WO2012172901A1 - 蛍光体含有シート、それを用いたled発光装置およびその製造方法 - Google Patents

蛍光体含有シート、それを用いたled発光装置およびその製造方法 Download PDF

Info

Publication number
WO2012172901A1
WO2012172901A1 PCT/JP2012/062251 JP2012062251W WO2012172901A1 WO 2012172901 A1 WO2012172901 A1 WO 2012172901A1 JP 2012062251 W JP2012062251 W JP 2012062251W WO 2012172901 A1 WO2012172901 A1 WO 2012172901A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
containing sheet
phosphor sheet
led element
sheet
Prior art date
Application number
PCT/JP2012/062251
Other languages
English (en)
French (fr)
Inventor
松村宣夫
井上武治郎
定国広宣
石田豊
川本一成
吉岡正裕
後藤哲哉
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to SG2013026232A priority Critical patent/SG191709A1/en
Priority to EP12800149.2A priority patent/EP2610314B1/en
Priority to CN201280003242.5A priority patent/CN103154146B/zh
Priority to KR1020137006058A priority patent/KR101330593B1/ko
Priority to US14/002,252 priority patent/US8946983B2/en
Publication of WO2012172901A1 publication Critical patent/WO2012172901A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/90Methods of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/07Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/026Phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to a sheet-like fluorescent material for converting the emission wavelength of an LED chip.
  • LEDs Light-emitting diodes
  • LCDs liquid crystal displays
  • car headlights etc.
  • the market is rapidly expanding not only in the automotive field but also for general lighting.
  • the emission spectrum of an LED depends on the semiconductor material forming the LED chip, its emission color is limited. Therefore, in order to obtain white light for LCD backlight or general illumination using LEDs, it is necessary to arrange phosphors suitable for each chip on the LED chip and convert the emission wavelength.
  • a method of installing a yellow phosphor on an LED chip that emits blue light a method of installing red and green phosphors on an LED chip that emits blue light, and red, green, and blue on an LED chip that emits ultraviolet light
  • a method of installing a phosphor is proposed.
  • the method of installing a yellow phosphor on a blue LED and the method of installing red and green phosphors on a blue LED are currently most widely adopted in terms of the luminous efficiency and cost of the LED chip. .
  • the method of attaching the phosphor sheet to the LED chip is a better method for stabilizing the color and brightness than using the liquid phosphor resin as described above, but includes the problem of difficulty in processing. Yes. There is a possibility that the cutting process for dividing the phosphor sheet into the size of the LED chip may be complicated, and the part corresponding to the electrode part etc. on the LED chip needs to be drilled in advance. is there. Therefore, it is important to develop a phosphor sheet material having excellent processability.
  • Patent Document 1 discloses a method in which a sheet material in which a phosphor is dispersed in an uncured silicone resin is molded, and after being applied, is thermally cured to obtain strong adhesion.
  • the method disclosed here it is difficult to obtain adhesiveness when the resin main component contained in the phosphor sheet is a cured silicone resin, the phosphor sheet before pasting is in an uncured state, It is semi-solid or soft solid, and it is very difficult to perform cutting and drilling with high accuracy.
  • Patent Document 3 discloses a composite sheet in which an inorganic phosphor plate and an adhesive layer are laminated, and it is disclosed that the inorganic phosphor plate can be cut by dicing. The machinability at is unknown.
  • a phosphor sheet having excellent workability before pasting and excellent adhesiveness during pasting has not been obtained. It is an object of the present invention to provide a phosphor sheet that achieves such characteristics.
  • the present invention is a phosphor-containing sheet having a storage elastic modulus at 25 ° C. of 0.1 MPa or more and a storage elastic modulus at 100 ° C. of less than 0.1 MPa, wherein the resin main component of the phosphor-containing sheet is A phosphor-containing sheet, which is a cross-linked product obtained by hydrosilylation reaction of a cross-linkable silicone composition including at least the following compositions (A) to (D): (A) Average unit formula: (R 1 2 SiO 2/2 ) a (R 1 SiO 3/2 ) b (R 2 O 1/2 ) c (Wherein R 1 is a phenyl group, an alkyl or cycloalkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms, provided that 65 to 75 mol% of R 1 is phenyl.
  • R 1 is an alkenyl group
  • R 2 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 3 is an alkenyl group, and m is an integer of 5 to 50.
  • R 4 Represented by the formula ⁇ 5 to 15 parts by weight per 100 parts by weight of component (A) ⁇
  • C) General formula: (HR 4 2 SiO) 2 SiR 4 2 (In the formula, R 4 is a phenyl group, or an alkyl group or cycloalkyl group having 1 to 6 carbon atoms, provided that 30 to 70 mol% of R 4 is phenyl.) ⁇ Amount such that the molar ratio of silicon-bonded hydrogen atoms in this component to the total of alkenyl groups in component (A) and component (B) is 0.5 to 2 ⁇ , and ( D) Hydrosilylation reaction catalyst ⁇ Amount sufficient to promote hydrosilylation reaction between alkenyl group in component (A), component (B) and silicon-bonded hydrogen atom in component (C) ⁇
  • a crosslinkable silicone composition comprising at least
  • the phosphor-containing resin layer since the phosphor-containing resin layer has a high storage elastic modulus near room temperature, it is excellent in mechanical workability such as cutting and punching. Moreover, since it has a low storage elastic modulus at high temperature, it has excellent adhesiveness by being attached to the LED element at high temperature.
  • the 1st example of the LED light-emitting device manufacturing process by the resin laminated sheet of this invention The 2nd example of the LED light-emitting device manufacturing process by the resin lamination sheet of this invention. The 3rd example of the LED light-emitting device manufacturing process by the resin laminated sheet of this invention.
  • silicone resins and epoxy resins are preferably used mainly from the viewpoint of transparency. Furthermore, a silicone resin is particularly preferably used from the viewpoint of heat resistance.
  • curable silicone rubber is preferable. Either one liquid type or two liquid type (three liquid type) liquid structure may be used. Cured silicone rubbers include dealcohol-free, deoxime-type, deacetate-type, and dehydroxylamine-type types that cause a condensation reaction with moisture in the air or a catalyst, but a type that causes a hydrosilylation reaction with a catalyst.
  • the addition reaction type is preferred. In particular, the addition reaction type silicone rubber is more preferable in that it has no by-product accompanying the curing reaction, has a small curing shrinkage, and can easily be cured by heating.
  • the addition reaction type silicone rubber is formed by a hydrosilylation reaction between a compound containing an alkenyl group bonded to a silicon atom and a compound having a hydrogen atom bonded to a silicon atom.
  • a silicone resin which is a crosslinked product obtained by hydrosilylation reaction of a crosslinkable silicone composition (hereinafter referred to as “the present composition”) having the following compositions (A) to (D): The following characteristics can be obtained.
  • R 3 is an alkenyl group, and m is an integer of 5 to 50.
  • R 4 Represented by the formula ⁇ 5 to 15 parts by weight per 100 parts by weight of component (A) ⁇
  • C) General formula: (HR 4 2 SiO) 2 SiR 4 2 (In the formula, R 4 is a phenyl group, or an alkyl group or cycloalkyl group having 1 to 6 carbon atoms, provided that 30 to 70 mol% of R 4 is phenyl.) ⁇ Amount such that the molar ratio of silicon-bonded hydrogen atoms in this component to the total of alkenyl groups in component (A) and component (B) is 0.5 to 2 ⁇ , and ( D) Hydrosilylation reaction catalyst ⁇ Amount sufficient to promote hydrosilylation reaction between alkenyl group in component (A), component (B) and silicon-bonded hydrogen atom in component (C) ⁇
  • a crosslinkable silicone composition comprising at least the following is preferably used.
  • Silicone resins useful in practicing the present invention are of the above composition.
  • the values of a, b, and c are within a range in which the obtained crosslinked product has sufficient hardness at room temperature and softening at high temperature is sufficient for carrying out the present invention. It has been established.
  • the resulting crosslinked product is insufficiently softened at a high temperature. The resulting crosslinked product loses its transparency, and its mechanical strength also decreases.
  • at least one R 3 is an alkenyl group.
  • m is an integer in the range of 5 to 50, and this is a range in which handling workability is maintained while maintaining the mechanical strength of the resulting crosslinked product.
  • the content of the component (B) is in the range of 5 to 15 parts by weight with respect to 100 parts by weight of the component (A). This is a range for obtaining sufficient softening of the resulting crosslinked product at high temperatures.
  • R 4 is a phenyl group, or an alkyl group or cycloalkyl group having 1 to 6 carbon atoms.
  • alkyl group for R 4 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a heptyl group.
  • cycloalkyl group for R 4 include a cyclopentyl group and a cycloheptyl group.
  • the phenyl group content is in the range of 30 to 70 mol%. This is a range in which the obtained crosslinked product can be sufficiently softened at a high temperature and can maintain transparency and mechanical strength.
  • component (C) is such that the molar ratio of silicon-bonded hydrogen atoms in this component is 0.5 with respect to the total of alkenyl groups in component (A) and component (B).
  • ⁇ 2 This is the range in which sufficient hardness at room temperature of the obtained crosslinked product can be obtained.
  • the component (D) is a hydrosilylation catalyst for promoting the hydrosilylation reaction between the alkenyl group in the components (A) and (B) and the silicon atom-bonded hydrogen atom in the component (C).
  • the component (D) include platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts, and platinum-based catalysts are preferred because they can significantly accelerate the curing of the composition.
  • platinum-based catalyst include platinum fine powder, chloroplatinic acid, alcohol solution of chloroplatinic acid, platinum-alkenylsiloxane complex, platinum-olefin complex, and platinum-carbonyl complex, particularly platinum-alkenylsiloxane complex. It is preferable.
  • alkenylsiloxane examples include 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, Examples thereof include alkenyl siloxanes in which part of the methyl groups of these alkenyl siloxanes are substituted with ethyl groups, phenyl groups, and the like, and alkenyl siloxanes in which the vinyl groups of these alkenyl siloxanes are substituted with allyl groups, hexenyl groups, and the like.
  • 1,3-divinyl-1,1,3,3-toteramethyldisiloxane is preferred because the stability of the platinum-alkenylsiloxane complex is good. Further, since the stability of the platinum-alkenylsiloxane complex can be improved, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane and 1,3-diallyl-1,1 are added to this complex.
  • the content of the component (D) is sufficient to promote the hydrosilylation reaction between the alkenyl group in the components (A) and (B) and the silicon atom-bonded hydrogen atom in the component (C).
  • the amount of the metal atom in the component is preferably in the range of 0.01 to 500 ppm by mass unit, and more preferably 0.01 to 500 ppm. It is preferably in the range of ⁇ 100 ppm, and particularly preferably in the range of 0.01 to 50 ppm. This is a range in which the resulting composition is sufficiently crosslinked and does not cause problems such as coloring.
  • the composition comprises at least the above components (A) to (D), but as other optional components, ethynylhexanol, 2-methyl-3-butyn-2-ol, 3,5-dimethyl-1-hexyne Alkyne alcohols such as 3-ol and 2-phenyl-3-butyn-2-ol; enyne compounds such as 3-methyl-3-penten-1-yne and 3,5-dimethyl-3-hexen-1-in 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetrahexenylcyclotetrasiloxane; Further, a reaction inhibitor such as benzotriazole may be contained.
  • the content of the reaction inhibitor is not limited, but is preferably in the range of 1 to 5,000 ppm with respect to the weight of the composition. By adjusting the content of the reaction inhibitor, it is possible to adjust the storage elastic modulus
  • the phosphor-containing sheet of the present invention may also be added with a dispersing agent or leveling agent for stabilizing the coating film as an additive, and an adhesion aid such as a silane coupling agent as a sheet surface modifier.
  • a dispersing agent or leveling agent for stabilizing the coating film as an additive
  • an adhesion aid such as a silane coupling agent as a sheet surface modifier.
  • alumina fine particles, silica fine particles, silicone fine particles and the like as the phosphor sedimentation inhibitor.
  • the storage elastic modulus of the phosphor sheet in which the phosphor is dispersed in these resins is 0.1 MPa or more at 25 ° C. and less than 0.1 MPa at 100 ° C. More desirably, it is 0.3 MPa or more at 25 ° C., more desirably 0.5 MPa or more, further desirably 0.7 MPa or more, and particularly desirably 1.0 MPa or more. More desirably, it is less than 0.07 MPa at 100 ° C., more desirably less than 0.05 MPa, further desirably less than 0.03 MPa, and particularly desirably less than 0.01 MPa.
  • the storage elastic modulus mentioned here is a storage elastic modulus when dynamic viscoelasticity measurement is performed.
  • Dynamic viscoelasticity means that when shear strain is applied to a material at a sinusoidal frequency, the shear stress that appears when a steady state is reached is divided into a component (elastic component) whose strain and phase match, and the strain and phase are
  • This is a technique for analyzing the dynamic mechanical properties of a material by decomposing it into components (viscous components) delayed by 90 °.
  • G ′ what is obtained by dividing the stress component whose phase matches the shear strain by the shear strain is the storage elastic modulus G ′, which represents the deformation and tracking of the material against the dynamic strain at each temperature. It is closely related to processability and adhesion.
  • the phosphor sheet according to the present invention has a storage elastic modulus of 0.1 MPa or more at 25 ° C., so that rapid shear stress such as punching by die punching at room temperature (25 ° C.) or cutting by a blade body. When such processing is performed, the sheet is perforated or cut without deformation around the processed portion, so that the processability with high dimensional accuracy is obtained.
  • the upper limit of the storage elastic modulus at room temperature is not particularly limited for the purpose of the present invention, but is preferably 1 GPa or less in view of the necessity of reducing the stress strain after being attached to the LED element. Further, since the storage elastic modulus at 100 ° C.
  • the phosphor sheet quickly deforms and follows the shape of the surface of the LED chip when heated and pasted at 60 ° C. to 250 ° C. High adhesion can be obtained.
  • the phosphor sheet is capable of obtaining a storage modulus of less than 0.1 MPa at 100 ° C., the storage modulus decreases as the temperature is increased from room temperature. However, in order to obtain practical adhesiveness, 60 ° C. or higher is preferable.
  • the storage elastic modulus further decreases and the sticking property is improved.
  • the resin usually has thermal expansion and thermal contraction. And thermal decomposition problems are likely to occur.
  • a preferable heat bonding temperature is 60 ° C. to 250 ° C.
  • the lower limit of the storage elastic modulus at 100 ° C. is not particularly limited for the purpose of the present invention, but if the fluidity is too high at the time of heating and pasting on the LED element, the shape processed by cutting or punching before pasting Therefore, it is desirable that the pressure be 0.001 MPa or more.
  • the resin contained therein may be in an uncured or semi-cured state. Then, it is preferable that resin contained is a thing after hardening. If the resin is in an uncured or semi-cured state, the curing reaction proceeds at room temperature during storage of the phosphor sheet, and the storage elastic modulus may be out of the proper range. In order to prevent this, it is desirable that the resin is completely cured, or has been cured to such an extent that the storage elastic modulus does not change for a long period of about one month when stored at room temperature.
  • the phosphor absorbs blue light, violet light, or ultraviolet light emitted from the LED chip, converts the wavelength, and has a wavelength different from that of the LED chip having wavelengths in the red, orange, yellow, green, and blue regions. It emits light. Thereby, a part of the light emitted from the LED chip and a part of the light emitted from the phosphor are mixed to obtain a multicolor LED including white.
  • the phosphors as described above include various phosphors such as a phosphor emitting green, a phosphor emitting blue, a phosphor emitting yellow, and a phosphor emitting red.
  • Specific phosphors used in the present invention include known phosphors such as organic phosphors, inorganic phosphors, fluorescent pigments, and fluorescent dyes.
  • organic phosphors include allylsulfoamide / melamine formaldehyde co-condensed dyes and perylene phosphors.
  • Perylene phosphors are preferably used because they can be used for a long period of time.
  • Examples of the fluorescent material that is particularly preferably used in the present invention include inorganic phosphors. The inorganic phosphor used in the present invention is described below.
  • Examples of phosphors that emit green light include SrAl 2 O 4 : Eu, Y 2 SiO 5 : Ce, Tb, MgAl 11 O 19 : Ce, Tb, Sr 7 Al 12 O 25 : Eu, (Mg, Ca, Sr , At least one of Ba) and Ga 2 S 4 : Eu.
  • Examples of phosphors that emit blue light include Sr 5 (PO 4 ) 3 Cl: Eu, (SrCaBa) 5 (PO 4 ) 3 Cl: Eu, (BaCa) 5 (PO 4 ) 3 Cl: Eu, (Mg, 2 B 5 O 9 Cl: Eu, Mn, (Mg, Ca, Sr, Ba, at least one) (PO 4 ) 6 Cl 2 : Eu, Mn, etc. .
  • yttrium / aluminum oxide phosphors As phosphors emitting green to yellow, at least cerium-activated yttrium / aluminum oxide phosphors, at least cerium-enriched yttrium / gadolinium / aluminum oxide phosphors, at least cerium-activated yttrium / aluminum There are garnet oxide phosphors and at least cerium activated yttrium gallium aluminum oxide phosphors (so-called YAG phosphors). Specifically, Ln 3 M 5 O 12 : R (Ln is at least one selected from Y, Gd, and La. M includes at least one of Al and Ca. R is a lanthanoid series.
  • R is at least one selected from Ce, Tb, Pr, Sm, Eu, Dy, Ho
  • Ce, Tb, Pr, Sm, Eu, Dy, Ho 0 ⁇ Rx ⁇ 0.5, 0 ⁇ y ⁇ 0.5
  • Examples of phosphors that emit red light include Y 2 O 2 S: Eu, La 2 O 2 S: Eu, Y 2 O 3 : Eu, and Gd 2 O 2 S: Eu.
  • YAG-based phosphors YAG-based phosphors, TAG-based phosphors, and silicate-based phosphors are preferably used in terms of luminous efficiency and luminance.
  • known phosphors can be used according to the intended use and the intended emission color.
  • the particle size of the phosphor is not particularly limited, but preferably has a D50 of 0.05 ⁇ m or more, more preferably 3 ⁇ m or more. Further, those having a D50 of 30 ⁇ m or less are preferred, and those having a D50 of 20 ⁇ m or less are more preferred.
  • D50 refers to the particle size when the accumulated amount from the small particle size side is 50% in the volume-based particle size distribution obtained by measurement by the laser diffraction / scattering particle size distribution measurement method. When D50 is in the above range, the dispersibility of the phosphor in the phosphor sheet is good, and stable light emission is obtained.
  • the phosphor content is preferably 53% by weight or more of the entire phosphor sheet, more preferably 57% by weight or more, and even more preferably 60% by weight.
  • the upper limit of the phosphor content is not particularly specified, but is preferably 95% by weight or less of the entire phosphor sheet and 90% by weight or less from the viewpoint that a phosphor sheet excellent in workability can be easily produced. More preferably, it is more preferably 85% by weight or less, and particularly preferably 80% by weight or less.
  • the phosphor sheet of the present invention is particularly preferably used for LED surface coating, as will be described in detail later.
  • the LED light-emitting device which shows the outstanding performance can be obtained because content of the fluorescent substance in a fluorescent substance sheet is the said range.
  • the film thickness of the phosphor sheet of the present invention is determined from the phosphor content and desired optical characteristics. Since the phosphor content is limited from the viewpoint of workability as described above, the film thickness is preferably 10 ⁇ m or more. Moreover, since the phosphor sheet of the present invention has a large phosphor content, it is excellent in light resistance even when the film thickness is large. On the other hand, from the viewpoint of improving the optical properties and heat resistance of the phosphor sheet, the thickness of the phosphor sheet is preferably 1000 ⁇ m or less, more preferably 200 ⁇ m or less, and even more preferably 100 ⁇ m or less. . By setting the phosphor sheet to a film thickness of 1000 ⁇ m or less, light absorption and light scattering by the binder resin can be proposed, so that the phosphor sheet is optically excellent.
  • the film thickness of the phosphor sheet in the present invention is a film thickness (average film thickness) measured based on the method A of measuring thickness by mechanical scanning in JIS K7130 (1999) plastic-film and sheet-thickness measurement method. ).
  • Heat resistance indicates resistance to heat generated in the LED chip.
  • the heat resistance can be evaluated by comparing the luminance when the LED emits light at room temperature and when the LED emits light at a high temperature, and measuring how much the luminance at the high temperature decreases.
  • the LED is in an environment where a large amount of heat is generated in a small space, and particularly in the case of a high power LED, heat generation is significant. Due to such heat generation, the temperature of the phosphor increases, and the luminance of the LED decreases. Therefore, it is important how efficiently the generated heat is radiated.
  • seat excellent in heat resistance can be obtained by making a sheet
  • the variation in sheet thickness is preferably within ⁇ 5%, more preferably within ⁇ 3%.
  • the film thickness variation referred to here is a thickness measurement method based on the thickness measurement method A by mechanical scanning in JIS K7130 (1999) plastic-film and sheet-thickness measurement method, and is shown below. Calculated by the formula.
  • Film thickness variation B (%) ⁇ (maximum film thickness deviation value * ⁇ average film thickness) / average film thickness ⁇ ⁇ 100 *
  • the maximum film thickness deviation value the one with the larger difference from the average film thickness is selected from the maximum value or the minimum value.
  • a method for producing the phosphor sheet of the present invention will be described.
  • the following is an example and the preparation method of a fluorescent substance sheet is not limited to this.
  • sheet-preparing phosphor-dispersed silicone resin a solution in which a phosphor is dispersed in a resin (hereinafter referred to as “sheet-preparing phosphor-dispersed silicone resin”) is prepared as a coating solution for forming a phosphor sheet.
  • sheet-preparing phosphor-dispersed silicone resin is prepared as a coating solution for forming a phosphor sheet.
  • the phosphor-dispersed silicone resin for preparing a sheet can be obtained by mixing a phosphor and a resin.
  • an addition reaction type silicone resin when a compound containing an alkenyl group bonded to a silicon atom and a compound having a hydrogen atom bonded to a silicon atom are mixed, the curing reaction may start even at room temperature. It is also possible to extend the pot life by blending a hydrosilylation reaction retarder such as a compound with the phosphor-dispersed silicone resin for sheet preparation. It is also possible to mix dispersion additives and leveling agents for stabilizing the coating film as additives, and adhesion aids such as silane coupling agents as sheet surface modifiers into the phosphor-dispersed silicone resin for sheet preparation. It is. It is also possible to mix alumina fine particles, silica fine particles, silicone fine particles and the like as the phosphor sedimentation inhibitor with the phosphor-dispersed silicone resin for sheet preparation.
  • a solvent can be added to form a solution.
  • a solvent will not be specifically limited if the viscosity of resin of a fluid state can be adjusted.
  • toluene, methyl ethyl ketone, methyl isobutyl ketone, hexane, acetone, terpineol and the like can be mentioned.
  • the mixture is homogeneously mixed and dispersed with a homogenizer, a revolving stirrer, a three-roller, a ball mill, a planetary ball mill, a bead mill, etc.
  • a phosphor-dispersed silicone resin is obtained. Defoaming is preferably carried out under vacuum or reduced pressure conditions after mixing or dispersing.
  • a phosphor-dispersed silicone resin for creating a sheet is applied on a substrate and dried.
  • Application is reverse roll coater, blade coater, slit die coater, direct gravure coater, offset gravure coater, reverse roll coater, blade coater, kiss coater, natural roll coater, air knife coater, roll blade coater, varibar roll blade coater, toe.
  • a stream coater, rod coater, wire bar coater, applicator, dip coater, curtain coater, spin coater, knife coater or the like can be used.
  • the phosphor sheet of the present invention can also be produced by using a printing method such as screen printing, gravure printing, or lithographic printing. When using a printing method, screen printing is particularly preferably used.
  • the sheet can be dried using a general heating device such as a hot air dryer or an infrared dryer.
  • a general heating device such as a hot air dryer or an infrared dryer is used.
  • the heat curing conditions are usually 40 to 250 ° C. for 1 minute to 5 hours, preferably 100 ° C. to 200 ° C. for 2 minutes to 3 hours.
  • a known metal, film, glass, ceramic, paper or the like can be used without particular limitation.
  • metal plates and foils such as aluminum (including aluminum alloys), zinc, copper, iron, cellulose acetate, polyethylene terephthalate (PET), polyethylene, polyester, polyamide, polyimide, polyphenylene sulfide, polystyrene, polypropylene, polycarbonate
  • a film of plastic such as polyvinyl acetal or aramid, a paper laminated with the plastic, or a paper coated with the plastic, a paper laminated or vapor-deposited with the metal, or a plastic film laminated or vapor-deposited with the metal. Can be mentioned.
  • the surface may be subjected to plating treatment or ceramic treatment such as chromium or nickel.
  • a base material is a flexible film form from the adhesiveness at the time of sticking a fluorescent substance containing resin sheet to an LED element.
  • a film having a high strength is preferred so that there is no fear of breakage when handling a film-like substrate.
  • Resin films are preferred in terms of their required characteristics and economy, and among these, PET films are preferred in terms of economy and handleability.
  • a polyimide film is preferable in terms of heat resistance.
  • the surface of the base material may be subjected to a mold release treatment in advance for ease of peeling of the sheet.
  • the thickness of the substrate is not particularly limited, but the lower limit is preferably 40 ⁇ m or more, more preferably 60 ⁇ m or more. Moreover, as an upper limit, 5000 micrometers or less are preferable and 3000 micrometers or less are more preferable.
  • the phosphor sheet of the present invention is attached to an LED element as a wavelength conversion layer and used as a light emitting device.
  • the heating temperature is preferably 60 ° C. or higher and 250 ° C. or lower, and more preferably 60 ° C. or higher and 150 ° C. or lower.
  • the position accuracy of pasting is important. In order to increase the accuracy of pasting, it is more preferable to paste at 150 ° C. or lower. Furthermore, in order to improve the reliability of the LED light emitting device according to the present invention, it is preferable that there is no stress strain between the phosphor sheet and the LED element. Therefore, the pasting temperature is preferably around the operating temperature of the LED light emitting device, preferably within ⁇ 20 ° C. of the operating temperature. The LED light emitting device rises in temperature from 80 ° C. to 130 ° C. when lit. Therefore, the pasting temperature is desirably 60 ° C. or higher and 150 ° C. or lower in order to bring the operating temperature and the pasting temperature closer. Therefore, the characteristics of the phosphor sheet designed to sufficiently reduce the storage elastic modulus at 100 ° C. are important.
  • any existing apparatus can be used as long as it can be heated and pressurized at a desired temperature.
  • the wafer dicing and phosphor sheet are pasted together on the wafer on which the LED elements before dicing are fabricated.
  • a flip chip bonder can be used.
  • affixing the wafer-level LED elements at once it is affixed with a thermocompression bonding tool or the like having a heating portion of about 100 mm square.
  • the phosphor sheet is thermally fused to the LED element at a high temperature
  • the phosphor sheet is allowed to cool to room temperature and the substrate is peeled off.
  • the phosphor sheet after being allowed to cool to room temperature after heat sealing can be easily peeled off from the substrate while firmly adhering to the LED element. It becomes possible.
  • the method for cutting the phosphor sheet will be described. Before attaching the phosphor sheet to the LED element, cut it into individual pieces in advance and attach it to the individual LED element, and attach the phosphor sheet to the wafer-level LED element and simultaneously dice the wafer. Then, there is a method of cutting the phosphor sheet. In the case of cutting in advance before sticking, the uniformly formed phosphor sheet is processed into a predetermined shape by laser processing or cutting with a blade and divided. Since processing with a laser gives high energy, it is very difficult to avoid scorching of the resin and deterioration of the phosphor, and cutting with a blade is desirable.
  • the storage elastic modulus of the phosphor sheet at 25 ° C. is 0.1 MPa or more.
  • a cutting method with a blade there are a method of pushing and cutting a simple blade and a method of cutting with a rotary blade, both of which can be suitably used.
  • an apparatus for cutting with a rotary blade an apparatus used for cutting (dicing) a semiconductor substrate called a dicer into individual chips can be suitably used. If the dicer is used, the width of the dividing line can be precisely controlled by the thickness of the rotary blade and the condition setting, so that higher processing accuracy can be obtained than when cutting with a simple cutting tool.
  • FIG. 1 shows an example of individualization, LED element application, and dicing steps when the phosphor sheet is divided into individual substrates.
  • the process of FIG. 1 includes a step of cutting the phosphor sheet into individual pieces, and a step of heating the phosphor-containing sheet cut into the individual pieces and attaching them to the LED elements.
  • FIG. 1A shows a state in which the phosphor sheet 1 of the present invention laminated with the base material 2 is fixed to the temporarily fixing sheet 3.
  • both the phosphor sheet 1 and the base material 2 are separated, they are fixed to the temporarily fixing sheet 3 so as to be easy to handle.
  • the phosphor sheet 1 and the substrate 2 are cut into individual pieces.
  • the separated phosphor sheet 1 and base material 2 are aligned on the LED element 4 mounted on the mounting substrate 5 and heated as shown in (d). Crimp with a crimping tool.
  • the substrate is allowed to cool to room temperature, and the substrate 2 is peeled off as shown in (e).
  • FIG. 2 shows an example of individualization, LED element application, and dicing steps when the phosphor sheet is separated into individual pieces while the base material is continuous.
  • the process of FIG. 2 also includes a process of cutting the phosphor sheet into individual pieces, and a process of heating the phosphor-containing sheet cut into the individual pieces and attaching them to the LED elements.
  • the base material 2 is not separated.
  • the substrate 2 is not cut at all, but may be partially cut as long as the substrate 2 is continuous.
  • the individualized phosphor sheet 1 is aligned with the wafer 7 on the surface of which the LED elements before dicing are formed.
  • the wafer 7 having the phosphor sheet 1 and the LED element before dicing formed on the surface thereof is crimped by a thermocompression bonding tool.
  • the substrate is allowed to cool to room temperature, the substrate 2 is peeled off as shown in (e), the wafer is diced into individual pieces, and the LED elements with phosphor sheets separated into individual pieces as shown in (f) Get.
  • the phosphor sheet When the phosphor sheet is heat-sealed to the wafer-level LED elements before dicing, the phosphor sheet can be cut together with the dicing of the LED element wafer after pasting.
  • the dicing of the wafer is performed by the above-mentioned dicer, and the conditions such as the number of rotations and the cutting speed when cutting are optimized for the conditions for cutting the semiconductor wafer. Therefore, the conditions are optimal for cutting the phosphor sheet. Although it is difficult to do, it can cut suitably by using a phosphor sheet having a high elastic modulus at 25 ° C. as in the present invention.
  • FIG. 3 shows an example of a process in the case where dicing is performed after the phosphor sheet and the wafer are bonded together. The process of FIG.
  • the phosphor sheet 1 of the present invention is not cut in advance, and the wafer 7 on which the LED element before dicing is formed on the surface of the phosphor sheet 1 as shown in FIG. Position it so that it faces.
  • the wafer 7 on which the phosphor sheet 1 and the LED element before dicing are formed on the surface is crimped by a thermocompression bonding tool. At this time, it is preferable to perform the pressure bonding step under vacuum or under reduced pressure so that air is not caught between the phosphor sheet 1 and the LED element 4.
  • the wafer After the pressure bonding, it is allowed to cool to room temperature. After the substrate 2 is peeled off as shown in (c), the wafer is diced, and at the same time, the phosphor sheet 1 is cut into individual pieces, as shown in (d). An LED element with a phosphor sheet is obtained.
  • the phosphor sheet of the present invention when the phosphor sheet of the present invention is attached to an LED element having an electrode on the upper surface, the phosphor sheet is removed to remove the phosphor sheet on the electrode portion. It is desirable to perform perforation processing (form a through hole) in that portion in advance before pasting.
  • perforation processing form a through hole
  • known methods such as laser processing and die punching can be suitably used for drilling, laser processing causes burning of the resin and deterioration of the phosphor, so punching with a die is more desirable.
  • punching punching cannot be performed after the phosphor sheet is attached to the LED element. Therefore, it is essential to perform punching before attaching the phosphor sheet.
  • Punching with a mold can open a hole of any shape or size depending on the electrode shape of the LED element to be attached. Any size and shape of the hole can be formed by designing the mold, but the electrode joint portion on the LED element inside and outside the 1 mm square is preferably 500 ⁇ m or less so as not to reduce the area of the light emitting surface.
  • the hole is formed with a size of 500 ⁇ m or less in accordance with its size.
  • an electrode for performing wire bonding or the like needs to have a certain size and is at least about 50 ⁇ m. Therefore, the hole is about 50 ⁇ m in accordance with the size.
  • the size of the hole is too larger than the electrode, the light emitting surface is exposed, light leakage occurs, and the color characteristics of the LED light emitting device deteriorate.
  • the wire touches at the time of wire bonding resulting in poor bonding. Therefore, in the drilling process, it is necessary to process a small hole of 50 ⁇ m or more and 500 ⁇ m or less with high accuracy within ⁇ 10%, and in order to improve the punching accuracy, the storage modulus of the phosphor sheet at 25 ° C. Is very important to be 0.1 MPa or more.
  • an affixing device having an optical alignment (alignment) mechanism is required. At this time, it is difficult to align the phosphor sheet and the LED element in terms of work, and in practice, the alignment is often performed in a state where the phosphor sheet and the LED element are lightly contacted. At this time, if the phosphor sheet has adhesiveness, it is very difficult to move it in contact with the LED element. If the phosphor sheet of the present invention is aligned at room temperature, the phosphor sheet is not sticky, so that it is easy to align the phosphor sheet and the LED element in light contact.
  • the illuminating device using the LED element to which the phosphor sheet obtained by the present invention is attached has a fluorescence processed accurately compared with the conventional liquid phosphor-containing resin dispensing and a method using a known phosphor sheet. Since the body sheet is provided on the LED element, a certain phosphor is present on the LED, and the unevenness of color and brightness is extremely reduced. In the dispensing method, it is difficult to form a constant film thickness because the liquid resin is supplied and the shape is determined by the surface tension.
  • the film thickness of the phosphor sheet can be made thinner.
  • the film thickness is 10 to 1000 ⁇ m on the LED element, and the film thickness at the center and at the midpoint of the line drawn from the center to any point on the light emitting surface end.
  • a product provided with a phosphor-containing layer having a thickness difference within ⁇ 5%, more preferably within ⁇ 3% at the center is manufactured.
  • the center point on the LED element means that since the LED element light emitting surface is rectangular, the center of the line segment drawn from the center to the end of the light emitting surface is the center and end part.
  • the middle point of In the present invention the film thickness difference between the arbitrary intermediate point and the center point can be kept within ⁇ 5%. More preferably, it can be within ⁇ 3%.
  • ⁇ Silicone resin> Ingredients for compounding silicone resin Resin main component (MeViSiO 2/2 ) 0.25 (Ph 2 SiO 2/2 ) 0.3 (PhSiO 3/2 ) 0.45 (HO 1/2 ) 0.03 (average composition, (A) Applicable) Hardness modifier ViMe 2 SiO (MePhSiO) 17.5 SiMe 2 Vi (average composition, corresponding to component (B)) Crosslinking agent (HMe 2 SiO) 2 SiPh 2 (corresponds to component (C).) * However, Me: methyl group, Vi: vinyl group, Ph: phenyl group Reaction inhibitor 1-ethynylhexanol Platinum catalyst Platinum (1,3-divinyl-1,1,3,3-tetramethyldisiloxane) complex 1,3 -Divinyl-1,1,3,3-tetramethyldisiloxane solution Platinum content 5% by weight Silicone resins 1 and 2 used in the examples were prepared so as to correspond to the “
  • Silicone resin 1 Resin main component 75 parts by weight, hardness adjusting agent 10 parts by weight, cross-linking agent 25 parts by weight, Reaction inhibitor 0.025 parts by weight, platinum catalyst 0.01 parts by weight, silicone resin 2 Resin main component 75 parts by weight, hardness adjusting agent 10 parts by weight, cross-linking agent 25 parts by weight, 0.05 parts by weight of reaction inhibitor, 0.01 parts by weight of platinum catalyst, silicone resin 3 X-32-2528 (Shin-Etsu Chemical) ⁇ Silicone resin 4 KER6075 (Shin-Etsu Chemical).
  • Measuring device Viscoelasticity measuring device ARES-G2 (TA Instruments) Geometry: Parallel disk type (15mm) Strain: 1% Angular frequency: 1 Hz Temperature range: 25 ° C to 140 ° C Temperature increase rate: 5 ° C./min Measurement atmosphere: In air.
  • the phosphor sheet resin solution was coated with a “serapeel” BLK (manufactured by Toray Film Processing Co., Ltd.) using a slit die coater to form a film having a thickness of 100 ⁇ m. This operation was performed for each of the silicone resins 1 to 4.
  • Film formation temperature is 1 hour at 120 ° C for silicones 1, 2 and 4. Since silicone 3 is a silicone adhesive used in a semi-cured state, it was heated at 120 ° C. for 10 minutes.
  • Table 1 shows the storage elastic modulus at room temperature (25 ° C.), 100 ° C., and 140 ° C. of each sheet (containing 70 wt% phosphor).
  • Adhesion test> After the phosphor sheet laminated on the base material is attached to the LED element at 100 ° C. and pressed for a predetermined time, it is returned to room temperature, and when the base material is peeled off, all the phosphor sheet adheres to the LED element and is on the base material. The minimum time that does not remain is defined as the bonding possible time. Adhesiveness is good if the phosphor sheet adheres to the LED element within 1 minute with a thermocompression bonding time and does not remain on the substrate. In the case where a part remains on the base material even after being adhered to the substrate, it was regarded as poor adhesion.
  • Example 1 Using a 300 ml polyethylene container, 30% by weight of silicone resin 1 and “NYAG-02” as a phosphor (manufactured by Intematix: Ce-doped YAG phosphor, specific gravity: 4.8 g / cm 3 , D50: 7 ⁇ m) was mixed in a proportion of 70% by weight.
  • holes having a diameter of 200 ⁇ m were punched into the phosphor sheet with a die punching device (manufactured by UHT). Ten diameters of the punched holes were inspected with a microscope equipped with a length measuring device, and the average value of the dimensions was determined. As a result, as shown in Table 2, holes almost as designed were obtained.
  • the phosphor sheet was separated into 1 mm square ⁇ 10000 pieces using a cutting device (GCUT manufactured by UHT). The phosphor sheet and the substrate were cut together and completely separated. The cut surface had a good shape with no burrs or chips, and no reattachment of the cut portion occurred. 100 pieces were arbitrarily selected from the 10000 pieces, and the number of those having good cutting locations was selected, and the cutting processability was evaluated.
  • the phosphor sheet cut into 1 mm square was arranged so that the phosphor sheet surface was in contact with the chip surface of the substrate on which the blue LED chip was mounted.
  • a die bonding device manufactured by Toray Engineering
  • the hole of the phosphor sheet and the surface electrode of the LED chip are aligned and pressed and bonded with a heating head at 100 ° C. from the base material side. 10 seconds.
  • the substrate was peeled off, the phosphor sheet was completely adhered on the blue LED, and the phosphor sheet could be removed cleanly without any phosphor sheet remaining, Adhesion was good.
  • Example 2 A phosphor sheet was obtained in the same manner as in Example 1 except that the silicone resin 2 was used instead of the silicone resin 1.
  • the silicone resin 2 was used instead of the silicone resin 1.
  • holes having a diameter of 200 ⁇ m were punched into the phosphor sheet and separated into 1 mm squares. Both the drilling workability and the cutting workability were as good as in Example 1.
  • the phosphor sheet cut into 1 mm square was attached to the LED element in the same manner as in Example 1, the adherable time was 5 seconds. Further, the LED lighting test and the phosphor sheet thickness were evaluated in the same manner as in Example 1, and the results are shown in Table 2.
  • Example 3 A phosphor sheet was obtained in the same manner as in Example 1 except that the silicone resin 2 was used instead of the silicone resin 1.
  • the phosphor sheet was separated into 1 mm square pieces using a cutting device (GCUT manufactured by UHT). At this time, while the phosphor sheet was completely separated, the base material was half-cut and processed into a continuous state. The cut surface of the phosphor sheet had a good shape with no burrs or chips, and no reattachment of the cut portion occurred.
  • the blue LED element wafer was diced with a dicing device (manufactured by DISCO), and the surface electrodes of the LED chips separated into pieces were wire-bonded, and then bonded without problems through the holes that were previously processed into the phosphor sheet. did it.
  • Ten LED with the same phosphor sheet sealed with a transparent resin were prepared, connected to a DC power source and turned on, and it was confirmed that all 10 were turned on.
  • Ten correlated color temperatures (CCT) were measured with a color illuminometer (Konica Minolta CL200A), and the difference between the maximum value and the minimum value was evaluated.
  • the phosphor sheet thickness was evaluated in the same manner as in Example 1, and the results are shown in Table 2.
  • Example 4 Using silicone resin 1, a phosphor sheet was obtained in the same manner as in Example 1. When holes having a diameter of 200 ⁇ m were punched out in the phosphor sheet in the same manner as in Example 1, the drilling workability was good. A 100 mm square phosphor sheet was placed so that the phosphor sheet surface was in contact with the surface of a 4-inch wafer that was not diced into individual pieces and on which the blue LED elements were formed. When the hole of the phosphor sheet and the surface electrode of the LED chip were aligned and pressed with a heating plate at 100 ° C. from the base material side, the adherable time was 10 seconds. After returning the sample pressure-bonded for 10 seconds to room temperature and then peeling off the base material, the phosphor sheet adheres completely to the blue LED and can be peeled off cleanly without any phosphor sheet remaining on the base material. The adhesiveness was good.
  • the wafer of the blue LED element was diced from the back surface (the surface opposite to the surface on which the phosphor sheet was attached) with a dicing apparatus (manufactured by DISCO).
  • the cut surface had a good shape with no burrs or chips, and no reattachment of the cut portion occurred.
  • Comparative Example 1 Fabricate a phosphor-containing silicone resin for sheet preparation using silicone resin 2 instead of silicone resin 1 and apply it as a base material on “Therapyl” BLK (manufactured by Toray Film Processing Co., Ltd.) at 120 ° C. for 10 minutes. Heating and drying were performed to obtain a phosphor sheet having a thickness of 90 ⁇ m and a square of 100 mm.
  • the silicone resin 2 had a low elasticity at room temperature and was sticky, so that it adhered to the mold. The average diameter of the holes was significantly smaller than the design.
  • the phosphor sheets were separated into pieces in the same manner as in Example 1, but about half of them were reattached and could not be separated.
  • Example 2 Using only the phosphor sheet that could be singulated without any problem, the same die bonding apparatus as in Example 1 was used to perform thermocompression bonding at 100 ° C. for 10 seconds on the blue LED element, the substrate was peeled off, and 150 ° C. for 30 minutes. Was heat-cured. When the substrate was peeled off after returning to room temperature, the phosphor sheet was completely adhered onto the blue LED, and the phosphor sheet could be removed cleanly without any phosphor sheet remaining on the substrate, and the adhesion was good. It was. When the surface electrode of the LED chip was wire-bonded, the size of the holes processed in the phosphor sheet in advance was small, and some wire bonders were in contact.
  • Example 2 A phosphor sheet was obtained in the same manner as in Example 1 using the silicone resin 4 instead of the silicone resin 1.
  • holes having a diameter of 200 ⁇ m were punched into the phosphor sheet and separated into 1 mm squares.
  • the drilling workability and cutting workability were good results as in Example 1.
  • the phosphor sheet cut into 1 mm square is placed so that the phosphor sheet surface is in contact with the chip surface of the substrate on which the blue LED chip is mounted, and the phosphor sheet is made using a die bonding apparatus (manufactured by Toray Engineering).
  • the hole and the surface electrode of the LED chip were aligned and pressed from the base film side with a heating head at 100 ° C. for 1 minute. After returning to room temperature, the base film was peeled off.
  • the phosphor sheet was incompletely bonded to the blue LED, and peeled off from the LED element together with the base film, and evaluation as an LED element was impossible.
  • Example 3 A phosphor sheet was obtained in the same manner as in Example 1 using the silicone resin 4 instead of the silicone resin 1.
  • a silicone resin 3 not containing a phosphor is applied on it with a slit die coater, heated at 120 ° C. for 10 minutes and dried to form a 10 ⁇ m thick adhesive layer on a 90 ⁇ m thick phosphor sheet.
  • a phosphor sheet of the type was obtained.
  • Example 2 Using only the phosphor sheet that could be singulated without any problem, the same die bonding apparatus as in Example 1 was used, and a blue LED element was subjected to thermocompression bonding at 100 ° C. for 10 seconds, the base film was peeled off, and 150 ° C. for 30 minutes. Was heat-cured. When the base film was peeled off after returning to room temperature, the phosphor sheet was completely adhered onto the blue LED, and the phosphor sheet could be removed cleanly without any phosphor sheet remaining on the base film. When the surface electrode of the LED chip was wire-bonded, the silicone resin 3 partially protruded into the holes that had been processed into the phosphor sheet in advance, and the wire bonder contacted.
  • a certain amount of phosphor resin was dispensed on the chip surface of the substrate on which the blue LED chip was mounted and wire-bonded, and was cured by heating at 150 ° C. for 1 hour.
  • Ten LEDs sealed with a phosphor-containing resin were prepared, connected to a DC power source and turned on, and it was confirmed that all 10 LEDs were turned on.
  • the correlated color temperature (CCT) of all 10 samples was measured with a color illuminometer (Konica Minolta CL200A), and the difference between the maximum value and the minimum value was evaluated as the color temperature variation.
  • the results are shown in Table 2. Since the dispensed phosphor-containing resin is formed in a dome shape, the film thickness difference between the center point and the center point-end middle point is very large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Led Device Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Luminescent Compositions (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

  25℃での貯蔵弾性率が0.1MPa以上であり、100℃での貯蔵弾性率が0.1MPa未満である蛍光体含有シートであって、蛍光体含有シートの樹脂主成分が特定の組成を含む架橋性シリコーン組成物をヒドロシリル化反応してなる架橋物であることを特徴とする蛍光体含有シートを用いることで、LEDチップに波長変換層として貼り付ける蛍光体シートとして、形状加工性が良好で高い接着力を持つ蛍光体シートを提供する。

Description

蛍光体含有シート、それを用いたLED発光装置およびその製造方法
 本発明は、LEDチップの発光波長を変換するためのシート状の蛍光材料に関する。
 発光ダイオード(LED、Light Emitting Diode)は、その発光効率の目覚ましい向上を背景とし、低い消費電力、高寿命、意匠性などを特長として液晶ディスプレイ(LCD)のバックライト向けや、車のヘッドライト等の車載分野ばかりではなく一般照明向けでも急激に市場を拡大しつつある。
 LEDの発光スペクトルは、LEDチップを形成する半導体材料に依存するためその発光色は限られている。そのため、LEDを用いてLCDバックライトや一般照明向けの白色光を得るためにはLEDチップ上にそれぞれのチップに適合した蛍光体を配置し、発光波長を変換する必要がある。具体的には、青色発光するLEDチップ上に黄色蛍光体を設置する方法、青色発光するLEDチップ上に赤および緑の蛍光体を設置する方法、紫外線を発するLEDチップ上に赤、緑、青の蛍光体を設置する方法などが提案されている。これらの中で、LEDチップの発光効率やコストの面から青色LED上に黄色蛍光体を設置する方法、および青色LED上に赤および緑の蛍光体を設置する方法が現在最も広く採用されている。
 LEDチップ上に蛍光体を設置する具体的な方法の1つとして、LEDチップ上に、蛍光体を含有したシート(以下蛍光体シート)を貼り付ける方法が提案されている(特許文献1~3)。この方法は、従来実用化されている蛍光体を分散した液状樹脂をLEDチップ上にディスペンスして硬化する方法と比較して、一定量の蛍光体をLEDチップ上に配置することが容易であり、結果として得られる白色LEDの色や輝度を均一にできる点で優れている。
特開2009-235368号公報 特開2010-123802号公報 特許2011-102004号公報
 蛍光体シートをLEDチップに貼り付ける方法は、前述のように液状蛍光体樹脂を用いるよりも色や輝度の安定化のためには優れた方法ではあるが、加工の難しさという問題を含んでいる。蛍光体シートをLEDチップの大きさに個片化するための切断加工が煩雑となる恐れがあり、また、LEDチップ上の電極部などに相当する部分には予め孔開け加工などを施す必要がある。そのために、加工性に優れる蛍光体シート材料を開発することが重要となる。
 一方で、蛍光体シートにはLEDチップ上に貼り付けるために粘着性ないし接着性を付与することが必須である。例えば、特許文献1では、未硬化のシリコーン樹脂に蛍光体を分散させたシート材料を成形し、貼り付け後に熱硬化させて強固な接着を得る方法が開示されている。しかし、ここで開示された方法では、蛍光体シートに含まれる樹脂主成分を硬化後のシリコーン樹脂とすると接着性を得ることが難しいため、貼り付け前の蛍光体シートは未硬化状態であり、半固体状あるいは柔らかい固体状であり、切断や孔開け加工を高精度に行うことは非常に難しい。
 また、特許文献2では、接着性を確保するために蛍光体を含む層と、蛍光体を含まない接着層の2層構造としており、硬化前と硬化後のそれぞれにおける高温(150℃)弾性率を規定している。2層構造とすることで高濃度に蛍光体を含む層と、蛍光体を含まない接着層を機能分離しており、それぞれの高温時の弾性率を規定しているので貼り付け性には優れているが、常温での物性を特定しておらず貼り付け前の孔開けや切断といった機械的な加工性は考慮されていない。
 さらに特許文献3では無機の蛍光体プレートと接着層を積層した複合シートが開示されており、無機の蛍光体プレートはダイシングで切断できることが開示されているが、接着層はシリコーン系エラストマーであり室温での機械加工性は不明である。
 このように、貼り付け前の加工性に優れ、かつ貼り付け時の接着性にも優れた蛍光体シートは得られていなかった。本発明はかかる特性を両立する蛍光体シートを提供することを目的とする。
 本発明は、25℃での貯蔵弾性率が0.1MPa以上であり、100℃での貯蔵弾性率が0.1MPa未満である蛍光体含有シートであって、蛍光体含有シートの樹脂主成分が少なくとも下記の(A)~(D)の組成を含む架橋性シリコーン組成物をヒドロシリル化反応してなる架橋物であることを特徴とする蛍光体含有シートである。
(A)平均単位式: 
(R SiO2/2)a(RSiO3/2)b(R1/2)c
(式中、Rはフェニル基、炭素原子数1~6のアルキル基もしくはシクロアルキル基、または炭素原子数2~6のアルケニル基であり、ただし、Rの65~75モル%はフェニルであり、Rの10~20モル%はアルケニル基であり、Rは水素原子または炭素原子数1~6のアルキル基であり、a、b、およびcは、0.5≦a≦0.6、0.4≦b≦0.5、0≦c≦0.1、かつa+b=1を満たす数である。)
で表されるオルガノポリシロキサン、
(B)一般式: 
SiO(R SiO)SiR
(式中、Rはフェニル基、炭素原子数1~6のアルキル基もしくはシクロアルキル基、または炭素原子数2~6のアルケニル基であり、ただし、Rの40~70モル%はフェニルであり、Rの少なくとも1個はアルケニル基であり、mは5~50の整数である。)
で表されるオルガノポリシロキサン{(A)成分100重量部に対して5~15重量部}
(C)一般式: 
(HR SiO)SiR
(式中、Rはフェニル基、または炭素原子数1~6のアルキル基もしくはシクロアルキル基であり、ただし、Rの30~70モル%はフェニルである。)
で表されるオルガノトリシロキサン{(A)成分中と(B)成分中のアルケニル基の合計に対する本成分中のケイ素原子結合水素原子のモル比が0.5~2となる量}、および
(D)ヒドロシリル化反応用触媒{(A)成分と(B)成分中のアルケニル基と(C)成分中のケイ素原子結合水素原子とのヒドロシリル化反応を促進するに十分な量}
から少なくともなる架橋性シリコーン組成物。
 本発明によれば、蛍光体含有樹脂層は室温付近では高い貯蔵弾性率を持つために、切断、孔開けなどの機械的加工性に優れている。また高温では低い貯蔵弾性率を持つために、LED素子への貼り付けを高温で行うことで優れた接着性を持つ。
本発明の樹脂積層シートによるLED発光装置製造工程の第1の例。 本発明の樹脂積層シートによるLED発光装置製造工程の第2の例。 本発明の樹脂積層シートによるLED発光装置製造工程の第3の例。
 本発明の蛍光体含有シート(以下、単に「蛍光体シート」ということもある)は、主として透明性の面からシリコーン樹脂やエポキシ樹脂が好ましく用いられる。更に耐熱性の面から、シリコーン樹脂が特に好ましく用いられる。  
 本発明で用いられるシリコーン樹脂としては、硬化型シリコーンゴムが好ましい。一液型、二液型(三液型)のいずれの液構成を使用してもよい。硬化型シリコーンゴムには、空気中の水分あるいは触媒によって縮合反応を起こすタイプとして脱アルコール型、脱オキシム型、脱酢酸型、脱ヒドロキシルアミン型などがあるが、触媒によってヒドロシリル化反応を起こすタイプの付加反応型が好ましい。特に、付加反応型のシリコーンゴムは硬化反応に伴う副成物がなく、硬化収縮が小さい点、加熱により硬化を早めることが容易な点でより好ましい。
 付加反応型のシリコーンゴムは、一例として、ケイ素原子に結合したアルケニル基を含有する化合物と、ケイ素原子に結合した水素原子を有する化合物のヒドロシリル化反応により形成される。本発明においては、下記の(A)~(D)の組成を含む架橋性シリコーン組成物(以下、「本組成物」という)をヒドロシリル化反応してなる架橋物であるシリコーン樹脂を用いることで後述の特性が得られる。
 (A)平均単位式:
(R SiO2/2)a(RSiO3/2)b(R1/2)c
(式中、Rはフェニル基、炭素原子数1~6のアルキル基もしくはシクロアルキル基、または炭素原子数2~6のアルケニル基であり、ただし、Rの65~75モル%はフェニルであり、Rの10~20モル%はアルケニル基であり、Rは水素原子または炭素原子数1~6のアルキル基であり、a、b、およびcは、0.5≦a≦0.6、0.4≦b≦0.5、0≦c≦0.1、かつa+b=1を満たす数である。)
で表されるオルガノポリシロキサン、
(B)一般式:
SiO(R SiO)SiR
(式中、Rはフェニル基、炭素原子数1~6のアルキル基もしくはシクロアルキル基、または炭素原子数2~6のアルケニル基であり、ただし、Rの40~70モル%はフェニルであり、Rの少なくとも1個はアルケニル基であり、mは5~50の整数である。)
で表されるオルガノポリシロキサン{(A)成分100重量部に対して5~15重量部}
(C)一般式:
(HR SiO)SiR
(式中、Rはフェニル基、または炭素原子数1~6のアルキル基もしくはシクロアルキル基であり、ただし、Rの30~70モル%はフェニルである。)
で表されるオルガノトリシロキサン{(A)成分中と(B)成分中のアルケニル基の合計に対する本成分中のケイ素原子結合水素原子のモル比が0.5~2となる量}、および
(D)ヒドロシリル化反応用触媒{(A)成分と(B)成分中のアルケニル基と(C)成分中のケイ素原子結合水素原子とのヒドロシリル化反応を促進するに十分な量}
から少なくともなる架橋性シリコーン組成物が好ましく用いられる。
 本発明を実施するにあたって有用なシリコーン樹脂は上記の組成のものである。(A)成分の一般式においてa、b、およびcの値は得られる架橋物の室温での十分な硬さが得られ、かつ高温での軟化が本発明を実施するに十分である範囲に定められている。(B)成分の一般式において、フェニル基の含有量が上記範囲の下限未満であると、得られる架橋物の高温での軟化が不十分であり、一方、上記範囲の上限を超えると、得られる架橋物の透明性が失われ、その機械的強度も低下する。また、式中、Rの少なくとも1個はアルケニル基である。これは、アルケニル基を有さないと、本成分が架橋反応に取り込まれず、得られる架橋物から本成分がブリードアウトするおそれがあるからである。また、式中、mは5~50の範囲内の整数であり、これは、得られる架橋物の機械的強度を維持しつつ取扱作業性を保持する範囲である。
 本組成物において、(B)成分の含有量は、(A)成分100重量部に対して5~15重量部の範囲内である。これは、得られる架橋物の高温での十分な軟化を得るための範囲である。
 (C)成分の一般式において、式中、Rはフェニル基、または炭素原子数1~6のアルキル基もしくはシクロアルキル基である。Rのアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘプチル基が例示される。Rのシクロアルキル基としては、シクロペンチル基、シクロヘプチル基が例示される。なお、Rの内、フェニル基の含有量は30~70モル%の範囲内である。これは、得られる架橋物の高温での十分な軟化が得られ、かつ透明性と機械的強度を保つ範囲である。
 本組成物において、(C)成分の含有量は、(A)成分中および(B)成分中のアルケニル基の合計に対して、本成分中のケイ素原子結合水素原子のモル比が0.5~2の範囲内である。これは得られる架橋物の室温での十分な硬さが得られる範囲である。
 (D)成分は、(A)成分および(B)成分中のアルケニル基と(C)成分中のケイ素原子結合水素原子とのヒドロシリル化反応を促進するためのヒドロシリル化反応用触媒である。(D)成分としては、白金系触媒、ロジウム系触媒、パラジウム系触媒が例示され、本組成物の硬化を著しく促進できることから白金系触媒が好ましい。この白金系触媒としては、白金微粉末、塩化白金酸、塩化白金酸のアルコール溶液、白金-アルケニルシロキサン錯体、白金-オレフィン錯体、白金-カルボニル錯体が例示され、特に、白金-アルケニルシロキサン錯体であることが好ましい。このアルケニルシロキサンとしては、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、これらのアルケニルシロキサンのメチル基の一部をエチル基、フェニル基等で置換したアルケニルシロキサン、これらのアルケニルシロキサンのビニル基をアリル基、ヘキセニル基等で置換したアルケニルシロキサンが例示される。特に、この白金-アルケニルシロキサン錯体の安定性が良好であることから、1,3-ジビニル-1,1,3,3-トテラメチルジシロキサンが好ましい。また、この白金-アルケニルシロキサン錯体の安定性を向上させることができることから、この錯体に1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3-ジアリル-1,1,3,3-テトラメチルジシロキサン、1,3-ジビニル-1,3-ジメチル-1,3-ジフェニルジシロキサン、1,3-ジビニル-1,1,3,3-テトラフェニルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン等のアルケニルシロキサンやジメチルシロキサンオリゴマー等のオルガノシロキサンオリゴマーを添加することが好ましく、特に、アルケニルシロキサンを添加することが好ましい。
 本組成物において、(D)成分の含有量は、(A)成分および(B)成分中のアルケニル基と(C)成分中のケイ素原子結合水素原子とのヒドロシリル化反応を促進するための十分な量であれば特に限定されないが、好ましくは、本組成物に対して、本成分中の金属原子が質量単位で0.01~500ppmの範囲内であることが好ましく、さらには、0.01~100ppmの範囲内であることが好ましく、特には、0.01~50ppmの範囲内であることが好ましい。これは、得られる組成物が十分に架橋し、かつ着色等の問題を生じない範囲である。
 本組成物は、少なくとも上記(A)成分~(D)成分からなるが、その他任意の成分として、エチニルヘキサノール、2-メチル-3-ブチン-2-オール、3,5-ジメチル-1-ヘキシン-3-オール、2-フェニル-3-ブチン-2-オール等のアルキンアルコール;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-イン等のエンイン化合物;1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラヘキセニルシクロテトラシロキサン、ベンゾトリアゾール等の反応抑制剤を含有してもよい。この反応抑制剤の含有量は限定されないが、本組成物の重量に対して1~5,000ppmの範囲内であることが好ましい。反応抑制剤の含有量を調整することにより、得られるシリコーン樹脂の貯蔵弾性率を調整することもできる。
 本発明の蛍光体含有シートには、また、添加剤として塗布膜安定化のための分散剤やレベリング剤、シート表面の改質剤としてシランカップリング剤等の接着補助剤等を添加することも可能である。また、蛍光体沈降抑制剤としてアルミナ微粒子、シリカ微粒子、シリコーン微粒子等を添加することも可能である。
 これらの樹脂に、蛍光体を分散させた蛍光体シートの貯蔵弾性率を、25℃で0.1MPa以上、100℃で0.1MPa未満にすることが本発明において必須である。より望ましくは、25℃で0.3MPa以上、より望ましくは0.5MPa以上、さらに望ましくは0.7MPa以上、特に望ましくは1.0MPa以上である。また、より望ましくは、100℃で0.07MPa未満、より望ましくは0.05MPa未満、さらに望ましくは0.03MPa未満、特に望ましくは0.01MPa未満である。
 ここで言う貯蔵弾性率とは、動的粘弾性測定を行った場合の貯蔵弾性率である。動的粘弾性とは、材料にある正弦周波数で剪断歪みを加えたときに、定常状態に達した場合に現れる剪断応力を歪みと位相の一致する成分(弾性的成分)と、歪みと位相が90°遅れた成分(粘性的成分)に分解して、材料の動的な力学特性を解析する手法である。ここで剪断歪みに位相が一致する応力成分を剪断歪みで除したものが、貯蔵弾性率G’であり、各温度における動的な歪みに対する材料の変形、追随を表すものであるので、材料の加工性や接着性に密接に関連している。
 本発明における蛍光体シートの場合は、25℃で0.1MPa以上の貯蔵弾性率を有することにより、室温(25℃)における金型打ち抜きによる孔開け加工や、刃体による切断加工といった早い剪断応力がかかる加工を施されたときに、加工部分の周囲の変形無しにシートが孔開けまたは切断されるので、高い寸法精度での加工性を有する。室温における貯蔵弾性率の上限は本発明の目的のためには特に制限されないが、LED素子と貼り付けた後の応力歪みを低減する必要性を考慮すると1GPa以下であることが望ましい。また、100℃において貯蔵弾性率が0.1MPa未満であることによって、60℃~250℃での加熱貼り付けを行えばLEDチップ表面の形状に対して蛍光体シートが素早く変形して追従し、高い接着力が得られる。100℃において0.1MPa未満の貯蔵弾性率が得られる蛍光体シートであれば、室温から温度を上げて行くに従い貯蔵弾性率が低下し、100℃未満でも貼り付け性は温度上昇と共に良好となるが、実用的な接着性を得るためには60℃以上が好適である。またこのような蛍光体シートは100℃を超えて加熱することでさらに貯蔵弾性率の低下が進み、貼り付け性が良好になるが、250℃を超える温度では通常、樹脂の熱膨張、熱収縮や熱分解の問題が発生しやすい。従って好適な加熱貼り付け温度は60℃~250℃である。100℃における貯蔵弾性率の下限は本発明の目的のためには特に制限されないが、LED素子上への加熱貼り付け時に流動性が高すぎると、貼り付け前に切断や孔開けで加工した形状が保持できなくなるので、0.001MPa以上であることが望ましい。
 蛍光体シートとして上記の貯蔵弾性率が得られるのであれば、そこに含まれる樹脂は未硬化または半硬化状態のものであってもよいが、以下の通りシートの取扱性・保存性等を考慮すると、含まれる樹脂は硬化後のものであることが好ましい。樹脂が未硬化、もしくは半硬化状態であると、蛍光体シートの保存中に室温で硬化反応が進み、貯蔵弾性率が適正な範囲から外れる恐れがある。これを防ぐためには樹脂は硬化完了しているかもしくは室温保存で1ヶ月程度の長期間、貯蔵弾性率が変化しない程度に硬化が進行していることが望ましい。
 蛍光体は、LEDチップから放出される青色光、紫色光、または紫外光を吸収して波長を変換し、赤色、橙色、黄色、緑色、青色の領域の波長のLEDチップの光と異なる波長の光を放出するものである。これにより、LEDチップから放出される光の一部と、蛍光体から放出される光の一部とが混合して、白色を含む多色系のLEDが得られる。
 上述のような蛍光体には、緑色に発光する蛍光体、青色に発光する蛍光体、黄色に発光する蛍光体、赤色に発光する蛍光体等の種々の蛍光体がある。本発明に用いられる具体的な蛍光体としては、有機蛍光体、無機蛍光体、蛍光顔料、蛍光染料等公知の蛍光体が挙げられる。有機蛍光体としては、アリルスルホアミド・メラミンホルムアルデヒド共縮合染色物やペリレン系蛍光体等を挙げることができ、長期間使用可能な点からペリレン系蛍光体が好ましく用いられる。本発明に特に好ましく用いられる蛍光物質としては、無機蛍光体が挙げられる。以下に本発明に用いられる無機蛍光体について記載する。
 緑色に発光する蛍光体として、例えば、SrAl:Eu、YSiO:Ce,Tb、MgAl1119:Ce,Tb、SrAl1225:Eu、(Mg、Ca、Sr、Baのうち少なくとも1以上)Ga:Euなどがある。
 青色に発光する蛍光体として、例えば、Sr(POCl:Eu、(SrCaBa)(POCl:Eu、(BaCa)(POCl:Eu、(Mg、Ca、Sr、Baのうち少なくとも1以上)Cl:Eu,Mn、(Mg、Ca、Sr、Baのうち少なくとも1以上)(POCl:Eu,Mnなどがある。
 緑色から黄色に発光する蛍光体として、少なくともセリウムで賦活されたイットリウム・アルミニウム酸化物蛍光体、少なくともセリウムで賦括されたイットリウム・ガドリニウム・アルミニウム酸化物蛍光体、少なくともセリウムで賦活されたイットリウム・アルミニウム・ガーネット酸化物蛍光体、及び、少なくともセリウムで賦活されたイットリウム・ガリウム・アルミニウム酸化物蛍光体などがある(いわゆるYAG系蛍光体)。具体的には、Ln12:R(Lnは、Y、Gd、Laから選ばれる少なくとも1以上である。Mは、Al、Caの少なくともいずれか一方を含む。Rは、ランタノイド系である。)、(Y1-xGa(Al1-yGa12:R(Rは、Ce、Tb、Pr、Sm、Eu、Dy、Hoから選ばれる少なくとも1以上である。0<Rx<0.5、0<y<0.5である。)を使用することができる。
 赤色に発光する蛍光体として、例えば、YS:Eu、LaS:Eu、Y:Eu、GdS:Euなどがある。
 また、現在主流の青色LEDに対応し発光する蛍光体としては、Y(Al,Ga)12:Ce,(Y,Gd)Al12:Ce,LuAl12:Ce,YAl12:CeなどのYAG系蛍光体、TbAl12:CeなどのTAG系蛍光体、(Ba,Sr)SiO:Eu系蛍光体やCaScSi12:Ce系蛍光体、(Sr,Ba,Mg)SiO:Euなどのシリケート系蛍光体、(Ca,Sr)Si:Eu、(Ca,Sr)AlSiN:Eu、CaSiAlN:Eu等のナイトライド系蛍光体、Cax(Si,Al)12(O,N)16:Euなどのオキシナイトライド系蛍光体、さらには(Ba,Sr,Ca)Si:Eu系蛍光体、CaMgSi16Cl:Eu系蛍光体、SrAl:Eu,SrAl1425:Eu等の蛍光体が挙げられる。
 これらの中では、YAG系蛍光体、TAG系蛍光体、シリケート系蛍光体が、発光効率や輝度などの点で好ましく用いられる。
 上記以外にも、用途や目的とする発光色に応じて公知の蛍光体を用いることができる。
 蛍光体の粒子サイズは、特に制限はないが、D50が0.05μm以上のものが好ましく、3μm以上のものがより好ましい。また、D50が30μm以下のものが好ましく、20μm以下のものがより好ましい。ここでD50とは、レーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布において、小粒径側からの通過分積算が50%となるときの粒子径のことをいう。D50が前記範囲であると、蛍光体シート中の蛍光体の分散性が良好で、安定な発光が得られる。
 本発明では、蛍光体の含有量が蛍光体シート全体の53重量%以上であることが好ましく、57重量%以上であることがより好ましく、60重量%であることがさらに好ましい。蛍光体シート中の蛍光体含有量を前記範囲とすることで、蛍光体シートの耐光性を高めることができる。なお、蛍光体含有量の上限は特に規定されないが、作業性に優れた蛍光体シートが作成しやすいという観点から、蛍光体シート全体の95重量%以下であることが好ましく、90重量%以下であることがより好ましく、85重量%以下であることがさらに好ましく、80重量%以下であることが特に好ましい。
 本発明の蛍光体シートは、後に詳しく説明するように、LEDの表面被覆用途に特に好ましく用いられる。その際、蛍光体シート中の蛍光体の含有量が上記範囲であることで、優れた性能を示すLED発光装置を得ることができる。
 本発明の蛍光体シートの膜厚は、蛍光体含有量と、所望の光学特性から決められる。蛍光体含有量は上述のように作業性の観点から限界があるので、膜厚は10μm以上であることが好ましい。また、本発明の蛍光体シートは蛍光体含有量が多いことから、膜厚が厚い場合でも耐光性に優れる。一方で、蛍光体シートの光学特性・耐熱性を高める観点からは、蛍光体シートの膜厚は1000μm以下であることが好ましく、200μm以下であることがより好ましく、100μm以下であることがさらに好ましい。蛍光体シートを1000μm以下の膜厚にすることによって、バインダ樹脂による光吸収や光散乱を提言することができるので、光学的に優れた蛍光体シートとなる。
 本発明における蛍光体シートの膜厚は、JIS K7130(1999)プラスチック-フィルム及びシート-厚さ測定方法における機械的走査による厚さの測定方法A法に基づいて測定される膜厚(平均膜厚)のことをいう。
 耐熱性とはLEDチップ内で発生した熱に対する耐性を示す。耐熱性は、LEDを室温で発光させた場合と高温で発光させた場合の輝度を比較し、高温での輝度がどの程度低下するかを測定することによって評価することができる。
 LEDは小さな空間で大量の熱が発生する環境にあり、特に、ハイパワーLEDの場合、発熱が顕著である。このような発熱によって蛍光体の温度が上昇することでLEDの輝度が低下する。したがって、発生した熱をいかに効率良く放熱するかが重要である。本発明においては、シート膜厚を前記範囲とすることで耐熱性に優れたシートを得ることができる。また、シート膜厚にバラツキがあると、LEDチップごとに蛍光体量に違いが生じ、結果として、発光スペクトル(色温度、輝度、色度)にバラツキが生じる。従って、シート膜厚のバラツキは、好ましくは±5%以内、さらに好ましくは±3%以内である。なお、ここでいう膜厚バラツキとは、JIS K7130(1999)プラスチック-フィルム及びシート-厚さ測定方法における機械的走査による厚さの測定方法A法に基づいて膜厚を測定し、下記に示す式にて算出される。
 より具体的には、機械的走査による厚さの測定方法A法の測定条件を用いて、市販されている接触式の厚み計などのマイクロメーターを使用して膜厚を測定して、得られた膜厚の最大値あるいは最小値と平均膜厚との差を計算し、この値を平均膜厚で除して100分率であらわした値が膜厚バラツキB(%)となる。
 膜厚バラツキB(%)={(最大膜厚ズレ値*-平均膜厚)/平均膜厚}×100
*最大膜厚ズレ値は膜厚の最大値または最小値のうち平均膜厚との差が大きい方を選択する。
 本発明の蛍光体シートの作製方法を説明する。なお、以下は一例であり蛍光体シートの作製方法はこれに限定されない。まず、蛍光体シート形成用の塗布液として蛍光体を樹脂に分散した溶液(以下「シート作成用蛍光体分散シリコーン樹脂」という)を作製する。シート作成用蛍光体分散シリコーン樹脂は蛍光体と樹脂を混合することによって得られる。付加反応型シリコーン樹脂を用いる場合は、ケイ素原子に結合したアルケニル基を含有する化合物と、ケイ素原子に結合した水素原子を有する化合物を混合すると、室温でも硬化反応が始まることがあるので、さらにアセチレン化合物などのヒドロシリル化反応遅延剤をシート作成用蛍光体分散シリコーン樹脂に配合して、ポットライフを延長することも可能である。また、添加剤として塗布膜安定化のための分散剤やレベリング剤、シート表面の改質剤としてシランカップリング剤等の接着補助剤等をシート作成用蛍光体分散シリコーン樹脂に混合することも可能である。また、蛍光体沈降抑制剤としてアルミナ微粒子、シリカ微粒子、シリコーン微粒子等をシート作成用蛍光体分散シリコーン樹脂に混合することも可能である。
 流動性を適切にするために必要であれば、溶媒を加えて溶液とすることもできる。溶媒は流動状態の樹脂の粘度を調整できるものであれば、特に限定されない。例えば、トルエン、メチルエチルケトン、メチルイソブチルケトン、ヘキサン、アセトン、テルピネオール等が挙げられる。
 これらの成分を所定の組成になるよう調合した後、ホモジナイザー、自公転型攪拌機、3本ローラー、ボールミル、遊星式ボールミル、ビーズミル等の撹拌・混練機で均質に混合分散することで、シート作成用蛍光体分散シリコーン樹脂が得られる。混合分散後、もしくは混合分散の過程で、真空もしくは減圧条件下で脱泡することも好ましく行われる。
 次に、シート作成用蛍光体分散シリコーン樹脂を基材上に塗布し、乾燥させる。塗布は、リバースロールコーター、ブレードコーター、スリットダイコーター、ダイレクトグラビアコーター、オフセットグラビアコーター、リバースロールコーター、ブレードコーター、キスコーター、ナチュラルロールコーター、エアーナイフコーター、ロールブレードコーター、バリバーロールブレードコーター、トゥーストリームコーター、ロッドコーター、ワイヤーバーコーター、アプリケーター、ディップコーター、カーテンコーター、スピンコーター、ナイフコーター等により行うことができる。蛍光体シート膜厚の均一性を得るためにはスリットダイコーターで塗布することが好ましい。また、本発明の蛍光体シートはスクリーン印刷やグラビア印刷、平版印刷などの印刷法を用いても作製することもできる。印刷法を用いる場合には、特にスクリーン印刷が好ましく用いられる。
 シートの乾燥は熱風乾燥機や赤外線乾燥機等の一般的な加熱装置を用いて行うことができる。シートの加熱硬化には、熱風乾燥機や赤外線乾燥機等の一般的な加熱装置が用いられる。この場合、加熱硬化条件は、通常、40~250℃で1分~5時間、好ましくは100℃~200℃で2分~3時間である。
 基材としては、特に制限無く公知の金属、フィルム、ガラス、セラミック、紙等を使用することができる。具体的には、アルミニウム(アルミニウム合金も含む)、亜鉛、銅、鉄などの金属板や箔、セルロースアセテート、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリエステル、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリスチレン、ポリプロピレン、ポリカーボネート、ポリビニルアセタール、アラミドなどのプラスチックのフィルム、前記プラスチックがラミネートされた紙、または前記プラスチックによりコーティングされた紙、前記金属がラミネートまたは蒸着された紙、前記金属がラミネートまたは蒸着されたプラスチックフイルムなどが挙げられる。また、基材が金属板の場合、表面にクロム系やニッケル系などのメッキ処理やセラミック処理されていてもよい。これらの中でも、蛍光体含有樹脂シートをLED素子に貼りつける際の密着性から、基材は柔軟なフィルム状であることが好ましい。また、フィルム状の基材を取り扱う際に破断などの恐れがないように強度が高いフィルムが好ましい。それらの要求特性や経済性の面で樹脂フィルムが好ましく、これらの中でも、経済性、取り扱い性の面でPETフィルムが好ましい。また、樹脂の硬化や蛍光体シートをLEDに貼り付ける際に200℃以上の高温を必要とする場合は、耐熱性の面でポリイミドフィルムが好ましい。シートの剥離のし易さから、基材は、あらかじめ表面が離型処理されていてもよい。
 基材の厚さは特に制限はないが、下限としては40μm以上が好ましく、60μm以上がより好ましい。また、上限としては5000μm以下が好ましく、3000μm以下がより好ましい。
 本発明の蛍光体シートは、LED素子に波長変換層として貼り付けられ、発光装置として使用される。本発明ではLED素子にシートを貼り付ける際に、加熱して貼り付ける。加熱温度は、60℃以上250℃以下が望ましく、より望ましくは60℃以上150℃以下である。60℃以上にすることで、室温と貼り付け温度での弾性率差を大きくするための樹脂設計が容易となる。また、250℃以下にすることで、基材および蛍光体シートの熱膨張、熱収縮を小さくすることができるので、貼り付けの精度を高めることができる。特に、蛍光体シートに予め孔開け加工を施して、LED素子上の所定部分と位置合わせを行う場合などには貼り付けの位置精度は重要である。貼り付けの精度を高めるためには150℃以下で貼り付けることがより好適である。さらに、本発明によるLED発光装置の信頼性向上のためには、蛍光体シートとLED素子の間に応力歪みが無いことが好ましい。そのため、貼り付け温度はLED発光装置の動作温度近辺、好ましくは動作温度の±20℃以内にしておくことが好ましい。LED発光装置は、点灯時には80℃~130℃まで温度が上昇する。よって、動作温度と貼り付け温度を近づける意味でも、貼り付け温度は60℃以上150℃以下が望ましい。従って、100℃で十分に低貯蔵弾性率化するように設計された蛍光体シートの特性が重要である。
 蛍光体シートを貼り付ける方法としては、所望の温度で加熱加圧できる装置であれば既存の任意の装置が利用できる。後述するように、蛍光体シートを個片に切断してから、個別のLED素子に貼り付ける方法と、ダイシング前のLED素子を作り付けたウェハに一括貼り付けを経て、ウェハのダイシングと蛍光体シートの切断を一括して行う方法があるが、蛍光体シートを個片に分割してから貼り付ける方法の場合は、フリップチップボンダーが利用できる。ウェハレベルのLED素子に一括して貼り付ける際には、100mm角程度の加熱部分を有する加熱圧着ツールなどで貼り付ける。いずれの場合も、高温で蛍光体シートをLED素子に熱融着させてから、室温まで放冷し、基材を剥離する。本発明のような温度と弾性率の関係を持たせることで、熱融着後に室温まで放冷却したあとの蛍光体シートはLED素子に強固に密着しつつ、基材から容易に剥離することが可能となる。
 蛍光体シートを切断加工する方法について説明する。蛍光体シートは、LED素子への貼り付け前に予め個片に切断し、個別のLED素子に貼り付ける方法と、ウェハレベルのLED素子に蛍光体シートを貼り付けてからウェハのダイシングと同時に一括して蛍光体シートを切断する方法がある。貼りつけ前に予め切断する場合には、均一に形成された蛍光体シートを、レーザーによる加工、あるいは刃物による切削によって所定の形状に加工し、分割する。レーザーによる加工は、高エネルギーが付与されるので樹脂の焼け焦げや蛍光体の劣化を回避することが非常に難しく、刃物による切削が望ましい。刃物で切断する上で加工性を向上するために、蛍光体シートの25℃での貯蔵弾性率が0.1MPa以上であることが非常に重要となる。刃物での切削方法としては、単純な刃物を押し込んで切る方法と、回転刃によって切る方法があり、いずれも好適に使用できる。回転刃によって切断する装置としては、ダイサーと呼ばれる半導体基板を個別のチップに切断(ダイシング)するのに用いる装置が好適に利用できる。ダイサーを用いれば、回転刃の厚みや条件設定により、分割ラインの幅を精密に制御できるため、単純な刃物の押し込みにより切断するよりも高い加工精度が得られる。
 基材と積層された状態の蛍光体シートを切断する場合には、基材ごと個片化しても良いし、あるいは蛍光体シートは個片化しつつ、基材は切断しなくても構わない。あるいは基材は貫通しない切り込みラインが入る所謂ハーフカットでも良い。そのように個片化した蛍光体シートを、個別のLEDチップ上に加熱融着させる。蛍光体シートを基材ごと個片化する場合の、個片化・LED素子貼り付け・ダイシングの工程の一例を、図1に示す。図1の工程には、蛍光体シートを個片に切断する工程、および該個片に切断された蛍光体含有シートを加熱してLED素子に貼り付ける工程が含まれる。図1の(a)は、基材2と積層された状態の本発明の蛍光体シート1を仮固定シート3に固定したところである。図1に示した工程では、蛍光体シート1と基材2はいずれも個片化するので、取り扱いが容易なように仮固定シート3に固定しておく。次に(b)に示すように蛍光体シート1と基材2を切断して個片化する。続いて、(c)に示すように実装基板5に実装されたLED素子4の上に、個片化された蛍光体シート1と基材2を位置合わせし、(d)に示すように加熱圧着ツールで圧着する。このとき、蛍光体シート1とLED素子4の間に空気を噛み込まないように、圧着工程は真空下あるいは減圧下で行うことが好ましい。圧着後に室温まで放冷し、(e)に示すように基材2を剥離する。
 また、基材が連続したまま蛍光体シートを個片化した場合には、そのまま一括してダイシング前のウェハレベルのLED素子に熱融着させても良い。基材が連続したまま蛍光体シートを個片化する場合の、個片化・LED素子貼り付け・ダイシングの工程の一例を、図2に示す。図2の工程にも、蛍光体シートを個片に切断する工程、および該個片に切断された蛍光体含有シートを加熱してLED素子に貼り付ける工程が含まれる。図2に示す工程の例では、まず(b)に示す工程で蛍光体シート1を個片化する際に、基材2は個片化されない。図2の(b)では基材2は全く切断されていないが、基材2が連続している限りは、部分的に切断されても構わない。次に(c)に示すように、個片化された蛍光体シート1を、ダイシング前のLED素子を表面に形成したウェハ7に対向させ、位置合わせを行う。(d)に示す工程で加熱圧着ツールにより、蛍光体シート1とダイシング前のLED素子を表面に形成したウェハ7を圧着する。このとき、このとき、蛍光体シート1とLED素子4の間に空気を噛み込まないように、圧着工程は真空下あるいは減圧下で行うことが好ましい。圧着後に室温まで放冷し、(e)に示すように基材2を剥離した後、ウェハをダイシングして個片化し、(f)に示すように個片化された蛍光体シート付きLED素子を得る。
 ダイシング前のウェハレベルのLED素子に一括して蛍光体シートを熱融着する場合には、貼り付け後にLED素子ウェハのダイシングと共に、蛍光体シートを切断することもできる。ウェハのダイシングは上述のダイサーで行われ、切断するときの回転数や切断速度などの条件設定は半導体ウェハを切断する条件に最適化されるため、蛍光体シートを切断するために最適な条件にすることは難しいが、本発明の通り25℃で高い弾性率を持つ蛍光体シートを用いることによって好適に切断することができる。蛍光体シートとウェハを貼り付け後に一括してダイシングする場合の工程の一例を図3に示す。図3の工程には、複数のLED素子に蛍光体シートを加熱して一括して貼り付ける工程、および蛍光体シートとLED素子を一括ダイシングする工程が含まれる。図3の工程では、本発明の蛍光体シート1は予め切断加工することなく、図3の(a)に示すように蛍光体シート1の側をダイシング前のLED素子を表面に形成したウェハ7に対向させて位置合わせする。次に(b)に示すように、加熱圧着ツールにより蛍光体シート1とダイシング前のLED素子を表面に形成したウェハ7を圧着する。このとき、蛍光体シート1とLED素子4の間に空気を噛み込まないように、圧着工程は真空下あるいは減圧下で行うことが好ましい。圧着後に室温まで放冷し、(c)に示すように基材2を剥離した後、ウェハをダイシングすると同時に、蛍光体シート1を切断して個片化し、(d)に示すように個片化された蛍光体シート付きLED素子を得る。
 上述の図1~3いずれの工程を採る場合でも、本発明の蛍光体シートを上面に電極があるLED素子に貼り付ける場合には、電極部分の蛍光体シートを除去するために蛍光体シートの貼り付け前に予めその部分に孔開け加工をしておく(貫通孔を形成しておく)ことが望ましい。孔開け加工はレーザー加工、金型パンチングなどの公知の方法が好適に使用できるが、レーザー加工は樹脂の焼け焦げや蛍光体の劣化を引き起こすので、金型によるパンチング加工がより望ましい。パンチング加工を実施する場合、蛍光体シートをLED素子に貼り付けた後ではパンチング加工は不可能であるので、蛍光体シートには貼り付け前にパンチング加工を施すことが必須となる。金型によるパンチング加工は、貼り付けるLED素子の電極形状などにより任意の形状や大きさの孔を開けることができる。孔の大きさや形状は金型を設計すれば任意のものが形成できるが、1mm角内外のLED素子上の電極接合部分は、発光面の面積を小さくしないためには500μm以下であることが望ましく、孔はその大きさに合わせて500μm以下で形成される。また、ワイヤーボンディングなどを行う電極はある程度の大きさが必要であり、少なくとも50μm程度の大きさとなるので、孔はその大きさに合わせて50μm程度である。孔の大きさは電極より大きすぎると、発光面が露出して光漏れが発生し、LED発光装置の色特性が低下する。また、電極より小さすぎると、ワイヤーボンディング時にワイヤが触れて接合不良を起こす。従って、孔開け加工は50μm以上500μm以下という小さい孔を±10%以内の高精度で加工する必要があり、パンチング加工の精度を向上するためにも、蛍光体シートの25℃での貯蔵弾性率が0.1MPa以上であることが非常に重要となる。
 切断加工・孔開け加工を施した蛍光体シートを、LED素子の所定部分に位置合わせして貼り付ける場合には、光学的な位置合わせ(アラインメント)機構を持つ、貼り付け装置が必要となる。このとき、蛍光体シートとLED素子を近接させて位置合わせすることは作業的に難しく、実用的には蛍光体シートとLED素子を軽く接触させた状態で位置合わせを行うことが良く行われる。このとき、蛍光体シートが粘着性を持っていると、LED素子に接触させて動かすことは非常に困難である。本発明の蛍光体シートであれば、室温で位置合わせを行えば粘着性がないので、蛍光体シートとLED素子を軽く接触した位置合わせを行うことが容易である。
 本発明により得られた蛍光体シートを貼り付けたLED素子を用いる照明装置は、従来の液状蛍光体含有樹脂のディスペンスや、公知の蛍光体シートによる方法と比較して、正確に加工された蛍光体シートがLED素子上に設けられるので、一定の蛍光体がLED上に存在し、色や輝度のムラが非常に小さくなる。ディスペンスによる方法では、液状樹脂が供給されて表面張力で形状が決まるので一定の膜厚を形成することは難しい。また、本発明による弾性率範囲の設計の蛍光体シートによれば、高濃度に蛍光体を充填しても従来の蛍光体シートと比べて高精度に加工できるために、蛍光体シートの膜厚を薄くすることが可能となる。具体的には本発明による場合、LED素子上に、膜厚10~1000μmであって、中心における膜厚と、中心とから発光面端部の任意の点に引いた線分の中点での膜厚の差が、前記中心における膜厚±5%以内,より好ましくは±3%以内である蛍光体含有層が設けられたものが製造される。ここでLED素子上の中心点とは、LED素子発光面は矩形であるのでその対角線の交点を中心とし、その中心から、発光面端部に引いた線分の中点を、中心と端部の中間地点とする。本発明では、その任意の中間地点と中心点の膜厚差を±5%に納めることができる。より好ましくは±3%以内に納めることができる。
 以下に、本発明を実施例により具体的に説明する。ただし、本発明はこれらに限定されるものではない。
 <シリコーン樹脂>
 シリコーン樹脂を配合するための成分
  樹脂主成分  (MeViSiO2/2)0.25(Ph2SiO2/2)0.3(PhSiO3/2)0.45(HO1/2)0.03 (平均組成、(A)成分に該当する。)
  硬度調整剤  ViMe2SiO(MePhSiO)17.5SiMe2Vi (平均組成、(B)成分に該当する。)
  架橋剤    (HMe2SiO)2SiPh2  ((C)成分に該当する。)
         ※ただしMe:メチル基、Vi:ビニル基、Ph:フェニル基
  反応抑制剤  1-エチニルヘキサノール
  白金触媒  白金(1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン)錯体 1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液
        白金含有量5重量%
 実施例に用いたシリコーン樹脂1および2は、上記のシリコーン樹脂を配合するための成分を配合して本明細書における「本組成物」に該当するように作製し、シリコーン樹脂3及び4は市販品を利用した。
・シリコーン樹脂1
  樹脂主成分75重量部、硬度調整剤10重量部、架橋剤25重量部、
  反応抑制剤0.025重量部、白金触媒0.01重量部
・シリコーン樹脂2
  樹脂主成分75重量部、硬度調整剤10重量部、架橋剤25重量部、
  反応抑制剤0.05重量部、白金触媒0.01重量部
・シリコーン樹脂3
  X-32-2528(信越化学工業)
・シリコーン樹脂4
  KER6075(信越化学工業)。
 <動的弾性率測定>
  測定装置  :粘弾性測定装置ARES-G2(TAインスツルメンツ製)
  ジオメトリー:平行円板型(15mm)
  ひずみ   :1%
  角周波数  :1Hz
  温度範囲  :25℃~140℃
  昇温速度  :5℃/分
  測定雰囲気 :大気中。
 <動的粘弾性測定の測定サンプル調整>
 シリコーン樹脂1~4それぞれを30重量部、蛍光体“NYAG-02”(Intematix社製:CeドープのYAG系蛍光体、比重:4.8g/cm、D50:7μm)を70重量部で混合した蛍光体シート用樹脂液を、“セラピール”BLK(東レフィルム加工株式会社製)を基材として、スリットダイコーターで塗布して厚さ100μmの膜を成膜した。この作業をシリコーン樹脂1~4のそれぞれについて行った。成膜温度はシリコーン1,2,4は120℃で1時間。シリコーン3は、半硬化状態で使用するシリコーン接着剤であるので120℃で10分加熱した。
 得られた厚さ100μmの膜を8枚積層し、100℃のホットプレート上で加熱圧着して800μmの一体化した膜(シート)を作製し、直径15mmに切り抜いて測定サンプルとした。
 各シート(蛍光体70重量%含有)の室温(25℃)、100℃、140℃における貯蔵弾性率を表1に示した。
 <接着性試験>
 基材に積層した蛍光体シートを、LED素子に100℃で貼り付けて所定の時間圧着後に、室温に戻し、基材を剥がしたとき、蛍光体シートが全てLED素子に接着して基材上に残らない最小の時間を接着可能時間とした。加熱圧着時間が1分以内で蛍光体シートが全てLED素子に接着して基材上に残らないものを接着性良好とし、1分以上加熱圧着してもLED素子上に接着しないかあるいは部分的に接着しても一部が基材上に残るような場合は、接着性不良とした。
 (実施例1)
 容積300mlのポリエチレン製容器を用いて、シリコーン樹脂1を30重量%、蛍光体として“NYAG-02”(Intematix社製:CeドープのYAG系蛍光体、比重:4.8g/cm、D50:7μm)を70重量%の比率で混合した。
 その後、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用い、1000rpmで20分間撹拌・脱泡してシート作成用蛍光体分散シリコーン樹脂を得た。スリットダイコーターを用いてシート作成用蛍光体分散シリコーン樹脂を基材として“セラピール”BLK(東レフィルム加工株式会社製)上に塗布し、120℃で1時間加熱、乾燥して膜厚90μm、100mm角の蛍光体シートを得た。その後、蛍光体シートに金型パンチング装置(UHT社製)で直径200μmの孔を打ち抜いた。打ち抜いた孔の直径を、測長装置付き顕微鏡で10点検査してその寸法の平均値を求めた結果、表2に示すとおりほぼ設計通りの孔が得られた。次に、蛍光体シートをカッティング装置(UHT社製GCUT)により1mm角×10000個に個片化した。蛍光体シート、基材を共に切断して完全に個片化した。切断面はバリや欠けが無い良好な形状であり、切断箇所の再付着なども発生しなかった。10000個に個片化された中から任意に100個を選択し、その切断箇所が良好なものの個数を選び、切断加工性を評価した。
 1mm角にカットした蛍光体シートを、青色LEDチップが実装された基板のチップ表面に蛍光体シート面が接触するように配置した。ダイボンディング装置(東レエンジニアリング製)を用いて、蛍光体シートの孔とLEDチップの表面電極を位置合わせして、基材側から100℃の加熱ヘッドで押圧して接着したところ、接着可能時間は10秒間であった。10秒間圧着した試料を室温に戻した後、基材を剥がしたところ、蛍光体シートは青色LED上に完全に接着し、基材には蛍光体シートが全く残ること無くきれいに剥がすことができ、接着性は良好であった。LEDチップの表面電極をワイヤーボンディングしたところ、予め蛍光体シートに加工してある孔を介して問題なく接合できた。同一の蛍光体シート付LEDを透明樹脂で封止したものを10個作成し、直流電源につないで点灯させ、10個全てが点灯することを確認した。色彩照度計(コニカミノルタCL200A)で10個のサンプル全ての相関色温度(CCT)を計測し、その最大値と最小値の差を色温度ばらつきとして評価した。
 同様に作製した蛍光体シート付LED素子を切断して断面SEMを測定し、サンプル10個に関してLED素子発光面の中心点と、前記中心点と発光面端部を結ぶ線分の中点の膜厚の差を測定し、その2点の膜厚差を求めた。その膜厚差の中心点の膜厚に対する割合をそのサンプルの膜厚差(%)とし、10個のサンプルにおいてその平均値を算出した。その平均値を表2にばらつきとして示した。なお、負の値は中心点の膜厚より前記中点の膜厚の方が厚いことを示す。
 (実施例2)
 シリコーン樹脂1の代わりにシリコーン樹脂2を用いて実施例1と同様にして蛍光体シートを得た。実施例1と同様にして蛍光体シートに直径200μmの孔を打ち抜き、1mm角に個片化した。孔開け加工性、切断加工性はいずれも実施例1と同様に良好であった。実施例1と同様にして1mm角にカットした蛍光体シートをLED素子へ貼り付けたところ、接着可能時間は5秒であった。また、実施例1と同様にしてLED点灯試験および蛍光体シート膜厚の評価を行い、結果を表2に示した。
 (実施例3)
 シリコーン樹脂1の代わりにシリコーン樹脂2を用いて実施例1と同様にして蛍光体シートを得た。実施例1と同様にして蛍光体シートに直径200μmの孔を打ち抜いたところ、孔開け加工性は良好であった。次に、蛍光体シートをカッティング装置(UHT社製GCUT)により1mm角に個片化した。このときに、蛍光体シートは完全に個片化しながら、基材はハーフカットとし、連続したままの状態に加工した。蛍光体シートの切断面はバリや欠けが無い良好な形状であり、切断箇所の再付着なども発生しなかった。
 蛍光体シートが1mm角に個片化され、基材は一体化した状態の100mm角の蛍光体シートを、個片にダイシングしていない、青色LED素子が表面に形成された4インチウェハの表面に蛍光体シート面が接触するように配置した。個片化した蛍光体シートと各LED素子を一致させ、加工孔とLEDチップの表面電極部分を一致させるように位置合わせして、基材側から100℃の加熱プレートで圧着したところ、接着可能時間は15秒であった。15秒間圧着させた試料を室温に戻した後、基材を剥がしたところ、蛍光体シートは青色LED上に完全に接着し、基材には蛍光体シートが全く残ること無くきれいに剥がすことができ、接着性は良好であった。
 次いで、青色LED素子のウェハを、ダイシング装置(DISCO製)でダイシングし、個片化したLEDチップの表面電極をワイヤーボンディングしたところ、予め蛍光体シートに加工してある孔を介して問題なく接合できた。同一の蛍光体シート付LEDを透明樹脂で封止したものを10個作成し、直流電源につないで点灯させ、10個全てが点灯することを確認した。色彩照度計(コニカミノルタCL200A)で10個の相関色温度(CCT)を計測し最大値と最小値の差を評価した。また、実施例1と同様にして蛍光体シート膜厚の評価を行い、結果を表2に示した。
 (実施例4)
 シリコーン樹脂1を用いて実施例1と同様にして蛍光体シートを得た。実施例1と同様にして蛍光体シートに直径200μmの孔を打ち抜いたところ、孔開け加工性は良好であった。100mm角の蛍光体シートを、個片にダイシングしていない、青色LED素子が表面に形成された4インチウェハ表面に蛍光体シート面が接触するように配置した。蛍光体シートの孔とLEDチップの表面電極を位置合わせして、基材側から100℃の加熱プレートで圧着したところ、接着可能時間は10秒であった。10秒間圧着させた試料を室温に戻した後、基材を剥がしたところ、蛍光体シートは青色LED上に完全に接着し、基材には蛍光体シートが全く残ること無くきれいに剥がすことができ、接着性は良好であった。
 次いで、青色LED素子のウェハを、裏面(蛍光体シートを貼り付けた面の反対面)から、ダイシング装置(DISCO製)で、ウェハと蛍光体シートを一括してダイシングした。切断面はバリや欠けが無い良好な形状であり、切断箇所の再付着なども発生しなかった。
 LEDチップの表面電極をワイヤーボンディングしたところ、予め蛍光体シートに加工してある孔を介して問題なく接合できた。同一の蛍光体シート付LEDを透明樹脂で封止したものを10個作成し、直流電源につないで点灯させ、10個全て点灯することを確認した。色彩照度計(コニカミノルタCL200A)でサンプル10個の相関色温度(CCT)を計測し最大値と最小値の差を評価した。また、実施例1と同様にして蛍光体シート膜厚の評価を行い、結果を表2に示した。
 (比較例1)
 シリコーン樹脂1の代わりにシリコーン樹脂2を用いて、シート作成用蛍光体含有シリコーン樹脂を作製し、基材として“セラピール”BLK(東レフィルム加工株式会社製)上に塗布し、120℃で10分加熱、乾燥して膜厚90μm、100mm角の蛍光体シートを得た。実施例1と同様にして蛍光体シートに直径200μmの孔を打ち抜いたところ、シリコーン樹脂2の室温での弾性率が低すぎて粘着性を有するために金型に付着し、これにより加工後の孔の直径平均値は設計に対して大幅に小さくなった。実施例1と同様にして蛍光体シートを個片化したが、約半数が再付着して切り離すことができなかった。
 問題なく個片化できた蛍光体シートだけを用いて実施例1と同じダイボンディング装置を用い青色LED素子上に100℃で10秒間熱圧着を行い、基材を剥離し、150℃で30分間の熱硬化を行った。室温に戻した後、基材を剥がしたところ、蛍光体シートは青色LED上に完全に接着し、基材には蛍光体シートが全く残ること無くきれいに剥がすことができ、接着性は良好であった。LEDチップの表面電極をワイヤーボンディングしたところ、予め蛍光体シートに加工してある孔のサイズが小さく、一部のワイヤボンダーが接触した。ワイヤーボンディング後に樹脂封止したものを10個作成し、直流電源につないで点灯させたが、10個のうち3つが接合不良で点灯できなかった。サンプルの作製個数を増やし、正常に点灯する蛍光体シート付きLED発光装置を10個得て、色彩照度計(コニカミノルタCL200A)でサンプル10個の相関色温度(CCT)を計測し最大値と最小値の差を評価した。また、実施例1と同様にして蛍光体シート膜厚の評価を行い、結果を表2に示した。
 (比較例2)
 シリコーン樹脂1の代わりにシリコーン樹脂4を用いて実施例1と同様に蛍光体シートを得た。実施例1と同様にして蛍光体シートに直径200μmの孔を打ち抜き、1mm角に個片化した。孔開け加工性、切断加工性は、実施例1と同様に良好な結果であった。1mm角にカットした蛍光体シートを、青色LEDチップが実装された基板のチップ表面に蛍光体シート面が接触するように配置し、ダイボンディング装置(東レエンジニアリング製)を用いて、蛍光体シートの孔とLEDチップの表面電極を位置合わせして、ベースフィルム側から100℃の加熱ヘッドで1分圧着させた。室温に戻した後、ベースフィルムを剥がしたところ、蛍光体シートは青色LEDとの接着が不完全で、ベースフィルムと共にLED素子上から剥がれてしまい、LED素子としての評価は不可能であった。
 (比較例3)
 シリコーン樹脂1の代わりにシリコーン樹脂4を用いて実施例1と同様に蛍光体シートを得た。その上に蛍光体を含まないシリコーン樹脂3をスリットダイコーターで塗布し、120℃で10分加熱、乾燥し、膜厚90μmの蛍光体シートの上に、膜厚10μmの接着層を形成した積層型の蛍光体シートを得た。
 その後、蛍光体シートに金型パンチング装置(UHT社製)で直径200μmの孔を打ち抜いた。打ち抜いた孔の直径を、測長装置付き顕微鏡で10点検査して平均値を求めた結果、表2に示すとおり設計に対して平均値はやや小さい寸法であり、部分的にシリコーン樹脂3のはみ出しが見られた。次に、樹脂シートをカッティング装置(UHT社製GCUT)により1mm角×10000個に個片化したが、約3分の1が再付着して切り離すことができなかった。
 問題なく個片化できた蛍光体シートだけを用いて実施例1と同じダイボンディング装置を用い青色LED素子上に100℃で10秒間熱圧着を行い、ベースフィルムを剥離し、150℃で30分間の熱硬化を行った。室温に戻した後、ベースフィルムを剥がしたところ、蛍光体シートは青色LED上に完全に接着し、ベースフィルムには蛍光体シートが全く残ること無くきれいに剥がすことができた。LEDチップの表面電極をワイヤーボンディングしたところ、予め蛍光体シートに加工してある孔に部分的にシリコーン樹脂3がはみ出しており、ワイヤボンダーが接触した。ワイヤーボンディング後に樹脂封止したものを10個作成し、直流電源につないで点灯させたが、10個のうち2つが接合不良で点灯できなかった。サンプルの作製個数を増やし、正常に点灯する蛍光体シート付きLED発光装置を10個得て、色彩照度計(コニカミノルタCL200A)でサンプル10個の相関色温度(CCT)を計測し最大値と最小値の差を評価した。また、実施例1と同様にして蛍光体シート膜厚の評価を行い、結果を表2に示した。
 (比較例4)
 容積300mlのポリエチレン製容器を用いて、シリコーン樹脂1を90重量%、蛍光体として“NYAG-02”(Intematix社製:CeドープのYAG系蛍光体、比重:4.8g/cm、D50:7μm)を10重量%の比率で混合した。
 その後、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用い、1000rpmで20分間撹拌・脱泡してディスペンス用蛍光体分散シリコーン樹脂を得た。
 ディスペンサを用いて、青色LEDチップが実装されワイヤボンディング済みの基板のチップ表面に蛍光体樹脂を一定量ディスペンスし、150℃で1時間加熱硬化した。蛍光体含有樹脂で封止されたLEDを10個作成し、直流電源につないで点灯させ、10個全てが点灯することを確認した。色彩照度計(コニカミノルタCL200A)で10個のサンプル全ての相関色温度(CCT)を計測し、その最大値と最小値の差を色温度ばらつきとして評価した。結果は表2に示した。尚、ディスペンスされた蛍光体含有樹脂はドーム形状に形成されているので中心点と中心点-端部中点での膜厚差は非常に大きかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
1 蛍光体シート
2 基材
3 仮固定シート
4 LED素子
5 実装基板
6 加熱圧着ツール
7 LED素子を表面に形成したウェハ

Claims (11)

  1. 25℃での貯蔵弾性率が0.1MPa以上であり、100℃での貯蔵弾性率が0.1MPa未満である蛍光体含有シートであって、蛍光体含有シートの樹脂主成分が少なくとも下記の(A)~(D)の組成を含む架橋性シリコーン組成物をヒドロシリル化反応してなる架橋物であることを特徴とする蛍光体含有シート。
    (A)平均単位式:
    (R SiO2/2)a(RSiO3/2)b(R1/2)c
    (式中、R1はフェニル基、炭素原子数1~6のアルキル基もしくはシクロアルキル基、または炭素原子数2~6のアルケニル基であり、ただし、Rの65~75モル%はフェニルであり、Rの10~20モル%はアルケニル基であり、Rは水素原子または炭素原子数1~6のアルキル基であり、a、b、およびcは、0.5≦a≦0.6、0.4≦b≦0.5、0≦c≦0.1、かつa+b=1を満たす数である。)
    で表されるオルガノポリシロキサン、
    (B)一般式:
    SiO(R SiO)SiR
    (式中、Rはフェニル基、炭素原子数1~6のアルキル基もしくはシクロアルキル基、または炭素原子数2~6のアルケニル基であり、ただし、Rの40~70モル%はフェニルであり、Rの少なくとも1個はアルケニル基であり、mは5~50の整数である。)
    で表されるオルガノポリシロキサン{(A)成分100重量部に対して5~15重量部}
    (C)一般式:
    (HR SiO)SiR
    (式中、Rはフェニル基、または炭素原子数1~6のアルキル基もしくはシクロアルキル基であり、ただし、Rの30~70モル%はフェニルである。)
    で表されるオルガノトリシロキサン{(A)成分中と(B)成分中のアルケニル基の合計に対する本成分中のケイ素原子結合水素原子のモル比が0.5~2となる量}、および
    (D)ヒドロシリル化反応用触媒{(A)成分と(B)成分中のアルケニル基と(C)成分中のケイ素原子結合水素原子とのヒドロシリル化反応を促進するに十分な量}
    から少なくともなる架橋性シリコーン組成物。
  2. 蛍光体含有率が53重量%以上である請求項1記載の蛍光体含有シート。
  3. LED素子の波長変換層として用いられる請求項1または2記載の蛍光体含有シート。
  4. 貫通孔が形成されている請求項1~3のいずれかに記載の蛍光体含有シート。
  5. 請求項1~4のいずれかに記載の蛍光体含有シートを、LED素子が表面に形成された半導体ウェハに積層した積層体。
  6. 請求項1~4のいずれかに記載の蛍光体含有シートを用いて得られる発光装置であって、LED素子上に、膜厚10~1000μmであって、中心における膜厚と、中心から発光面端部の任意の点に引いた線分の中点での膜厚の差が、前記中心における膜厚±5%以内である蛍光体含有層が設けられた発光装置。
  7. 少なくとも、LED素子の発光面に、請求項1~4のいずれかに記載の蛍光体含有シートを加熱して貼り付ける工程を含むことを特徴とする発光装置の製造方法。
  8. 前記LED素子の発光面に前記蛍光体含有シートを貼り付ける温度が60℃以上250℃以下であることを特徴とする請求項7に記載の発光装置の製造方法。
  9. 請求項1~4のいずれかに記載の蛍光体含有シートを個片に切断する工程をさらに含み、前記LED素子の発光面に前記蛍光体含有シートを加熱して貼り付ける工程が、前記個片に切断された蛍光体含有シートを加熱してLED素子に貼り付ける工程である請求項7または8記載の発光装置の製造方法。
  10. 前記LED素子の発光面に前記蛍光体含有シートを加熱して貼り付ける工程が、複数のLED素子に前記蛍光体含有シートを加熱して一括して貼り付ける工程であり、さらに前記蛍光体含有シートの切断と前記LED素子のダイシングを一括して行う工程を含む請求項7または8記載の発光装置の製造方法。
  11. 請求項1~4のいずれかに記載の蛍光体含有シートをLED素子に貼り付ける前に、前記蛍光体含有シートに孔開け加工を施すことを特徴とする請求項7~10のいずれかに記載の発光装置の製造方法。
PCT/JP2012/062251 2011-06-16 2012-05-14 蛍光体含有シート、それを用いたled発光装置およびその製造方法 WO2012172901A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG2013026232A SG191709A1 (en) 2011-06-16 2012-05-14 Phosphor-containing sheet, led light emitting device using same, and method for manufacturing led light emitting device
EP12800149.2A EP2610314B1 (en) 2011-06-16 2012-05-14 Phosphor-containing sheet, led light emitting device using same, and method for manufacturing led light emitting device
CN201280003242.5A CN103154146B (zh) 2011-06-16 2012-05-14 含荧光体片材、使用其的led发光装置及其制造方法
KR1020137006058A KR101330593B1 (ko) 2011-06-16 2012-05-14 형광체 함유 시트, 그것을 사용한 led 발광 장치 및 그 제조 방법
US14/002,252 US8946983B2 (en) 2011-06-16 2012-05-14 Phosphor-containing sheet, LED light emitting device using the same, and method for manufacturing LED

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-133955 2011-06-16
JP2011133955A JP5287935B2 (ja) 2011-06-16 2011-06-16 蛍光体含有シート、それを用いたled発光装置およびその製造方法

Publications (1)

Publication Number Publication Date
WO2012172901A1 true WO2012172901A1 (ja) 2012-12-20

Family

ID=47356896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062251 WO2012172901A1 (ja) 2011-06-16 2012-05-14 蛍光体含有シート、それを用いたled発光装置およびその製造方法

Country Status (9)

Country Link
US (1) US8946983B2 (ja)
EP (1) EP2610314B1 (ja)
JP (1) JP5287935B2 (ja)
KR (1) KR101330593B1 (ja)
CN (1) CN103154146B (ja)
MY (1) MY166515A (ja)
SG (1) SG191709A1 (ja)
TW (1) TWI536614B (ja)
WO (1) WO2012172901A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2757603A1 (en) * 2013-01-21 2014-07-23 Kabushiki Kaisha Toshiba Semiconductor light emitting device
US9431583B2 (en) 2014-01-13 2016-08-30 Samsung Electronics Co., Ltd. Semiconductor light emitting device

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5992666B2 (ja) * 2011-06-16 2016-09-14 東レ・ダウコーニング株式会社 架橋性シリコーン組成物及びその架橋物
JP5862066B2 (ja) * 2011-06-16 2016-02-16 東レ株式会社 蛍光体含有シート、それを用いたled発光装置およびその製造方法
JP2013139547A (ja) * 2011-12-05 2013-07-18 Jsr Corp 硬化性組成物、硬化物および光半導体装置
MY167573A (en) * 2011-12-13 2018-09-20 Toray Industries Laminate and method for producing light-emitting diode provided with wavelength conversion layer
JP6709159B2 (ja) * 2014-01-07 2020-06-10 ルミレッズ ホールディング ベーフェー 蛍光変換体を有する接着剤のない発光デバイス
TWI653295B (zh) * 2014-02-04 2019-03-11 日商道康寧東麗股份有限公司 硬化性聚矽氧組合物、其硬化物及光半導體裝置
TWI624510B (zh) * 2014-02-04 2018-05-21 日商道康寧東麗股份有限公司 硬化性聚矽氧組合物、其硬化物及光半導體裝置
KR102328495B1 (ko) * 2014-02-27 2021-11-17 루미리즈 홀딩 비.브이. 파장 변환 발광 디바이스를 형성하는 방법
KR101520743B1 (ko) * 2014-05-16 2015-05-18 코닝정밀소재 주식회사 발광 다이오드 패키지 제조방법
US10224460B2 (en) 2014-06-18 2019-03-05 X-Celeprint Limited Micro assembled LED displays and lighting elements
US9799719B2 (en) 2014-09-25 2017-10-24 X-Celeprint Limited Active-matrix touchscreen
US9991163B2 (en) 2014-09-25 2018-06-05 X-Celeprint Limited Small-aperture-ratio display with electrical component
US9871345B2 (en) 2015-06-09 2018-01-16 X-Celeprint Limited Crystalline color-conversion device
US10133426B2 (en) 2015-06-18 2018-11-20 X-Celeprint Limited Display with micro-LED front light
US11061276B2 (en) 2015-06-18 2021-07-13 X Display Company Technology Limited Laser array display
US10380930B2 (en) 2015-08-24 2019-08-13 X-Celeprint Limited Heterogeneous light emitter display system
US10230048B2 (en) 2015-09-29 2019-03-12 X-Celeprint Limited OLEDs for micro transfer printing
WO2017057454A1 (ja) * 2015-09-30 2017-04-06 東レ株式会社 発光装置の製造方法および表示装置の製造方法
KR102460162B1 (ko) 2015-11-30 2022-10-31 도레이 카부시키가이샤 수지 조성물, 그의 시트상 성형물, 및 그것을 사용한 발광 장치 및 그의 제조 방법
US10066819B2 (en) 2015-12-09 2018-09-04 X-Celeprint Limited Micro-light-emitting diode backlight system
US10193025B2 (en) 2016-02-29 2019-01-29 X-Celeprint Limited Inorganic LED pixel structure
US10153257B2 (en) 2016-03-03 2018-12-11 X-Celeprint Limited Micro-printed display
US10153256B2 (en) 2016-03-03 2018-12-11 X-Celeprint Limited Micro-transfer printable electronic component
US10199546B2 (en) 2016-04-05 2019-02-05 X-Celeprint Limited Color-filter device
US10008483B2 (en) 2016-04-05 2018-06-26 X-Celeprint Limited Micro-transfer printed LED and color filter structure
US20190127531A1 (en) * 2016-04-22 2019-05-02 Dow Corning Toray Co., Ltd. Highly dielectric film, usages thereof, and manufacturing method therefor
US9997501B2 (en) 2016-06-01 2018-06-12 X-Celeprint Limited Micro-transfer-printed light-emitting diode device
US11137641B2 (en) 2016-06-10 2021-10-05 X Display Company Technology Limited LED structure with polarized light emission
US9980341B2 (en) 2016-09-22 2018-05-22 X-Celeprint Limited Multi-LED components
JP6879211B2 (ja) 2016-10-04 2021-06-02 東レ株式会社 光源ユニット、ならびにそれを用いたディスプレイおよび照明装置
US10782002B2 (en) 2016-10-28 2020-09-22 X Display Company Technology Limited LED optical components
US10347168B2 (en) 2016-11-10 2019-07-09 X-Celeprint Limited Spatially dithered high-resolution
JP6863367B2 (ja) * 2017-02-23 2021-04-21 東レ株式会社 蛍光体シート、それを用いたledチップおよびledパッケージ、ledパッケージの製造方法、ならびにledパッケージを含む発光装置、バックライトユニットおよびディスプレイ
TW201910403A (zh) * 2017-07-28 2019-03-16 日商道康寧東麗股份有限公司 光學構件用樹脂薄片、具備其之光學構件、積層體或發光元件以及光學構件用樹脂薄片之製造方法
AU2018398050B2 (en) * 2017-12-27 2024-03-21 Sekisui Chemical Co., Ltd. Scaffolding material for stem cell cultures and stem cell culture method using same
CN110246947A (zh) * 2018-03-09 2019-09-17 深圳市绎立锐光科技开发有限公司 Led封装方法及其产品
CN109411585A (zh) * 2018-09-30 2019-03-01 华南理工大学 一种具有转移荧光薄膜的白光led封装方法
JP2021021038A (ja) * 2019-07-30 2021-02-18 デュポン・東レ・スペシャルティ・マテリアル株式会社 硬化性シリコーン組成物、光半導体装置、および光半導体装置の製造方法
JP7325375B2 (ja) 2020-05-15 2023-08-14 信越化学工業株式会社 熱硬化性シリコーン組成物、シート、及びシリコーン硬化物
US20240038940A1 (en) * 2020-08-20 2024-02-01 Lg Electronics Inc. Transfer substrate used in manufacture of display apparatus, display apparatus, and manufacturing method for display apparatus
KR102486743B1 (ko) * 2021-01-21 2023-01-10 한국광기술원 고품질 형광체 플레이트 및 그의 제조방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB814927A (en) * 1956-11-29 1959-06-17 Midland Silicones Ltd Solventless siloxane resins
JPS51107350A (ja) * 1975-03-13 1976-09-22 Dow Corning
JP2001102004A (ja) 1999-09-30 2001-04-13 Toshiba Lighting & Technology Corp 希ガス放電ランプおよび照明装置
JP2007008996A (ja) * 2005-06-28 2007-01-18 Dow Corning Toray Co Ltd 硬化性オルガノポリシロキサン樹脂組成物および光学部材
JP2008545553A (ja) * 2005-05-26 2008-12-18 ダウ・コーニング・コーポレイション 小さい形状を成型していくプロセスおよびシリコーンカプセル化剤組成物
JP2009235368A (ja) 2007-04-10 2009-10-15 Shin Etsu Chem Co Ltd 蛍光体含有接着性シリコーン組成物、該組成物からなる組成物シート、及び該シートを使用する発光装置の製造方法
JP2010123802A (ja) 2008-11-20 2010-06-03 Nitto Denko Corp 光半導体封止用シート
JP2012052035A (ja) * 2010-09-01 2012-03-15 Shin-Etsu Chemical Co Ltd 付加硬化型シリコーン組成物、該組成物からなる光学素子封止材、及び該光学素子封止材の硬化物により光学素子が封止された半導体装置
CN102464887A (zh) * 2010-11-18 2012-05-23 达兴材料股份有限公司 发光二极管元件用可硬化硅氧烷树脂组合物

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086087B2 (ja) * 1988-02-09 1996-01-24 信越化学工業株式会社 電界発光素子
US7192795B2 (en) 2004-11-18 2007-03-20 3M Innovative Properties Company Method of making light emitting device with silicon-containing encapsulant
JP4876426B2 (ja) * 2005-04-08 2012-02-15 日亜化学工業株式会社 耐熱性及び耐光性に優れる発光装置
DE102006026481A1 (de) 2006-06-07 2007-12-13 Siemens Ag Verfahren zum Anordnen einer Pulverschicht auf einem Substrat sowie Schichtaufbau mit mindestens einer Pulverschicht auf einem Substrat
JP5148088B2 (ja) 2006-08-25 2013-02-20 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物および半導体装置
JP5294414B2 (ja) * 2009-08-21 2013-09-18 信越化学工業株式会社 オルガノポリシルメチレン組成物及びその硬化物
JP5397944B2 (ja) 2009-11-11 2014-01-22 日東電工株式会社 蛍光体含有複合シート
JP5340191B2 (ja) 2010-02-02 2013-11-13 日東電工株式会社 光半導体装置
JP5427709B2 (ja) 2010-06-29 2014-02-26 日東電工株式会社 蛍光体層転写シートおよび発光装置
JP5524017B2 (ja) * 2010-10-08 2014-06-18 信越化学工業株式会社 付加硬化型シリコーン組成物、及び該組成物の硬化物により半導体素子が被覆された半導体装置
CN103328575A (zh) * 2010-12-08 2013-09-25 道康宁公司 适合形成封装物的包含二氧化钛纳米粒子的硅氧烷组合物
EP2649114A1 (en) * 2010-12-08 2013-10-16 Dow Corning Corporation Siloxane compositions suitable for forming encapsulants
TWI435914B (zh) * 2010-12-31 2014-05-01 Eternal Chemical Co Ltd 可固化之有機聚矽氧烷組合物及其製法
JP5522111B2 (ja) * 2011-04-08 2014-06-18 信越化学工業株式会社 シリコーン樹脂組成物及び当該組成物を使用した光半導体装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB814927A (en) * 1956-11-29 1959-06-17 Midland Silicones Ltd Solventless siloxane resins
JPS51107350A (ja) * 1975-03-13 1976-09-22 Dow Corning
JP2001102004A (ja) 1999-09-30 2001-04-13 Toshiba Lighting & Technology Corp 希ガス放電ランプおよび照明装置
JP2008545553A (ja) * 2005-05-26 2008-12-18 ダウ・コーニング・コーポレイション 小さい形状を成型していくプロセスおよびシリコーンカプセル化剤組成物
JP2007008996A (ja) * 2005-06-28 2007-01-18 Dow Corning Toray Co Ltd 硬化性オルガノポリシロキサン樹脂組成物および光学部材
JP2009235368A (ja) 2007-04-10 2009-10-15 Shin Etsu Chem Co Ltd 蛍光体含有接着性シリコーン組成物、該組成物からなる組成物シート、及び該シートを使用する発光装置の製造方法
JP2010123802A (ja) 2008-11-20 2010-06-03 Nitto Denko Corp 光半導体封止用シート
JP2012052035A (ja) * 2010-09-01 2012-03-15 Shin-Etsu Chemical Co Ltd 付加硬化型シリコーン組成物、該組成物からなる光学素子封止材、及び該光学素子封止材の硬化物により光学素子が封止された半導体装置
CN102464887A (zh) * 2010-11-18 2012-05-23 达兴材料股份有限公司 发光二极管元件用可硬化硅氧烷树脂组合物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2757603A1 (en) * 2013-01-21 2014-07-23 Kabushiki Kaisha Toshiba Semiconductor light emitting device
US8928020B2 (en) 2013-01-21 2015-01-06 Kabushiki Kaisha Toshiba Semiconductor light emitting device
US9431583B2 (en) 2014-01-13 2016-08-30 Samsung Electronics Co., Ltd. Semiconductor light emitting device
US9691945B2 (en) 2014-01-13 2017-06-27 Samsung Electronics Co., Ltd. Semiconductor light emitting device

Also Published As

Publication number Publication date
EP2610314B1 (en) 2016-06-22
JP2013001791A (ja) 2013-01-07
JP5287935B2 (ja) 2013-09-11
CN103154146A (zh) 2013-06-12
MY166515A (en) 2018-07-05
US20140210338A1 (en) 2014-07-31
EP2610314A4 (en) 2014-09-17
TW201301582A (zh) 2013-01-01
US8946983B2 (en) 2015-02-03
EP2610314A1 (en) 2013-07-03
SG191709A1 (en) 2013-09-30
TWI536614B (zh) 2016-06-01
CN103154146B (zh) 2014-12-03
KR101330593B1 (ko) 2013-11-18
KR20130079496A (ko) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5287935B2 (ja) 蛍光体含有シート、それを用いたled発光装置およびその製造方法
JP5862066B2 (ja) 蛍光体含有シート、それを用いたled発光装置およびその製造方法
KR101967623B1 (ko) 형광체 시트, 이것을 사용한 led 및 발광 장치, 그리고 led의 제조 방법
TWI693730B (zh) 發光裝置的製造方法
KR101932982B1 (ko) 형광체 함유 수지 시트 및 발광 장치
JP2014116587A (ja) 蛍光体含有樹脂シート、これを用いたled素子およびその製造方法
TWI686963B (zh) 積層體、發光裝置及其製造方法、閃光燈以及移動終端
JP5488761B2 (ja) 積層体および波長変換層付き発光ダイオードの製造方法
JP2014022704A (ja) 蛍光体含有樹脂シートと発光装置及びその製造方法
JP5953797B2 (ja) 半導体発光装置の製造方法
JP6497072B2 (ja) 積層体およびそれを用いた発光装置の製造方法
CN108291090B (zh) 树脂组合物、其片状成型物、以及使用其得到的发光装置和其制造方法
JP2016146375A (ja) 蛍光体含有樹脂シート、それを用いた発光装置およびその製造方法
JP2013252637A (ja) 蛍光体シート積層体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280003242.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800149

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012800149

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137006058

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14002252

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE