁切換弁85に指令信号を出力する遮断信号出力部105を備えたことが異なる。
 補正信号演算部120Aは、第2の実施の形態における補正信号演算部120と同様に、電圧検出センサ17で検出される蓄電装置15の電圧値からSOCを検出し、その検出したSOCに応じて予め設定された補正信号を演算し、その補正信号を乗算器113へ出力するが、インバータ13からの異常信号が入力された時には、補正信号としてゼロを乗算器113へ出力する。
 遮断信号出力部105は、乗算器113で演算された回生管路流量Q2を入力し、この回生管路流量Q2がゼロ以下のときに、電磁切換弁85に遮断指令信号を出力する部分であり、その他は第4の実施の形態と同様である。
 次に、本実施の形態においてインバータ13から異常信号がコントローラ9に入力されたときの動作を図14を用いて説明する。 
 インバータ13からの異常信号が入力されると、補正信号演算部120Aは、乗算器113へ補正信号としてゼロを出力する。この補正信号により、第2流量演算部111で演算された操作量に基づく回生管路33側を流れる戻り油の流量Q2’が補正され、ゼロ信号を回生管路流量Q2としてモータ指令値演算部103と遮断信号出力部105と減算器114とに出力する。
 減算器114は、乗算器113による第2流量演算部111の出力である流量Q2’の補正の前後の流量差を演算するものであって、その出力を加算器115へ出力している。加算器115は、第1流量演算部112で演算された操作量に基づく制御弁管路34側を流れる戻り油の流量Q1’と減算器114で演算された流量差とを加算し、制御弁管路流量Q1として電磁比例弁出力値演算部104に出力する。このため、第2流量演算部111と第1流量演算部112との出力の合計は変わらない。
 つまり、電磁比例弁8には合計流量の開度指令が出力されるため、ボトム側油室からの戻り油の全量が制御弁管路34に流入することになる。このため、インバータ13の異常検出の前後で、回生管路流量Q2と制御弁管路流量Q1との合計流量は不変となる。また、インバータ13の異常検出信号が出力されている場合には、遮断信号出力部105から電磁切換弁85に遮断信号が出力されるので、電磁切換弁85は遮断位置に駆動してパイロット二次側油路20cを遮断する。このことにより、回生管路33にボトム側油圧室からの戻り油が流入することを防止することができる。
 上述した本発明の作業機械の動力回生装置の第5の実施の形態によれば、上述した第4の実施の形態と同様の効果を得ることができる。
  1     油圧ショベル
  1a    ブーム
  2     制御弁
  2a    パイロット受圧部
  2b    パイロット受圧部
  3a    ブームシリンダ
  4     操作装置
  6     油圧ポンプ
  6A    タンク
  7     パイロット油ポンプ
  8     電磁比例弁
  9     コントローラ(流量演算手段)
 10     パイロットチェック弁
 11     油圧モータ
 12     発電機
 13     インバータ
 15     蓄電装置
 16     圧力センサ(操作量検出手段)
 17     電圧検出器(充電量検出手段)
 31     油路
 32     分岐部
 33     回生管路
 34     制御弁管路
 50     エンジン
100     特性選択演算部
101     第2流量演算部
102     第1流量演算部
103     モータ指令値演算部
104     電磁比例弁出力値演算部
105     遮断信号出力部
111     第2流量演算部
112     第1流量演算部
120     補正信号演算部

Claims (7)

  1.  エンジン(50)と、前記エンジン(50)によって駆動される油圧ポンプ(6)と、前記油圧ポンプ(6)からの圧油を油圧シリンダ(3a)に切換え供給する制御弁(2)と、前記制御弁(2)を制御する操作装置(4)とを備える作業機械の動力回生装置において、
     前記油圧シリンダ(3a)のボトム側油圧室に接続され当該油圧シリンダ(3a)の縮小時にタンク(6A)に戻る戻り油が流通する油路(31)と、
     前記油路(31)に設けられ当該油路(31)を複数の油路に分流する分岐部(32)と、
     前記分岐部(32)に接続され、インバータ(13)により制御される発電機(12)が接続された油圧モータ(11)を介して戻り油をタンク(6A)に導く回生管路(33)と、
     前記分岐部(32)に接続され、前記制御弁(2)を介して戻り油をタンク(6A)に導く制御弁管路(34)と、
     前記操作装置(4)の操作量を検出する操作量検出手段(16)と、
     前記発電機(12)によって発電された電力を蓄える蓄電装置(15)と、
     前記蓄電装置(15)の充電量を検出する充電量検出手段(17)と、
     前記充電量検出手段(17)からの充電量信号に応じて、前記回生管路(33)側を流れる戻り油の流量及び前記制御弁管路(34)側を流れる戻り油の流量をそれぞれ演算する流量演算手段(9)と、
     前記流量演算手段(9)の演算結果に基づいて前記制御弁管路(34)の流量を制御する第1流量制御手段(8)と、
     前記流量演算手段(9)の演算結果に基づいて前記回生管路(33)の流量を制御する第2流量制御手段(13)とを備える
     ことを特徴とする作業機械の動力回生装置。
  2.  請求項1に記載の作業機械の動力回生装置において、
     前記流量演算手段(9)は、前記油圧シリンダ(3a)が縮小される場合における前記操作装置(4)の操作量に対する前記油圧シリンダ(3a)からのメータアウト流量の複数の特性が記憶されると共に、前記充電量検出手段(17)からの充電量信号が入力され、前記充電量信号に応じて前記記憶されたメータアウト流量の複数の特性のいずれか1つを出力する特性選択手段(100)と、
     前記特性選択手段(100)により出力された前記操作量とメータアウト流量との関係及び前記操作量検出手段(16)で検出される前記操作量に基づいて、前記制御弁管路(34)側を流れる戻り油の流量を演算し、前記第1流量制御手段(8)に指令信号を出力する第1流量演算手段(102)と、
     前記特性選択手段(100)により出力された前記操作量とメータアウト流量との関係及び前記操作量検出手段(16)で検出される前記操作量に基づいて、前記回生管路(33)側を流れる戻り油の流量を演算し、前記第2流量制御手段(13)に指令信号を出力する第2流量演算手段(101)とを備えた、
     ことを特徴とする作業機械の動力回生装置。
  3.  請求項1又は2に記載の作業機械の動力回生装置において、
     前記流量演算手段(9)は、前記操作装置(4)における下げ操作信号が検出されている間は、前記回生管路(33)側を流れる戻り油の流量と前記制御弁管路(34)側を流れる戻り油の流量との配分特性を固定化させている
     ことを特徴とする作業機械の動力回生装置。
  4.  請求項1に記載の作業機械の動力回生装置において、
     前記流量演算手段(9)は、前記油圧シリンダ(3a)が縮小される場合における前記操作装置(4)の操作量に対する前記油圧シリンダ(3a)からのメータアウト流量の特性が記憶されると共に、前記操作量検出手段(16)からの操作量信号が入力され、前記操作量信号に応じて前記記憶されたメータアウト流量の特性から、前記制御弁管路(34)側を流れる戻り油の流量を演算する第1流量演算手段(112)と、
     前記油圧シリンダ(3a)が縮小される場合における前記操作装置(4)の操作量に対する前記油圧シリンダ(3a)からのメータアウト流量の特性が記憶されると共に、前記操作量検出手段(16)からの操作量信号が入力され、前記操作量信号に応じて前記記憶されたメータアウト流量の特性から、前記回生管路(33)側を流れる戻り油の流量を演算する第2流量演算手段(111)と、
     前記充電量検出手段(17)からの充電量信号が入力され、前記充電量信号に応じて補正特性を演算する補正信号演算手段(120)とを備え、
     前記補正信号演算手段(120)からの補正信号により、前記第1流量演算手段(112)の出力信号と前記第2流量演算手段(111)の出力信号とが補正される
     ことを特徴とする作業機械の動力回生装置。
  5.  請求項1に記載の作業機械の動力回生装置において、
     前記制御弁管路(34)側を流れる戻り油の流量を制御する為に、前記制御弁(2)へのパイロット圧を制御する電磁比例弁(8)を設けた
     ことを特徴とする作業機械の動力回生装置。
  6.  請求項2に記載の作業機械の動力回生装置において、
     前記発電機(12)及び前記インバータ(13)の異常を検出するための異常検出手段をさらに備え、
     前記異常検出手段によって、前記発電機(12)又は前記インバータ(13)の異常が検出されたとき、前記特性選択手段(100)は、前記回生管路(33)側を流れる戻り油の流量をゼロにする前記メータアウト流量の特性を前記第2流量演算手段(101)へ出力し、前記制御弁管路(34)側を流れる戻り油の流量を前記回生管路(33)側の戻り油の流量の低下分増加させる前記メータアウト流量の特性を前記第1流量演算手段(102)に出力する
     ことを特徴とする作業機械の動力回生装置。
  7.  請求項4に記載の作業機械の動力回生装置において、
     前記発電機(12)及び前記インバータ(13)の異常を検出するための異常検出手段をさらに備え、
     前記異常検出手段によって、前記発電機(12)又は前記インバータ(13)の異常が検出されたとき、前記補正信号演算手段(120)は、前記第2流量制御手段(13)における前記操作量に基づく前記回生管路(33)側を流れる戻り油の流量をゼロに補正し、前記第1流量制御手段(8)における前記操作量に基づく前記制御弁管路(34)側を流れる戻り油の流量を前記第2流量制御手段(13)における流量低下分増加するように補正する
     ことを特徴とする作業機械の動力回生装置。
PCT/JP2012/065151 2011-06-15 2012-06-13 作業機械の動力回生装置 WO2012173149A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137032724A KR101928597B1 (ko) 2011-06-15 2012-06-13 작업 기계의 동력 회생 장치
EP12800776.2A EP2722530B1 (en) 2011-06-15 2012-06-13 Power regeneration device for work machine
US14/117,961 US9284718B2 (en) 2011-06-15 2012-06-13 Power regeneration device for operating machine
CN201280029162.7A CN103597220B (zh) 2011-06-15 2012-06-13 作业机械的动力再生装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-133610 2011-06-15
JP2011133610A JP5515087B2 (ja) 2011-06-15 2011-06-15 作業機械の動力回生装置
JP2011-201176 2011-09-14
JP2011201176A JP5589234B2 (ja) 2011-09-14 2011-09-14 作業機械の動力回生装置

Publications (1)

Publication Number Publication Date
WO2012173149A1 true WO2012173149A1 (ja) 2012-12-20

Family

ID=47357134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065151 WO2012173149A1 (ja) 2011-06-15 2012-06-13 作業機械の動力回生装置

Country Status (5)

Country Link
US (1) US9284718B2 (ja)
EP (1) EP2722530B1 (ja)
KR (1) KR101928597B1 (ja)
CN (1) CN103597220B (ja)
WO (1) WO2012173149A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104919190A (zh) * 2013-01-17 2015-09-16 日立建机株式会社 作业机械的液压油能量回收装置
CN105074232A (zh) * 2013-05-24 2015-11-18 日立建机株式会社 工程机械
CN105492782A (zh) * 2014-01-28 2016-04-13 日立建机株式会社 作业机械的压力油能量回收装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104024659B (zh) * 2011-12-28 2016-04-27 日立建机株式会社 作业机械的动力再生装置以及作业机械
JP5928065B2 (ja) * 2012-03-27 2016-06-01 コベルコ建機株式会社 制御装置及びこれを備えた建設機械
JP6019956B2 (ja) * 2012-09-06 2016-11-02 コベルコ建機株式会社 ハイブリッド建設機械の動力制御装置
JP5857004B2 (ja) * 2013-07-24 2016-02-10 日立建機株式会社 建設機械のエネルギ回生システム
US10174484B2 (en) * 2013-12-26 2019-01-08 Doosan Infracore Co., Ltd. Control circuit and control method for boom energy regeneration
KR101847760B1 (ko) * 2014-04-03 2018-04-10 히다찌 겐끼 가부시키가이샤 건설 기계
US9598841B2 (en) 2014-06-04 2017-03-21 Komatsu Ltd. Construction machine control system, construction machine, and construction machine control method
WO2015025988A1 (ja) * 2014-09-10 2015-02-26 株式会社小松製作所 作業車両
JP6247617B2 (ja) * 2014-09-12 2017-12-13 日立建機株式会社 建設機械
JP6291394B2 (ja) * 2014-10-02 2018-03-14 日立建機株式会社 作業機械の油圧駆動システム
JP6317656B2 (ja) * 2014-10-02 2018-04-25 日立建機株式会社 作業機械の油圧駆動システム
JP6356634B2 (ja) * 2015-06-02 2018-07-11 日立建機株式会社 作業機械の油圧駆動装置
JP2018044658A (ja) * 2016-09-16 2018-03-22 Kyb株式会社 ハイブリッド建設機械の制御システム及び制御方法
DE102018101924A1 (de) 2018-01-29 2019-08-01 Liebherr-Hydraulikbagger Gmbh Arbeitsmaschine mit Hydraulik zur Energierekuperation
DE102018104331A1 (de) * 2018-02-26 2019-08-29 Liebherr-Werk Nenzing Gmbh Verfahren zur Leistungsverwaltung bei der Pfahlgründung mit einer Trägermaschine und einem daran montierten Anbaugerät
US10906551B2 (en) * 2018-07-05 2021-02-02 Kubota Corporation Traveling work vehicle equipped with work apparatus
JP6867551B2 (ja) * 2018-09-05 2021-04-28 株式会社日立建機ティエラ 電動式油圧作業機械の油圧駆動装置
US11001989B1 (en) * 2020-03-30 2021-05-11 Caterpillar Inc. Electrical control of a hydraulic system
CN113356755B (zh) * 2021-06-03 2024-04-26 广东三水合肥工业大学研究院 一种液压冲击装置及其控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115428A (en) * 1980-02-15 1981-09-10 Hitachi Constr Mach Co Ltd Hydraulic controller
JP2009287344A (ja) * 2008-05-30 2009-12-10 Kayaba Ind Co Ltd ハイブリッド建設機械の制御装置
JP2010261539A (ja) * 2009-05-08 2010-11-18 Kayaba Ind Co Ltd ハイブリッド建設機械
JP2011127569A (ja) * 2009-12-21 2011-06-30 Kyb Co Ltd アシスト回生装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2927741A1 (de) 1979-07-10 1981-01-29 Barmag Barmer Maschf Vorrichtung zum benetzen eines laufenden fadens mit einer fluessigkeit in textilmaschinen
JP4179465B2 (ja) * 2002-07-31 2008-11-12 株式会社小松製作所 建設機械
JP4879551B2 (ja) 2005-10-13 2012-02-22 住友建機株式会社 作業機械のブームエネルギの回生装置及びエネルギの回生装置
JP4762022B2 (ja) * 2006-03-27 2011-08-31 カヤバ工業株式会社 エネルギー変換装置
JP4871843B2 (ja) * 2007-11-19 2012-02-08 住友建機株式会社 建設機械のブーム駆動回路
JP5188854B2 (ja) * 2008-03-26 2013-04-24 住友重機械工業株式会社 ハイブリッド式建設機械
CN201288722Y (zh) * 2008-10-31 2009-08-12 浙江大学 一种混合动力工程机械执行元件的能量回收系统
JP5401992B2 (ja) * 2009-01-06 2014-01-29 コベルコ建機株式会社 ハイブリッド作業機械の動力源装置
JP5208067B2 (ja) * 2009-07-10 2013-06-12 カヤバ工業株式会社 ハイブリッド建設機械の制御装置
JP5511425B2 (ja) * 2010-02-12 2014-06-04 カヤバ工業株式会社 ハイブリッド建設機械の制御装置
JP5350292B2 (ja) * 2010-02-23 2013-11-27 カヤバ工業株式会社 ハイブリッド建設機械の制御装置
JP5353849B2 (ja) * 2010-09-24 2013-11-27 コベルコ建機株式会社 建設機械

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115428A (en) * 1980-02-15 1981-09-10 Hitachi Constr Mach Co Ltd Hydraulic controller
JP2009287344A (ja) * 2008-05-30 2009-12-10 Kayaba Ind Co Ltd ハイブリッド建設機械の制御装置
JP2010261539A (ja) * 2009-05-08 2010-11-18 Kayaba Ind Co Ltd ハイブリッド建設機械
JP2011127569A (ja) * 2009-12-21 2011-06-30 Kyb Co Ltd アシスト回生装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2722530A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104919190A (zh) * 2013-01-17 2015-09-16 日立建机株式会社 作业机械的液压油能量回收装置
CN104919190B (zh) * 2013-01-17 2017-03-15 日立建机株式会社 作业机械的液压油能量回收装置
CN105074232A (zh) * 2013-05-24 2015-11-18 日立建机株式会社 工程机械
CN105492782A (zh) * 2014-01-28 2016-04-13 日立建机株式会社 作业机械的压力油能量回收装置
CN105492782B (zh) * 2014-01-28 2016-12-28 日立建机株式会社 作业机械的压力油能量回收装置
US10161108B2 (en) 2014-01-28 2018-12-25 Hitachi Construction Machinery Co., Ltd. Hydraulic fluid energy recovery system for work

Also Published As

Publication number Publication date
CN103597220B (zh) 2016-02-17
EP2722530A1 (en) 2014-04-23
US20140090367A1 (en) 2014-04-03
KR20140034213A (ko) 2014-03-19
US9284718B2 (en) 2016-03-15
EP2722530B1 (en) 2017-04-05
EP2722530A4 (en) 2015-06-17
KR101928597B1 (ko) 2018-12-12
CN103597220A (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
WO2012173149A1 (ja) 作業機械の動力回生装置
KR101815411B1 (ko) 작업 기계의 압유 에너지 회생 장치
KR101818285B1 (ko) 건설 기계의 제어 장치
JP5681732B2 (ja) 作業機械の動力回生装置
KR101498345B1 (ko) 작업 기계의 구동 제어 방법
KR101992510B1 (ko) 건설 기계
KR101818284B1 (ko) 선회체를 갖는 건설 기계
JP5954054B2 (ja) ハイブリッド式建設機械の蓄電装置暖機装置
WO2013099710A1 (ja) 作業機械の動力回生装置および作業機械
KR101886896B1 (ko) 하이브리드식 건설 기계
KR101947301B1 (ko) 작업 기계의 압유 에너지 회생 장치
JP5515087B2 (ja) 作業機械の動力回生装置
JP5303061B1 (ja) エンジン制御装置及び建設機械
JP2011163291A (ja) ハイブリッド建設機械の制御装置
JP5573824B2 (ja) 油圧エネルギー回生装置
JP6244475B1 (ja) 制御システム、作業機械及び制御方法
US20160312440A1 (en) Construction machine
JP5208067B2 (ja) ハイブリッド建設機械の制御装置
JP5701189B2 (ja) 作業機械の動力回生装置
JP5589234B2 (ja) 作業機械の動力回生装置
JP5642620B2 (ja) 作業機械のエネルギ回生装置
JP2013160251A (ja) 作業機械の動力回生装置
JP5731331B2 (ja) 作業機械の動力回生装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280029162.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800776

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14117961

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137032724

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012800776

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012800776

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE