WO2013099710A1 - 作業機械の動力回生装置および作業機械 - Google Patents

作業機械の動力回生装置および作業機械 Download PDF

Info

Publication number
WO2013099710A1
WO2013099710A1 PCT/JP2012/082837 JP2012082837W WO2013099710A1 WO 2013099710 A1 WO2013099710 A1 WO 2013099710A1 JP 2012082837 W JP2012082837 W JP 2012082837W WO 2013099710 A1 WO2013099710 A1 WO 2013099710A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
target
hydraulic
calculation unit
control valve
Prior art date
Application number
PCT/JP2012/082837
Other languages
English (en)
French (fr)
Inventor
聖二 土方
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to CN201280064478.XA priority Critical patent/CN104024659B/zh
Priority to JP2013551636A priority patent/JP6106097B2/ja
Priority to KR1020147017351A priority patent/KR101991983B1/ko
Priority to EP12863748.5A priority patent/EP2799727B1/en
Priority to US14/353,677 priority patent/US9574328B2/en
Publication of WO2013099710A1 publication Critical patent/WO2013099710A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/22Hydraulic devices or systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2091Control of energy storage means for electrical energy, e.g. battery or capacitors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/044Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/022Flow-dividers; Priority valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/044Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by electrically-controlled means, e.g. solenoids, torque-motors
    • F15B13/0442Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by electrically-controlled means, e.g. solenoids, torque-motors with proportional solenoid allowing stable intermediate positions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • F15B2211/353Flow control by regulating means in return line, i.e. meter-out control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/355Pilot pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/61Secondary circuits
    • F15B2211/611Diverting circuits, e.g. for cooling or filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6316Electronic controllers using input signals representing a pressure the pressure being a pilot pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/632Electronic controllers using input signals representing a flow rate
    • F15B2211/6326Electronic controllers using input signals representing a flow rate the flow rate being an output member flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6346Electronic controllers using input signals representing a state of input means, e.g. joystick position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/635Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements
    • F15B2211/6355Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements having valve means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6654Flow rate control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7135Combinations of output members of different types, e.g. single-acting cylinders with rotary motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/76Control of force or torque of the output member
    • F15B2211/761Control of a negative load, i.e. of a load generating hydraulic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy

Definitions

  • the present invention relates to a power regeneration device and a work machine for a work machine, and in particular, a power that is provided in a work machine having a hydraulic actuator that drives the work device, such as a hybrid excavator, and recovers energy by return oil from the actuator.
  • the present invention relates to a regenerative device and a work machine including the power regenerative device.
  • a fixed displacement hydraulic motor is disposed in an oil passage (return oil passage) through which return oil flows when the boom is lowered in a bottom hydraulic chamber of a boom cylinder (hydraulic actuator).
  • a hybrid hydraulic excavator with (generator) connected.
  • a hydraulic motor is driven by return oil from the boom cylinder, and an electric motor is driven by this hydraulic motor. Electric energy obtained by driving this electric motor is stored in a power storage device connected via an inverter, chopper, or the like.
  • Patent Document 1 discloses that the boom cylinder is designed to improve the operability of the hydraulic actuator. Is returned to the power regeneration side (hydraulic motor side) and the control valve side.
  • the return oil from the boom cylinder is branched to the power regeneration side and the control valve side in order to improve operability.
  • the flow distribution to the power regeneration side and the control valve side is uniquely performed according to the operation of the operation lever, the flow rate flows to the control valve side more than necessary and can be recovered by the power regeneration device. There is a problem that energy decreases.
  • An object of the present invention is to provide a power regeneration device for a work machine that can ensure responsiveness at the start of movement of a hydraulic actuator and increase the energy to be recovered, and a work machine equipped with the power regeneration device. is there.
  • the invention according to claim 1 is a hydraulic actuator for driving a working device, a control valve for operating and controlling the hydraulic actuator, and operating the hydraulic actuator by operating the control valve.
  • a power regeneration device for a work machine comprising an operation lever device having an operation lever for causing the hydraulic motor to be driven by return oil of the hydraulic actuator, and mechanically connected to the hydraulic motor, the hydraulic motor
  • a return oil discharged from the hydraulic actuator comprising: an electric motor driven by a motor for generating electric power; an inverter for controlling the rotational speed of the electric motor; and a power storage device for storing electric power generated by the electric motor.
  • a power regeneration device that distributes the current to the control valve side and the hydraulic motor side.
  • a rotation number detector for detecting the number of operations, an operation amount detector for detecting the operation amount of the operation lever, a proportional electromagnetic valve for adjusting an opening area of the control valve, and a rotation number detected by the rotation number detector And a control device to which an operation amount detected by the operation amount detector is input.
  • the control device has a target flow rate of return oil discharged from the hydraulic actuator based on the operation amount, and The target rotational speed is obtained, the rotational speed of the electric motor is controlled via the inverter so that the target rotational speed of the electric motor is obtained, and the target flow rate and the actual rotational speed of the electric motor detected by the rotational speed detector are detected. Based on this, the deviation between the target flow rate and the actual flow rate of the pressure oil passing through the motor is obtained, and the proportional solenoid valve is controlled based on this deviation.
  • the target flow rate of the return oil discharged from the hydraulic actuator and the target rotational speed of the motor are obtained by the control device based on the operation amount of the operation lever.
  • the rotation speed of the motor is controlled via the inverter so as to achieve this target rotation speed, and the proportional solenoid valve is controlled based on the deviation between the target flow rate and the actual rotation speed of the motor detected by the rotation speed detector.
  • the operation pilot pressure is input to the operation spool via the proportional solenoid valve, and the opening area of the control valve is controlled so that the pressure oil flows by an insufficient flow rate. Therefore, the flow rate of the pressure oil discharged from the hydraulic actuator becomes the target flow rate, and the hydraulic actuator operates smoothly according to the operation of the operator.
  • the amount of pressure oil that flows to the control valve is the amount of insufficient flow that is the minimum necessary amount to increase responsiveness, and it is not necessary to flow pressure oil to the control valve more than necessary.
  • the power regeneration efficiency can also be kept sufficiently high.
  • the control device inputs the operation amount, and obtains the target flow rate based on the operation amount.
  • a target rotational speed calculation unit for determining the target rotational speed from the target flow rate
  • an electric motor command value calculation unit for determining an inverter control signal for the inverter from the target rotational speed, and the actual rotational speed.
  • An actual flow rate calculation unit for obtaining the actual flow rate based on the control valve, a control valve target flow rate calculation unit for obtaining the deviation from the actual flow rate and the target flow rate, and using the deviation as a target flow rate of the control valve, and the control valve target
  • a proportional solenoid valve command value calculation unit for obtaining a control signal for the proportional solenoid valve from the flow rate.
  • the target flow rate of the electric motor is obtained based on the operation amount of the operation lever, and the rotation speed of the electric motor is controlled to be the target rotation speed obtained from the target flow rate.
  • the proportional solenoid valve is controlled based on the deviation between the target flow rate and the actual flow rate of the electric motor, the responsiveness of the hydraulic actuator to the operation of the operator is ensured, and the operation at the start of movement can be satisfactorily maintained, It is possible to maintain good power regeneration efficiency without flowing pressure oil to the control valve more than necessary.
  • the control device inputs the operation amount, and obtains the target flow rate based on the operation amount.
  • a target rotational speed calculation unit for determining the target rotational speed from the target flow rate, an electric motor command value calculation unit for determining an inverter control signal for the inverter from the target rotational speed, and the actual rotational speed are input, and the target rotational speed is input.
  • a control valve target flow rate calculation unit that obtains a deviation between the target flow rate and the actual flow rate from a deviation between the target rotation number and the actual rotation number obtained by the calculation unit, and uses the deviation as a target flow rate of the control valve;
  • a proportional solenoid valve command value calculation unit for obtaining a control signal for the proportional solenoid valve from the control valve target flow rate.
  • the target flow rate of the motor is obtained based on the operation amount of the operation lever, and the rotation speed of the motor is controlled to be the target rotation speed obtained from the target flow rate.
  • the proportional solenoid valve is controlled based on the difference between the target rotational speed and the actual rotational speed of the electric motor, the responsiveness of the hydraulic actuator to the operation of the operator is ensured, and the operation at the start of movement can be satisfactorily maintained. Further, it is possible to maintain good power regeneration efficiency without flowing pressure oil to the control valve more than necessary.
  • the control valve is arranged in parallel between the hydraulic pump and a pressure oil supply side of the hydraulic actuator. And an open / close valve that switches to an open position when the operation lever of the operation lever device is operated.
  • the power regeneration device configured as described above, in addition to being controlled so that the flow rate of the pressure oil discharged from the hydraulic actuator becomes the target oil amount, the hydraulic oil supply side of the hydraulic pump and the hydraulic actuator Therefore, the pressure oil from the hydraulic pump is supplied to the pressure oil supply side of the hydraulic actuator, and the response of the hydraulic actuator to the operation of the operator is Better. Moreover, since it is not necessary to flow the pressure oil to the control valve more than necessary, the power regeneration efficiency by the power regeneration device can be maintained well.
  • the invention according to claim 5 is a work machine including the power regeneration device for a work machine according to any one of claims 1 to 4.
  • the work machine equipped with the power regeneration device of the present invention has secured the responsiveness of the hydraulic actuator to the operation of the operator, the operation of the hydraulic actuator starting to move well, and the power regeneration efficiency is also well maintained. Is.
  • the present invention it is possible to ensure the responsiveness at the start of movement when the return oil from the hydraulic actuator is recovered by the power regeneration device, so that the agile operation desired by the operator can be realized and the energy to be recovered It can be increased compared to the device.
  • 1 is an external view of a hybrid hydraulic excavator according to an embodiment of the present invention. It is a figure showing a part of outline of a drive control system of a hydraulic excavator concerning a 1st embodiment of the present invention. It is an example of the block diagram of the controller 9 which concerns on the 1st Embodiment of this invention. Is a diagram illustrating a first target flow rate Q 0 stored in the target rotational speed calculation unit 32 according to the embodiment of the relationship between the target rotational speed N 0 of the present invention. It is a modification of the block diagram of the controller 9 which concerns on the 1st Embodiment of this invention.
  • the first embodiment of the present invention is a diagram showing a relationship between the actual flow rate Q and the target flow rate Q 0 to the operation start time when starting the operation of the operating lever 4a. It is a figure which shows a part of outline of the drive control system of the hydraulic shovel which concerns on the 2nd Embodiment of this invention.
  • FIG. 1 is a view showing the appearance of a hydraulic excavator (work machine) on which the hydraulic system of the present invention is mounted.
  • the hydraulic excavator includes a lower traveling body 100, an upper swing body 101, and a front work machine 102.
  • the lower traveling body 100 has left and right crawler traveling devices 103a and 103b, and is driven by left and right traveling motors 104a and 104b.
  • the upper swing body 101 is mounted on the lower traveling body 100 so as to be swingable and is driven to swing by a swing motor (not shown).
  • the front work machine 102 is attached to the front part of the upper swing body 101 so as to be able to be raised and lowered.
  • the upper swing body 101 is provided with an engine room 106 and a cabin (operating room) 107. In the engine room 106, hydraulic equipment such as an engine E, a hydraulic pump 1 and a sub pump 8 (see FIG.
  • the front work machine 102 has an articulated structure having a boom 111, an arm 112, and a bucket 113.
  • the boom 111 rotates up and down by the expansion and contraction of the boom cylinder 3, and the arm 112 moves up and down and front and rear by the expansion and contraction of the arm cylinder 114.
  • the bucket 113 is rotated up and down and back and forth by the expansion and contraction of the bucket cylinder 115.
  • FIG. 2 is a diagram showing a hydraulic circuit portion for driving the boom cylinder 3 in the drive control system for the hydraulic excavator according to the embodiment of the present invention and a power regeneration device incorporated in the hydraulic circuit portion.
  • symbol is attached
  • the drive control system includes a hydraulic pump 1 and a sub pump 8 driven by an engine E, a control valve 2, a boom cylinder 3, an operation lever device 4, and makeup valves (supply valves) 22a and 22b.
  • a power regeneration device 19 is provided.
  • the hydraulic pump 1 is a main pump that supplies pressure oil to the boom cylinder 3.
  • a relief valve (not shown) is installed in the hydraulic line connected to the hydraulic pump 1, and the relief valve allows the pressure oil to escape to the tank 18 when the pressure in the hydraulic line rises excessively. Further pressure increase is prevented.
  • the control valve 2 is connected to the bottom side hydraulic chamber 3a and the rod side hydraulic chamber 3b of the boom cylinder 3 via the pipelines 6a and 6b, and the pressure oil from the hydraulic pump 1 is connected to the pipeline 6a via the control valve 2. Or it is supplied to the bottom side hydraulic chamber 3a or the rod side hydraulic chamber 3b of the boom cylinder 3 by 6b.
  • the return oil from the rod side hydraulic chamber 3b of the boom cylinder 3 is returned to the tank 18 through the pipe line 6b and the control valve 2, and the return oil from the bottom side hydraulic chamber 3a is partly the pipe line 6a. It returns to the tank 18 via the control valve 2, and most returns to the tank 18 via the regeneration circuit 21 of the power regeneration device 19.
  • the pipeline 6a is referred to as a bottom side pipeline
  • the pipeline 6b is referred to as a rod side pipeline.
  • the operation lever device 4 includes an operation lever 4a and pilot valves (pressure reducing valves) 4b1 and 4b2.
  • pilot valves pressure reducing valves
  • the pilot valve 4b1 is connected to the sub pump 8.
  • the pilot pressure (hydraulic signal of pressure Pa) corresponding to the operation amount of the operation lever 4a is output to the pilot oil passage 5a using the discharge pressure as the original pressure, and the operation lever 4a is tilted in the direction b in the figure (lowering the boom cylinder 3).
  • the pilot valve 4b2 When the directional operation is performed, the pilot valve 4b2 outputs a pilot pressure (hydraulic signal of the pressure Pb) corresponding to the operation amount of the operation lever 4a to the pilot oil passage 5b using the discharge pressure of the sub pump 8 as a source pressure.
  • the control valve 2 has operation ports 2a and 2b.
  • the operation port 2a is connected to a pilot valve 4b1 through a pilot oil passage 5a.
  • the operation port 2b is connected to a proportional solenoid valve 7 to be described later through a pilot oil passage 5c.
  • the control operation for switching the spool position of the control valve 2 according to the pilot pressure (hydraulic signal) connected and output to the pilot oil passages 5a, 5c is performed, and the direction of the pressure oil supplied to the boom cylinder 3 And control the flow rate.
  • the makeup valves 22a and 22b are for preventing the pipes 6a and 6b from becoming negative pressure and causing cavitation.
  • the makeup valves 22a or 22b is opened, and the hydraulic oil in the tank 18 is supplied to the pipeline 6a or 6b.
  • the makeup valve 22b also has a role of supplying pressure oil from the tank 18 to the rod side hydraulic chamber 3b of the boom cylinder 3 when the boom 111 is lowered.
  • the power regeneration device 19 includes a pipeline 6d, a pilot check valve 10, a fixed displacement hydraulic motor 11, an electric motor 12, an inverter 13, a chopper 14, a power storage device (battery) 15, and a pressure sensor 16. , A rotation speed sensor 17, a proportional solenoid valve 7, and a controller (control device) 9.
  • the pipeline 6d branches off from the branching portion 6c of the bottom side pipeline 6a, and the hydraulic motor 11 is connected to the pipeline 6d via the pilot check valve 10 to constitute a regenerative circuit 21, and the boom 111 is lowered.
  • the return oil discharged from the bottom side hydraulic chamber 3a of the boom cylinder 3 during operation is guided to the hydraulic motor 11 via the pilot check valve 10, and after rotating the hydraulic motor 11, returns to the tank 18.
  • the pilot check valve 10 is for preventing unnecessary pressure oil inflow (boom dropping) from the bottom side pipe line 6a to the regenerative circuit 21 (pipe line 6d), such as prevention of leakage of pressure oil in the regenerative circuit 21.
  • the regenerative circuit 21 is shut off, and when the operator performs the lowering operation of the boom 111 (when the operation lever 4a of the operation lever device 4 is tilted to the b side in FIG. 2), the pilot valve 4b2
  • the output pilot pressure (hydraulic signal of the hydraulic pressure Pb) is guided through the pilot oil passage 5b, and the regenerative circuit 21 is opened by opening the valve by the pilot pressure.
  • the electric motor 12 is connected to the hydraulic motor 11, and electric power is generated according to the rotational operation of the hydraulic motor 11, and the generated electric power is stored in the power storage device (battery) 15 through the inverter 13 and the chopper 14.
  • the chopper 14 is for boosting.
  • Rotational speed sensor 17 is provided on a shaft connecting hydraulic motor 11 and electric motor 12, and detects the rotational speed N (actual rotational speed) of hydraulic motor 11 and electric motor 12.
  • the pressure sensor 16 is connected to the pilot oil passage 5b and detects the pilot pressure Pb output from the pilot valve 4b2 to the conduit 5b when the boom 111 is lowered.
  • the pressure sensor 16 and the rotation speed sensor 17 are connected to the controller 9, and the detected pilot pressure Pb and rotation speed N are converted into electrical signals and input to the controller 9.
  • a position sensor that detects the position of the operation lever 4a may be used.
  • the controller 9 inputs detection signals from the pressure sensor 16 and the rotation speed sensor 17, performs a predetermined calculation, and outputs a control signal to the proportional solenoid valve 7 and the inverter 13.
  • the proportional solenoid valve 7 operates in accordance with a control signal from the controller 9, generates a pilot pressure having a magnitude indicated by the control signal using the discharge pressure of the sub pump 8 as a base pressure, and outputs the pilot pressure to the pilot oil passage 5c.
  • the pilot pressure output to the pilot oil passage 5c is guided to the operation port 2b of the control valve 2, and the opening area of the control valve 2 is adjusted according to the pilot pressure.
  • FIG. 3 is a block diagram showing the control function of the controller 9.
  • the controller 9 includes a target flow rate calculation unit 31, a target revolution number calculation unit 32, an electric motor command value calculation unit 33, an actual flow rate calculation unit 34, a control valve target flow rate calculation unit 35, and a proportional solenoid valve command value.
  • a target flow rate calculation unit 31 a target revolution number calculation unit 32
  • an electric motor command value calculation unit 33 a target revolution number calculation unit 33
  • an actual flow rate calculation unit 34 a control valve target flow rate calculation unit 35
  • a proportional solenoid valve command value a proportional solenoid valve command value.
  • the target flow rate calculation unit 31 returns from the bottom hydraulic chamber 3a of the boom cylinder 3 based on the operation amount (the magnitude of the pilot pressure Pb) in the boom lowering direction (b side in FIG. 2) of the operation lever 4a. a portion for calculating a target flow rate Q 0 of the oil.
  • the operation amount of the operation lever 4a in the boom lowering direction (b side in FIG. 2) indicates a target speed for lowering the boom 111
  • the target flow rate calculation unit 31 determines from the target speed for lowering the boom 111. determine a target flow rate Q 0 of the return oil discharged from the bottom side hydraulic chamber 3a of the boom cylinder 3.
  • the target flow rate Q 0 calculated by the target flow rate calculation unit 31 is output to the target rotation number calculation unit 32 and the control valve target flow rate calculation unit 35.
  • the target rotational speed calculation unit 32 is a part that determines the rotational speed of the hydraulic motor 11 when the entire amount of the target flow rate Q 0 calculated by the target flow rate calculation unit 31 passes through the hydraulic motor 11 as the target rotational speed N 0 .
  • q is the discharge capacity of the hydraulic motor 11, and since the hydraulic motor 11 is a fixed capacity type, the capacity q is known.
  • the relationship between Q 0 and N 0 is a proportional relationship in which the target rotational speed N 0 simply increases as the target flow rate Q 0 increases.
  • the target rotation number N 0 calculated by the target rotation number calculation unit 32 is output to the motor command value calculation unit 33.
  • the motor command value calculation unit 33 is a part that calculates a power generation control command value Sg for rotating the motor 12 so that the target rotation number N 0 calculated by the target rotation number calculation unit 32 is obtained. Is output to the inverter 13. Inverter 13 which inputs a command value Sg, the rotational speed of the electric motor 12 and the hydraulic motor 11 to the power generation control of the motor 12 so that the target speed N 0 on the basis of the command value Sg.
  • the actual flow rate calculation unit 34 is a part that calculates an actual flow rate (passing flow rate) Q actually flowing to the hydraulic motor 11 from the actual rotation number N of the electric motor 12 detected by the rotation number sensor 17.
  • the actual flow rate Q calculated by the actual flow rate calculation unit 34 is output to the control valve target flow rate calculation unit 35.
  • the control valve target flow rate calculation unit 35 calculates the target flow rate Q 0 and the actual flow rate Q based on the target flow rate Q 0 calculated by the target flow rate calculation unit 31 and the actual flow rate Q calculated by the actual flow rate calculation unit 34. This is a part for obtaining the deviation ⁇ Q.
  • This ⁇ Q is an insufficient flow rate with respect to the target flow rate Q 0 that cannot flow to the hydraulic motor 11 side, and is a meter-out flow rate (control valve target flow rate) that should flow to the control valve 2.
  • the flow rate deviation ⁇ Q calculated by the control valve target flow rate calculation unit 35 is output to the proportional solenoid valve command value calculation unit 36 as the control valve target flow rate ⁇ Q.
  • the proportional solenoid valve command value calculation unit 36 applies pilot pressure to the operation port 2b of the control valve 2 so that pressure oil flows through the control valve 2 by the amount corresponding to the control valve target flow rate ⁇ Q calculated by the control valve target flow rate calculation unit 35.
  • the command value Sm for controlling the opening area of the proportional solenoid valve 7 to be introduced is calculated, and the command value Sm is output to the proportional solenoid valve 7.
  • the relationship between the operation amount and the target flow rate Q 0 of the operating lever 4a in the respective calculation unit, the relationship of the target flow rate Q 0 and the target rotational speed N 0, the relationship between the target speed N 0 power control command value Sg, actual rotation The relationship between the number N and the actual flow rate Q and the relationship between the control valve target flow rate ⁇ Q and the opening area of the control valve 2 can be given in advance in a table.
  • the target flow rate calculation unit 31 obtains the target flow rate Q 0 of the hydraulic motor 11
  • the actual flow rate computation unit 34 obtains the actual flow rate Q of the hydraulic motor 11
  • the control valve target flow rate computation unit 35 obtains the target flow rate Q
  • the control valve target flow rate ⁇ Q was obtained by calculating the deviation ⁇ Q between 0 and the actual flow rate Q.
  • the control valve target flow rate ⁇ Q was calculated from N 0 obtained by the target rotational speed calculation unit 32 and N detected by the rotational speed sensor 17. You may ask for it. A modification in this case is shown in FIG.
  • the target rotation number N 0 calculated by the target rotation number calculation unit 32 is output to the motor command value calculation unit 33 and the control valve target flow rate calculation unit 35A.
  • the boom cylinder 3 is pushed by the weight of the front work machine 102 including the boom 111, and the pressure oil in the bottom side hydraulic chamber 3a of the boom cylinder 3 is discharged toward the pipeline 6a.
  • the pilot check valve 10 since the pilot check valve 10 is open, the regenerative circuit 21 of the power regeneration device 19 is opened, and the discharged pressure oil passes through the hydraulic motor 11 via the pipeline 6d and the pilot check valve 10. And discharged to the tank 18.
  • a tank is connected to the rod side hydraulic chamber 3b side of the boom cylinder 3 via a makeup valve 22b so that the rod side pipe line 6b does not become negative pressure when the boom cylinder 3 is pushed by the weight of the front work machine 102.
  • Pressure oil is replenished from 18 and pressure oil is supplied to the rod side hydraulic chamber 3b.
  • the hydraulic motor 11 is rotated by return oil flowing toward the hydraulic motor 11, and the electric motor 12 directly connected to the hydraulic motor 11 performs a power generation operation.
  • the generated electric energy is stored in the battery 15 and the regenerative operation is performed. Done.
  • the target flow rate Q 0 of the hydraulic motor 11 is calculated by the target flow rate calculation unit 31 based on the operation amount of the input operation lever 4a, the target The rotation speed calculation unit 32 calculates the target rotation speed N 0 of the motor 12 from the target flow rate Q 0 , and the motor command value calculation unit 33 calculates the power generation control command value Sg from the N 0 to the inverter 13. Further, the actual flow rate Q actually flowing to the hydraulic motor 11 is calculated from the input actual rotational speed N of the hydraulic motor 11 by the calculation actual flow rate calculation unit 34, and the target flow rate Q 0 and the actual flow rate are calculated by the control valve target flow rate calculation unit 35. The insufficient flow rate ⁇ Q is calculated from the flow rate Q. Thereafter, the proportional solenoid valve command value computing unit 36 computes a command value Sm for controlling the opening area of the proportional solenoid valve 7 from the insufficient flow rate ⁇ Q.
  • the control command value Sm is output to the proportional solenoid valve 7, and the proportional solenoid valve 7 to which the control command value Sm is input has its opening area adjusted based on the command value Sm and is supplied from the sub pump 8.
  • the pressure is controlled.
  • the controlled operation pilot pressure of the desired pressure is guided to the operation port 2b of the control valve 2 via the pilot line 5c, and the control oil is controlled so that the pressure oil flows through the control valve 2 by ⁇ Q. Accordingly, pressure oil corresponding to ⁇ Q is supplied from the hydraulic pump 1 to the rod side hydraulic chamber 3 b of the boom cylinder 3, and pressure oil corresponding to ⁇ Q in the bottom side hydraulic chamber 3 a of the boom cylinder 3 is supplied to the tank 18 via the control valve 2. Discharged.
  • the power generation control command value Sg is output to the inverter 13, and the inverter 13 that has received the power generation control command value Sg receives the motor 12 so that the rotation speed of the motor 12 becomes the target rotation speed N 0 based on the command value Sg.
  • the electric motor 12 and the hydraulic motor 11 rotate at the target rotational speed N 0 , and the flow rate of the pressure oil flowing through the hydraulic motor 11 is controlled to coincide with the target flow rate Q 0 , and the above-described regenerative operation is performed. .
  • Figure 6 is a diagram showing a relationship between the actual flow rate Q and the target flow rate Q 0 to the operation start time when starting the operation of the operating lever 4a.
  • the target flow rate Q 0 corresponding to the target rotational speed N 0 is the amount of pressure oil discharged from the bottom hydraulic chamber 3 a of the boom cylinder 3. Even if control is performed so as to be (a curve indicated by a dotted line), since the discharge volume q of the hydraulic motor 11 is fixed, it takes time for the actual rotational speed N to coincide with the target rotational speed N 0 .
  • the opening area is controlled so that the pressure oil flows through the control valve 2 by the flow rate difference ⁇ Q, and the pressure is controlled from the bottom hydraulic chamber 3a via the control valve 2. It is necessary to drain the oil into the tank 18.
  • the controller 9 generates a power generation control command value Sg to the inverter 13 and a command value Sm to the proportional solenoid valve 7 based on the input electric signal corresponding to the operation amount of the operation lever 4a and the actual rotational speed of the hydraulic motor 11. Is calculated.
  • a power generation control so that the rotational speed of the motor 12 becomes the target rotational speed N 0 by inverter 13 which inputs the computed power control command value Sg, also the opening area of the proportional solenoid valve 7 which have entered the command value Sm is adjusted
  • the pressure of the operation pilot pressure supplied from the sub pump 8 is controlled so that the pressure oil flows through the control valve 2 by ⁇ Q.
  • the boom cylinder 3 is smoothly contracted (the boom 111 is rotated downward) in accordance with the operator's lowering operation.
  • the flow rate of the return oil from the boom cylinder 3 is controlled so as to become the target oil amount.
  • the responsiveness of the boom cylinder 3 is ensured, and the operation at the start of movement can be satisfactorily maintained. Further, since it is not necessary to flow the pressure oil to the control valve 2 more than necessary, the power regeneration efficiency by the power regeneration device 19 can be maintained well.
  • FIG. 7 is a view similar to FIG. 2 showing a hydraulic circuit portion for driving the boom cylinder 3 and a power regeneration device incorporated in the hydraulic circuit portion of the drive control system for the hydraulic excavator according to the embodiment of the present invention. is there.
  • the drive control system includes a hydraulic pump 1 and a sub pump 8 driven by the engine E, a control valve 2, a boom cylinder 3, an operation lever device 4, and a power regeneration device 19.
  • the drive control system further includes an on-off valve 23 connected in parallel to the control valve 2 between the hydraulic pump 1 and the pipeline 6b. .
  • the on-off valve 23 has an operation port 23a, and the operation port 23a is connected to the pilot valve 4b2 via the pilot oil passages 5d and 5b.
  • the on-off valve 23 is normally in the closed position, and is switched to the open position in accordance with the pilot pressure Pb output to the pilot oil passages 5b and 5d, and the boom cylinder 3 is connected to the boom cylinder 3 from the hydraulic pump 1 through the pipeline 6e and the pipeline 6b. Pressure oil is supplied to the rod side hydraulic chamber 3b.
  • the boom cylinder 3 is pushed by the weight of the front work machine 102 including the boom 111, and the pressure oil in the bottom side hydraulic chamber 3a of the boom cylinder 3 is discharged toward the pipeline 6a.
  • the pilot check valve 10 since the pilot check valve 10 is open, the regenerative circuit 21 of the power regeneration device 19 is opened, and the discharged pressure oil passes through the hydraulic motor 11 via the pipeline 6d and the pilot check valve 10. And discharged to the tank 18.
  • the pilot pressure Pb from the pilot valve 4b2 is guided to the operation port 23a of the on-off valve 23 through the pilot pipe 5d, the on-off valve 23 is switched to the open position, and the pressure oil from the hydraulic pump 1 is supplied to the hydraulic pipe.
  • the hydraulic motor 11 is rotated by return oil discharged from the boom cylinder 3, and the electric motor 12 directly connected to the hydraulic motor 11 performs a power generation operation.
  • the generated electric energy is stored in the battery 15, and the regenerative operation is performed. Done.
  • the opening area of the proportional solenoid valve 7 is controlled by a control signal from the controller 9 and the control valve 2 is switched, which is the same as in the first embodiment.
  • the flow rate of the return oil from the boom cylinder 3 is controlled so as to become the target oil amount, and in addition, between the hydraulic pump 1 and the pipeline 6b. Therefore, the pressure oil from the hydraulic pump 1 is supplied to the rod side hydraulic chamber 3b of the boom cylinder 3, and the responsiveness of the lowering operation of the boom cylinder 3 to the operation of the operator becomes better. Also in the present embodiment, it is not necessary to flow pressure oil to the control valve 2 more than necessary, so that the power regeneration efficiency by the power regeneration device 19 can be maintained well.
  • the working machine in the present invention is not limited to the hydraulic excavator, and the present invention can be applied to a working machine including a hydraulic actuator that drives the working device.
  • the present invention can be applied to forklifts, wheel loaders, and the like, and the same effect can be obtained in this case.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geology (AREA)
  • Power Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

 ブーム111の下げ動作時に、操作レバー4aの操作量が圧力センサ16で検出されてコントローラ9に入力され、コントローラ9は入力された操作量に基づいてブームシリンダ3から排出される戻り油の目標流量Qを求め、目標流量Qと回転数センサ17で求めた電動機12の実回転数Nから求めた実流量Qとの偏差ΔQを演算し、このΔQだけ制御弁2に圧油を流すように比例電磁弁7の開口面積を制御する信号Smを演算し、このSmに基づいてサブポンプ8から供給される制御弁2の操作パイロット圧の圧力が制御され、制御弁2にΔQだけ圧油が流れるように制御される。これにより、油圧アクチュエータの動きだし時の応答性を確保し、かつ回収するエネルギーを多くすることができる作業機械の動力回生装置と、その動力回生装置を備えた作業機械を提供することができる。

Description

作業機械の動力回生装置および作業機械
 本発明は作業機械の動力回生装置および作業機械に係わり、特には、ハイブリッド式油圧ショベルなど、作業装置を駆動する油圧アクチュエータを有する作業機械に設けられ、アクチュエータからの戻り油によりエネルギーを回収する動力回生装置およびその動力回生装置を備えた作業機械に関する。
 近年、油圧ショベルを始めとする作業機械に対して燃料消費率(燃費)の向上に関する要求が高まっており、そのための提案が種々なされている。
 例えば、油圧ショベルでは、ブームシリンダ(油圧アクチュエータ)のボトム側油圧室のブーム下げ時の戻り油が流通する油路(戻り油油路)に固定容量型油圧モータを配置し、この油圧モータに電動機(発電機)を連結したハイブリッド式油圧ショベルがある。このハイブリッド式油圧ショベルでは、ブームシリンダからの戻り油によって油圧モータを駆動し、この油圧モータによって電動機を駆動している。この電動機を駆動して得られた電気エネルギーをインバータ、チョッパ等を介して接続された蓄電装置に蓄電している。
 このようにブームシリンダからの戻り油を固定容量型油圧モータに導入して動力回生を行う作業機械の動力回生装置として、特許文献1には、油圧アクチュエータの操作性を向上するため、ブームシリンダからの戻り油を動力回生側(油圧モータ側)と制御弁側とに分岐するようにしたものが記載されている。
特開2007-107616号公報
 油圧アクチュエータ(ブームシリンダ)からの戻り油により油圧モータを駆動し、電動機を駆動してエネルギーを回収する動力回生装置においては、油圧モータと電動機の慣性モーメントが大きいために、オペレータの操作に対して油圧アクチュエータの動作の動きだし時の応答性が悪くなるという問題がある。
 特許文献1に記載の動力回生装置では、操作性を向上させるため、ブームシリンダからの戻り油を動力回生側と制御弁側に分岐している。しかし、動力回生側と制御弁側への流量配分は、操作レバーの操作に応じて一義的に行っているため、必要以上に流量を制御弁側に流すことになり、動力回生装置で回収できるエネルギーが減少するという問題がある。
 本発明の目的は、油圧アクチュエータの動きだし時の応答性を確保し、かつ回収するエネルギーを多くすることができる作業機械の動力回生装置と、その動力回生装置を備えた作業機械を提供することである。
 上記目的を達成するために、請求項1記載の発明は、作業装置を駆動する油圧アクチュエータと、前記油圧アクチュエータを操作・制御するための制御弁と、前記制御弁を操作し前記油圧アクチュエータを動作させるための操作レバーを有する操作レバー装置とを備える作業機械の動力回生装置であって、前記油圧アクチュエータの戻り油により駆動される油圧モータと、前記油圧モータに機械的に連結され、前記油圧モータにより駆動されて発電動作を行う電動機と、前記電動機の回転数を制御するためのインバータと、前記電動機によって発電された電力を蓄えるための蓄電装置とを備え、前記油圧アクチュエータから排出される戻り油を分流し、前記制御弁側と前記油圧モータ側に配分する動力回生装置において、前記電動機の実回転数を検出する回転数検出器と、前記操作レバーの操作量を検出する操作量検出器と、前記制御弁の開口面積を調整する比例電磁弁と、前記回転数検出器で検出される回転数及び前記操作量検出器で検出される操作量が入力される制御装置とを更に備え、前記制御装置は、前記操作量に基づいて前記油圧アクチュエータから排出される戻り油の目標流量と前記電動機の目標回転数を求め、前記電動機の目標回転数が得られるよう前記インバータを介して前記電動機の回転数を制御するとともに、前記目標流量と前記回転数検出器によって検出された前記電動機の実回転数に基づいて前記目標流量と前記電動機を通過する圧油の実流量との偏差を求め、この偏差に基づいて前記比例電磁弁を制御するものとする。
 このように構成した本発明の動力回生装置では、油圧アクチュエータの操作時に、制御装置によって操作レバーの操作量に基づいて油圧アクチュエータから排出される戻り油の目標流量と電動機の目標回転数が求められ、この目標回転数となるようインバータを介して電動機の回転数が制御されるとともに、目標流量と回転数検出器によって検出された電動機の実回転数との偏差に基づいて比例電磁弁が制御される。このため、アクチュエータの動きだしの際に、油圧モータの吐出容量が固定であるためにアクチュエータからの圧油の排出が目標通りにならずに発生する不足流量分だけ制御弁を流れるように制御弁の操作スプールに比例電磁弁を介して操作パイロット圧が入力され、不足流量だけ圧油が流れるように制御弁の開口面積が制御される。よって、油圧アクチュエータから排出される圧油の流量が目標流量通りになり、オペレータの操作に従ってスムーズに油圧アクチュエータが動作する。また、制御弁に流れる圧油の量は応答性を上げるために必要な必要最低限の量である不足流量分であり、必要以上に圧油を制御弁に流す必要がなく、動力回生装置による動力回生の効率も十分に高く保つことができる。
 また請求項2記載の発明は、請求項1記載の作業機械の動力回生装置において、前記制御装置は、前記操作量を入力し、この操作量に基づいて前記目標流量を求める目標流量演算部と、この目標流量から前記目標回転数を求める目標回転数演算部と、この目標回転数から前記インバータに対するインバータ制御信号を求める電動機指令値演算部と、前記実回転数を入力し、この実回転数に基づいて前記実流量を求める実流量演算部と、この実流量と前記目標流量から前記偏差を求め、この偏差を前記制御弁の目標流量とする制御弁目標流量演算部と、この制御弁目標流量から前記比例電磁弁に対する制御信号を求める比例電磁弁指令値演算部とを有する。
 このような制御機能を有する制御装置によれば、操作レバーの操作量に基づいて電動機の目標流量が求められ、電動機の回転数がこの目標流量から求められた目標回転数となるように制御されるとともに、目標流量と電動機の実流量との偏差に基づいて比例電磁弁が制御され、オペレータの操作に対する油圧アクチュエータの応答性が確保され、動き出し時の動作を良好に保持することができるとともに、必要以上に圧油を制御弁に流すこともなく、動力回生効率も良好に保持することができる。
 また請求項3記載の発明は、請求項1記載の作業機械の動力回生装置において、前記制御装置は、前記操作量を入力し、この操作量に基づいて前記目標流量を求める目標流量演算部と、この目標流量から前記目標回転数を求める目標回転数演算部と、この目標回転数から前記インバータに対するインバータ制御信号を求める電動機指令値演算部と、前記実回転数を入力し、前記目標回転数演算部で求めた前記目標回転数と前記実回転数との偏差から前記目標流量と前記実流量との偏差を求め、この偏差を前記制御弁の目標流量とする制御弁目標流量演算部と、この制御弁目標流量から前記比例電磁弁に対する制御信号を求める比例電磁弁指令値演算部とを有する。
 このような制御機能を有する制御装置においても、操作レバーの操作量に基づいて電動機の目標流量が求められ、電動機の回転数がこの目標流量から求められた目標回転数となるように制御されるとともに、目標回転数と電動機の実回転数との差に基づいて比例電磁弁が制御され、オペレータの操作に対する油圧アクチュエータの応答性が確保され、動き出し時の動作を良好に保持することができるとともに、必要以上に圧油を制御弁に流すこともなく、動力回生効率も良好に保持することができる。
 また請求項4記載の発明は、請求項1ないし3のいずれか1項記載の作業機械の動力回生装置において、前記油圧ポンプと前記油圧アクチュエータの圧油供給側との間に前記制御弁と並列に接続され、前記操作レバー装置の操作レバーが操作された時に開位置に切り換わる開閉弁を更に備える。
 以上のような構成の動力回生装置では、油圧アクチュエータから排出される圧油の流量が目標通りの油量になるように制御されていることに加えて、油圧ポンプと油圧アクチュエータの圧油供給側との間に制御弁に対して並列に接続された開閉弁を備える構成のため、油圧ポンプからの圧油が油圧アクチュエータの圧油供給側へ供給され、オペレータの操作に対する油圧アクチュエータの応答性がより良好となる。また、必要以上に圧油を制御弁に流す必要がないため、動力回生装置による動力回生効率も良好に保持することができる。
 また請求項5記載の発明は、請求項1ないし4のいずれか1項記載の作業機械の動力回生装置を備える作業機械である。
 本発明の動力回生装置を備える作業機械は、オペレータの操作に対する油圧アクチュエータの応答性が確保されて油圧アクチュエータの動き出し時の動作が良好に保持されているとともに、動力回生効率も良好に保持されたものである。
 本発明によれば、油圧アクチュエータからの戻り油を動力回生装置で回収する際の動き出し時の応答性を確保することができるためオペレータが望む俊敏な動作が実現できると共に、回収するエネルギーを従来の装置に比べて多くすることができる。
本発明の実施の形態に係るハイブリッド式油圧ショベルの外観図である。 本発明の第1の実施の形態に係る油圧ショベルの駆動制御システムの概略の一部を示す図である。 本発明の第1の実施の形態に係るコントローラ9の構成図の一例である。 本発明の第1の実施の形態に係る目標回転数演算部32に記憶されている目標流量Qと目標回転数Nの関係を示す図である。 本発明の第1の実施の形態に係るコントローラ9の構成図の変形例である。 本発明の第1の実施の形態において、操作レバー4aの操作を開始したときの操作開始時間に対する実流量Qと目標流量Qとの関係を示す図である。 本発明の第2の実施の形態に係る油圧ショベルの駆動制御システムの概略の一部を示す図である。
 <第1の実施の形態>
 以下、本発明の第1の実施の形態について図面を用いて説明する。図1は本発明の油圧システムが搭載される油圧ショベル(作業機械)の外観を示す図である。
 油圧ショベルは下部走行体100と上部旋回体101とフロント作業機102を備えている。 
 下部走行体100は左右のクローラ式走行装置103a,103bを有し、左右の走行モータ104a,104bにより駆動される。上部旋回体101は下部走行体100上に旋回可能に搭載され、旋回モータ(不図示)により旋回駆動される。フロント作業機102は上部旋回体101の前部に俯仰可能に取り付けられている。上部旋回体101にはエンジンルーム106、キャビン(運転室)107が備えられ、エンジンルーム106に後述するエンジンEや油圧ポンプ1、サブポンプ8(図2参照)等の油圧機器が配置され、キャビン107内には操作レバー装置4(図2参照)等が配置されている。フロント作業機102はブーム111、アーム112、バケット113を有する多関節構造であり、ブーム111はブームシリンダ3の伸縮により上下方向に回動し、アーム112はアームシリンダ114の伸縮により上下、前後方向に回動し、バケット113はバケットシリンダ115の伸縮により上下、前後方向に回動する。
 図2は本発明の実施の形態に係る油圧ショベルの駆動制御システムのうちブームシリンダ3を駆動する油圧回路部分とその油圧回路部分に組み込まれた動力回生装置を示す図である。なお、先の図と同じ部分には同じ符号を付して説明は省略する(後の図も同様とする)。
 図2において、駆動制御システムは、エンジンEにより駆動される油圧ポンプ1およびサブポンプ8と、制御弁2と、ブームシリンダ3と、操作レバー装置4と、メイクアップバルブ(補給弁)22a,22bと、動力回生装置19を備えている。
 油圧ポンプ1は、ブームシリンダ3に圧油を供給するメインのポンプである。なお、油圧ポンプ1に接続される油圧管路には不図示のリリーフ弁が設置されており、リリーフ弁はその油圧管路内の圧力が過度に上昇した場合にタンク18に圧油を逃がし、それ以上の圧力上昇を防いでいる。制御弁2は、管路6a,6bを介してブームシリンダ3のボトム側油圧室3a及びロッド側油圧室3bに接続され、油圧ポンプ1からの圧油は、制御弁2を介して管路6a又は6bによりブームシリンダ3のボトム側油圧室3a又はロッド側油圧室3bに供給される。また、ブームシリンダ3のロッド側油圧室3bからの戻り油は管路6b、制御弁2を介してタンク18に還流し、ボトム側油圧室3aからの戻り油は、一部が管路6a、制御弁2を介してタンク18に還流し、大部分は動力回生装置19の回生回路21を介してタンク18に還流する。以下の説明では、管路6aをボトム側管路といい、管路6bをロッド側管路という。
 操作レバー装置4は、操作レバー4a及びパイロット弁(減圧弁)4b1,4b2を備え、操作レバー4aを図示a方向に傾動させる操作(ブーム上げ方向操作)を行うと、パイロット弁4b1はサブポンプ8の吐出圧を元圧として操作レバー4aの操作量に応じたパイロット圧(圧力Paの油圧信号)をパイロット油路5aに出力し、操作レバー4aを図示b方向に傾動させる操作(ブームシリンダ3の下げ方向動作)を行うと、パイロット弁4b2はサブポンプ8の吐出圧を元圧として操作レバー4aの操作量に応じたパイロット圧(圧力Pbの油圧信号)をパイロット油路5bに出力する。
 制御弁2は、操作ポート2a,2bを有し、操作ポート2aはパイロット油路5aを介してパイロット弁4b1に接続され、操作ポート2bはパイロット油路5cを介して後述する比例電磁弁7に接続され、パイロット油路5a,5cに出力されるパイロット圧(油圧信号)に応じて制御弁2のスプールの位置を切り替えるための制御操作が行われ、ブームシリンダ3に供給される圧油の方向及び流量を制御する。
 メイクアップバルブ22a,22bは、管路6a,6bが負圧になりキャビテーションが発生するのを防止するためのものであり、管路6a又は6bの圧力がタンク18の圧力より低くなるとメイクアップバルブ22a又は22bが開いてタンク18の作動油が管路6a又は6bに補給される。メイクアップバルブ22bは、ブーム111下げ操作時に、ブームシリンダ3のロッド側油圧室3bにタンク18から圧油を供給する役割も有している。
 動力回生装置19は、管路6dと、パイロットチェック弁10と、固定容量型の油圧モータ11と、電動機12と、インバータ13と、チョッパ14と、蓄電装置(バッテリ)15と、圧力センサ16と、回転数センサ17と、比例電磁弁7と、コントローラ(制御装置)9を備えている。
 管路6dは、ボトム側管路6aの分岐部6cから分岐し、この管路6dにパイロットチェック弁10を介して油圧モータ11が接続されて回生回路21を構成しており、ブーム111の下げ操作時にブームシリンダ3のボトム側油圧室3aから吐出される戻り油がパイロットチェック弁10を介して油圧モータ11に導かれ、油圧モータ11を回転したのち、タンク18に還流する。
 パイロットチェック弁10は、回生回路21の圧油の漏れ防止など、ボトム側管路6aから回生回路21(管路6d)への不要な圧油流入(ブーム落下)を防止するためのものであり、通常は回生回路21を遮断しており、オペレータがブーム111の下げ操作を行ったとき(操作レバー装置4の操作レバー4aが図2のb側に傾けられたとき)に、パイロット弁4b2から出力されるパイロット圧(油圧Pbの油圧信号)がパイロット油路5bを介して導かれ、そのパイロット圧により開弁して回生回路21を開くようになっている。
 油圧モータ11には電動機12が連結され、油圧モータ11の回転動作に応じて発電し、その発電電力は、インバータ13、チョッパ14を介して蓄電装置(バッテリ)15に蓄電される。チョッパ14は昇圧用である。
 回転数センサ17は油圧モータ11と電動機12を連結する軸に設けられ、油圧モータ11及び電動機12の回転数N(実回転数)を検出する。
 圧力センサ16は、パイロット油路5bに接続され、ブーム111の下げ操作時にパイロット弁4b2から管路5bに出力されるパイロット圧Pbを検出する。圧力センサ16と回転数センサ17はコントローラ9に接続され、検出したパイロット圧Pb及び回転数Nを電気信号に変換してコントローラ9に入力する。圧力センサ16の代わりに操作レバー4aの位置を検出するポジションセンサを用いてもよい。
 コントローラ9は、圧力センサ16と回転数センサ17の検出信号を入力し、所定の演算を行い、比例電磁弁7とインバータ13に制御信号を出力する。
 比例電磁弁7はコントローラ9からの制御信号によって動作し、サブポンプ8の吐出圧を元圧としてその制御信号が指示する大きさのパイロット圧を生成し、パイロット油路5cに出力する。このパイロット油路5cに出力されたパイロット圧は、制御弁2の操作ポート2bに導かれ、制御弁2はそのパイロット圧に応じて開口面積が調整される。
 次に、コントローラ9が備える制御機能について図3を参照しつつ説明する。図3はコントローラ9の制御機能を示すブロック図である。
 コントローラ9は、図3に示すように、目標流量演算部31、目標回転数演算部32、電動機指令値演算部33、実流量演算部34、制御弁目標流量演算部35及び比例電磁弁指令値演算部36の各機能を有している。
 目標流量演算部31は、操作レバー4aのブーム下げ方向(図2の図示b側)の操作量(パイロット圧Pbの大きさ)に基づいてブームシリンダ3のボトム側油圧室3aから排出される戻り油の目標流量Qを演算する部分である。一般的に、操作レバー4aのブーム下げ方向(図2の図示b側)の操作量は、ブーム111下げの目標速度を指示するものであり、目標流量演算部31はブーム111下げの目標速度からブームシリンダ3のボトム側油圧室3aから排出される戻り油の目標流量Qを求める。目標流量演算部31で演算された目標流量Qは目標回転数演算部32及び制御弁目標流量演算部35に出力される。
 目標回転数演算部32は、目標流量演算部31で演算された目標流量Qの全量が油圧モータ11を通過した場合の油圧モータ11の回転数を目標回転数Nとして求める部分である。ここで、QとNはQ=qNの関係にある。qは油圧モータ11の吐出容量であり、油圧モータ11は固定容量型であるため、容量qは既知である。QとNの関係は、図4に示すように、目標流量Qが増加するにつれて目標回転数Nが単純増加する比例関係にある。目標回転数演算部32で演算された目標回転数Nは電動機指令値演算部33に出力される。
 電動機指令値演算部33は、目標回転数演算部32で演算された目標回転数Nが得られるよう電動機12を回転させるための発電制御指令値Sgを演算する部分であり、当該指令値Sgはインバータ13に出力される。指令値Sgを入力したインバータ13は、当該指令値Sgに基づいて電動機12及び油圧モータ11の回転数が目標回転数Nとなるように電動機12を発電制御する。
 実流量演算部34は、回転数センサ17で検出された電動機12の実回転数Nから、油圧モータ11に実際に流れている実流量(通過流量)Qを演算する部分である。QとNの関係は、前述のQとNの場合と同様、Q=qNの関係にあり、qは既知であるため、Nが分かればQを求めることができる。実流量演算部34で演算された実流量Qは、制御弁目標流量演算部35に出力される。
 制御弁目標流量演算部35は、目標流量演算部31で演算された目標流量Qと実流量演算部34で演算された実流量Qとに基づいて、目標流量Qと実流量Qとの偏差ΔQを求める部分である。このΔQは油圧モータ11側に流しきれない、目標流量Qに対する不足流量であり、制御弁2に流すべきメータアウト流量(制御弁目標流量)である。制御弁目標流量演算部35で演算された流量偏差ΔQは、制御弁目標流量ΔQとして比例電磁弁指令値演算部36へ出力される。
 比例電磁弁指令値演算部36は、制御弁目標流量演算部35で演算された制御弁目標流量ΔQの分だけ制御弁2に圧油を流すように制御弁2の操作ポート2bにパイロット圧を導入するための比例電磁弁7の開口面積を制御する指令値Smを演算する部分であり、当該指令値Smは比例電磁弁7に出力される。
 なお、上記各演算部における操作レバー4aの操作量と目標流量Qの関係、目標流量Qと目標回転数Nの関係、目標回転数Nと発電制御指令値Sgの関係、実回転数Nと実流量Qの関係、制御弁目標流量ΔQと制御弁2の開口面積の関係については、予めテーブルで与えておくことができる。
 また、図3では、目標流量演算部31で油圧モータ11の目標流量Qを求め、実流量演算部34で油圧モータ11の実流量Qを求め、制御弁目標流量演算部35で目標流量Qと実流量Qの偏差ΔQを演算して制御弁目標流量ΔQを求めたが、目標回転数演算部32で求めたNと回転数センサ17で検出したNとから制御弁目標流量ΔQを求めてもよい。 
 この場合の変形例を図5に示す。目標回転数演算部32で演算された目標回転数Nは、電動機指令値演算部33と制御弁目標流量演算部35Aとに出力される。制御弁目標流量演算部35Aは目標回転数Nと回転数センサ17で検出された電動機12の実回転数NからΔQ=q(N-N)の演算を行って流量偏差ΔQを求め、これを制御弁目標流量として比例電磁弁指令値演算部36に出力する。
 次に、本実施の形態の動作を説明する。
 まず、ブーム111の上げ動作(ブームシリンダ3の伸び)時について説明する。 
 操作レバー4aを図2の図示a側に操作すると、パイロット弁4b1からパイロット圧Paがパイロット管5aを介して制御弁2の操作ポート2aに伝えられ、制御弁2が切換操作され、油圧ポンプ1からの圧油がボトム側管路6aを介してブームシリンダ3のボトム側油圧室3aに供給され、ブームシリンダ3は伸び動作(ブーム111は上方向に回動)する。これに伴い、ブームシリンダ3のロッド側油圧室3bから排出される戻り油は、ロッド側管路6b、制御弁2を通ってタンク18に還流する。このとき、パイロットチェック弁10には操作パイロット圧が導かれないので、ボトム側管路6aに設けられた動力回生装置19の回生回路21は遮断された状態となっており、回生動作は行われない。
 次に、ブーム111の下げ動作(ブームシリンダ3の縮み)時について説明する。
 操作レバー4aを図2の図示b側に操作すると、パイロット弁4b2からパイロット圧Pbがパイロット管5bを介してパイロットチェック弁10に導かれてパイロットチェック弁10が開く。
 このとき、ブーム111を含むフロント作業機102の自重でブームシリンダ3が押され、ブームシリンダ3のボトム側油圧室3aの圧油が管路6aに向かって排出される。ここで、パイロットチェック弁10が開いているため動力回生装置19の回生回路21は開かれており、排出された圧油は、管路6d、パイロットチェック弁10を介して油圧モータ11を通過して、タンク18に排出される。
 また、ブームシリンダ3のロッド側油圧室3b側へは、ブームシリンダ3がフロント作業機102の自重で押される際にロッド側管路6bが負圧にならないようにメイクアップバルブ22bを介してタンク18から圧油が補給され、ロッド側油圧室3bへ圧油が供給される。
 これにより、ブームシリンダ3が収縮し、ブーム111が下がり始める。
 また、油圧モータ11はこの油圧モータ11側に流れる戻り油により回転し、油圧モータ11に直結された電動機12が発電動作を行い、発電された電気エネルギーはバッテリ15に蓄電されて、回生動作が行われる。
 同時に、コントローラ9にもパイロット圧Pbに応じた電気信号が入力され、この入力された操作レバー4aの操作量に基づいて油圧モータ11の目標流量Qを目標流量演算部31で演算し、目標回転数演算部32で目標流量Qから電動機12の目標回転数Nを演算し、電動機指令値演算部33でこのNからインバータ13への発電制御指令値Sgを演算する。また入力された油圧モータ11の実回転数Nから実際に油圧モータ11に流れている実流量Qを演算実流量演算部34で演算し、制御弁目標流量演算部35で目標流量Q及び実流量Qから不足流量ΔQを演算する。その後、比例電磁弁指令値演算部36でこの不足流量ΔQから比例電磁弁7の開口面積を制御する指令値Smを演算する。
 この制御指令値Smが比例電磁弁7に出力され、制御指令値Smを入力した比例電磁弁7は、当該指令値Smに基づいてその開口面積が調整されて、サブポンプ8から供給される操作パイロット圧の圧力が制御される。制御された所望圧力の操作パイロット圧はパイロット管路5cを介して制御弁2の操作ポート2bに導かれ、制御弁2にΔQだけ圧油が流れるように制御される。よって、油圧ポンプ1からΔQ相当の圧油がブームシリンダ3のロッド側油圧室3bに供給され、ブームシリンダ3のボトム側油圧室3aのΔQ相当の圧油が制御弁2を介してタンク18に排出される。
 同時に、発電制御指令値Sgがインバータ13に出力され、発電制御指令値Sgを入力したインバータ13は、当該指令値Sgに基づいて電動機12の回転数が目標回転数Nとなるように電動機12を発電制御し、電動機12及び油圧モータ11が目標回転数Nで回転し、油圧モータ11を流れる圧油の流量は目標流量Qに一致するように制御され、上述の回生動作が行われる。
 図6は、操作レバー4aの操作を開始したときの操作開始時間に対する実流量Qと目標流量Qとの関係を示す図である。
 ブーム111の下げ操作を時刻tで開始する場合、図6に示すように、ブームシリンダ3のボトム側油圧室3aからの圧油の排出量を目標回転数Nに対応する目標流量Q(点線で示した曲線)となるように制御しようとしても、油圧モータ11の吐出容積qは固定であるため、実回転数Nが目標回転数Nに一致するのには時間を要し、油圧モータ11に実際に流れる実流量Q(実線で示した曲線)はブームシリンダ3の動き出し時には目標流量Qとは一致せず、目標流量(Q)と実流量(Q)の流量差ΔQ(QとQの偏差)が発生する。例えば、操作開始からのある時刻tにおいては、油圧モータ11を流れる目標流量はQо2であるのに対し、実際に油圧モータ11を流れる実流量はQr2であり、一致しない。また、ボトム側油圧室3aからの圧油の排出量が目標流量Qとなるように油圧モータ11が回転するのに要する時間は理想的にはtであるのに対し、実際に要する時間はtとなる。
 従って、ブーム111の動き出しをよくするためには、この流量差ΔQの分だけ制御弁2に圧油が流れるように開口面積を制御して、ボトム側油圧室3aから制御弁2を介して圧油をタンク18へ排出する必要がある。
 そこで、コントローラ9は、入力された操作レバー4aの操作量に応じた電気信号および油圧モータ11の実回転数に基づいてインバータ13への発電制御指令値Sgおよび比例電磁弁7への指令値Smを演算する。演算された発電制御指令値Sgを入力したインバータ13によって電動機12の回転数が目標回転数Nとなるように発電制御され、また指令値Smを入力した比例電磁弁7の開口面積が調整されて、サブポンプ8から供給される操作パイロット圧の圧力が制御され、制御弁2にΔQだけ圧油が流れるように制御される。
 これにより、従来のように動力回生装置19側のみに圧油を流してブーム111を下げようとする場合、ボトム側油圧室3aからの圧油の排出量が目標流量Qに到達するのに要する時間tに比べて、本実施の形態では、ブームシリンダ3のボトム側油圧室3aのΔQ相当の圧油が制御弁2を介してタンク18に排出されるため、ボトム側油圧室3aからの圧油の排出量が目標流量Qに到達するのに要する時間はtとなり、短くすることができる。
 よって、ブームシリンダ3はオペレータの下げ動作の操作に従ってスムーズに縮み動作(ブーム111は下方向に回動)する。
 以上のような構成・動作により、オペレータがブーム111の下げ操作を行っても、ブームシリンダ3からの戻り油の流量が目標通りの油量になるように制御されているため、オペレータの操作に対するブームシリンダ3の応答性が確保され、動き出し時の動作を良好に保持することができる。また、必要以上に圧油を制御弁2に流す必要がないため、動力回生装置19による動力回生効率も良好に保持することができる。
 <第2の実施の形態>
 本発明の第2の実施の形態によるハイブリッド式油圧ショベルについて説明する。図7は本発明の実施の形態に係る油圧ショベルの駆動制御システムのうちブームシリンダ3を駆動する油圧回路部分とその油圧回路部分に組み込まれた動力回生装置を示す、図2と同様の図である。
 図7において、駆動制御システムは、エンジンEにより駆動される油圧ポンプ1およびサブポンプ8と、制御弁2と、ブームシリンダ3と、操作レバー装置4と、動力回生装置19を備えている点は図2に示す駆動制御システムと同様であるが、本実施形態では、駆動制御システムは、更に、油圧ポンプ1と管路6bの間に制御弁2に並列に接続された開閉弁23を備えている。
 開閉弁23は、操作ポート23aを有し、操作ポート23aはパイロット油路5d及び5bを介してパイロット弁4b2に接続されている。開閉弁23は、通常閉位置にあり、パイロット油路5b,5dに出力されるパイロット圧Pbに応じて開位置に切り換えられ、油圧ポンプ1から管路6e及び管路6bを介してブームシリンダ3のロッド側油圧室3bに圧油が供給される。
 本実施の形態の動作を説明する。
 ブーム111の上げ動作時は第1の実施の形態と略同じであるので、ブーム111の下げ動作についてのみ説明する。
 操作レバー4aを図7の図示b側に操作すると、パイロット弁4b2からパイロット圧Pbがパイロット管5bを介してパイロットチェック弁10に導かれてパイロットチェック弁10が開く。
 このとき、ブーム111を含むフロント作業機102の自重でブームシリンダ3が押され、ブームシリンダ3のボトム側油圧室3aの圧油が管路6aに向かって排出される。ここで、パイロットチェック弁10が開いているため動力回生装置19の回生回路21は開かれており、排出された圧油は、管路6d、パイロットチェック弁10を介して油圧モータ11を通過して、タンク18に排出される。これと同時に、パイロット弁4b2からのパイロット圧Pbがパイロット管5dを介して開閉弁23の操作ポート23aに導かれ、開閉弁23が開位置に切換えられ、油圧ポンプ1からの圧油が油圧管路6e及び管路6bを介してブームシリンダ3のロッド側油圧室3bへ供給される。これによりブームシリンダ3のロッド側油圧室3bへは、油圧ポンプ1から開閉弁23を介して圧油が積極的に供給され、これによりブームシリンダ3を速やかに収縮させ、ブーム111がスムーズに下がり始める。
 また、油圧モータ11はブームシリンダ3から排出される戻り油により回転し、油圧モータ11に直結された電動機12が発電動作を行い、発電された電気エネルギーはバッテリ15に蓄電されて、回生動作が行われる。
 コントローラ9からの制御信号によって比例電磁弁7の開口面積が制御され、制御弁2が切換操作される点は第1の実施の形態と同様である。
 以上のように構成した本実施の形態では、ブームシリンダ3からの戻り油の流量が目標通りの油量になるように制御されていることに加えて、油圧ポンプ1と管路6bとの間に開閉弁23を備える構成のため、油圧ポンプ1からの圧油がブームシリンダ3のロッド側油圧室3bへ供給され、オペレータの操作に対するブームシリンダ3の下げ動作の応答性がより良好となる。また、本実施の形態でも、必要以上に圧油を制御弁2に流す必要がないため、動力回生装置19による動力回生効率も良好に保持することができる。
 <その他>
 上記実施の形態では、油圧シリンダとしてブームシリンダを用いる場合を参照して説明したが、本発明はブームシリンダのみならずアームシリンダ等にも適用することができ、この場合についても同様の効果が達成される。また、電動機としては発電機として駆動するものを用いて挙げて説明したが、電動機の位置には純粋に発電動作のみを行う発電機を用いることができる。
 更に、作業機械の例として油圧ショベルを用いて説明したが、本発明における作業機械は油圧ショベルに限られず、本発明は作業装置を駆動する油圧アクチュエータを備えた作業機械に適用することができる。例えばフォークリフト、ホイールローダ等に対しても適用することができ、この場合も同様の効果が得られる。
1 油圧ポンプ
2 制御弁
3 ブームシリンダ
3a ボトム側油圧室
3b ロッド側油圧室
4 操作レバー装置
4a 操作レバー
4b パイロット弁
5a,5b,5c パイロット油路
6a,6b,6e 油圧管路
6c 分岐部
6d 分岐管路
7 比例電磁弁
8 サブポンプ
9 コントローラ
10 パイロットチェック弁
11 油圧モータ
12 電動機
13 インバータ
14 チョッパ
15 蓄電装置(バッテリ)
16 圧力センサ
17 回転数センサ
18 タンク
19 動力回生装置
21 回生回路
22a,22b メイクアップバルブ
23 開閉弁
23a 操作ポート
31 目標流量演算部
32 目標回転数演算部
33 電動機指令値演算部
34 実流量演算部
35,35A 制御弁目標流量演算部
36 比例電磁弁指令値演算部
100 下部走行体
101 上部旋回体
102 フロント作業機
103a 走行装置
104a 走行モータ
106 エンジンルーム
107 運転室(キャビン)
111 ブーム
112 アーム
113 バケット
114 アームシリンダ
115 バケットシリンダ
E エンジン
N 実回転数
 目標回転数
 目標流量
ΔQ 不足流量

Claims (5)

  1.  作業装置(102)を駆動する油圧アクチュエータ(3,114,115)と、前記油圧アクチュエータを操作・制御するための制御弁(2)と、前記制御弁を操作し前記油圧アクチュエータを動作させるための操作レバー(4a)を有する操作レバー装置(4)とを備える作業機械の動力回生装置(19)であって、
     前記油圧アクチュエータの戻り油により駆動される油圧モータ(11)と、
     前記油圧モータに機械的に連結され、前記油圧モータにより駆動されて発電動作を行う電動機(12)と、
     前記電動機の回転数を制御するためのインバータ(13)と、
     前記電動機によって発電された電力を蓄えるための蓄電装置(15)とを備え、
     前記油圧アクチュエータから排出される戻り油を分流し、前記制御弁側と前記油圧モータ側に配分する動力回生装置において、
     前記電動機の実回転数を検出する回転数検出器(17)と、
     前記操作レバーの操作量を検出する操作量検出器(16)と、
     前記制御弁の開口面積を調整する比例電磁弁(7)と、
     前記回転数検出器で検出される回転数及び前記操作量検出器で検出される操作量が入力される制御装置(9)とを更に備え、
     前記制御装置は、前記操作量に基づいて前記油圧アクチュエータから排出される戻り油の目標流量と前記電動機の目標回転数を求め、前記電動機の目標回転数が得られるよう前記インバータを介して前記電動機の回転数を制御するとともに、前記目標流量と前記回転数検出器によって検出された前記電動機の実回転数に基づいて前記目標流量と前記電動機を通過する圧油の実流量との偏差を求め、この偏差に基づいて前記比例電磁弁を制御することを特徴とする作業機械の動力回生装置。
  2.  請求項1記載の作業機械の動力回生装置において、
     前記制御装置は、
     前記操作量を入力し、この操作量に基づいて前記目標流量を求める目標流量演算部(31)と、この目標流量から前記目標回転数を求める目標回転数演算部(32)と、この目標回転数から前記インバータに対するインバータ制御信号を求める電動機指令値演算部(33)と、前記実回転数を入力し、この実回転数に基づいて前記実流量を求める実流量演算部(34)と、この実流量と前記目標流量から前記偏差を求め、この偏差を前記制御弁の目標流量とする制御弁目標流量演算部(35)と、この制御弁目標流量から前記比例電磁弁に対する制御信号を求める比例電磁弁指令値演算部(36)とを有することを特徴とする作業機械の動力回生装置。
  3.  請求項1記載の作業機械の動力回生装置において、
     前記制御装置は、
     前記操作量を入力し、この操作量に基づいて前記目標流量を求める目標流量演算部(31)と、この目標流量から前記目標回転数を求める目標回転数演算部(32)と、この目標回転数から前記インバータに対するインバータ制御信号を求める電動機指令値演算部(33)と、前記実回転数を入力し、前記目標回転数演算部で求めた前記目標回転数と前記実回転数との偏差から前記目標流量と前記実流量との偏差を求め、この偏差を前記制御弁の目標流量とする制御弁目標流量演算部(35A)と、この制御弁目標流量から前記比例電磁弁に対する制御信号を求める比例電磁弁指令値演算部(36)とを有することを特徴とする作業機械の動力回生装置。
  4.  請求項1ないし3のいずれか1項記載の作業機械の動力回生装置において、
     前記油圧ポンプと前記油圧アクチュエータの圧油供給側との間に前記制御弁と並列に接続され、前記操作レバー装置の操作レバーが操作された時に開位置に切り換わる開閉弁(23)を更に備えることを特徴とする作業機械の動力回生装置。
  5.  請求項1ないし4のいずれか1項記載の作業機械の動力回生装置を備えることを特徴とする作業機械。
PCT/JP2012/082837 2011-12-28 2012-12-18 作業機械の動力回生装置および作業機械 WO2013099710A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280064478.XA CN104024659B (zh) 2011-12-28 2012-12-18 作业机械的动力再生装置以及作业机械
JP2013551636A JP6106097B2 (ja) 2011-12-28 2012-12-18 作業機械の動力回生装置および作業機械
KR1020147017351A KR101991983B1 (ko) 2011-12-28 2012-12-18 작업 기계의 동력 회생 장치 및 작업 기계
EP12863748.5A EP2799727B1 (en) 2011-12-28 2012-12-18 Power regeneration device for work machine and work machine
US14/353,677 US9574328B2 (en) 2011-12-28 2012-12-18 Power regeneration device for working machine and working machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-289316 2011-12-28
JP2011289316 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013099710A1 true WO2013099710A1 (ja) 2013-07-04

Family

ID=48697202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082837 WO2013099710A1 (ja) 2011-12-28 2012-12-18 作業機械の動力回生装置および作業機械

Country Status (6)

Country Link
US (1) US9574328B2 (ja)
EP (1) EP2799727B1 (ja)
JP (1) JP6106097B2 (ja)
KR (1) KR101991983B1 (ja)
CN (1) CN104024659B (ja)
WO (1) WO2013099710A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119569A1 (ja) * 2013-01-29 2014-08-07 日立建機株式会社 作業機械の圧油エネルギ回収装置
WO2017056200A1 (ja) * 2015-09-29 2017-04-06 日立建機株式会社 作業機械の圧油エネルギ回生装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6019956B2 (ja) * 2012-09-06 2016-11-02 コベルコ建機株式会社 ハイブリッド建設機械の動力制御装置
JP6080458B2 (ja) * 2012-09-28 2017-02-15 株式会社アイチコーポレーション クローラ式走行車両
JP2014118985A (ja) * 2012-12-13 2014-06-30 Kobelco Contstruction Machinery Ltd 建設機械の油圧回路
JP6286965B2 (ja) * 2013-09-18 2018-03-07 株式会社豊田自動織機 産業車両の車速制御装置
KR101847760B1 (ko) * 2014-04-03 2018-04-10 히다찌 겐끼 가부시키가이샤 건설 기계
US10301793B2 (en) * 2014-10-02 2019-05-28 Hitachi Construction Machinery Co., Ltd. Hydraulic drive system for work machine
US10174770B2 (en) 2015-11-09 2019-01-08 Caterpillar Inc. System and method of hydraulic energy recovery for machine start-stop and machine ride control
JP6360824B2 (ja) * 2015-12-22 2018-07-18 日立建機株式会社 作業機械
CN108869839B (zh) * 2017-05-11 2020-06-05 上海汽车集团股份有限公司 流量变力电磁阀的流量补偿方法及装置
CN107503998B (zh) * 2017-09-15 2019-08-30 太原理工大学 背压及动力液压混合一体化调控多执行器系统
CN107830002B (zh) * 2017-10-27 2023-07-04 江苏徐工工程机械研究院有限公司 电液控制系统、方法及高空作业平台
DE102017222761A1 (de) * 2017-12-14 2019-06-19 Robert Bosch Gmbh Hydraulische Versorgungseinrichtung
JP7096105B2 (ja) * 2018-08-23 2022-07-05 株式会社神戸製鋼所 掘削作業機械の油圧駆動装置
KR102188638B1 (ko) * 2019-02-08 2020-12-09 건설기계부품연구원 에너지 회생이 가능한 유압펌프의 가속수명시험을 위한 시험 장치
CN113027839B (zh) * 2021-02-23 2023-08-18 武汉船用机械有限责任公司 用于大吨位升降平台的液压控制系统
CN114506799B (zh) * 2022-04-20 2022-07-08 杭叉集团股份有限公司 一种叉车门架联合动作控制方法及控制系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138187A (ja) * 2002-10-18 2004-05-13 Komatsu Ltd 圧油エネルギー回収装置
JP2006312995A (ja) * 2005-05-09 2006-11-16 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 作業機械のブームエネルギの回生装置及びエネルギの回生装置
JP2007107616A (ja) 2005-10-13 2007-04-26 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 作業機械のブームエネルギの回生装置及びエネルギの回生装置
JP2012041978A (ja) * 2010-08-18 2012-03-01 Kawasaki Heavy Ind Ltd 作業機械の電液駆動システム
JP2012097844A (ja) * 2010-11-02 2012-05-24 Sumitomo (Shi) Construction Machinery Co Ltd ハイブリッド油圧ショベル
JP2012237409A (ja) * 2011-05-12 2012-12-06 Hitachi Constr Mach Co Ltd 作業機械のエネルギ回生装置
JP2013002540A (ja) * 2011-06-15 2013-01-07 Hitachi Constr Mach Co Ltd 作業機械の動力回生装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136806A (ja) * 1998-11-04 2000-05-16 Komatsu Ltd 圧油のエネルギー回収装置および圧油のエネルギー回収・再生装置
JP2004324742A (ja) * 2003-04-23 2004-11-18 Saxa Inc 液圧装置
JP4871147B2 (ja) 2007-01-15 2012-02-08 住友建機株式会社 ブーム付き建設機械の油圧回路
JP5078693B2 (ja) * 2008-03-26 2012-11-21 カヤバ工業株式会社 ハイブリッド建設機械の制御装置
CN101403405A (zh) * 2008-10-31 2009-04-08 浙江大学 混合动力单泵多执行元件工程机械的能量回收系统
CN101408213A (zh) * 2008-11-11 2009-04-15 浙江大学 混合动力工程机械蓄能器-液压马达能量回收系统
JP5657548B2 (ja) * 2009-09-15 2015-01-21 住友重機械工業株式会社 ハイブリッド型建設機械
CN103069118B (zh) * 2010-08-31 2015-05-06 日立建机株式会社 作业机械
EP2672127A4 (en) * 2011-02-03 2016-06-08 Hitachi Construction Machinery ENERGY REGENERATION DEVICE FOR CONSTRUCTION MACHINE
CN103597220B (zh) * 2011-06-15 2016-02-17 日立建机株式会社 作业机械的动力再生装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138187A (ja) * 2002-10-18 2004-05-13 Komatsu Ltd 圧油エネルギー回収装置
JP2006312995A (ja) * 2005-05-09 2006-11-16 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 作業機械のブームエネルギの回生装置及びエネルギの回生装置
JP2007107616A (ja) 2005-10-13 2007-04-26 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 作業機械のブームエネルギの回生装置及びエネルギの回生装置
JP2012041978A (ja) * 2010-08-18 2012-03-01 Kawasaki Heavy Ind Ltd 作業機械の電液駆動システム
JP2012097844A (ja) * 2010-11-02 2012-05-24 Sumitomo (Shi) Construction Machinery Co Ltd ハイブリッド油圧ショベル
JP2012237409A (ja) * 2011-05-12 2012-12-06 Hitachi Constr Mach Co Ltd 作業機械のエネルギ回生装置
JP2013002540A (ja) * 2011-06-15 2013-01-07 Hitachi Constr Mach Co Ltd 作業機械の動力回生装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119569A1 (ja) * 2013-01-29 2014-08-07 日立建機株式会社 作業機械の圧油エネルギ回収装置
WO2017056200A1 (ja) * 2015-09-29 2017-04-06 日立建機株式会社 作業機械の圧油エネルギ回生装置
CN107208674A (zh) * 2015-09-29 2017-09-26 日立建机株式会社 作业机械的液压油能量回收再生装置
JPWO2017056200A1 (ja) * 2015-09-29 2017-11-30 日立建機株式会社 作業機械の圧油エネルギ回生装置
CN107208674B (zh) * 2015-09-29 2018-10-30 日立建机株式会社 作业机械的液压油能量回收再生装置
US10584722B2 (en) 2015-09-29 2020-03-10 Hitachi Construction Machinery Co., Ltd. Hydraulic fluid energy regeneration apparatus of work machine

Also Published As

Publication number Publication date
KR20140105488A (ko) 2014-09-01
CN104024659B (zh) 2016-04-27
CN104024659A (zh) 2014-09-03
JPWO2013099710A1 (ja) 2015-05-07
EP2799727A4 (en) 2016-01-20
EP2799727A1 (en) 2014-11-05
US20140283509A1 (en) 2014-09-25
EP2799727B1 (en) 2018-05-30
US9574328B2 (en) 2017-02-21
JP6106097B2 (ja) 2017-03-29
KR101991983B1 (ko) 2019-06-21

Similar Documents

Publication Publication Date Title
JP6106097B2 (ja) 作業機械の動力回生装置および作業機械
JP5687150B2 (ja) 建設機械
JP6152473B2 (ja) 作業機械の圧油エネルギ回生装置
KR101834589B1 (ko) 선회체를 갖는 건설 기계
JP5681732B2 (ja) 作業機械の動力回生装置
US10584722B2 (en) Hydraulic fluid energy regeneration apparatus of work machine
WO2013058326A1 (ja) 電動式油圧作業機械の油圧駆動装置
JP6005176B2 (ja) 電動式油圧作業機械の油圧駆動装置
CN107949706B (zh) 作业机械
US20140166135A1 (en) Slewing-type working machine
KR101595584B1 (ko) 하이브리드 건설기계의 제어장치
WO2014119569A1 (ja) 作業機械の圧油エネルギ回収装置
KR20140063622A (ko) 건설 기계의 유압 구동 장치
JP2019049321A (ja) 建設機械
JP2011226491A (ja) 油圧ショベルの旋回油圧回路
JP2008275101A (ja) ハイブリッド式建設車両
JP6009388B2 (ja) 作業機械
JP5642620B2 (ja) 作業機械のエネルギ回生装置
JP2013160251A (ja) 作業機械の動力回生装置
JP5731331B2 (ja) 作業機械の動力回生装置
WO2019130898A1 (ja) 作業機械
JP2021032361A (ja) 建設機械
JP6896528B2 (ja) ショベル
JP5723947B2 (ja) 旋回体を有する建設機械

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280064478.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551636

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14353677

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012863748

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147017351

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE