WO2012172190A1 - Procédé et dispositif de séparation chromatographique a contre-courant simulé a faible perte de charge et nombre de zones élevé - Google Patents

Procédé et dispositif de séparation chromatographique a contre-courant simulé a faible perte de charge et nombre de zones élevé Download PDF

Info

Publication number
WO2012172190A1
WO2012172190A1 PCT/FR2012/000161 FR2012000161W WO2012172190A1 WO 2012172190 A1 WO2012172190 A1 WO 2012172190A1 FR 2012000161 W FR2012000161 W FR 2012000161W WO 2012172190 A1 WO2012172190 A1 WO 2012172190A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
withdrawal
desorbent
extract
raffinate
Prior art date
Application number
PCT/FR2012/000161
Other languages
English (en)
Inventor
Philibert Leflaive
Damien Leinekugel-Le-Cocq
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to CN201280028723.1A priority Critical patent/CN103596654B/zh
Priority to US14/125,317 priority patent/US9365470B2/en
Priority to JP2014515243A priority patent/JP5993944B2/ja
Priority to KR1020147001181A priority patent/KR101853523B1/ko
Publication of WO2012172190A1 publication Critical patent/WO2012172190A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1807Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns using counter-currents, e.g. fluidised beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1814Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns recycling of the fraction to be distributed
    • B01D15/1821Simulated moving beds
    • B01D15/1842Simulated moving beds characterized by apparatus features
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • C07C7/13Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers by molecular-sieve technique

Definitions

  • the invention relates to the field of separations of natural or chemical products, which can be difficult to separate by distillation.
  • a family of methods, and associated devices known as simulated moving bed or simulated countercurrent methods, which will hereinafter be referred to generally as "CCS" processes, are then used.
  • an adsorber operating in simulated counter-current comprises at least three zones, and possibly four or five, each of these zones being constituted by a certain number of successive beds, and each zone being defined by its position lying between a point feed and a draw point.
  • a CCS column is fed with at least one charge F to be fractionated and a desorbent D (sometimes called an eluent), and at least one raffinate R and an extract E are withdrawn from the said column.
  • the feed and withdrawal points are changed over time, that is to say shifted in the same direction by a value corresponding to a bed.
  • the offsets of the different injection or withdrawal points may be simultaneous or non-simultaneous as taught in US patent 6136198.
  • the method according to this second mode of operation is called VARICOL.
  • Zone 1 desorption zone of the compounds of the extract, between the injection of the desorbent D and the extraction of the extract E.
  • Zone 2 desorption zone of the raffinate compounds, between the extraction of the extract E and the injection of the feedstock to be fractionated F.
  • Zone 3 zone of adsorption of the compounds of the extract, between injection of the feedstock and withdrawal of raffinate R.
  • Zone 4 zone between the raffinate withdrawal and the injection of the desorbent.
  • interstitial velocity is meant the actual velocity of the fluid between the particles constituting the adsorbent solid.
  • the pressure losses play an important role in the design of the recirculation pump (s), the thickness of the adsorber walls, the size of the support systems for possible distribution trays, and the mechanical strength of the grains. adsorbent, etc. They can become the limiting factor in operating a CCS process.
  • the object of the present invention is to propose a method of the CCS type with reduced pressure drop compared to the prior art, in particular with the aim of reducing the mechanical stresses within the various adsorbers or chromatographic columns, by increasing the number of chromatographic zones, while maintaining very high performances (purity, yield and productivity).
  • the method according to the invention makes it possible to achieve a higher productivity than that which one would obtain with a CCS process according to the prior art having a high number of beds (greater than 8 beds) and whose maximum flow rate of treated load is imposed by the pressure drops or the maximum permissible interstitial velocity within the unit.
  • FIG. 1 represents a CCS device according to the prior art, consisting of 24 beds divided into 4 zones.
  • FIG. 2 represents a device according to the invention, consisting of 24 beds divided into 8 zones.
  • FIG. 3 represents a device according to the invention, consisting of 24 beds divided into 12 zones.
  • the present invention relates to a method of separation by simulated countercurrent chromatography (abbreviated as CCS) of a charge F characterized in that the charge injection and desorbent flows are each divided into N streams (N being a integer strictly greater than 1), injected respectively into N charge injection points and N distinct desorbent injection points, and in that the extract and raffinate withdrawal streams are each further divided into N withdrawn streams each at N distinct withdrawal points, the device consisting of 4 x N chromatographic zones.
  • CCS simulated countercurrent chromatography
  • Injection and withdrawal points are positioned so that:
  • a desorbent injection point is positioned between a raffinate withdrawal point and an extract withdrawal point, the 3 points raffinate withdrawal, desorbent injection and extraction of extract being consecutive, a withdrawal point of extract is positioned between a desorbent injection point and a charge injection point, the 3 points of desorbent injection, extraction of extract and charge injection being consecutive,
  • a point of charge injection is positioned between an extract withdrawal point and a raffinate withdrawal point, the 3 extract withdrawal points, charge injection points and raffinate withdrawal points being consecutive,
  • a raffinate withdrawal point is positioned between a point of charge injection and a desorbent injection point, the 3 points of charge injection, raffinate withdrawal and desorbent injection being consecutive.
  • the method according to the invention has a significantly reduced overall pressure drop and substantially equivalent performance.
  • the period of permutation of the injection and withdrawal points as for it, is multiplied by N in the process according to the invention compared to the method of the same geometry, treating the same charge rate and consisting of 4 zones.
  • the period of permutation of the injection and withdrawal points is defined as the time that elapses between two successive permutations of the same injection or withdrawal flow.
  • the method according to the present invention applies more particularly to the separation of paraxylene or metaxylene in a mixture of aromatic hydrocarbons C8.
  • these two examples of application are in no way limiting and other applications are possible, especially in the field of separation of normal and iso paraffins or normal and isoolefins.
  • the method of separation by simulated countercurrent chromatography (CCS) of a charge F, according to the present invention has a number N of charge and desorbent injection points, and extraction of extract and raffinate between 2 and 6, and preferably between 2 and 4.
  • the method of separation by simulated countercurrent chromatography (CCS) of a charge F, according to the present invention has a total number of beds of either 16 or 24, of 30. The total number of beds is preferably 24.
  • the number of beds in each of the zones varies by one bed during a permutation period, the period of permutation of the injection and withdrawal points being defined as the time flowing between two successive permutations of the same injection or withdrawal stream.
  • flows of the same type that is to say the set of feed feed streams, the set of desorbent feed streams, the set of extract withdrawal streams and the set raffinate withdrawal streams, have the same flow to plus or minus 10%.
  • N 2, that is to say that:
  • each injection point of the load is divided into two rated F1 and F2
  • each injection point of the desorbent is divided into two denoted D1 and D2
  • each extraction point of the extract is divided into two, denoted E1 and E2
  • each raffinate withdrawal point is divided into two denoted R1 and R2.
  • the method of separation by simulated countercurrent chromatography (CCS) of a charge F may present a variant in which the number of beds in each of the zones varies from one bed during a period of permutation, the period of permutation of the injection and withdrawal points being defined as the time flowing between two successive permutations of the same injection or withdrawal flow.
  • CCS countercurrent chromatography
  • a CCS unit consisting of 24 beds, length 1, 1 m and internal radius 3.5 m is considered, with charge injection, desorbent injection, extraction of extract and raffinate withdrawal.
  • the beds are divided into 4 chromatographic zones according to the configuration
  • the adsorbent employed is a BaX zeolite, and the desorbent is paradiethylbenzene.
  • the temperature is 175 ° C., and the pressure is 15 bars.
  • the filler is composed of 20% paraxylene, 24% orthoxylene, 51% metaxylene and 5% ethylbenzene.
  • the permutation period used is 70.8 seconds.
  • the charge injection and desorbent flow rates are as follows:
  • the pressure losses on the entire adsorber consisting of 24 beds and 25 trays are 6.4 bar.
  • a unit according to the invention consists of 24 beds, length 1, 1 m and inner radius 3.5 m, with two feed injections, two injections of desorbent, two extract withdrawals and two raffinate withdrawals.
  • the beds are divided into 8 chromatographic zones, depending on the configuration
  • the adsorbent employed is a BaX zeolite, and the desorbent is paradiethylbenzene.
  • the temperature is 175 ° C., and the pressure is 15 bars.
  • the filler is composed of 20% paraxylene, 24% orthoxylene, 51% metaxylene and 5% ethylbenzene.
  • the permutation period employed is 141.6 seconds.
  • the charge injection and desorbent flow rates are as follows:
  • zone 4 and zone 8 flow rates are 11.08 m 3 min -1
  • the 2 extract withdrawal rates are 2.25 m 3 min -1 .
  • a purity of paraxylene of 99.86% and a paraxylene yield of 95.5% are obtained by simulation.
  • the pressure drops across the adsorber consisting of 24 beds and 25 trays are 2.5 bar.
  • a unit according to the invention consists of 24 beds, length 1, 1 m and internal radius 3.5 m, with three feed injections, three injections of desorbent, three extract withdrawals and three raffinate withdrawals.
  • the beds are divided into 12 chromatographic zones, depending on the configuration
  • the adsorbent employed is a BaX zeolite, and the desorbent is paradiethylbenzene.
  • the temperature is 175 ° C., and the pressure is 15 bars.
  • the filler is composed of 20% paraxylene, 24% orthoxylene, 51% metaxylene and 5% ethylbenzene.
  • the permutation period used is 212.4 seconds.
  • zone 4 zone 8 and zone 12 are 7.36 m 3 min -1
  • zone 3 extract withdrawal rates are 1.46 m 3 min -1 .
  • the pressure drops across the adsorber consisting of 24 beds and 25 trays are 1.5 bar.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Procédé de séparation en lit mobile simulé caractérisé en ce que les flux d'injection de charge et de désorbant sont chacun divisés en N flux (N étant un entier strictement supérieur à 1) injectés respectivement en N points d'injection de charge et en N points d'injection de désorbant distincts, et en ce que les flux de soutirage d'extrait et de raffinât sont également chacun divisés en N flux soutirés chacun en N points de soutirage distincts, le dispositif étant constitué de 4 x N zones chromatographiques.

Description

PROCÉDÉ ET DISPOSITIF DE SÉPARATION CHROMATOGRAPHIQUE A CONTRE-COURANT SIMULÉ A FAIBLE PERTE DE CHARGE ET NOMBRE DE
ZONES ÉLEVÉ
Domaine de l'invention :
L'invention se rapporte au domaine des séparations de produits naturels ou chimiques, que l'on peut difficilement séparer par distillation. On utilise alors une famille de procédés, et de dispositifs associés, connus sous le nom de procédés en lit mobile simulé, ou contre- courant simulé, que nous désignerons ci-après globalement par l'appellation de procédés « CCS ».
Les domaines concernés par ce type de procédés sont notamment, et de façon non exhaustive :
- la séparation entre d'une part lés paraffines normales, et d'autre part les paraffines ramifiées, naphtènes, et aromatiques,
- la séparation oléfines / paraffines,
- la séparation du paraxylène des autres isomères en C8 aromatiques,
- la séparation du métaxylène des autres isomères en C8 aromatiques,
- la séparation de l'éthylbenzène des autres isomères en C8 aromatiques.
Hors raffinerie et complexe pétrochimique, il existe de nombreuses autres applications parmi lesquelles on peut citer la séparation glucose / fructose, la séparation des isomères de position du crésol, des isomères optiques etc.
Art antérieur :
Les procédés de séparation en CCS sont bien connus dans l'état de la technique. En règle générale, un adsorbeur fonctionnant en contre-courant simulé comporte au moins trois zones, et éventuellement quatre ou cinq, chacune de ces zones étant constituée par un certain nombre de lits successifs, et chaque zone étant définie par sa position comprise entre un point d'alimentation et un point de soutirage. Typiquement, une colonne en CCS est alimentée par au moins une charge F à fractionner et un désorbant D (parfois appelé éluant), et l'on soutire de ladite colonne au moins un raffinât R et un extrait E.
Les points d'alimentation et de soutirage sont modifiés au cours du temps, c'est à dire décalés dans le même sens d'une valeur correspondant à un lit. Les décalages des différents points d'injection ou de soutirage peuvent être soit simultanés, soit non- simultanés comme l'enseigne le brevet US 6136198. Le procédé selon ce second mode de fonctionnement est appelé VARICOL.
Classiquement, on définit 4 zones chromatographiques différentes dans une unité CCS • Zone 1 : zone de désorption des composés de l'extrait, comprise entre l'injection du désorbant D et le prélèvement de l'extrait E.
• Zone 2 : zone de désorption des composés du raffinât, comprise entre le prélèvement de l'extrait E et l'injection de la charge à fractionner F. · Zone 3 : zone d'adsorption des composés de l'extrait, comprise entre l'injection de la charge et le soutirage du raffinât R.
• Zone 4 : zone comprise entre le soutirage de raffinât et l'injection du désorbant.
L'état de la technique décrit de façon approfondie différents dispositifs et procédés permettant d'effectuer la séparation de charges en CCS.
On peut citer notamment les brevets US 2,985,589, US 3,214,247, US 3,268,605, US 3,592,612, US 4,614,204, US 4,378,292, US 5,200,075, US 5,316,821.
Les pertes de charge subies au sein d'un procédé CCS sont directement liées aux vitesses interstitielles de la phase fluide dans les colonnes chromatographiques. On entend par vitesse interstitielle la vitesse réelle du fluide entre les particules constituant le solide adsorbant.
Les pertes de charge jouent un rôle important sur le dimensionnement de la ou des pompes de recirculation, sur l'épaisseur des parois des adsorbeurs, sur la taille des systèmes de support d'éventuels plateaux de distributions, sur la tenue mécanique des grains d'adsorbant, etc. Elles peuvent devenir le facteur limitant dans l'exploitation d'un procédé en CCS.
L'objet de la présente invention est de proposer un procédé de type CCS à perte de charge réduite par rapport à l'art antérieur dans le but notamment de réduire les contraintes mécaniques au sein des différents adsorbeurs ou colonnes chromatographiques, en augmentant le nombre de zones chromatographiques, tout en maintenant de très hautes performances (pureté, rendement et productivité).
Le procédé selon l'invention permet d'atteindre une productivité supérieure à celle que l'on obtiendrait avec un procédé CCS selon l'art antérieur présentant un nombre de lits élevés (supérieur à 8 lits) et dont le débit maximum de charge traité est imposé par les pertes de charge ou la vitesse interstitielle maximale admissible au sein de l'unité. Description sommaire des figures :
La figure 1 représente un dispositif CCS selon l'art antérieur, constitué de 24 lits répartis en 4 zones.
La figure 2 représente un dispositif selon l'invention, constitué de 24 lits répartis en 8 zones. La figure 3 représente un dispositif selon l'invention, constitué de 24 lits répartis en 12 zones.
Description de l'invention :
La présente invention concerne un procédé de séparation par chromatographie à contre- courant simulé (noté CCS en abrégé) d'une charge F caractérisée en ce que les flux d'injection de charge et de désorbant sont chacun divisés en N flux (N étant un entier strictement supérieur à 1), injectés respectivement en N points d'injection de charge et en N points d'injection de désorbant distincts, et en ce que les flux de soutirage d'extrait et de raffinât sont également chacun divisés en N flux soutirés chacun en N points de soutirage distincts, le dispositif étant constitué de 4 x N zones chromatographiques.
Les points d'injections et de soutirages sont positionnés de manière à ce que :
- un point d'injection de désorbant est positionné entre un point de soutirage de raffinât et un point de soutirage d'extrait, les 3 points soutirage de raffinât, injection de désorbant et soutirage d'extrait étant consécutifs, - un point de soutirage d'extrait est positionné entre un point d'injection de désorbant et un point d'injection de charge, les 3 points injection de désorbant, soutirage d'extrait et injection de charge étant consécutifs,
- un point d'injection de charge est positionné entre un point de soutirage d'extrait et un point de soutirage de raffinât, les 3 points soutirage d'extrait, injection de charge et soutirage de raffinât étant consécutifs,
- un point de soutirage de raffinât est positionné entre un point d'injection de charge et un point d'injection de désorbant, les 3 points injection de charge, soutirage de raffinât et injection de désorbant étant consécutifs.
On entend par consécutifs, le fait qu'on ne rencontre aucun autre point de soutirage ou d'injection entre les points désignés comme consécutifs. On note d'ailleurs que les trois points consécutifs se suivent toujoours dans l'ordre injection , soutirage, injection ou dans l'ordre soutirage, injection, soutirage.
Par rapport à un procédé de même géométrie, traitant le même débit de charge et constitué de 4 zones, le procédé selon l'invention présente une perte de charge globale nettement réduite et des performances sensiblement équivalentes.
La période de permutation des points d'injection et de soutirage quant à elle, est multipliée par N dans le procédé selon l'invention par rapport au procédé de même géométrie, traitant le même débit de charge et constitué de 4 zones. La période de permutation des points d'injection et de soutirage est définie comme le temps s'écoulant entre deux permutations successives d'un même flux d'injection ou de soutirage.
Le procédé selon la présente invention s'applique plus particulièrement à la séparation du paraxylène ou du métaxylène au sein d'un mélange d'hydrocarbures aromatiques en C8. Bien entendu, ces deux exemples d'application ne sont nullement limitatifs et d'autres applications sont possibles, notamment dans le domaine de la séparation des normales et iso paraffines ou des normales et des iso oléfines.
Le procédé de séparation par chromatographie à contre-courant simulé (CCS) d'une charge F, selon la présente invention présente un nombre N de points d'injection de charge et de désorbant, et de soutirage d'extrait et de raffinât compris entre 2 et 6, et préférentiellement compris entre 2 et 4. Le procédé de séparation par chromatographie à contre-courant simulé (CCS) d'une charge F, selon la présente invention présente un nombre total de lits soit de 16, soit de 24, soit de 30. Préférentiellement le nombre total de lits est de 24.
Dans une variante du procédé de séparation par chromatographie à contre-courant simulé (CCS) d'une charge F, selon la présente invention, le nombre de lits dans chacune des zones varie d'un lit au cours d'une période de permutation, la période de permutation des points d'injection et de soutirage étant définie comme le temps s'écoulant entre deux permutations successives d'un même flux d'injection ou de soutirage.
De manière préférée les flux de même type, c'est à dire l'ensemble des flux d'alimentation de charge, l'ensemble des flux d'alimentation de désorbant, l'ensemble des flux de soutirage d'extrait et l'ensemble des flux de soutirage de raffinât, ont un même débit à plus ou moins 10% près. La suite de la description du procédé selon l'invention est faite dans le cas particulier où N=2, c'est à dire que :
chaque point d'injection de la charge est divisée en deux notés F1 et F2
chaque point d'injection du désorbant est divisé en deux notés D1 et D2
chaque point de soutirage de l'extrait est divisé en deux, notés E1 et E2
chaque point de soutirage du raffinât est divisé en deux notés R1 et R2.
Le cas particulier N=2 correspond à un procédé CCS présentant 8 zones définies de la manière suivante :
- zone 1 entre l'injection n°1 de désorbant D1 et le soutirage n°1 d'extrait E1 ;
- zone 2 entre le soutirage n°1 d'extrait E1 et l'injection n°1 de charge F1 ;
- zone 3 entre l'injection n°1 de charge F1 et le soutirage n°1 de raffinât R1 ;
- zone 4 entre le soutirage n°1 de raffinât R1 et l'injection n°2 de désorbant D2 ;
- zone 5 entre l'injection n°2 de désorbant D2 et le soutirage n°2 d'extrait E2 ;
- zone 6 entre le soutirage n°2 d'extrait E2 et l'injection n°2 de charge F2 ;
- zone 7 entre l'injection n°2 de charge F2 et le soutirage n°2 de raffinât R2 ;
- zone 8 entre le soutirage n°2 de raffinât R2 et l'injection n°1 de désorbant D1.
Dans le cas particulier où N=3, c'est à dire dans le cas d'un procédé CCS présentant 12 zones, les zones sont définies de la manière suivante:
- zone 1 entre l'injection n°1 de désorbant D1 et le soutirage n°1 d'extrait E1 ;
- zone 2 entre le soutirage n°1 d'extrait E1 et l'injection n°1 de charge F1 ;
- zone 3 entre l'injection n°1 de charge F1 et le soutirage n°1 de raffinât R1 ;
- zone 4 entre le soutirage n°1 de raffinât R1 et l'injection n°2 de désorbant D2 ;
- zone 5 entre l'injection n°2 de désorbant D2 et le soutirage n°2 d'extrait E2 ;
- zone 6 entre le soutirage n°2 d'extrait E2 et l'injection n°2 de charge F2 ;
- zone 7 entre l'injection n°2 de charge F2 et le soutirage n°2 de raffinât R2 ;
- zone 8 entre le soutirage n°2 de raffinât R2 et l'injection n°3 de désorbant D3 ;
- zone 9 entre l'injection n°3 de désorbant D3 et le soutirage n°3 d'extrait E3 ;
- zone 10 entre le soutirage n°3 d'extrait E1 et l'injection n°3 de charge F3 ;
- zone 11 entre l'injection n°3 de charge F1 et le soutirage n°3 de raffinât R3 ;
- zone 12 entre le soutirage n°3 de raffinât R3 et l'injection n°1 de désorbant D1.
Ces décompositions en 8 et 12 zones seront mieux comprises à l'aide des exemples qui suivent. Le procédé de séparation par chromatographie à contre-courant simulé (CCS) d'une charge F, selon la présente invention, peut présenter une variante dans laquelle le nombre de lits dans chacune des zones varie d'un lit au cours d'une période de permutation, la période de permutation des points d'injection et de soutirage étant définie comme le temps s'écoulant entre deux permutations successives d'un même flux d'injection ou de soutirage.
Parmi les différentes applications du procédé selon la présente invention, on peut citer comme particulièrement bien adaptée la séparation du paraxylène au sein d'un mélange d'hydrocarbures aromatiques en C8. On peut également citer la séparation du métaxylène au sein d'un mélange d'hydrocarbures aromatiques en C8.
Exemples :
L'invention sera mieux comprise à la lecture des trois exemples qui suivent.
Exemple 1 (selon l'art antérieur)
On considère une unité CCS constituée de 24 lits, de longueur 1 ,1 m et de rayon interne 3,5 m, avec une injection de charge, une injection de désorbant, un soutirage d'extrait et un soutirage de raffinât.
Les décalages des différents points d'injection ou de soutirage sont simultanés.
Les lits sont répartis en 4 zones chromatographiques selon la configuration
5 / 9 / 7 / 3 c'est à dire que la répartition des lits est la suivante :
5 lits en zone 1 (entre l'injection de désorbant D et le soutirage d'extrait E) ;
9 lits en zone 2 (entre le soutirage d'extrait E et l'injection de charge F) ;
7 lits en zone 3 (entre l'injection de charge F et le soutirage de raffinât R) ;
- 3 lits en zone 4 ((entre le soutirage de raffinât R et l'injection de désorbant D).
L'adsorbant employé est une zéolithe de type BaX, et le désorbant est du paradiéthylbenzène. La température est de 175°C, et la pression de 15 bars.
La charge est composée de 20 % de paraxylène, de 24 % d'orthoxylène, de 51 % de métaxylène et de 5% d'éthylbenzène. La période de permutation employée est de 70,8 secondes.
Les débits d'injection de charge et de désorbant sont les suivants :
6,81 m3.min"1 pour la charge;
7,48 m3.min'1 pour le désorbant ; De plus, le débit de zone 4 est de 22,08 m3.min"1, et le débit de soutirage d'extrait est de 4,38 m3.min"1.
On obtient par simulation une pureté de paraxylène de 99,85 % et un rendement en paraxylène de 97,39 %.
Les pertes de charge sur l'ensemble de l'adsorbeur constitué de 24 lits et de 25 plateaux sont de 6,4 bar.
Exemple 2 (selon l'invention)
On considère une unité selon l'invention constituée de 24 lits, de longueur 1 ,1 m et de rayon interne 3,5 m, avec deux injections de charge, deux injections de désorbant, deux soutirages d'extrait et deux soutirages de raffinât.
Les décalages des différents points d'injection ou de soutirage sont simultanés.
Les lits sont répartis en 8 zones chromatographiques, selon la configuration
2 / 5 / 3 / 2 / 2 / 5 / 3 / 2
C'est à dire que la répartition des lits est la suivante :
2 lits en zone 1 (entre l'injection n°1 de désorbant D1 et le soutirage n°1 d'extrait
E1) ;
5 lits en zone 2 (entre le soutirage n°1 d'extrait E1 et l'injection n°1 de charge F1) ;
3 lits en zone 3 (entre l'injection n°1 de charge F1 et le soutirage n°1 de raffinât R1) ;
2 lits en zone 4 (entre le soutirage n°1 de raffinât R1 et l'injection n°2 de désorbant
D2) ;
2 lits en zone 5 (entre l'injection n°2 de désorbant D2 et le soutirage n°2 d'extrait
E2) ;
- 5 lits en zone 6 (entre le soutirage n°2 d'extrait E2 et l'injection n°2 de charge F2) ;
3 lits en zone 7 (entre l'injection n°2 de charge F2 et le soutirage n°2 de raffinât
R2) ;
2 lits en zone 8 (entre le soutirage n°2 de raffinât R2 et l'injection n°1 de désorbant
D1).
L'adsorbant employé est une zéolithe de type BaX, et le désorbant est du paradiéthylbenzène. La température est de 175°C, et la pression de 15 bars. La charge est composée de 20 % de paraxylène, de 24 % d'orthoxylène, de 51 % de métaxylène et de 5% d'éthylbenzène. La période de permutation employée est de 141 ,6 secondes. Les débits d'injection de charge et de désorbant sont les suivants :
3,405 m3.min"1 pour la charge n°1 ,
3,405 m3.min"1 pour la charge n°2,
3,74 m'.mirf1 pour le désorbant n°1 ,
3,74 m3.min'1 pour le désorbant n°2.
De plus, les débits de zone 4 et de zone 8 sont de 11 ,08 m3.min"1, et les 2 débits de soutirage d'extrait sont de 2,25 m3.min"1.
On obtient par simulation une pureté de paraxylène de 99,86 % et un rendement en paraxylène de 95,5 %.
Les pertes de charge sur l'ensemble de l'adsorbeur constitué de 24 lits et de 25 plateaux sont de 2,5 bar.
Exemple 3 (selon l'invention)
On considère une unité selon l'invention constituée de 24 lits, de longueur 1 ,1 m et de rayon interne 3,5 m, avec trois injections de charge, trois injections de désorbant, trois soutirages d'extrait et trois soutirages de raffinât.
Les décalages des différents points d'injection ou de soutirage ne sont pas simultanés, de manière à obtenir des longueurs de zones chromatographiques non-entière (comme enseigné dans le brevet US 6136198).
Les lits sont répartis en 12 zones chromatographiques, selon la configuration
1 ,5 / 3,2 / 2,1 / 1,2 / 1,5 / 3,2 / 2, 1 / 1,2 / 1 ,5 / 3,2 / 2,1 / 1 ,2
c'est à dire que la répartition des lits est la suivante au cours d'une période (en posant comme convention que le début et la fin d'une période est définie par le décalage des points d'injection de désorbant) :
· du début de la période jusqu'à 42,6 secondes (définie par rapport au début de la période), il y a :
- 1 lits en zone 1 (entre l'injection n°1 de désorbant D1 et le soutirage n°1 d'extrait E1) ;
- 3 lits en zone 2 (entre le soutirage n°1 d'extrait E1 et l'injection n°1 de charge F1) ; - 2 lits en zone 3 (entre l'injection n°1 de charge F1 et le soutirage n°1 de raffinât R1) ;
- 2 lits en zone 4 (entre le soutirage n°1 de raffinât R1 et l'injection n°2 de désorbant D2) ;
- 1 lits en zone 5 (entre l'injection n°2 de désorbant D2 et le soutirage n°2 d'extrait
E2) ;
- 3 lits en zone 6 (entre le soutirage n°2 d'extrait E2 et l'injection n°2 de charge F2) ;
- 2 lits en zone 7 (entre l'injection n°2 de charge F2 et le soutirage n°2 de raffinât R2) ;
- 2 lits en zone 8 (entre le soutirage n°2 de raffinât R2 et l'injection n°3 de désorbant
D3) ;
- 1 lits en zone 9 (entre l'injection n°3 de désorbant D3 et le soutirage n°3 d'extrait E3) ;
- 3 lits en zone 10 (entre le soutirage n°3 d'extrait E3 et l'injection n°3 de charge F3) ; - 2 lits en zone 11 (entre l'injection n°3 de charge F3 et le soutirage n°3 de raffinât
R3) ;
- 2 lits en zone 12 (entre le soutirage n°3 de raffinât R3 et l'injection n°1 de désorbant D1) ; de 42,6 secondes jusqu'à 63,9 secondes (définie par rapport au début de la période), il y a :
- 1 lits en zone 1 (entre l'injection n°1 de désorbant D1 et le soutirage n°1 d'extrait E1) ;
- 3 lits en zone 2 (entre le soutirage n°1 d'extrait E1 et l'injection n°1 de charge F1) ; - 3 lits en zone 3 (entre l'injection n°1 de charge F1 et le soutirage n°1 de raffinât
R1) ;
- 1 lits en zone 4 (entre le soutirage n°1 de raffinât R1 et l'injection n°2 de désorbant D2) ;
- 1 lits en zone 5 (entre l'injection n°2 de désorbant D2 et le soutirage n°2 d'extrait E2) ;
- 3 lits en zone 6 (entre le soutirage n°2 d'extrait E2 et l'injection n°2 de charge F2) ;
- 3 lits en zone 7 (entre l'injection n°2 de charge F2 et le soutirage n°2 de raffinât R2) ; - 1 lits en zone 8 (entre le soutirage n°2 de raffinât R2 et l'injection n°3 de désorbant D3) ;
- 1 lits en zone 9 (entre l'injection n°3 de désorbant D3 et le soutirage n°3 d'extrait E3) ;
- 3 lits en zone 0 (entre le soutirage n°3 d'extrait E3 et l'injection n°3 de charge F3) ;
- 3 lits en zone 11 (entre l'injection n°3 de charge F3 et le soutirage n°3 de raffinât R3) ;
- 1 lits en zone 12 (entre le soutirage n°3 de raffinât R3 et l'injection n°1 de désorbant D1) ; de 63,9 secondes jusqu'à 106,5 secondes (définie par rapport au début de la période), il y a :
- 1 lits en zone 1 (entre l'injection n°1 de désorbant D1 et le soutirage n°1 d'extrait E1) ;
- 4 lits en zone 2 (entre le soutirage n°1 d'extrait E1 et l'injection n°1 de charge F1) ;
- 2 lits en zone 3 (entre l'injection n°1 de charge F1 et le soutirage n°1 de raffinât R1) ;
- 1 lits en zone 4 (entre le soutirage n°1 de raffinât R1 et l'injection n°2 de désorbant D2) ;
- 1 lits en zone 5 (entre l'injection n°2 de désorbant D2 et le soutirage n°2 d'extrait
E2) ;
- 4 lits en zone 6 (entre le soutirage n°2 d'extrait E2 et l'injection n°2 de charge F2) ;
- 2 lits en zone 7 (entre l'injection n°2 de charge F2 et le soutirage n°2 de raffinât R2) ;
- 1 lits en zone 8 (entre le soutirage n°2 de raffinât R2 et l'injection n°3 de désorbant
D3) ;
- 1 lits en zone 9 (entre l'injection n°3 de désorbant D3 et le soutirage n°3 d'extrait E3) ;
- 4 lits en zone 10 (entre le soutirage n°3 d'extrait E3 et l'injection n°3 de charge F3) ; - 2 lits en zone 11 (entre l'injection n°3 de charge F3 et le soutirage n°3 de raffinât
R3) ;
- 1 lits en zone 12 (entre le soutirage n°3 de raffinât R3 et l'injection n°1 de désorbant D1) ; • de 63,9 secondes (définie par rapport au début de la période) jusqu'à la fin de la période, il y a :
- 2 lits en zone 1 (entre l'injection n°1 de désorbant D1 et le soutirage n°1 d'extrait E1) ;
- 3 lits en zone 2 (entre le soutirage n°1 d'extrait E1 et l'injection n°1 de charge F1) ;
- 2 lits en zone 3 (entre l'injection n°1 de charge F1 et le soutirage n°1 de raffinât 1) ;
- 1 lits en zone 4 (entre le soutirage n°1 de raffinât R1 et l'injection n°2 de désorbant D2) ;
- 2 lits en zone 5 (entre l'injection n°2 de désorbant D2 et le soutirage n°2 d'extrait
E2) ;
- 3 lits en zone 6 (entre le soutirage n°2 d'extrait E2 et l'injection n°2 de charge F2) ;
- 2 lits en zone 7 (entre l'injection n°2 de charge F2 et le soutirage n°2 de raffinât R2) ;
- 1 lits en zone 8 (entre le soutirage n°2 de raffinât R2 et l'injection n°3 de désorbant
D3) ;
- 2 lits en zone 9 (entre l'injection n°3 de désorbant D3 et le soutirage n°3 d'extrait E3) ;
- 3 lits en zone 10 (entre le soutirage n°3 d'extrait E3 et l'injection n°3 de charge F3) ; - 2 lits en zone 11 (entre l'injection n°3 de charge F3 et le soutirage n°3 de raffinât
R3) ;
- 1 lits en zone 12 (entre le soutirage n°3 de raffinât R3 et l'injection n°1 de désorbant D1).
L'adsorbant employé est une zéolithe de type BaX, et le désorbant est du paradiéthylbenzène. La température est de 175°C, et la pression de 15 bars.
La charge est composée de 20 % de paraxylène, de 24 % d'orthoxylène, de 51 % de métaxylène et de 5% d'éthylbenzène. La période de permutation employée est de 212,4 secondes.
Les débits d'injection de charge et de désorbant sont les suivants
2,27 m3.min"1 pour la charge n°1 ,
2,27 m3.min"1 pour la charge n°2,
2,27 m3.min"1 pour la charge n°3, 2,493 m3.min"1 pour le désorbant n°1 ,
2,493 m3.min"1 pour le désorbant n°2,
2,493 m3 min"1 pour le désorbant n°3.
De plus, les débits de zone 4, zone 8 et zone 12 sont de 7,36 m3.min"1, et les trois débits de soutirage d'extrait sont de 1 ,46 m3.min"1.
On obtient par simulation une pureté de paraxylène de 99,82 % et un rendement en paraxylène de 95,54 %.
Les pertes de charge sur l'ensemble de l'adsorbeur constitué de 24 lits et de 25 plateaux sont de 1 ,5 bar.

Claims

REVENDICATIONS
1. Procédé de séparation par chromatographie à contre-courant simulé (CCS) d'une charge F possédant au moins une colonne d'adsorption divisée en zones, chaque zone comportant un certain nombres de lits, ladite colonne étant composée d'une pluralité de lits d'adsorbants séparés par des plateaux Pj comprenant chacun un système de distribution/extraction, procédé dans lequel on alimente la charge F en au moins un point d'alimentation et un désorbant D en au moins un point d'alimentation, et l'on soutire au moins un extrait E, et au moins un raffinât R, les points d'alimentation et de soutirage étant décalés au cours du temps d'une valeur correspondant à un lit d'adsorbant avec une période de permutation ST, et déterminant une pluralité de zones de fonctionnement du LMS, chaque zone étant comprise entre un point d'injection et le point de soutirage immédiatement consécutif, ou entre un point de soutirage et le point d'injection immédiatement consécutif,
procédé caractérisé en ce que les flux d'injection de charge et de désorbant sont chacun divisés en N flux (N étant un entier strictement supérieur à 1) injectés respectivement en N points d'injection de charge et en N points d'injection de désorbant distincts, et en ce que les flux de soutirage d'extrait et de raffinât sont également chacun divisés en N flux soutirés chacun en N points de soutirage distincts, le dispositif étant constitué de 4 x N zones chromatographiques, procédé dans lequel les points d'injections et de soutirages sont positionnés de la manière suivante :
o un point d'injection de désorbant est positionné entre un point de soutirage de raffinât et un point de soutirage d'extrait, les 3 points: soutirage de raffinât, injection de désorbant et soutirage d'extrait étant consécutifs, o un point de soutirage d'extrait est positionné entre un point d'injection de désorbant et un point d'injection de charge, les 3 points: injection de désorbant, soutirage d'extrait et injection de charge étant consécutifs, o un point d'injection de charge est positionné entre un point de soutirage d'extrait et un point de soutirage de raffinât, les 3 points: soutirage d'extrait, injection de charge et soutirage de raffinât étant consécutifs, o un point de soutirage de raffinât est positionné entre un point d'injection de charge et un point d'injection de désorbant, les 3 points: injection de charge, soutirage de raffinât et injection de désorbant étant consécutifs.
2. Procédé de séparation par chromatographie à contre-courant simulé (CCS) d'une charge F, selon la revendication 1 , dans lequel les flux de même type (charge, désorbant, extrait ou raffinât) ont le même débit à plus ou moins 10% près.
3. Procédé de séparation par chromatographie à contre-courant simulé (CCS) d'une charge F, selon la revendication 1 , dans lequel le nombre N de points d'injection de charge et de désorbant et de soutirage d'extrait et de raffinât est compris entre 2 et 6, et préférentiellement compris entre 2 et 4.
4. Procédé de séparation par chromatographie à contre-courant simulé (CCS) d'une charge F, selon la revendication 1 , dans lequel le nombre total de lits est soit de 16, soit de 24, soit de 30.
5. Procédé de séparation par chromatographie à contre-courant simulé (CCS) d'une charge F, selon la revendication 1 , dans lequel le nombre de lits dans chacune des zones varie d'un lit au cours d'une période de permutation, la période de permutation des points d'injection et de soutirage étant définie comme le temps s'écoulant entre deux permutations successives d'un même flux d'injection ou de soutirage.
6. Application du procédé de séparation chromatographique à contre courant simulé selon l'une quelconque des revendications 1 à 5, à la séparation du paraxylène au sein d'un mélange d'hydrocarbures aromatiques en C8.
7. Application du procédé de séparation chromatographique à contre courant simulé selon l'une quelconque des revendications 1 à 5, à la séparation du métaxylène au sein d'un mélange d'hydrocarbures aromatiques en C8.
PCT/FR2012/000161 2011-06-16 2012-04-26 Procédé et dispositif de séparation chromatographique a contre-courant simulé a faible perte de charge et nombre de zones élevé WO2012172190A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280028723.1A CN103596654B (zh) 2011-06-16 2012-04-26 具有低压力降和高区数的模拟逆流色谱分离方法
US14/125,317 US9365470B2 (en) 2011-06-16 2012-04-26 Simulated countercurrent chromatographic separation process and device with low pressure drop and high number of zones
JP2014515243A JP5993944B2 (ja) 2011-06-16 2012-04-26 圧力降下が少なくかつ帯域の床数が多い、擬似向流クロマトグラフィー分離のための方法および装置
KR1020147001181A KR101853523B1 (ko) 2011-06-16 2012-04-26 낮은 압력 강하 및 많은 수의 구역들을 갖는 시뮬레이팅 역류 크로마토그래피 분리 프로세스 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1101854A FR2976500B1 (fr) 2011-06-16 2011-06-16 Procede et dispositif de sepation chromatographique a contre-courant simule a faible perte de charge et nombre de zones eleve.
FR11/01854 2011-06-16

Publications (1)

Publication Number Publication Date
WO2012172190A1 true WO2012172190A1 (fr) 2012-12-20

Family

ID=46229875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/000161 WO2012172190A1 (fr) 2011-06-16 2012-04-26 Procédé et dispositif de séparation chromatographique a contre-courant simulé a faible perte de charge et nombre de zones élevé

Country Status (7)

Country Link
US (1) US9365470B2 (fr)
JP (1) JP5993944B2 (fr)
KR (1) KR101853523B1 (fr)
CN (1) CN103596654B (fr)
FR (1) FR2976500B1 (fr)
SA (1) SA112330610B1 (fr)
WO (1) WO2012172190A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3839497A4 (fr) * 2018-11-16 2022-05-18 Organo Corporation Procédé de séparation chromatographique utilisant une technique de lit mobile simulé et système de séparation chromatographique utilisant une technique de lit mobile simulé

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016081113A1 (fr) 2014-11-20 2016-05-26 Exxonmobil Chemical Patents Inc. Procédé et appareil de séparation de xylènes
CN106390515B (zh) * 2015-07-28 2019-06-14 中国石油化工股份有限公司 利用液相模拟移动床从原料中同时分离多种组分的方法
CN106390518B (zh) * 2015-07-28 2019-11-15 中国石油化工股份有限公司 一种用液相模拟移动床同时吸附分离多股原料的方法
CN106186484A (zh) * 2016-06-30 2016-12-07 庄心生 一种液体处理系统与方法
FR3063655B1 (fr) * 2017-03-13 2019-04-05 IFP Energies Nouvelles Procede de separation des xylenes en lit mobile simule et conditions operatoires optimisees
FR3066401B1 (fr) * 2017-05-17 2021-04-23 Ifp Energies Now Procede de separation des xylenes en lit mobile simule et conditions operatoires optimisees pour les unites traitant des charges riches en paraxylene
JP7282637B2 (ja) * 2019-09-02 2023-05-29 オルガノ株式会社 クロマト分離装置のシミュレータ、クロマト分離装置の運転条件探索方法及びクロマト分離装置のシミュレーションプログラム

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985589A (en) 1957-05-22 1961-05-23 Universal Oil Prod Co Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets
US3214247A (en) 1963-02-25 1965-10-26 Universal Oil Prod Co Fluid distributing means for packed chambers
US3268605A (en) 1961-11-06 1966-08-23 Universal Oil Prod Co Supervisory control system for a simulated moving bed separation process
US3592612A (en) 1966-11-02 1971-07-13 John H Ballard Two-stage apparatus for mixing fluids in concurrent downflow relationship
US4378292A (en) 1981-09-11 1983-03-29 Uop Inc. Fixed bed multiple zone fluid-solids contacting apparatus
US4614204A (en) 1984-12-10 1986-09-30 Uop Inc. Rotary valve for interconnecting conduits in three groups
US5200075A (en) 1991-03-08 1993-04-06 Nkk Corporation Separator
EP0821988A1 (fr) * 1996-07-31 1998-02-04 Institut Francais Du Petrole Dispositif et procédé de rinçage en lit mobile simulé comportant au moins deux lignes de distribution de fluides
US6136198A (en) 1998-10-29 2000-10-24 Institut Francais Du Petrole Process and device for separation with variable-length
FR2913345A1 (fr) * 2007-03-09 2008-09-12 Inst Francais Du Petrole Procede et dispositif de separation en lit mobile simule a nombre de vannes et volume de lignes reduits

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124895A (ja) * 1988-11-02 1990-05-14 Morinaga Milk Ind Co Ltd ラクチュロースの分離方法
FR2721529B1 (fr) 1994-06-22 1996-09-06 Inst Francais Du Petrole Procédé de séparation par chromatographie en lit mobile simulé avec correction de volume mort par diminution de longueur.
JPH0810505A (ja) * 1994-07-04 1996-01-16 Nkk Corp 横型多段吸着分離装置
US5635072A (en) 1995-01-31 1997-06-03 Uop Simulated moving bed adsorptive separation process
JP4257980B2 (ja) 2004-03-30 2009-04-30 独立行政法人産業技術総合研究所 向流クロマトグラフィー法及び向流クロマトグラフィー装置
DE102004025000A1 (de) * 2004-05-21 2005-12-08 Bayer Technology Services Gmbh Verfahren zur Herstellung von chemischen und pharmazeutischen Produkten mit integrierter Mehrsäulen-Chromatographie
CN101687119B (zh) 2007-06-15 2013-06-12 通用电气健康护理生物科学股份公司 色谱方法
FR2944215B1 (fr) * 2009-04-10 2011-04-01 Inst Francais Du Petrole Procede et dispositif de separation en lit mobile simule comportant des lignes de derivation d'un lit sur deux et a debit de fluide de derivation module
PT2519332E (pt) * 2009-12-30 2014-05-26 Basf Pharma Callanish Ltd Processo de separação cromatográfica em leito móvel simulado para a purificação de ácidos gordos poli-insaturados
GB201111595D0 (en) * 2011-07-06 2011-08-24 Equateq Ltd Improved process

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985589A (en) 1957-05-22 1961-05-23 Universal Oil Prod Co Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets
US3268605A (en) 1961-11-06 1966-08-23 Universal Oil Prod Co Supervisory control system for a simulated moving bed separation process
US3214247A (en) 1963-02-25 1965-10-26 Universal Oil Prod Co Fluid distributing means for packed chambers
US3592612A (en) 1966-11-02 1971-07-13 John H Ballard Two-stage apparatus for mixing fluids in concurrent downflow relationship
US4378292A (en) 1981-09-11 1983-03-29 Uop Inc. Fixed bed multiple zone fluid-solids contacting apparatus
US4614204A (en) 1984-12-10 1986-09-30 Uop Inc. Rotary valve for interconnecting conduits in three groups
US5200075A (en) 1991-03-08 1993-04-06 Nkk Corporation Separator
US5316821A (en) 1991-03-08 1994-05-31 Nkk Corporation Partition plate for multiple-stage adsorption separator
EP0821988A1 (fr) * 1996-07-31 1998-02-04 Institut Francais Du Petrole Dispositif et procédé de rinçage en lit mobile simulé comportant au moins deux lignes de distribution de fluides
US6136198A (en) 1998-10-29 2000-10-24 Institut Francais Du Petrole Process and device for separation with variable-length
FR2913345A1 (fr) * 2007-03-09 2008-09-12 Inst Francais Du Petrole Procede et dispositif de separation en lit mobile simule a nombre de vannes et volume de lignes reduits

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NICOLAOS A ET AL: "Application of equilibrium theory to ternary moving bed configurations (four+four, five+four, eight and nine zones) - I. Linear case", JOURNAL OF CHROMATOGRAPHY, ELSEVIER SCIENCE PUBLISHERS B.V, NL, vol. 908, no. 1-2, 26 January 2001 (2001-01-26), pages 71 - 86, XP004314123, ISSN: 0021-9673, DOI: 10.1016/S0021-9673(00)00937-7 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3839497A4 (fr) * 2018-11-16 2022-05-18 Organo Corporation Procédé de séparation chromatographique utilisant une technique de lit mobile simulé et système de séparation chromatographique utilisant une technique de lit mobile simulé
US11839835B2 (en) 2018-11-16 2023-12-12 Organo Corporation Simulated moving-bed type chromatographic separation method and simulated moving-bed type chromatographic separation system

Also Published As

Publication number Publication date
JP2014528907A (ja) 2014-10-30
CN103596654A (zh) 2014-02-19
KR20140041756A (ko) 2014-04-04
JP5993944B2 (ja) 2016-09-21
SA112330610B1 (ar) 2015-07-09
KR101853523B1 (ko) 2018-04-30
CN103596654B (zh) 2015-06-17
FR2976500B1 (fr) 2013-05-31
US20140148633A1 (en) 2014-05-29
US9365470B2 (en) 2016-06-14
FR2976500A1 (fr) 2012-12-21

Similar Documents

Publication Publication Date Title
WO2012172190A1 (fr) Procédé et dispositif de séparation chromatographique a contre-courant simulé a faible perte de charge et nombre de zones élevé
EP3169653B1 (fr) Procédé de production de paraxylène à haute pureté à partir d'une coupe xylènes, utilisant deux unités de séparation en lit mobile simulé fonctionnant en série et deux unités d'isomérisation
US9302201B2 (en) Apparatus for conducting simulated countercurrent adsorptive separation of a multi-component feed stream
US8529757B2 (en) Parex unit feed
FR2944215A1 (fr) Procede et dispositif de separation en lit mobile simule comportant des lignes de derivation d'un lit sur deux et a debit de fluide de derivation module
WO2009019336A1 (fr) Procede et dispositif de separation ameliore de paraxylene en lit mobile simule
JP6190578B2 (ja) 擬似向流によるパラキシレンの製造のための、高い柔軟性を有する方法および装置
FR2935101A1 (fr) Procede et dispostif de separation en lit mobile simule a debit de fluide de derivation non regule automatiquement
FR2935100A1 (fr) Procede et dispositif de separation en lit mobile simule a debit de fluide de derivation module
FR2956037A1 (fr) Procede et dispositif de separation en lit mobile simule comportant des lignes de derivation d'un lit sur deux avec debits de balayage controles lors des injections et des soutirages
EP1646437B1 (fr) Procede et dispositif de separation des constituants d'une charge liquide par chromatographie liquide-liquide centrifuge
FR2822820A1 (fr) Procede de coproduction de paraxylene et de metaxylene comprenant deux etapes de separation
TWI524926B (zh) 以模擬移動床吸附法進行產品回收的系統和流程
WO2009019337A1 (fr) Procede et dispositif de separation ameliore de metaxylene en lit mobile simule
US20120302812A1 (en) Product recovery from adsorption-separation purge fluids
WO2022200119A1 (fr) Dispositif et procédé pour la séparation en lit mobile simulé à haut ratio hauteur/diamètre
TWI524922B (zh) 分殼式萃餘物管柱
EP3583988B1 (fr) Procédé et dispositif de séparation en lit mobile simulé à nombre de lits réduit avec débit de fluide de dérivation
RU2576431C1 (ru) Система и способ извлечения продуктов с использованием адсорбции в имитированном движущемся слое
JP6240466B2 (ja) 総数が22以下の床を有する直列した2基の吸着器により構成される、疑似向流によるパラキシレンの製造方法および装置
TWI496614B (zh) 以模擬移動床吸附法進行產品回收的系統和流程
EP3583989B1 (fr) Procédé et dispositif de séparation en lit mobile simulé à débit de fluide de dérivation
EP3402585B1 (fr) Psa h2 avec modification du flux gazeux d'alimentation
FR2998808A1 (fr) Procede et dispositif de separation chromatographique a contre-courant simule pour la production de metaxylene a haute productivite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12726459

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515243

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147001181

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14125317

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12726459

Country of ref document: EP

Kind code of ref document: A1