WO2012169531A1 - 作業機械 - Google Patents

作業機械 Download PDF

Info

Publication number
WO2012169531A1
WO2012169531A1 PCT/JP2012/064566 JP2012064566W WO2012169531A1 WO 2012169531 A1 WO2012169531 A1 WO 2012169531A1 JP 2012064566 W JP2012064566 W JP 2012064566W WO 2012169531 A1 WO2012169531 A1 WO 2012169531A1
Authority
WO
WIPO (PCT)
Prior art keywords
work machine
speed
work
stop
zmp
Prior art date
Application number
PCT/JP2012/064566
Other languages
English (en)
French (fr)
Inventor
麻里子 水落
啓範 石井
山口 仁一
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to DE112012003346.9T priority Critical patent/DE112012003346B4/de
Priority to US14/124,787 priority patent/US9348327B2/en
Priority to KR1020137032642A priority patent/KR101934017B1/ko
Priority to JP2013519509A priority patent/JP6023053B2/ja
Priority to CN201280028494.3A priority patent/CN103597147B/zh
Publication of WO2012169531A1 publication Critical patent/WO2012169531A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P1/00Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading
    • B60P1/04Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading with a tipping movement of load-transporting element
    • B60P1/045Levelling or stabilising systems for tippers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/08Wrecking of buildings
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/047Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators the criterion being a time optimal performance criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/412Excavators

Definitions

  • the present invention relates to a work machine used for structure dismantling work, waste processing, scrap processing, road work, construction work, civil engineering work, and the like.
  • a revolving body is attached to the upper part of a traveling body that is driven by a power system, and the revolving body
  • an articulated work front is swingably attached in the vertical direction, and each front member constituting the work front is driven by an actuator.
  • a hydraulic excavator is used as a base, one end of the boom is swingably connected to the swing body, one end of the boom is swingably connected to the tip of the boom, and the arm has a tip.
  • a dismantling work machine equipped with a work tool such as a grapple, a bucket, a breaker, or a crusher that is mounted so that a desired work can be performed.
  • This type of work machine applies an excessive work load or overload because work is performed while changing various postures with the boom, arm and work tool constituting the work front projecting outward from the revolving structure.
  • an unreasonable operation such as performing an old operation with the front extended, the work machine may lose its balance. Therefore, various fall prevention techniques have been proposed for this type of work machine.
  • angle sensors are provided for the boom and the arm of the work machine, and detection signals from these angle sensors are input to the control device.
  • the control device determines the center of gravity of the entire work machine based on the detection signals.
  • the position and the supporting force of the stable fulcrum on the ground contact surface of the traveling body are calculated, and the supporting force value at the stable fulcrum based on the calculation result is displayed on the display device.
  • a technique is disclosed in which an alarm is issued when the value falls below the value.
  • Patent Document 2 includes sensors for detecting the posture, movement, and work load of the main body. Based on the detection values of these sensors and referring to a database, current and future dynamics regarding the posture of the construction machine main body. To build a model that represents the dynamic behavior, determine whether or not the main body will fall, and if a fall is predicted, stop the work operation that is being executed, and then start an action to avoid the fall Thus, there is disclosed a technique for preventing a fall and informing the operator of the fall when a fall is predicted.
  • Patent Document 3 includes an angle sensor that detects a boom angle, an arm angle, a bucket angle, and a turning angle of a turning body at a work front, and an inclination angle sensor that detects an inclination in the front-rear direction of the vehicle body.
  • the static overturning moment of the work machine is calculated from the detected values of the angle sensor and the tilt angle sensor and the size of the predetermined part of the vehicle body, and the dynamic overturning moment generated by the centrifugal force of the turning of the turning body is calculated using the turning angular velocity.
  • Calculate the dynamic overturning moment that occurs when the turning body suddenly stops using the maximum angular acceleration of turning and add one or the larger of these to the static overturning moment to determine the overturning judgment condition.
  • a technique for controlling the turning angular velocity when the determination condition is satisfied is disclosed.
  • a work machine such as the above-described dismantling work machine performs work by driving a large mass traveling body, a revolving body, and a work front.
  • a large inertial force acts on the work machine, which greatly affects the stability.
  • an alarm is issued to notify the possibility of a fall from the installed alarm device, if the operator suddenly performs an operation to stop driving the running body, the turning body or the work front, the fall There is a possibility that a large inertial force is superimposed on the direction, and the possibility of falling is increased.
  • the technique disclosed in Patent Document 1 has a configuration in which only a static balance is evaluated, and there is a problem that stability cannot be accurately evaluated under an environment where inertial force is applied.
  • the technique disclosed in Patent Document 2 does not take into account the effect of a sudden stop, and cannot prevent a fall due to a sudden stop.
  • the technique disclosed in Patent Document 2 is configured to construct a model that represents the current and future mechanical behavior related to the posture of the construction machine main body with reference to the database, and to determine whether the main body falls. Therefore, calculation processing is complicated, and there is a problem that it is difficult to process in real time in practice.
  • Patent Document 3 deals with the sudden stop of the revolving structure, it does not take into account the influence of inertial force caused by operations other than the revolving structure and the effect of sudden stop of the front operation.
  • the action that can be handled is limited to the turning action.
  • it is configured to select the larger of the moment calculated from the maximum angular acceleration of turning and the moment calculated from the turning angular velocity, depending on the conditions, the possibility of overturning is overestimated, and the work efficiency is reduced due to excessive movement restrictions May deteriorate.
  • the present invention has been made to solve such problems of the prior art, and its purpose is to easily evaluate a dynamic balance in consideration of the influence of a sudden stop of the traveling body, the turning body and the work front.
  • An object of the present invention is to provide a highly stable work machine that can be used.
  • the present invention provides a traveling body, a work machine main body attached on the traveling body, a work front attached to the work machine main body so as to be swingable in the vertical direction, and driving of these parts.
  • the control device including the control device that controls the control device, the control device returns from the operation state to the stop command position by an operation lever that operates driving of each movable part in the traveling body, the work machine main body, and the work front.
  • the operation limit calculation required for the work machine to be stable is calculated by the stabilization control calculation means, and the command value generation means is used for the actuator based on the calculation result. Therefore, it is possible to accurately evaluate the stability of the work machine in an environment where inertial force is applied, and to keep the static and dynamic balance of the work machine stable.
  • the actuator drive is controlled in consideration of the effect when each movable part of the work machine is suddenly stopped.
  • the prediction of the stability change and the calculation of the operation restriction can be performed by a simple calculation, and the stabilization process of the work machine can be performed in real time.
  • the present invention provides the working machine having the above-described configuration, wherein the stabilization control calculation unit restricts the deceleration of the movable part and gently stops the movable part as the operation restriction; and It is characterized in that at least one of the upper limit values of the operating speed for limiting the operating speed of the actuator is calculated.
  • each movable part of a work machine drives each movable part according to the operation content of the operation lever. Therefore, when the operation lever is instantaneously returned from the operation state to the neutral position, it is driven according to the operation of the operation lever.
  • the moving part to be stopped suddenly stops and an inertial force corresponding to the deceleration at that time is generated. Therefore, if the operating lever is instantaneously returned from the operating state to the neutral position, the inertial force acting on the moving part can be reduced by limiting the deceleration of the moving part or limiting the operating speed of the actuator in advance.
  • the work machine can be held stably.
  • the stabilization control calculating means is calculated from position information, acceleration information, and external force information of each movable part in the traveling body, the work machine main body, and the work front.
  • the motion restriction is calculated using at least one of coordinates and mechanical energy calculated from position information and speed information of each movable part of the work machine.
  • ZMP Zero Moment Point
  • ZMP stability determination standard uses the ZMP coordinates as an evaluation index for determining the stability of the structure based on the D'Alembert principle, so that the grounded portion of the structure does not become concave. If the ZMP coordinates exist inside the support polygon drawn by surrounding (convex hull), it is determined that the structure is stably grounded on the ground surface, and the ZMP coordinates are placed on the sides of the support polygon. In the case where there is, it is determined that a part of the grounding portion of the structure is at the boundary rising from the ground surface.
  • the stability of the structure can be quantitatively evaluated, and whether or not there is a possibility of falling can be determined accurately.
  • the mechanical energy regards the structure as an inverted pendulum having a fulcrum on the support polygon, and the center of gravity of the structure is on the vertical line of the center of rotation (ZMP).
  • ZMP center of gravity
  • it uses the fact that it falls by itself due to the action of gravity.
  • a part of the grounding part It can be determined whether or not the structure floating on the ground surface falls over. Therefore, by using these methods, it is possible to accurately determine the stability and the possibility of falling of the work machine.
  • the stabilization control calculation unit stores in advance a restriction on the deceleration of the movable part, and instructs the actuator to satisfy the restriction on the deceleration. It is characterized by correcting information.
  • the stabilization control calculation means stores the limit of the deceleration of the movable part in advance, so that it is possible to easily correct the command information to the actuator based on this, and to stabilize the work machine Can be performed in real time.
  • the present invention is the work machine having the above-described configuration, wherein the control device includes behavior prediction means for predicting the behavior of the work machine when the operation lever is instantaneously returned from the operation state to the stop command position.
  • the prediction means uses the time at which the speed starts to change and the speed change start point represented by the speed at that time, the time when the speed change amount from when the control lever is released and the peak arrival point represented by the speed at that time.
  • the overshoot rate calculated by the ratio of the speed change start point and the speed at the peak arrival point, identified in advance for each operation of the traveling body, the work machine main body, and the work front, using a cubic function as a model. The time from the opening of the operation lever to the speed change start point and the time from the speed change start point to the peak arrival point are used.
  • the position until the movable part is completely stopped It is necessary to calculate the velocity and acceleration trajectory.
  • the speed trajectory at the time of sudden stop is modeled by a simple cubic function model, the position, speed, and acceleration trajectory at the time of sudden stop can be easily calculated, and the behavior at the time of sudden stop can be predicted in real time. It becomes possible.
  • the movable part of the operated work machine is completely stopped by the control device provided in the work machine. Prediction of the stability change up to and the calculation of the operation restriction required for the work machine to be stable at any time until the movable part stops completely, and the calculation result
  • the command information to the actuator that drives the movable part is corrected, it is possible to accurately evaluate the stability of the work machine under the environment where the inertial force is applied, and it is caused by the sudden stop of the turning body, the traveling body, or the front member. The fall of the work machine can be prevented.
  • prediction of stability change and calculation of operation restriction can be performed by simple calculation, and stabilization processing of the work machine can be performed in real time.
  • FIG. 1 is a side view of a work machine to which the present invention is applied. It is a figure which shows the working machine model used for the stabilization control calculation which concerns on embodiment. It is a side view which shows the sensor structure of the working machine with which this invention is applied. It is a functional block diagram of a control device concerning an embodiment. It is a graph which shows the example of the slow stop method which concerns on embodiment. It is a graph which shows an example of the sudden stop model used for the behavior prediction means at the time of sudden stop concerning an embodiment. It is a flowchart which shows the procedure of the stability evaluation method by the stability determination means which concerns on embodiment. It is explanatory drawing of the stability evaluation method performed in the ZMP calculation and evaluation means which concerns on embodiment. It is a flowchart which shows the procedure of the iterative calculation method performed in the operation
  • a work machine 1 As shown in FIG. 1, a work machine 1 according to this embodiment includes a traveling body 2, a revolving body 3 that is pivotably attached to an upper portion of the traveling body 2, and a multi-joint that has one end connected to the revolving body 3. And a work front 6 comprising a mold link mechanism.
  • the swivel body 3 is swiveled around a center axis 3c by a swivel motor 7.
  • a driver's cab 4 and a counterweight 8 are installed on the revolving structure 3.
  • a required portion on the revolving structure 3 is provided with an engine 5 that constitutes a power system, and an operation control device that controls the start / stop and overall operation of the work machine 1.
  • symbol 30 in a figure has shown the ground surface.
  • the work front 6 includes a boom 10 having one end connected to the swing body 3, an arm 12 having one end connected to the other end of the boom 10, and a bucket 23 having one end connected to the other end of the arm 12.
  • Each of these members is configured to pivot in the vertical direction.
  • the boom cylinder 11 is a drive actuator that rotates the boom 10 around the fulcrum 40, and is connected to the swing body 3 and the boom 10.
  • the arm cylinder 13 is a drive actuator that rotates the arm 12 around a fulcrum 41, and is connected to the boom 10 and the arm 12.
  • the work tool cylinder 15 is a drive actuator that rotates the bucket 23 around the fulcrum 42, and is connected to the bucket 23 via the link 16 and is connected to the arm 12 via the link 17.
  • the bucket 23 can be arbitrarily replaced with other work tools (not shown) such as grapples, cutters, and breakers.
  • an operation lever 50 for an operator to input a movement instruction for each drive actuator, and a user setting input means 55 for the operator to make various settings.
  • FIG. 2 shows a working machine model (side surface) for ZMP calculation, a world coordinate system (OX'Y'Z ') and a machine reference coordinate system (O-XYZ) of the model.
  • the world coordinate system (OX'Y'Z ') and the machine reference coordinate system (O-XYZ) are both orthogonal coordinate systems, and the world coordinate system (OX'Y'Z') is shown in FIG.
  • the direction of gravity is used as a reference, and the direction opposite to gravity is set as the Z axis.
  • the machine reference coordinate system (O-XYZ) is based on the traveling body 2, and as shown in FIG.
  • the origin is in contact with the ground surface 30 on the turning center line 3 c of the upper turning body 3.
  • the X axis is set in the front-rear direction of the traveling body 2
  • the Y axis is set in the left-right direction
  • the Z axis is set in the direction of the turning center line 3c.
  • the relationship between the world coordinate system and the machine reference coordinate system is detected using an attitude sensor 3 b attached to the upper swing body 3.
  • the posture sensor 3b will be described in more detail in the following ⁇ state quantity detection means> column.
  • the work machine 1 is treated as a concentrated mass point model in which the mass is concentrated at the center of gravity of each component in the stabilization control calculation. That is, as shown in FIG. 2, the mass points 2P, 3P, 10P, 12P, and 23P of the traveling body 2, the upper swing body 3, the boom 10, the arm 12, and the bucket 23 are set to the gravity center positions of the respective constituent members.
  • the mass of each mass point is m2, m3, m10, m12, and m23.
  • the position vector of each mass point is r2, r3, r10, r12, r23
  • the velocity vector is r′2, r′3, r′10, r′12, r′23
  • the acceleration vector is r ′′ 2, r ′′ 3, r ′′ 10, r ′′ 12, and r ′′ 23.
  • the mass point setting method is not limited to this, and for example, a portion where the mass is concentrated (such as the engine 5 and the counterweight 8 shown in FIG. 1) may be added.
  • the upper swing body 3 is provided with an attitude sensor 3b for detecting the inclination of the machine reference coordinate system with respect to the world coordinate system with the Z axis as the direction opposite to gravity, which will be described later.
  • the posture sensor 3b is, for example, an inclination angle sensor, and detects the inclination of the machine reference coordinate system with respect to the world coordinate system by detecting the inclination angle of the upper swing body 3.
  • a turning angle sensor 3s for detecting the turning angle of the traveling body 2 and the upper turning body 3 is provided on the turning center line 3c of the upper turning body 3.
  • a boom angle sensor (angle sensor) 40 a for measuring the rotation angle of the boom 10 is provided at the fulcrum 40 of the upper swing body 3 and the boom 10, and the fulcrum 41 of the boom 10 and the arm 12 is provided with an arm.
  • 12 is provided with an arm angle sensor (angle sensor) 41 a for measuring the rotation angle of the bucket 12, and a bucket angle sensor 42 a for measuring the rotation angle of the bucket 23 is provided at the fulcrum 42 of the arm 12 and the bucket 23. It is done.
  • Pin force sensors 43a and 44a are provided on the pin 43 connecting the arm 12 and the bucket 23 and the pin 44 connecting the link 16 and the bucket 23, respectively.
  • the pin force sensors 43a and 44a detect the magnitude and direction of the force (external force) applied to the pins 43 and 44, for example, by inserting a strain gauge into a cylindrical shape and measuring the strain generated in the strain gauge. .
  • the work of excavation or the like is performed using the bucket 23 to change the mass of the bucket part. Since the bucket 23 is connected to the work front 6 via the pins 43 and 44, the mass change of the bucket 23 can be calculated by calculating the external force vectors F43 and F44 applied to the pins 43 and 44. .
  • the position vectors of the pins 43 and 44 are s43 and s44.
  • the operation lever 50 includes a swing lever operation amount sensor 51s that detects an input command amount to the swing motor 7, a boom lever operation amount sensor 51b that detects an input command amount to the boom cylinder 11, and an input command to the arm cylinder.
  • An arm lever operation amount sensor 51a for detecting the amount and a bucket lever operation amount sensor 51o for detecting an input command amount to the work implement cylinder 15 are provided.
  • FIG. 4 is a functional block diagram of a control device provided in the work machine 1.
  • the control device 60 includes an input unit 60x to which signals from the sensors attached to the respective units of the work machine 1 are input, a calculation unit 60z that receives a signal input to the input unit 60x, and performs a predetermined calculation.
  • An output unit 60y that receives an output signal from 60z and outputs an operation command to each drive actuator of the work machine 1 is provided.
  • the arithmetic unit 60z includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a storage unit including a flash memory, a microcomputer including these, a peripheral circuit (not illustrated), and the like. For example, it operates according to a program stored in the ROM.
  • ZMP stability criterion is based on the D'Alembert principle.
  • the concept of ZMP and the criteria for discriminating ZMP stability are described in “LEGGED LOCOMOTION ROBOTS: Miomir Vukobratovic” (“Walking Robot and Artificial Foot: Translated by Ichiro Kato, Nikkan Kogyo Shimbun”).
  • the work machine 1 when the ZMP exists in the support polygon and the direction in which the force acting on the ground surface 30 from the work machine 1 pushes the ground surface 30, that is, when the floor half force is positive, the work machine 1 It can be said that it is stably grounded. In other words, the closer the center of the support polygon is to the ZMP, the higher the stability is. If the ZMP is inside the support polygon, the work machine 1 can work without falling, while the ZMP exists on the support polygon. When doing so, the work machine 1 may start toppling. Therefore, the stability can be determined by comparing the ZMP, the work machine 1 and the support polygon formed by the ground surface 30.
  • the ZMP equation is derived from the following equation (1) from the balance of moments generated by gravity, inertial force, and external force.
  • r zmp ZMP position vector m i : mass of the i-th mass point r i : position vector of the i-th mass point r ′′ i : acceleration vector (including gravitational acceleration) applied to the i-th mass point M j : j-th external force moment s k : k-th external force action point position vector F k : k-th external force vector
  • the vector is a three-dimensional vector composed of an X component, a Y component, and a Z component.
  • the first term of the left side of the equation (1) the moment of ZMP70 produced by the applied acceleration components in the mass points m i (including the gravitational acceleration) (see FIG. 2) around (radius r i -r ZMP) Indicates the sum.
  • the second term on the left side of Equation (1) represents the sum of the external force moments M j acting on the work machine 1.
  • the sum of moments of the formula (1) the third term of the left side of, ZMP70 around produced by an external force F k (a point of action of k-th external force vector F k and s k) (radius s k -r ZMP) Indicates.
  • Equation (1) the sum of the mass points m and the sum of the moments of the applied acceleration components ZMP70 around produced by (including gravitational acceleration) (radius r i -r ZMP) in i, the external force moment M j If, describes that (a point of action of k-th external force F k and s k) the external force F k is the sum of the moments of ZMP70 around produced (radius s k -r ZMP) balanced by.
  • the ZMP 70 on the ground surface 30 can be calculated from the ZMP equation shown in Equation (1).
  • Equation (2) the ZMP equation when the object is stopped and only gravity works is expressed as in equation (2) using the gravitational acceleration vector g and coincides with the projection point of the static gravity center on the ground surface. To do.
  • ZMP can be treated as a projected point of the center of gravity considering dynamic state and static state.
  • ZMP is used as an index, the object is stationary and when it is moving Both can be handled uniformly.
  • mechanical energy is used in addition to ZMP as a stability evaluation index for determining the stability of the work machine 1.
  • the aforementioned ZMP is useful for quantitative evaluation of stability and determination of the possibility of falling.
  • ZMP can determine whether or not the traveling body 2 has floated, but cannot determine whether or not the vehicle will actually fall. Therefore, it is determined using mechanical energy whether or not a part of the traveling body 2 will fall after being lifted.
  • the work machine 1 When a part of the traveling body 2 is floating, the work machine 1 can be regarded as an inverted pendulum having a fulcrum on a support polygon.
  • ZMP vertical line of the center of rotation
  • PEMAX potential energy
  • inclination of the inverted pendulum (center of gravity of the work machine 1) from the ground surface
  • angular velocity of the inverted pendulum
  • M mass of the work machine 1
  • I moment of inertia around the rotation fulcrum l: turning radius
  • ⁇ slow stop> inclination of the inverted pendulum (center of gravity of the work machine 1) from the ground surface
  • angular velocity of the inverted pendulum
  • M mass of the work machine 1
  • ⁇ slow stop> the operation speed limit and the slow stop are performed as the operation limit for stabilization.
  • the slow stop will be described.
  • “Slow stop” means that the deceleration of the movable part at the time of stop is limited and the movable part is gently stopped. Since the acceleration at the time of sudden stop can be suppressed by performing the slow stop, the influence of the inertial force is reduced and the instability can be suppressed. On the other hand, since the braking distance is increased by performing the slow stop, it is necessary to determine the allowable braking distance in advance and perform the slow stop so that the braking can be stopped within the allowable braking distance.
  • O i (t) is a lever operation amount command value at time t
  • O c (t) is a lever operation amount correction value at time t.
  • the calculation unit 60z includes a stabilization control calculation unit 60a that calculates an operation limit necessary for stabilization in accordance with each sensor provided in the work machine 1 and a signal received from the user setting input unit 55. It comprises command value generation means 60i for correcting the command value for each drive actuator based on the output from the control calculation means 60a.
  • the stabilization control calculation means 60a calculates an operation limit for preventing the vehicle from falling even if a sudden stop is performed.
  • the sudden stop means an operation of returning the operation lever from the operation state to the stop command position instantaneously.
  • the above operations may be performed due to sudden obstacles, warnings, etc., operation mistakes, etc., but in such cases the speed decreases rapidly and the inertial force generated at that time is reduced. Due to the influence, the stable state of the work machine 1 is likely to deteriorate.
  • a countermeasure method when the stable state is deteriorated a method of performing some sort of avoidance operation from the unstable state can be considered.
  • the stabilization control of the present invention prevents instability in advance by performing a slow stop and an operation limit by limiting the operation speed based on the behavior prediction and the stability evaluation at the time of sudden stop.
  • the stabilization control calculation means 60a performs calculation based on the machine reference coordinate system.
  • the stabilization control calculation means 60a includes functional blocks of a speed estimation means 60b, a sudden stop behavior prediction means 60c, a stability determination means 60d, and an operation restriction determination means 60h.
  • a speed estimation means 60b the speed estimation means 60b
  • a sudden stop behavior prediction means 60c the sudden stop behavior prediction means 60c
  • a stability determination means 60d the stability determination means 60d
  • an operation restriction determination means 60h the stabilization control calculation means 60a.
  • the operation speed of a hydraulic cylinder provided in a hydraulic excavator is proportional to the operation amount of the operation lever. Further, since there is a delay due to the hydraulic pressure and mechanism between the lever operation and the operation speed, a near future state can be predicted by using the lever operation amount information.
  • the speed estimation means 60b predicts the near-future operation speed using the past lever operation amount, the current lever operation amount, and the current operation speed. The estimation is performed in the following two steps. First, a speed calculation model is identified from the past lever operation amount and the current operation speed. Next, a near-future motion speed is predicted by giving the current lever operation amount as an input to the identified speed calculation model.
  • the speed calculation model is expected to change from moment to moment depending on the engine speed, load size, posture, oil temperature, etc., but since the change in the work situation is small between minute times, the change in the model is also small You may think.
  • the speed estimating means 60b there is a method using the dead time T L from the lever operation to the cylinder begins to move, the proportional coefficient alpha v defined below.
  • T L the dead time
  • TL the dead time
  • Step 1 A proportional coefficient ⁇ v is calculated from the lever operation amount O i (t ⁇ T L ) T L seconds ago and the current speed v (t) using the following equation (5).
  • Step 2 An estimated speed value v (t + TL ) after TL seconds is calculated from the calculated proportionality coefficient ⁇ v and the current lever operation amount O i (t) using the following equation (6).
  • the sudden stop behavior predicting means 60c predicts the behavior of the work machine 1 when a sudden stop command is issued. Based on the current posture information, the speed estimation result of the speed estimation means 60b, and the sudden stop model, the position, speed, and acceleration trajectory from when the operation lever is released until it completely stops are calculated.
  • the sudden stop model for example, a method of modeling a speed trajectory at the time of sudden stop and calculating a position trajectory and an acceleration trajectory from the speed trajectory can be considered.
  • the speed trajectory at the time of sudden stop is modeled in advance, and the cylinder speed after te seconds from the operation lever release time when the sudden stop operation is started (operation lever release) at time t is expressed as v stop (t, t e ).
  • the cylinder length l stop (t, t e ) and cylinder acceleration a stop (t, t e ) after te seconds are expressed as follows using the cylinder length l stop (t, 0) at the start of the sudden stop: It calculates with Formula (7).
  • the cubic function model is a cubic function having the speed change start point and the peak arrival point as extreme values, the operating lever release time t i , the speed change start time t s , the peak arrival time t p , and the speed change.
  • v s be the starting speed and v p the peak speed.
  • the maximum speed change amount with respect to the speed change start speed is defined as the overshoot rate ⁇ o , the dead time T L from the operation lever release time to the speed change start time, and the time from the speed change start time to the peak arrival time. Is defined as the stop completion time Tc, and the above three parameters are identified for each operation of the boom 10, the arm 12, and the revolving structure 3.
  • the speed trajectory v stop (t i , t e ) is expressed by the following equation (9) using the overshoot rate, dead time, stop completion time, and speed when the operation lever is released.
  • the estimation result of the speed estimation means is used as the speed when the operation lever is opened.
  • the cylinder length locus and the acceleration locus can be calculated by the following equation (10).
  • L i cylinder length when the operation lever is opened.
  • the stability determination means 60d calculates ZMP and mechanical energy as necessary from the sudden stop trajectory predicted in the sudden stop behavior prediction 60c based on the two stability evaluation indexes described above, and at any point It is also determined whether or not destabilization occurs. In this embodiment, stability evaluation using the above-described ZMP and mechanical energy is performed.
  • ZMP is effective for stability evaluation when the work machine 1 is stably grounded, but cannot be evaluated after the traveling body 2 starts to float.
  • the overturn determination based on mechanical energy is effective only in a state where a part of the traveling body 2 is surfaced, and the stability cannot be evaluated when the machine is stably grounded. Therefore, the ZMP is constantly monitored to determine whether or not the ZMP is in the normal region J set in the support polygon. If the ZMP is in the normal region J, the stability evaluation by the ZMP is performed. If it is outside the region J, the evaluation by mechanical energy is performed. When the mechanical energy satisfies the formula (3), it is determined as “unstable”, and when it is not satisfied, it is determined as “stable”.
  • the link calculation means 60e sequentially performs kinematic calculations for each link using the prediction result of the sudden stop behavior prediction means 60c. Then, the position vector trajectories r 2 , r 3 , r 10 , r 12 and velocity vector trajectories r ′ 2 , r ′ 3 , r ′ 10 , r ′ 12 of the mass points 2P, 3P, 10P, 12P, 23P shown in FIG. , r '23 and acceleration vector trajectory r''2,r'' 3, r''10,r' converts and '12, r' '23 mechanical reference coordinate system (O-XYZ) to values relative to the To do.
  • a well-known method can be used as the kinematic calculation method. For example, the method described in “Robot Control Basics: Yoshikawa Tsuneo, Corona (1988)” can be used.
  • the ZMP calculation / evaluation means 60f calculates the trajectory of the ZMP 70 using the position vector trajectory and acceleration vector trajectory of each mass point converted into the machine reference coordinate system by the link calculation means 60e (step S71), and performs stability evaluation. (Step S72).
  • Equation (1) is solved under these conditions, and the X coordinate r zmpx of ZMP 70 is calculated using equation (11) below.
  • the Y coordinate r zmpy of the ZMP 70 is calculated using the following equation (12).
  • m is the mass of each mass point 2P, 3P, 10P, 12P, 23P shown in FIG. 2, and the mass m 2 , m 3 , m 10 , m 12 , m of each mass point. 23 is substituted. Since the mass m 23 of the bucket 23 is expected to change depending on the work, the mass m 23 is calculated from the detection values of the pin force sensors 43a and 44a.
  • r ′′ is the acceleration of each mass point, and the accelerations r ′′ 2 , r ′′ 3 , r ′′ 10 , r ′′ 12 , r ′′ 23 of each mass point are substituted.
  • the ZMP calculation / evaluation unit 60f can calculate the trajectory of the ZMP 70 by using the prediction result of the sudden stop behavior prediction unit.
  • the ZMP calculation / evaluation means 60f in the first embodiment calculates the support polygon L formed at the contact point between the work machine 1 and the ground surface 30, and the normal region J having a sufficiently low possibility of falling, and the falling
  • the fall warning area N having a higher possibility of the above is set, and the stability is determined depending on which area the ZMP 70 is in.
  • the support polygon L in the case of having a crawler as the traveling body 2 has a line connecting the center points of the left and right sprockets as a front boundary line and a line connecting the center points of the left and right idlers.
  • the rear boundary line is a quadrangle with the left and right track link outer ends as the left and right boundary lines.
  • the front and rear boundaries may be the ground contact points of the foremost lower roller and the rearmost lower roller.
  • the work machine 1 shown in FIG. 1 has the blade 18, and when the blade 18 is in contact with the ground surface 30, the support polygon L expands to include the blade bottom. Further, in the jack-up operation in which the bucket 23 is pressed against the ground surface to lift the traveling body 2, the support polygon L is formed by the two end points on the grounding side of the traveling body 2 and the grounding point of the bucket 23. It becomes a polygon. Thus, since the shape of the support polygon L changes discontinuously depending on the grounding state of the work machine 1, the ZMP calculating / evaluating means 60f monitors the grounding state of the work machine 1, and the support polygon according to the grounding state. Set L.
  • the boundary K between the normal region J and the fall warning region N is set inside the support polygon L.
  • the boundary K is a polygon that is reduced to the center point side according to a ratio determined by the support polygon L according to the safety factor, or a length that is determined by the support polygon L according to the safety factor. Set to polygon moved inward.
  • the ZMP when the ZMP exists in the normal region J, it is determined to be “stable”, and is set as the output of the stability determining means 60d (step S75).
  • the ZMP when the ZMP exists in the fall warning region N, it is determined that there is a high possibility that a part of the traveling body will rise, and mechanical energy is calculated (step S73), and stability determination based on the mechanical energy is performed. (Step S74). That is, the larger the fall warning area N is, the faster the mechanical energy is calculated.
  • the size of the fall warning area N may be determined in consideration of an estimation error of the ZMP locus.
  • ⁇ Mechanical energy calculation / evaluation means 60g> When the ZMP calculation / evaluation means 60f predicts the flying of the traveling body 2, the position of the center of gravity of the work machine 1 is calculated using the position vector locus and speed vector locus of each mass point calculated by the link calculation means 60e. Then, the kinetic energy, the potential energy, and the rotation radius shown in Expression (3) are calculated, and the stability is determined based on the mechanical energy. That is, it is possible to determine the presence or absence of a fall by determining whether or not Expression (3) is satisfied.
  • the safety factor Se is set in consideration of the influence of measurement error, modeling error, work environment, etc., and performing control intervention according to the skill level and preference of the operator.
  • a method for setting the safety factor for example, it is conceivable to set the safety factor with respect to a threshold used for the fall determination. That is, stability is determined by changing equation (3) to equation (13) below.
  • step S76 If the expression (13) is not satisfied, it is determined that the possibility of falling is low, and the determination result of the stability determination means is set to “stable” (step S76). It is determined that the possibility is high, and the determination result is output as “unstable” (step S77).
  • the kinetic energy is calculated by the following equation (14).
  • the stability determination is performed based on Equation (3) using KE ′ instead of KE, and “stable” or “unstable” is output as the determination result of the stability determining means. Reflecting the safety factor in the kinetic energy calculation in this way facilitates speed adjustment based on the safety factor.
  • the safety factor may be a predetermined value set in advance, or may be a value changed according to the proficiency level of the operator who operates the work machine 1, the work content road surface, the surrounding conditions, and the like.
  • a configuration in which automatic setting is performed from information given in advance, output values of various sensors, or a configuration in which an operator or a work manager arbitrarily sets a safety factor using the user setting input device 55 is conceivable.
  • the safety factor may be changed during work according to the work state of the work machine 1, or may be configured to use different values for front, rear, left and right.
  • a method for setting the safety factor a configuration in which the operator or the work manager manually changes the setting as needed, or uses GPS, map information, a CAD drawing of the work, and the like can be considered.
  • the operation restriction determination unit 60h determines whether further repeated calculation is necessary based on the determination result of the stability determination unit 60d, and generates a command value correction command 60i. In the stabilization control of the present embodiment, slow stop and operation speed limitation are performed in order to avoid instability. Therefore, the operation restriction determination unit 60h outputs the slow stop setting and the operation speed restriction gain to the command value generation unit 60i.
  • step S91 the estimation result of the speed estimation means 60b and the setting for using the sudden stop model are set (step S91), and behavior prediction (step S92) and stability determination (step S93) are performed.
  • step S92 behavior prediction
  • step S93 stability determination
  • the determination result of the stability determination means 60d is “stable”
  • the command value is not corrected.
  • step S94 the determination result of the stability determination means 60d is “unstable”
  • the setting is made so that the slow stop model is used instead of the sudden stop model (step S94), the behavior prediction (step S95) and the stability determination ( Step S96) is performed.
  • step S911 When the determination result of the stability determination unit 60d is “stable”, the operation speed limit gain is set to 1, and the command value correction command 60i is performed so that only the slow stop is performed (step S911).
  • the determination result of the stability determination means 60d is “unstable”, a setting using a speed estimated value multiplied by the operation speed limit gain ⁇ ( ⁇ 1) and a slow stop model is set (step S97), behavior prediction (step S98) and stability determination (step S99) are performed. If the determination result of the stability determination means 60d is “stable”, a command value correction command is issued so as to perform a slow stop command and an operation limit of the operation speed limit gain ⁇ (step S912).
  • Step S98 the motion speed limit gain ⁇ is gradually decreased, and the behavior prediction is performed until the determination result of the stability determination unit 60d becomes “stable”.
  • Step S99 stability determination
  • the case where the pattern of the slow stop is one example has been described.
  • a plurality of slow stop settings may be provided.
  • the speed is reduced only when the stability determination result becomes unstable in all slow stop settings.
  • the stability is evaluated for all points until the stop on the trajectory of sudden stop or slow stop, and the speed is gradually decreased until it becomes “stable” at any point.
  • the method of calculating the stability limit speed by the sequential calculation that repeats the sex evaluation has been shown, in practice, the number of calculation points on the stop locus and the number of repeated calculations are determined in consideration of the calculation processing capability of the controller. Further, the intervals between the calculation points are not necessarily equal.
  • the command value generating unit 60i corrects the lever operation amount based on the command value correction command output from the operation restriction determining unit 60h, generates an input value to each drive actuator, and outputs it to the output unit 60y. More specifically, the command value is obtained by multiplying the operation speed limit gain ⁇ by the lever operation amount, and when there is a slow stop command, the lever operation amount is corrected and output based on the above equation (4). .
  • the user setting input means 55 is composed of a plurality of input buttons and the like, and the operator sets a warning method, a safety factor, and the like according to work contents and individual preference through the user setting input means 55.
  • an alarm device 63 may be installed in the cab 4 so as to issue an alarm to the operator according to the stabilization control intervention or the stability.
  • a display device 61 may be installed in the cab 4 so as to display the current stable state, changes in the stable state, and current settings. Further, the display device 61 may be used to issue a warning corresponding to the stability to the operator. In this way, by notifying the operator of the stable state of the work machine 1 through the display device 61 and the alarm device 63 installed in the cab 4, the operator can operate the operation lever 50 to ensure the safety of the work machine 1. Therefore, it becomes possible to lead to a more appropriate operation.
  • the stabilization control calculation means 60a uses the mass points 2P, 3P, 10P, 12P, and 23P of the traveling body 2, the upper swing body 3, the boom 10, the arm 12, and the bucket 23, respectively.
  • the number of mass points used in the calculation may be reduced by integrating several mass points or extracting mass points having a large influence. By reducing the number of mass points, the amount of calculation can be reduced.
  • the speed used in the sudden stop behavior prediction unit 60c is determined from the output value of the angle sensor.
  • the calculated current operating speed may be used. In that case, a configuration excluding the speed estimation means 60b can be employed.
  • the stability determination unit 60d determines “stable” when the ZMP is in the normal region J, and “unstable” when the ZMP is in the fall warning region N, and outputs the determination to the operation restriction determination unit 60h.
  • the vehicle body can be prevented from rising, and the safety and riding comfort can be further increased.
  • the example in which the pin force sensors 43a and 44a are provided for detecting the external force applied to the bucket has been described.
  • the pressure sensors 11a and 11b are provided in the boom cylinder.
  • the moment M 1 including the bucket external force and the work front dead weight is calculated from the detected values of the pressure sensors 11 a and 11 b provided on the boom cylinder, and the angle sensors of the boom 10, arm 12, and bucket 23 are calculated.
  • the self-weight moment Moc of the work front is calculated from the detected value and the gravity center parameters of the boom 10, the arm 12, and the bucket 23.
  • the bucket external force is calculated from the difference between the moments M 1 and M oc and the distance from the boom rotation fulcrum 40 to the bucket 23.
  • the work machine 1 is equipped with a cutter (not shown) as a work tool and mainly performs a cutting operation
  • the cutting operation is performed using the internal force of the cutter, so that the work front 6 has almost no external force during the operation. Don't join. Therefore, there is no possibility that the stability is deteriorated by external force during the work. In such a case, it is good also as a structure which does not provide the pin force sensors 43a and 44a which detect the external force which acts on the pins 43 and 44 (refer FIG. 1).
  • the operation lever 50 has been described assuming an electric lever system.
  • the pilot pressure is measured as the lever operation amount, and based on the stabilization control calculation result. Stabilization can be performed by correcting the pilot pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Evolutionary Computation (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Architecture (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Mechanical Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Operation Control Of Excavators (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

【課題】走行体、旋回体及び作業フロントの急停止による影響を考慮した動的なバランスを容易に評価することができて、安定性の高い作業機械を提供する。 【解決手段】作業機械の制御装置60に、安定化制御演算手段60aと、指令値生成手段60iとを備える。安定化制御演算手段60aは、作業フロント6を含む本体及び走行体の各可動部の位置情報と急停止モデルを用いて、操作レバー50が操作状態から瞬時に停止指令位置まで戻された場合の完全に停止に至るまでの安定性変化を予測し、停止に至るまでのいずれの時刻においても不安定化が生じないために必要とされる動作制限を算出する。指令値生成手段60iは、安定化制御演算手段60aの演算結果をもとに駆動アクチュエータへの指令情報を補正する。

Description

作業機械
 本発明は、構造物解体工事、廃棄物処理、スクラップ処理、道路工事、建設工事、土木工事等に使用される作業機械に関する。
 構造物解体工事、廃棄物処理、スクラップ処理、道路工事、建設工事、土木工事等に使用される作業機械として、動力系により走行する走行体の上部に旋回体を旋回自在に取り付けると共に、旋回体に多関節型の作業フロントを上下方向に揺動自在に取り付け、作業フロントを構成する各フロント部材をアクチュエータにて駆動するものが知られている。このような作業機械の一例として、油圧ショベルをベースとし、一端が旋回体に揺動自在に連結されたブームと、一端がブームの先端に揺動自在に連結されたアームと、アームの先端に装着されたグラップル、バケット、ブレーカ、クラッシャ等の作業具を備え、所望の作業を行えるようにした解体作業機械がある。
 この種の作業機械は、作業フロントを構成するブーム、アーム及び作業具を旋回体の外方に突き出した状態で種々姿勢を変えながら作業を行うため、過度の作業負荷をかける、或いは、過負荷かつフロントを伸ばした状態で旧動作を行う等の無理な操作を行った場合に作業機械がバランスを崩すことがある。したがって、この種の作業機械については、従来種々の転倒防止技術が提案されている。
 例えば、特許文献1には、作業機械のブーム及びアームにそれぞれ角度センサを設け、これら各角度センサの検出信号を制御装置に入力し、制御装置が、上記検出信号に基づいて作業機械全体の重心位置と、走行体の接地面における安定支点の支持力を演算し、その演算結果に基づく安定支点における支持力値を表示装置に表示すると共に、後方安定支点における支持力が安全作業確保上の限界値以下になったときには警報を発するようにした技術が開示されている。
 また、特許文献2には、本体の姿勢、動作及び作業負荷を検出するセンサを備え、これら各センサの検出値に基づき、かつデータベースを参照しながら、建設機械本体の姿勢に関する現在及び未来の力学的挙動を表すモデルを構築し、本体が転倒するか否かを判別して、転倒が予知された場合は実行中の作業動作を停止させ、さらには転倒を回避するための動作を開始することにより転倒を防止し、転倒を予知した場合は操作者にもその旨を知らせる技術が開示されている。
 さらに、特許文献3には、作業フロントのブーム角、アーム角、バケット角及び旋回体の旋回角を検出する角度センサと、車体の前後方向の傾きを検出する傾斜角センサとを備え、これら各角度センサ及び傾斜角センサの検出値と車体の所定部分の寸法とから作業機械の静的転倒モーメントを演算し、また、旋回体の旋回の遠心力により生じる動的転倒モーメントを旋回角速度を用いて演算し、さらには、旋回体の急停止時に生じる動的転倒モーメントを旋回の最大角加速度を用いて演算して、これらの一方又は大きい方を静的転倒モーメントに加算したものを転倒の判定条件とし、前記判定条件の成立により旋回角速度を制御する技術が開示されている。
特許第2871105号公報 特開平5-319785号公報 特開平7-180192号公報
 ところで、上述の解体作業機械のような作業機械は、大質量の走行体、旋回体及び作業フロントを駆動することにより作業を行うので、何らかの理由により操作者が動作中の走行体、旋回体又は作業フロントの駆動を停止させる操作を行った場合、作業機械に大きな慣性力が作用し、安定性に大きな影響を与える。特に、搭載された警報装置から転倒の可能性を通知する警報が発せられた場合に、慌てて操作者が動作中の走行体、旋回体又は作業フロントの駆動を停止させる操作を行うと、転倒方向に大きな慣性力が重畳されて、却って転倒の可能性が高まる虞がある。
 しかしながら、特許文献1に開示の技術は、静的なバランスのみを評価する構成であり、慣性力が働く環境下では安定性を正確に評価できないという問題点がある。また、特許文献2に開示の技術は、急停止による影響が考慮されておらず、急停止による転倒を防止することができない。加えて、特許文献2に開示の技術は、データベースを参照しながら建設機械本体の姿勢に関する現在及び未来の力学的挙動を表すモデルを構築し、本体が転倒するか否かを判別する構成であるため、計算処理が複雑であり、実用上リアルタイムでの処理が難しいという問題もある。さらに、特許文献3に開示の技術は、旋回体の急停止時については対応がなされているが、旋回体以外の動作による慣性力の影響や、フロント動作の急停止による影響が考慮されておらず、対応可能な動作が旋回動作のみに限られるという問題がある。また、旋回の最大角加速度から算出したモーメントと旋回角速度から算出したモーメントのうち大きい方を選択する構成であるため、条件によっては転倒可能性が過度に見積もられ、過度の動作制限により作業効率が劣化する可能性がある。
 本発明は、このような従来技術の問題を解決するためになされたものであり、その目的は、走行体、旋回体及び作業フロントの急停止による影響を考慮した動的なバランスを容易に評価することができて、安定性の高い作業機械を提供することにある。
 本発明は、上記課題を解決するため、走行体と、該走行体上に取り付けた作業機械本体と、該作業機械本体に対し上下方向に揺動自在に取り付けた作業フロントと、これら各部の駆動を制御する制御装置とを備えた作業機械において、前記制御装置は、前記走行体、前記作業機械本体及び前記作業フロントにおける各可動部の駆動を操作する操作レバーが操作状態から停止指令位置まで戻る前記操作レバーの操作速度の変化に応じて前記可動部が停止するまでの安定性変化の予測、及び前記可動部が停止するまでの作業機械が安定であるために必要とされる動作制限の算出とを行う安定化制御演算手段と、前記安定化制御演算手段の演算結果をもとに前記可動部を駆動するアクチュエータへの指令情報を補正する指令値生成手段を備え、前記操作レバーが瞬時に操作状態から停止位置から停止位置まで戻された場合にも機械の安定性を向上することを特徴とする。
 かかる構成によると、操作レバーが操作状態から瞬時に中立位置まで戻された場合において、作業機械の各可動部が完全に停止するまでの安定性変化の予測、及び作業機械の各可動部が完全に停止するまでのいずれの時刻においても作業機械が安定であるために必要とされる動作制限の算出を安定化制御演算手段にて行い、その演算結果を基に指令値生成手段にてアクチュエータへの指令情報を補正するので、慣性力が働く環境下における作業機械の安定性を正確に評価することができて、作業機械の静的及び動的なバランスを安定に保つことができる。また、操作レバーが操作状態から瞬時に中立位置まで戻された場合、即ち、作業機械の各可動部が急停止された場合の影響を考慮してアクチュエータの駆動を制御するので、旋回体のみならず走行体やフロント部材の急停止に起因する作業機械の転倒についても防止することができる。さらに、この場合において、安定性変化の予測及び動作制限の算出を簡易な演算によって行うことができて、作業機械の安定化処理をリアルタイムで行うことができる。
 また本発明は、前記構成の作業機械において、前記安定化制御演算手段は、前記動作制限として、前記可動部の減速度を制限して前記可動部を緩やかに停止させる緩停止指令値、及び前記アクチュエータの動作速度を制限する動作速度上限値の少なくともいずれか一方を算出することを特徴とする。
 一般に、作業機械の各可動部は、操作レバーの操作内容に応じて各可動部を駆動するので、操作レバーが操作状態から瞬時に中立位置まで戻されると、当該操作レバーの操作に応じて駆動される可動部は急停止し、その際の減速度に応じた慣性力が発生する。したがって、操作レバーが操作状態から瞬時に中立位置まで戻された場合に、可動部の減速度を制限するか、前もってアクチュエータの動作速度を制限すれば、可動部に作用する慣性力を緩和できて、作業機械を安定に保持することができる。
 また本発明は、前記構成の作業機械において、前記安定化制御演算手段は、前記走行体、前記作業機械本体及び前記作業フロントにおける各可動部の位置情報、加速度情報及び外力情報から算出されるZMP座標、並びに作業機械の各可動部の位置情報及び速度情報から算出される力学的エネルギの少なくとも一方を用いて前記動作制限を算出することを特徴とする。
 ZMP(Zero Moment Point)座標は、構造体の地表面との接地部全体に分布してかかっている床反力の法線成分を、ある一点にかかっているとして置き換えたときの作用点の座標である。また、ZMP安定判別規範は、ダランベールの原理に基づいて、ZMP座標を構造体の安定性を判定するための評価指標として用いたものであり、構造体の接地している部分を凹にならないように囲む(凸包)ことによって描かれる支持多角形の内側にZMP座標が存在する場合には、構造体は地表面に安定に接地していると判定し、支持多角形の辺上にZMP座標が存在する場合には、構造体の接地部の一部が地表面から浮上する境界にあると判定するものである。このZMP安定判別規範によれば、構造体の安定度を定量的に評価できると共に、転倒可能性の有無を的確に判定することができる。一方、力学的エネルギは、構造体の一部が浮上しているとき、構造体を支持多角形上に支点を持つ倒立振子とみなし、構造体の重心がその回転中心(ZMP)の鉛直線上に達すると重力の作用により自ら転倒することを利用したもので、構造体の位置エネルギと運動エネルギの和が最高位点における位置エネルギを超えているか否かを算出することによって、接地部の一部が地表面から浮上している構造体が転倒に至るか否かを判定することができる。よって、これらの方法を用いることにより、作業機械の安定度及び転倒可能性を的確に判定することができる。
 また本発明は、前記構成の作業機械において、前記安定化制御演算手段は、前記可動部の減速度の制限を予め記憶しており、該減速度の制限を満たすように、前記アクチュエータへの指令情報を補正することを特徴とする。
 かかる構成によると、安定化制御演算手段は可動部の減速度の制限を予め記憶しているので、これに基づくアクチュエータへの指令情報の補正を容易に行うことができ、作業機械の安定化処理をリアルタイムで行うことができる。
 また本発明は、前記構成の作業機械において、前記制御装置は、前記操作レバーが操作状態から瞬時に停止指令位置まで戻された場合における作業機械の挙動予測を行う挙動予測手段を備え、前記挙動予測手段は、速度が変化し始める時刻及びその時の速度によって表される速度変化開始点と操作レバー開放時からの速度変化量が最大となる時刻及びその時の速度によって表されるピーク到達点を極値とする3次関数をモデルとして用い、前記走行体、前記作業機械本体及び前記作業フロントの動作ごとに予め同定した、速度変化開始点とピーク到達点の速度の比によって算出されるオーバーシュート率、操作レバー開放から速度変化開始点までの時間、及び速度変化開始点からピーク到達点までの時間を用いることを特徴とする。
 操作レバーが操作状態から瞬時に停止指令位置まで戻された場合において、当該操作レバーによって操作される可動部の急停止時挙動予測を行うためには、可動部が完全に停止に至るまでの位置、速度、加速度軌跡を算出する必要がある。この場合において、急停止時の速度軌跡を簡易な3次関数モデルでモデル化すると、急停止時の位置、速度、加速度軌跡の算出が容易になり、リアルタイムで急停止時挙動予測を行うことが可能になる。
 本発明によれば、作業機械の操作レバーが操作状態から瞬時に停止指令位置まで戻された場合、作業機械に備えられた制御装置にて、操作された作業機械の可動部が完全に停止するまでの安定性変化の予測と、当該可動部が完全に停止するまでのいずれの時刻においても作業機械が安定であるために必要とされる動作制限の算出とを行い、かつその演算結果をもとに可動部を駆動するアクチュエータへの指令情報を補正するので、慣性力が働く環境下における作業機械の安定性を正確に評価できると共に、旋回体、走行体又はフロント部材の急停止に起因する作業機械の転倒を防止することができる。また、安定性変化の予測及び動作制限の算出を簡易な演算によって行うことができ、作業機械の安定化処理をリアルタイムで行うことができる。
本発明が適用される作業機械の側面図である。 実施形態に係る安定化制御演算に用いられる作業機械モデルを示す図である。 本発明が適用される作業機械のセンサ構成を示す側面図である。 実施形態に係る制御装置の機能ブロック図である。 実施形態に係る緩停止方法の例を示すグラフ図である。 実施形態に係る急停止時挙動予測手段に用いられる急停止モデルの一例を示すグラフ図である。 実施形態に係る安定性判定手段による安定性評価方法の手順を示すフローチャートである。 実施形態に係るZMP演算・評価手段において行われる安定性評価方法の説明図である。 実施形態に係る動作制限決定手段において行われる繰り返し演算方法の手順を示すフローチャートである。
 以下、本発明に係る作業機械の実施形態を、図を参照しながら各項目ごとに説明する。
<対象装置>
 図1に示すように、本実施形態に係る作業機械1は、走行体2と、走行体2の上部に旋回可能に取り付けられた旋回体3と、一端が旋回体3に連結された多関節型のリンク機構よりなる作業フロント6とを備えている。旋回体3は旋回モータ7によって中心軸3cを中心に旋回駆動される。旋回体3上には運転室4及びカウンタウエイト8が設置されている。また、この旋回体3上の所要の部分には、動力系を構成するエンジン5と、作業機械1の起動停止及び動作全般を制御する運転制御装置が備えられている。なお、図中の符号30は地表面を示している。
 作業フロント6は、一端が旋回体3に連結されたブーム10と、一端がブーム10の他端に連結されたアーム12と、一端がアーム12の他端に連結されたバケット23とを有しており、これらの各部材は、それぞれ上下方向に旋回するように構成されている。ブームシリンダ11は、ブーム10を支点40の回りに回動する駆動アクチュエータであり、旋回体3とブーム10とに連結されている。アームシリンダ13は、アーム12を支点41の回りに回動する駆動アクチュエータであり、ブーム10とアーム12とに連結されている。作業具シリンダ15はバケット23を支点42の回りに回動する駆動アクチュエータであり、リンク16を介してバケット23と連結され、リンク17を介してアーム12に連結されている。バケット23は、グラップル、カッタ、ブレーカ等の、図示しない他の作業具に任意に交換可能である。
 運転室4内には、オペレータが各駆動アクチュエータに対する動きの指示を入力するための操作レバー50と、オペレータが各種設定を行うためのユーザ設定入力手段55が設けてある。
<座標系の設定>
 図2に、ZMP算出用の作業機械モデル(側面)と、当該モデルのワールド座標系(O-X’Y’Z’)及び機械基準座標系(O-XYZ)を示す。ワールド座標系(O-X’Y’Z’)及び機械基準座標系(O-XYZ)はいずれも直交座標系であり、ワールド座標系(O-X’Y’Z’)は図2に示すように重力方向を基準とし、重力と逆方向をZ軸としたものである。一方、機械基準座標系(O-XYZ)は走行体2を基準としたものであり、図2に示すように、原点を上部旋回体3の旋回中心線3c上で、地表面30と接する点Oを原点とし、走行体2の前後方向にX軸、左右方向にY軸、旋回中心線3c方向にZ軸を設定する。ワールド座標系と機械基準座標系との関係は、上部旋回体3に取り付けられた姿勢センサ3bを用いて検出する。この姿勢センサ3bについては、以下の<状態量検出手段>の欄でより詳細に説明する。
<モデル>
 また、本実施形態では、実装の簡易性を考慮し、安定化制御演算において作業機械1を各構成部材の重心に質量が集中している集中質点モデルとして扱う。即ち、図2に示すように、走行体2、上部旋回体3、ブーム10、アーム12、バケット23のそれぞれの質点2P、3P、10P、12P、23Pを各構成部材の重心位置に設定し、それぞれの質点の質量をm2、m3、m10、m12、m23とする。そして、それぞれの質点の位置ベクトルをr2、r3、r10、r12、r23、速度ベクトルをr´2、r´3、r´10、r´12、r´23、加速度ベクトルをr´´2、r´´3、r´´10、r´´12、r´´23とする。なお、質点の設定方法はこれに限定されるものではなく、例えば、質量が集中している部位(図1に示すエンジン5、カウンタウエイト8など)を追加しても良い。
<状態量検出手段>
 作業機械1の各部に取り付けられた状態量検出手段(センサ)につき、図3を参照しながら説明する。
<姿勢センサ>
 上部旋回体3には、後述する重力と逆方向をZ軸としたワールド座標系に対する機械基準座標系の傾きを検出するための姿勢センサ3bが設けられる。姿勢センサ3bは、例えば傾斜角センサであり、上部旋回体3の傾斜角を検出することで、ワールド座標系に対する機械基準座標系の傾きを検出する。
<角度センサ>
 上部旋回体3の旋回中心線3c上には、走行体2と上部旋回体3の旋回角度を検出するための旋回角度センサ3sが設けられる。また、上部旋回体3とブーム10の支点40には、ブーム10の回動角度を計測するためのブーム角度センサ(角度センサ)40aが設けられ、ブーム10とアーム12の支点41には、アーム12の回動角度を計測するためのアーム角度センサ(角度センサ)41aが設けられ、アーム12とバケット23の支点42には、バケット23の回動角度を計測するためのバケット角度センサ42aが設けられる。
<ピン力センサ>
 アーム12とバケット23を繋ぐピン43、リンク16とバケット23を繋ぐピン44には、それぞれピン力センサ43a,44aが設けられる。ピン力センサ43a,44aは、例えば円筒状の内部にひずみゲージが挿入され、このひずみゲージに発生するひずみを計測することによって、ピン43,44にかかる力(外力)の大きさと方向を検出する。作業中はバケット23を用いて掘削等の作業を行うことにより、バケット部の質量が変化する。バケット23は、ピン43,44を介して作業フロント6と繋がっていることから、ピン43とピン44に加わる外力ベクトルF43とF44を算出することにより、バケット23の質量変化を算出することができる。なお、ピン43とピン44の位置ベクトルをs43,s44とする。
<レバー操作量センサ>
 操作レバー50には、旋回モータ7への入力指令量を検出する旋回レバー操作量センサ51sと、ブームシリンダ11への入力指令量を検出するブームレバー操作量センサ51bと、アームシリンダへの入力指令量を検出するアームレバー操作量センサ51aと、作業具シリンダ15への入力指令量を検出するバケットレバー操作量センサ51oが設けられる。
<制御装置>
 図4は、作業機械1が備える制御装置の機能ブロック図である。制御装置60は、作業機械1の各部に取付けられた各センサからの信号が入力される入力部60x、入力部60xに入力される信号を受けて、所定の演算を行う演算部60z、演算部60zからの出力信号を受けて、作業機械1の各駆動アクチュエータへの動作指令を出力する出力部60yを備える。
 演算部60zは、図示しないCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及びフラッシュメモリ等からなる記憶部、及びこれらを備えるマイクロコンピュータ並びに図示しない周辺回路などから構成され、例えばROMに格納されるプログラムにしたがって作動する。
<安定性評価指標>
 まず、演算部60zの詳細を説明する前に、実施形態における安定判別方式について説明する。本実施形態においては、作業機械1の安定性を判定するために、ZMP(Zero Moment Point)と、力学的エネルギとの2つの評価指標を用いる。以下では、各評価指標について説明する。
<ZMP>
 ZMP安定判別規範は、ダランベールの原理に基づいたものである。なお、ZMPの概念ならびにZMP安定判別規範については、「LEGGED LOCOMOTION ROBOTS:Miomir Vukobratovic著(「歩行ロボットと人工の足:加藤一郎訳、日刊工業新聞社」)」に記載されている。
 図1に示す作業機械1から地表面30には重力、慣性力、外力及びこれらのモーメントが作用するが、ダランベールの原理によれば、これらは地表面30から作業機械1への反作用としての床反力及び床反力モーメントと釣り合う。したがって、作業機械1が地表面30に安定に接地している場合には、作業機械1と地表面30との接地点を凹にならないように結んだ支持多角形の辺上あるいはその内側に、ピッチ軸及びロール軸方向のモーメントがゼロになる点(ZMP)が存在する。逆に言えば、ZMPが支持多角形内に存在し、作業機械1から地表面30に作用する力が地表面30を押す向き、つまり床半力が正である場合には、作業機械1は安定に接地しているといえる。つまり、ZMPが支持多角形の中心に近いほど安定性は高く、支持多角形の内側にあれば作業機械1は転倒することなく作業を行うことができる、一方、ZMPが支持多角形上に存在する場合には、作業機械1は転倒を開始する可能性がある。したがって、ZMPと作業機械1と地表面30が形成する支持多角形とを比較することによって安定性を判定することができる。
<ZMP方程式>
 ZMP方程式は、重力、慣性力、外力によって発生するモーメントの釣り合いから、以下の式(1)で導出される。
Figure JPOXMLDOC01-appb-M000001
 ここで、
zmp:ZMP位置ベクトル
:i番目の質点の質量
:i番目の質点の位置ベクトル
r”:i番目の質点に加わる加速度ベクトル(重力加速度含む)
:j番目の外力モーメント
:k番目の外力作用点位置ベクトル
:k番目の外力ベクトル
なお、ベクトルはX成分、Y成分、Z成分で構成される3次元ベクトルである。
 式(1)の左辺の第1項は、各質点mにおいて印加された加速度成分(重力加速度を含む)により生成されるZMP70(図2参照)回り(半径r-rzmp)のモーメントの総和を示す。式(1)の左辺の第2項は、作業機械1に作用する外力モーメントMの総和を示す。式(1)の左辺の第3項は、外力F(k番目の外力ベクトルFの作用点をsとする)により生成されるZMP70回り(半径s-rzmp)のモーメントの総和を示す。そして、式(1)は、各質点mにおいて印加された加速度成分(重力加速度を含む)により生成されるZMP70回り(半径r-rzmp)のモーメントの総和と、外力モーメントMの総和と、外力F(k番目の外力Fの作用点をsとする)により生成されるZMP70回り(半径s-rzmp)のモーメントの総和が釣り合うということを記述している。式(1)に示すZMP方程式より、地表面30におけるZMP70を算出することが可能となる。
 ここで、対象物が停止しており、重力のみが働く場合のZMP方程式は、重力加速度ベクトルgを用いて式(2)のように表され、静的重心の地表面への投影点と一致する。
Figure JPOXMLDOC01-appb-M000002
 したがって、ZMPは動的状態及び静的状態を考慮した重心の投影点として扱うことが可能であり、ZMPを指標として用いることによって対象物が静止している場合と、動作を行っている場合との両方を統一的に扱うことができる。
<力学的エネルギ>
 本実施形態においては、作業機械1の安定性を判定するための安定性評価指標として、ZMPに加え、力学的エネルギを用いている。前述のZMPは安定度の定量的評価や転倒可能性の有無の判定に有用である。しかし、ZMPが支持多角形の辺上にある場合には走行体2の一部が浮上するが、これはあくまで転倒に至るための必要条件であって,ZMPが支持多角形の辺上に存在するからといって必ずしも転倒するわけではない。つまり,ZMPでは走行体2の浮上の有無を判定することはできるが,実際に転倒に至るか否かを判定することはできない。そこで、走行体2の一部が浮上後、転倒に至るか否かを力学的エネルギを用いて判定する。走行体2の一部が浮上しているとき、作業機械1は支持多角形上に支点を持つ倒立振子とみなすことができる。作業機械1の重心が回転中心(ZMP)の鉛直線状に達すると重力の作用により自ら転倒する。したがって,重心が最高位点に達するか否かを判定することによって、将来、転倒に至るか否かを判定することができる。最高位点に達するのは,機械の位置エネルギ(PE)と運動エネルギ(KE)の和が最高位点における位置エネルギ(PEMAX)を超えている場合である。したがって,転倒判定は以下の式(3)を用いて行う。なお、この評価は走行体の一部が浮上している場合においてのみ有効である。
Figure JPOXMLDOC01-appb-M000003
 ここで、
θ:倒立振子(作業機械1の重心)の地表面からの傾き
ω:倒立振子の角速度
M:作業機械1の質量
I:回転支点回りの慣性モーメント
l:回転半径
<緩停止>
 本実施形態では、安定化のための動作制限として、動作速度制限と緩停止を行う。ここでは、緩停止について説明する。
 緩停止とは、停止時における可動部の減速度を制限し、可動部を緩やかに停止させることを意味する。緩停止を行うことによって急停止時の加速度を抑えることができるため、慣性力の影響が小さくなり、不安定化を抑制できる。一方で、緩停止を行うことによって制動距離が増大するため、許容制動距離を予め定め、許容制動距離内で停止できるように緩停止を行う必要がある。
 緩停止の方法は種々考えられるが、ここではレバー操作量(又はレバー操作速度)を図5(a)のように単調減少させる場合を例にとり説明する。図5(a)の場合には、レバー操作量変化の傾きがkに制限される。つまり、補正後のレバー操作量は以下となる。
Figure JPOXMLDOC01-appb-M000004
 ここで、O(t)は時刻tにおけるレバー操作量指令値、O(t)は時刻tにおけるレバー操作量補正値である。
 この他の緩停止の方法としては、図5(b)に示すように、レバー操作量変化の傾きの制限値をレバー操作量又はレバー操作速度に応じて切り替える方法が考えられる。この場合には、傾きを切り替える点及び傾きを適切に設定することによって制動距離を比較的短く保ったまま急停止時の加速度を小さく抑えることができる。
 以下、図4を参照して、演算部60zの構成について説明する。
<演算部>
 演算部60zは、作業機械1に備えられた各センサ及びユーザ設定入力手段55から取り込まれる信号に応じて、安定化のために必要な動作制限を算出する安定化制御演算手段60aと、安定化制御演算手段60aからの出力をもとに各駆動アクチュエータへの指令値を補正する指令値生成手段60iとから構成される。
<安定化制御演算手段>
 安定化制御演算手段60aでは、急停止を行っても転倒に至らないための動作制限を算出する。ここで急停止とは、操作レバーを操作状態から瞬時に停止指令位置まで戻す操作を意味する。突発的な障害物や警告等への対応、操作ミス等により上記のような操作が行われる場合があるが、このような場合には急激に速度が減少し、その際に発生する慣性力の影響により、作業機械1の安定状態が劣化しやすくなる。安定状態が劣化した場合の対処方法としては、不安定になった状態から何らかの回避動作を行う方法が考えられる。しかしながら、オペレータの意図と異なる動作を行うことにより、操作の違和感を与えるとともに、周囲の作業者や物に危害を与えるリスクがある。そこで、本発明の安定化制御では、予め許容される制動距離を定め、必要に応じて緩停止を行い、また、いかなる場合においても所定の許容制動距離内で安全に停止できるように未然に動作速度を制限する。つまり、本発明の安定化制御は急停止時の挙動予測及び安定性評価に基づき、緩停止と動作速度制限による動作制限を行うことによって不安定化を未然に防ぐものである。なお、安定化制御演算手段60aにおいては、機械基準座標系に基づいて演算を行う。
 安定化のための動作制限を算出する方法は、安定条件から逆演算を行う方法と、動作制限を変えながら挙動予測及び安定性評価を複数回繰り返す順演算による方法とがある。前者では、一度の演算で最適な動作制限を算出できるが、複雑な演算式を導出する必要がある。一方、後者は、複数回の試行が必要であるが、比較的簡易な演算式を用いることができる。以下では後者の手法を例にとって説明する。
 図4に示すように、安定化制御演算手段60aは、速度推定手段60b、急停止時挙動予測手段60c、安定性判定手段60d及び動作制限決定手段60hの各機能ブロックを備える。以下、各機能ブロックの詳細について説明する。
<速度推定>
 一般に、油圧ショベルに備えられた油圧シリンダの動作速度は、操作レバーの操作量に比例する。また、レバー操作と動作速度との間には油圧及び機構による遅れが存在するため、レバー操作量情報を用いることによって近未来の状態を予測することができる。速度推定手段60bでは、過去のレバー操作量、現在のレバー操作量及び現在の動作速度を用いて近未来の動作速度を予測する。推定は、以下の2ステップで行う。まず、過去のレバー操作量と現在の動作速度より速度算出モデルを同定する。次に、同定された速度算出モデルに現在のレバー操作量を入力として与えることにより、近未来の動作速度を予測する。速度算出モデルはエンジン回転数、負荷の大きさ、姿勢、油温等によって時々刻々と変化することが予想されるが、微小な時刻間では作業状況の変化が小さいので、モデルの変化も小さいものと考えてよい。速度推定手段60bのより簡易な実現手段として、レバー操作からシリンダが動き始めるまでのむだ時間Tと、下で定義する比例係数αを用いる方法がある。ここで、むだ時間Tは変化しないものと仮定し、実験により予め求めておく。T秒後の速度は、以下の手順で算出する。
 ステップ1:T秒前のレバー操作量O(t-T)と現在の速度v(t)より下記の式(5)を用いて比例係数αを算出する。
Figure JPOXMLDOC01-appb-M000005
 ステップ2:算出した比例係数αと現在のレバー操作量O(t)より下記の式(6)を用いて、T秒後の速度の推定値v(t+T)を算出する。
Figure JPOXMLDOC01-appb-M000006
<急停止時挙動予測>
 急停止時挙動予測手段60cでは、急停止指令が行われた場合の作業機械1の挙動を予測する。現在の姿勢情報と速度推定手段60bの速度推定結果と急停止モデルとから、操作レバーが開放されてから完全に停止に至るまでの位置、速度、加速度軌跡を算出する。急停止モデルとしては、例えば、急停止時の速度軌跡をモデル化し、その速度軌跡から位置軌跡及び加速度軌跡を算出する方法が考えられる。予め急停止時の速度軌跡をモデル化し、時刻tにおいて急停止動作が開始(操作レバー開放)されたときの操作レバー開放時刻からt秒後のシリンダ速度をvstop(t,t)としたとき、t秒後のシリンダ長lstop(t,t)とシリンダ加速度astop(t,t)は、急停止開始時のシリンダ長lstop(t,0)を用いて以下の式(7)で算出する。
Figure JPOXMLDOC01-appb-M000007
 リアルタイムで急停止時挙動予測を行うためには、急停止時の速度軌跡を簡易なモデルでモデル化すると良い。急停止時の速度軌跡の簡易モデルとしては一般に1次遅れ系や多次遅れ系や多項式関数が考えられる。なお、緩停止を行う場合には、急停止動作に加え、選択できる緩停止に対してもそれぞれ同様のモデル化を行う。
<3次関数モデルによるモデル化>
 以下では、3次関数モデルを用いた場合を例にとり、モデル化及び急停止時挙動予測方法について説明する。本実施形態で用いる3次関数モデルを図6に示す。3次関数モデルは、速度変化開始点とピーク到達点を極値とする3次関数であり、操作レバー開放時刻をt、速度変化開始時刻をt、ピーク到達時刻をt、速度変化開始時の速度をv、ピーク速度をvとする。急停止開始前のレバー操作量が一定であると仮定すると速度変化開始時の速度vは、操作レバー開放時の速度であることからv=vとして扱う。モデル化においては、速度変化開始速度に対する速度最大変化量をオーバーシュート率α、操作レバー開放時刻から速度変化開始時刻までの時間をむだ時間T、速度変化開始時刻からピーク到達時刻までの時間を停止完了時間Tと定義し、ブーム10、アーム12及び旋回体3の動作ごとに上記の3つのパラメータを同定する。
Figure JPOXMLDOC01-appb-M000008
 なお、緩停止を行う場合には、急停止時に加え選択できるそれぞれの設定の緩停止に対してもそれぞれ同様のモデル化を行い、設定ごとかつ動作ごとに上記の3つのパラメータを設定する。速度軌跡vstop(t,t)は、オーバーシュート率、むだ時間、停止完了時間及び操作レバー開放時の速度を用いて以下の式(9)ように表される。操作レバー開放時の速度には速度推定手段の推定結果を用いる。
Figure JPOXMLDOC01-appb-M000009
 このとき、シリンダ長軌跡及び加速度軌跡は以下の式(10)で算出できる。
Figure JPOXMLDOC01-appb-M000010
 ここで、
:操作レバー開放時のシリンダ長である。
<安定性判定手段>
 安定性判定手段60dでは、上述した2つの安定性評価指標に基づき、急停止挙動予測60cにおいて予測された急停止時軌跡より、ZMPや力学的エネルギを必要に応じて算出し、いずれの点においても不安定化が生じないか否かを判定する。本実施形態では、上述のZMPと力学的エネルギとを用いた安定性評価を行う。
 以下、安定性評価のフローを、図7を用いて説明する。上述の通り、ZMPは作業機械1が安定に接地している場合の安定性評価に有効であるが、走行体2が浮き始めた後の評価はできない。一方、力学的エネルギによる転倒判定は走行体2の一部が浮上した状態においてのみ有効であり、機械が安定に接地している場合の安定性評価はできない。そこで、常にZMPを監視し、ZMPが支持多角形内に設定された通常領域J内か否かを判定し、ZMPが通常領域J内にある場合にはZMPによる安定性評価を、ZMPが通常領域Jの外側にある場合には、力学的エネルギによる評価を行う。力学的エネルギが式(3)を満たすときには「不安定」、満たさないときは「安定」と判定する。
<リンク演算>
 リンク演算手段60eでは、急停止時挙動予測手段60cの予測結果を用いて、各リンクにつき、順次運動学演算を行う。そして図2に示す各質点2P,3P,10P,12P,23Pの位置ベクトル軌跡r,r,r10,r12と速度ベクトル軌跡r' ,r' ,r' 10,r' 12,r' 23と加速度ベクトル軌跡r'' ,r'' ,r'' 10,r'' 12,r'' 23とを機械基準座標系(O-XYZ)を基準とした値に変換する。ここで、運動学計算の方法は周知の方法を用いることができるが、例えば「ロボット制御基礎論:吉川恒夫著、コロナ社(1988)」に記載されている方法を用いることができる。
<ZMP演算・評価手段>
 ZMP演算・評価手段60fは、リンク演算手段60eによって機械基準座標系に変換された各質点の位置ベクトル軌跡及び加速度ベクトル軌跡を用いてZMP70の軌跡を算出し(ステップS71)、安定性評価を行う(ステップS72)。本実施形態では、機械基準座標系の原点Oを走行体2と地表面30の接する点に設定しているため、ZMPのZ座標が地表面30上にあると仮定すると、rzmpz=0である。また、作業機械1では通常、バケット23以外の部分には外力や外力モーメントはほとんど作用しないため、その影響を無視し、外力モーメントM=0とみなす。このような条件のもとで式(1)を解き、ZMP70のX座標rzmpxを以下の式(11)を用いて算出する。
Figure JPOXMLDOC01-appb-M000011
 また、これと同様に、ZMP70のY座標rzmpyを以下の式(12)を用いて算出する。
Figure JPOXMLDOC01-appb-M000012
 式(11)及び式(12)において、mは図2に示す各質点2P,3P,10P,12P,23Pの質量であり、各質点の質量m,m,m10,m12,m23を代入する。なお、バケット23の質量m23は作業によって変化することが予想されるため、ピン力センサ43a,44aの検出値から質量m23を算出して用いる。r''は各質点の加速度であり、各質点の加速度r'' ,r'' ,r'' 10,r'' 12,r'' 23を代入する。以上のように、急停止時挙動予測手段の予測結果を用いることによって、ZMP演算・評価手段60fは、ZMP70の軌跡を算出することができる。
 次に、ZMP演算・評価手段60fがZMP70の軌跡に基づいて行う領域判定による安定性算出と転倒可能性の判定について、図8を用いて説明する。
 前記のように、ZMP70が、作業機械1と地表面30とで形成する支持多角形Lの十分内側の領域に存在する場合には、図1に示す作業機械1は転倒する可能性はほとんどなく、安全に作業を行うことが可能である。第1の実施形態におけるZMP演算・評価手段60fは、作業機械1と地表面30との接地点で形成される支持多角形Lを算出し、転倒の可能性が十分低い通常領域Jと、転倒の可能性がより高い転倒警告領域Nを設定し、ZMP70がいずれの領域にあるかによって安定性を判定する。走行体2が地表面30に正立している場合、支持多角形Lは、走行体2の平面形状と略等しくなる。したがって、走行体2の平面形状が矩形の場合、支持多角形Lは図8に示すように矩形となる。より具体的には、走行体2としてクローラを有している場合の支持多角形Lは、左右のスプロケットの中心点を結んだ線を前方境界線、左右のアイドラの中心点を結んだ線を後方境界線、左右それぞれのトラックリンク外側端を左右の境界線とした四角形である。なお、前方及び後方の境界は最も前方の下部ローラ及び最も後方の下部ローラの接地点としてもよい。
 一方、図1に示した作業機械1は、ブレード18を有しており、ブレード18が地表面30に接地している場合には、支持多角形Lは、ブレード底部を含むように拡大する。また、バケット23を地表面に押し付けて走行体2を持ち上げるジャッキアップ動作においては、支持多角形Lは、走行体2の接地している側の2つの端点とバケット23の接地点とによって形成される多角形となる。このように、作業機械1の接地状態によって支持多角形Lの形状が不連続に変化するため、ZMP演算・評価手段60fは作業機械1の接地状況を監視し、接地状況に応じて支持多角形Lを設定する。
 安定性評価においては、通常領域Jと転倒警告領域Nの境界Kを、支持多角形Lの内側に設定する。具体的には、境界Kは支持多角形Lを安全率にしたがって決定される比率に応じて、中心点側に縮小した多角形あるいは、支持多角形Lを安全率にしたがって決定される長さだけ内側に移動した多角形に設定される。ZMP70が通常領域Jにある場合には、作業機械1の安定性は十分に高いと判定する。これに対して、ZMP70が転倒警告領域Nにある場合には、作業機械が転倒の可能性ありと判定する。
 上述のように、ZMPが通常領域J内に存在する場合には「安定」であると判断し、安定性判定手段60dの出力とする(ステップS75)。一方、ZMPが転倒警告領域Nに存在する場合には、走行体の一部が浮上する可能性が高いと判断し、力学的エネルギを算出して(ステップS73)、力学的エネルギによる安定性判定を行う(ステップS74)。つまり、転倒警告領域Nが大きいほど早期に力学的エネルギを計算することになる。転倒警告領域Nの大きさは、ZMP軌跡の推定誤差等を考慮して決めると良い。
<力学的エネルギ算出・評価手段60g>
 ZMP演算・評価手段60fにおいて、走行体2の浮上が予知された場合には、リンク演算手段60eで算出した各質点の位置ベクトル軌跡、速度ベクトル軌跡を用いて作業機械1の重心位置軌跡を算出し、式(3)に示す運動エネルギ、位置エネルギ、回転半径を算出し、力学的エネルギに基づいた安定性判定を行う。即ち、式(3)を満たすか否かを判定することにより転倒の有無を判定できる。
 第1の実施形態では、計測誤差やモデル化誤差、作業環境等の影響を考慮し、また、オペレータの熟練度や好みに合わせた制御介入を行うために安全率Sを設定する。安全率の設定方法としては、例えば、転倒判定に用いる閾値に対して安全率を設定することが考えられる。つまり、式(3)を以下の式(13)のように変更して安定性判定を行う。
Figure JPOXMLDOC01-appb-M000013
 式(13)を満たさない場合には、転倒の可能性は低いと判断し、安定性判定手段の判定結果を「安定」とし(ステップS76)、式(13)を満たす場合には、転倒の可能性が高いと判断し、判定結果を「不安定」として出力する(ステップS77)。
 他の安全率設定方法としては、運動エネルギ演算に対して安全率を反映させる方法が考えられる。このとき、運動エネルギは以下の式(14)で算出される。
Figure JPOXMLDOC01-appb-M000014
 本例の場合、安定性判定はKEのかわりにKE’を用い、式(3)に基づいて行い、「安定」又は「不安定」を安定判定手段の判定結果として出力する。このように運動エネルギ演算に安全率を反映することにより安全率による速度調整が容易になる。
 なお、安全率は、あらかじめ設定される所定の値であってもよいし、作業機械1を操作するオペレータの習熟度や作業内容路面や周囲の状況などによって変更される値であっても良い。この場合、予め与えられた情報や各種センサの出力値等から自動で設定する構成や、オペレータや作業管理者がユーザ設定入力装置55を用いて安全率を任意に設定する構成などが考えられる。
 また、安全率は、作業機械1の作業状態に応じて作業中に変更されても良いし、前後左右について異なる値を用いる構成としても良い。安全率の設定方法として、オペレータや作業管理者が随時手動で設定を変更するほか、GPS、地図情報、作業のCAD図面などを用いる構成が考えられる。上記の情報を用いることによって転倒が発生しやすい方向や転倒時の被害の大きい方向を自動で判別し、その方向の安全率が高くなるように自動で変更をすることができる。このように、安全率を適正な値とすることによって、作業効率を低下させることなく安全な作業を行うことができる。
<動作制限決定手段>
 動作制限決定手段60hでは、安定性判定手段60dの判定結果を元に更なる繰り返し演算の要否を判定し、指令値補正指令60iを生成する。本実施形態の安定化制御では、不安定化を回避するために緩停止と動作速度制限を行う。したがって、動作制限決定手段60hは指令値生成手段60iに対し、緩停止設定及び動作速度制限ゲインを出力する。
 次に、繰り返し演算のフローを、図9を用いて説明する。第1回目の試行においては、速度推定手段60bの推定結果及び急停止モデルを用いる設定とし(ステップS91)、挙動予測(ステップS92)及び安定性判定(ステップS93)を行う。安定性判定手段60dの判定結果が「安定」であった場合には、指令値の補正は行わない。この場合には、「緩停止なし」、「動作速度制限ゲイン=1」を出力する(ステップS910)。一方、安定性判定手段60dの判定結果が「不安定」であった場合は、急停止モデルに代えて緩停止モデルを用いる設定とし(ステップS94)、挙動予測(ステップS95)及び安定性判定(ステップS96)を行う。安定性判定手段60dの判定結果が「安定」であった場合は、動作速度制限ゲインは1とし、緩停止のみを行うように指令値補正指令60iを行う(ステップS911)。一方、安定性判定手段60dの判定結果が「不安定」であった場合は、速度推定値に動作速度制限ゲインα(<1)を乗じたものと、緩停止モデルとを用いる設定とし(ステップS97)、挙動予測(ステップS98)及び安定性判定(ステップS99)を行う。安定性判定手段60dの判定結果が「安定」であった場合は、緩停止指令及び動作速度制限ゲインαの動作制限を行うように指令値補正指令を行う(ステップS912)。一方、安定性判定手段60dの判定結果が「不安定」であった場合は、動作速度制限ゲインαを徐々に小さくし、安定性判定手段60dの判定結果が「安定」となるまで、挙動予測(ステップS98)と安定性判定(ステップS99)を繰り返す。
 なお、上記実施形態では、緩停止のパターンが一通りである場合を例にとって説明したが、緩停止の設定を複数設けても良い。この場合には、全ての緩停止設定において安定性判定結果が不安定となった場合にはじめて速度を減ずる。
 また、上記実施形態では、急停止あるいは緩停止の軌跡上の停止に至るまでのすべての点について安定性評価を行い,いずれの点においても「安定」となるまで逐次的に速度を減じて安定性評価を繰り返す順演算によって安定限界速度を算出する方法を示したが、実用上はコントローラの演算処理能力を考慮し,停止軌跡上の演算点の個数及び繰り返し演算の試行回数を決定する。また、演算点の間隔は必ずしも等間隔である必要はない。
<指令値生成手段>
 指令値生成手段60iでは、動作制限決定手段60hより出力された指令値補正指令に基づき、レバー操作量を補正し、各駆動アクチュエータへの入力値を生成し、出力部60yに出力する。より具体的には動作速度制限ゲインαをレバー操作量に乗じたものを指令値とし、また緩停止指令がある場合には前述の式(4)に基づいてレバー操作量を補正して出力する。
<ユーザ設定入力手段>
 ユーザ設定入力手段55は、複数個の入力ボタンなどから構成され、オペレータはユーザ設定入力手段55を介して作業内容や個々人の好みに応じて警告方法や安全率などの設定を行う。
<警報装置>
 また、図1に示すように、運転室4に警報装置63を設置し、安定化制御介入時や安定度に応じて、オペレータに警報を発するように構成しても良い。
<表示装置>
 さらに、図1に示すように、運転室4に表示装置61を設置し、現在の安定状態や、安定状態の変動や現在の設定を表示するように構成しても良い。また、表示装置61を用いて、オペレータに安定度に応じた警告を発するようにしても良い。このように、運転室4に設置された表示装置61や警報装置63を通じて、オペレータに作業機械1の安定状態を通知することにより、オペレータによる操作レバー50の操作を、作業機械1の安全を確保する上でより適切な操作へと導くことが可能になる。
 以下に、本発明に係る作業機械の他の実施形態を列挙する。
(1)上記実施形態では、安定化制御演算手段60aにおいて、走行体2、上部旋回体3、ブーム10、アーム12、バケット23のそれぞれの質点2P,3P,10P,12P,23Pを用いる例を示したが、いくつかの質点を統合する、あるいは、影響の大きい質点を抽出するなどにより、演算に使用する質点の数を減らしても良い。質点数を減らすことにより、演算量を減少させることができる。
(2)上記実施形態では、作業機械1を各構成部材の重心に質量が集中している集中質点モデルとして扱う例を示したが、剛体モデル等の他のモデル化形式に基づいて実施する構成としても良い。
(3)上記実施形態では、急停止時挙動予測手段60cにおいて、速度推定手段60bの推定結果を用いる例を示したが、急停止時挙動予測手段60cで用いる速度は、角度センサの出力値から算出される現在の動作速度であっても良い。その場合は、速度推定手段60bを除いた構成をすることができる。
(4)上記実施形態では、安定性評価指標としてZMPと力学的エネルギの2つの指標を用いる例を示したが、ZMPのみを指標として用いる構成としてもよい。その場合、安定性判定手段60dは、ZMPが通常領域Jにある場合に「安定」、転倒警告領域Nにある場合に「不安定」と判定し、動作制限決定手段60hへ出力する。ZMPのみを用いる構成とした場合には、車体の浮上を防止することができ、安全性や乗り心地をより高くなる。
(5)上記実施形態では、不安定化を回避するための動作制限として緩停止と動作速度制限を行う例を示したが、緩停止を行わず、動作速度制限のみを行う構成にしても良い。その場合には、緩停止モデルを持つ必要はなく、急停止時挙動予測手段60cは常に急停止モデルを用いて行う。また、動作制限決定手段60hにおいては、第1回目の試行における安定性判定手段60dの判定結果が「不安定」であった場合は、速度推定値に動作速度制限ゲインα(<1)を乗じ、また、動作速度制限ゲインを徐々に小さくし安定性判定手段60dの判定結果が「安定」となるまで、挙動予測と安定性判定を繰り返す。動作制限決定手段60hの出力は動作速度制限ゲインαのみとなる。このように緩停止を行わない場合には、安定化制御による制動距離増大が生じない。
(6)上記実施形態では、バケットに加わる外力の検出にピン力センサ43a,44aを設ける例を示したが、その他の検出方法として、ブームシリンダに圧力センサ11a,11bを設ける方法がある。この方法では、ブームシリンダに設けた圧力センサ11a,11bの検出値からバケット外力と作業フロント自重とを含んだモーメントMを算出し、また、ブーム10、アーム12、バケット23の各角度センサの検出値と、ブーム10、アーム12、バケット23の各重心パラメータとから作業フロントの自重モーメントMocを算出する。次いで前記モーメントMとMocとの差分及びブーム回動支点40からバケット23までの距離からバケット外力を算出する。また、作業機械1が作業具として、図示しないカッタを装備し、主に切断作業のみを行う場合、切断作業はカッタの内力を利用して行うため、作業中に作業フロント6には外力がほとんど加わらない。そこで、作業中に外力によって安定性が悪化する恐れが無い。このような場合には、ピン43,44(図1参照)に作用する外力を検出するピン力センサ43a、44aを設けない構成としても良い。
(7)上記実施形態では、オペレータが作業機械1上に備わる運転席4に搭乗して、作業機械1の操作を行うことを想定して説明した。然るに、作業機械1の操作は無線等を用いた遠隔操作が行われるケースがある。遠隔操作時には、搭乗時に比べ作業機械の姿勢や路面の傾斜等を正確に把握するのが困難であり、また、熟練したオペレータでも作業機械の安定性を感覚的に把握することが困難である。したがって、遠隔操作時においては、一層優れた効果を奏する。遠隔操作型の作業機械においては、オペレータの操作場所付近に表示装置、警報装置等を設け、作業機械の情報を付加的に与えるように構成しても良い。
(8)上記実施形態では、操作レバー50として、電気レバー方式を想定して説明したが、油圧パイロット方式の場合には、レバー操作量としてパイロット圧を計測し、安定化制御演算結果を元にパイロット圧を補正することによって安定化を行うことができる。
 1   作業機械
 2   走行体
 3   旋回体
 3b  姿勢センサ(旋回体)
 3c  中心線
 3s  旋回角センサ
 4   運転室
 5   エンジン
 6   作業フロント
 7   旋回モータ
 8   カウンタウエイト
 10  ブーム
 11  ブームシリンダ
 12  アーム
 13  アームシリンダ
 15  作業具シリンダ
 16  リンク(A)
 17  リンク(B)
 23  バケット
 30  地表面
 40  ブーム回動支点
 40a 角度センサ(ブーム回動支点)
 41  アーム回動支点
 41a 角度センサ(アーム回動支点)
 42  バケット回動支点
 42a 角度センサ(バケット回動支点)
 43  ピン(バケット-アーム)
 43a 外力センサ(ピン43)
 44  ピン(バケット-リンク)
 44a 外力センサ(ピン44)
 50  操作レバー
 51s 旋回レバー操作量センサ
 51b ブームレバー操作量センサ
 51a アームレバー操作量センサ
 51o バケットレバー操作量センサ
 55  ユーザ設定入力手段
 60  制御装置
 60a 安定化制御演算手段
 60b 速度推定手段
 60c 急停止時挙動予測手段
 60d 安定性判定手段
 60e リンク演算手段
 60f ZMP演算・評価手段
 60g 力学的エネルギ演算・評価手段
 60h 動作速度制限決定手段
 60i 指令値生成手段
 60x 入力部
 60y 出力部
 60z 演算部
 61  表示装置
 63  警報装置
 70  ZMP

Claims (5)

  1.  走行体と、該走行体上に取り付けた作業機械本体と、該作業機械本体に対し上下方向に揺動自在に取り付けた作業フロントと、これら各部の駆動を制御する制御装置とを備えた作業機械において、
     前記制御装置は、前記走行体、前記作業機械本体及び前記作業フロントにおける各可動部の駆動を操作する操作レバーが操作状態から停止指令位置まで戻る前記操作レバーの操作速度の変化に応じて前記可動部が停止するまでの安定性変化の予測、及び前記可動部が停止するまでの作業機械が安定であるために必要とされる動作制限の算出とを行う安定化制御演算手段と、
     前記安定化制御演算手段の演算結果をもとに前記可動部を駆動するアクチュエータへの指令情報を補正する指令値生成手段を備え、前記操作レバーが瞬時に操作状態から停止位置まで戻された場合にも機械の安定性を向上することを特徴とする作業機械。
  2.  請求項1に記載の作業機械において、
     前記安定化制御演算手段は、前記動作制限として、前記可動部の減速度を制限して前記可動部を緩やかに停止させる緩停止指令値、及び前記アクチュエータの動作速度を制限する動作速度上限値の少なくともいずれか一方を算出することを特徴とする作業機械。
  3.  請求項1及び請求項2のいずれか1項に記載の作業機械において、
     前記安定化制御演算手段は、前記走行体、前記作業機械本体及び前記作業フロントにおける各可動部の位置情報、加速度情報及び外力情報から算出されるZMP座標、並びに作業機械の各可動部の位置情報及び速度情報から算出される力学的エネルギの少なくとも一方を用いて前記動作制限を算出することを特徴とする作業機械。
  4.  請求項2に記載の作業機械において、
     前記安定化制御演算手段は、前記可動部の減速度の制限を予め記憶しており、該減速度の制限を満たすように、前記アクチュエータへの指令情報を補正することを特徴とする作業機械。
  5.  請求項1乃至請求項4のいずれか1項に記載の作業機械において、
     前記制御装置は、前記操作レバーが操作状態から瞬時に中立位置まで戻された場合における作業機械の挙動予測を行う挙動予測手段を備え、
     前記挙動予測手段は、速度が変化し始める時刻及びその時の速度によって表される速度変化開始点と操作レバー開放時からの速度変化量が最大となる時刻及びその時の速度によって表されるピーク到達点を極値とする3次関数をモデルとして用い、前記走行体、前記作業機械本体及び前記作業フロントの動作ごとに予め同定した、速度変化開始点とピーク到達点の速度の比によって算出されるオーバーシュート率、操作レバー開放から速度変化開始点までの時間、及び速度変化開始点からピーク到達点までの時間を用いることを特徴とする作業機械。
PCT/JP2012/064566 2011-06-10 2012-06-06 作業機械 WO2012169531A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112012003346.9T DE112012003346B4 (de) 2011-06-10 2012-06-06 Arbeitsmaschine
US14/124,787 US9348327B2 (en) 2011-06-10 2012-06-06 Work machine
KR1020137032642A KR101934017B1 (ko) 2011-06-10 2012-06-06 작업 기계
JP2013519509A JP6023053B2 (ja) 2011-06-10 2012-06-06 作業機械
CN201280028494.3A CN103597147B (zh) 2011-06-10 2012-06-06 作业机械

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011130552 2011-06-10
JP2011-130552 2011-10-06

Publications (1)

Publication Number Publication Date
WO2012169531A1 true WO2012169531A1 (ja) 2012-12-13

Family

ID=47296090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064566 WO2012169531A1 (ja) 2011-06-10 2012-06-06 作業機械

Country Status (6)

Country Link
US (1) US9348327B2 (ja)
JP (1) JP6023053B2 (ja)
KR (1) KR101934017B1 (ja)
CN (1) CN103597147B (ja)
DE (1) DE112012003346B4 (ja)
WO (1) WO2012169531A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5401616B1 (ja) * 2013-01-18 2014-01-29 株式会社小松製作所 油圧ショベルおよび油圧ショベルの油圧シリンダのストローク計測方法
US8958957B2 (en) 2012-01-31 2015-02-17 Harnischfeger Technologies, Inc. System and method for limiting secondary tipping moment of an industrial machine
WO2015071520A1 (es) * 2013-11-14 2015-05-21 Empresa De Transformacion Agraria, S.A. (Tragsa) Sistema y método para control de estabilidad en maquinaria pesada
CN105971050A (zh) * 2015-03-13 2016-09-28 住友重机械工业株式会社 挖掘机
EP3106572A1 (en) 2015-06-17 2016-12-21 Hitachi Construction Machinery Co., Ltd. Work machine
EP3225751A1 (en) 2016-03-30 2017-10-04 Hitachi Construction Machinery Co., Ltd. Drive control system for work machine
WO2017170555A1 (ja) * 2016-03-31 2017-10-05 住友重機械工業株式会社 ショベル
JP2018021416A (ja) * 2016-08-05 2018-02-08 株式会社神戸製鋼所 転倒防止装置
JP2018091131A (ja) * 2016-12-05 2018-06-14 住友重機械工業株式会社 ショベル
JP2019002242A (ja) * 2017-06-19 2019-01-10 株式会社神戸製鋼所 転倒防止装置及び作業機械
JP2019039182A (ja) * 2017-08-23 2019-03-14 大成建設株式会社 作業車両用旋回制御システム
WO2020045579A1 (ja) 2018-08-31 2020-03-05 コベルコ建機株式会社 建設機械
CN113479780A (zh) * 2021-06-30 2021-10-08 山东理工大学 上装作业中汽车起重机底盘的姿态保持自动控制方法
WO2022201905A1 (ja) * 2021-03-26 2022-09-29 日立建機株式会社 作業機械

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058247A1 (ja) * 2011-10-17 2013-04-25 日立建機株式会社 ダンプトラック停車位置方向指示システムおよび運搬システム
US9593469B2 (en) * 2013-12-20 2017-03-14 Cnh Industrial America Llc System and method for controlling a work vehicle based on a monitored tip condition of the vehicle
DE112014000079B4 (de) * 2014-06-04 2017-02-09 Komatsu Ltd. Stellungsberechnungsvorrichtung für eine Arbeitsmaschine, Arbeitsmaschine und Stellungsberechnungsverfahren für eine Arbeitsmaschine
US9970179B2 (en) * 2014-06-13 2018-05-15 Cnh Industrial America Llc Tipping indicator for a work vehicle
US9475193B2 (en) * 2015-02-09 2016-10-25 Harris Corporation Unmanned ground vehicle stability control
US9617708B2 (en) * 2015-08-06 2017-04-11 Honeywell International, Inc. Methods and apparatus for correcting a position of an excavation vehicle using tilt compensation
JP6373812B2 (ja) * 2015-09-10 2018-08-15 日立建機株式会社 建設機械
JP6576757B2 (ja) * 2015-09-17 2019-09-18 住友重機械工業株式会社 ショベル
JP7084722B2 (ja) * 2015-12-18 2022-06-15 住友重機械工業株式会社 ショベルおよびその制御方法
DE102016207200A1 (de) * 2016-04-27 2017-11-02 Deere & Company Verfahren zur Ermittlung einer Masse eines Anbaugerätes für ein Nutzfahrzeug
US20160298314A1 (en) * 2016-06-21 2016-10-13 Caterpillar Inc. System and method for machine control
US11015320B2 (en) * 2016-09-09 2021-05-25 Volvo Construction Equipment Ab Rollover prevention system and method for construction machine
WO2018062210A1 (ja) 2016-09-30 2018-04-05 住友重機械工業株式会社 ショベル
JP6612210B2 (ja) * 2016-12-26 2019-11-27 本田技研工業株式会社 作業機
WO2018173289A1 (ja) * 2017-03-24 2018-09-27 株式会社日立建機ティエラ 建設機械の油圧駆動装置
CN108663951B (zh) * 2017-03-28 2021-08-27 株式会社安川电机 致动器控制系统、机器人及冲压加工装置
JP6860458B2 (ja) * 2017-09-15 2021-04-14 日立建機株式会社 作業機械
US10648154B2 (en) 2018-02-28 2020-05-12 Deere & Company Method of limiting flow in response to sensed pressure
US11525238B2 (en) 2018-02-28 2022-12-13 Deere & Company Stability control for hydraulic work machine
US10829907B2 (en) 2018-02-28 2020-11-10 Deere & Company Method of limiting flow through sensed kinetic energy
US11293168B2 (en) 2018-02-28 2022-04-05 Deere & Company Method of limiting flow through accelerometer feedback
US10954654B2 (en) 2018-02-28 2021-03-23 Deere & Company Hydraulic derate stability control and calibration
US10954650B2 (en) 2018-02-28 2021-03-23 Deere & Company Hydraulic derate stability control
EP3770332B1 (en) * 2018-03-22 2024-01-03 Hitachi Construction Machinery Co., Ltd. Working machine
KR102225934B1 (ko) * 2018-03-28 2021-03-11 히다찌 겐끼 가부시키가이샤 작업 기계
CN111032970B (zh) * 2018-04-17 2022-02-25 日立建机株式会社 作业机械
US10962360B2 (en) * 2018-06-11 2021-03-30 Deere & Company Smartphone calibration of a grade control system for a work machine
US10759431B2 (en) * 2018-06-21 2020-09-01 Deere & Company Enhanced braking method and apparatus for hybrid machine
US10767348B2 (en) * 2018-07-30 2020-09-08 Deere & Company Machine stability detection and control
CN112384663B (zh) * 2018-09-27 2023-10-13 住友重机械工业株式会社 挖土机
WO2020071314A1 (ja) * 2018-10-03 2020-04-09 住友重機械工業株式会社 ショベル
US11512447B2 (en) 2018-11-06 2022-11-29 Deere & Company Systems and methods to improve work machine stability based on operating values
KR102090409B1 (ko) * 2018-12-27 2020-03-17 한양대학교 에리카산학협력단 과부하 방지를 위한 원격 제어 굴삭기의 제어 장치 및 방법
US11185003B2 (en) * 2019-04-03 2021-11-30 Caterpillar Inc. Tipping avoidance system and method
CN110219332B (zh) * 2019-05-12 2024-05-28 董志强 一种挖掘机的动臂机构重力抵消装置
US11851844B2 (en) * 2020-01-21 2023-12-26 Caterpillar Inc. Implement travel prediction for a work machine
CN113620191A (zh) * 2020-05-09 2021-11-09 徐州重型机械有限公司 起重机作业保护方法、装置、系统和起重机
DE102020206523A1 (de) * 2020-05-26 2021-12-02 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben einer mobilen Arbeitsmaschine
CN113879979A (zh) * 2021-08-05 2022-01-04 国家石油天然气管网集团有限公司 一种液压挖掘机吊管设备作业防倾翻监测装置及方法
CN115100837A (zh) * 2022-05-13 2022-09-23 北京三一智造科技有限公司 一种工程机械稳定性预警方法、系统及工程机械

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180192A (ja) * 1993-12-24 1995-07-18 Hitachi Constr Mach Co Ltd 油圧シヨベルの転倒防止装置
JPH07279202A (ja) * 1994-04-07 1995-10-24 Shin Caterpillar Mitsubishi Ltd 重量作業部付き作業機械

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552437A (en) * 1978-10-06 1980-04-16 Komatsu Ltd Working instrument controller
US4268214A (en) * 1979-03-26 1981-05-19 Bucyrus-Erie Company Excavator front end
US4869337A (en) * 1987-10-15 1989-09-26 Clark Equipment Company Backhoe creep lever mechanism for an excavating vehicle
JP2871105B2 (ja) 1990-12-03 1999-03-17 油谷重工株式会社 解体作業機の安全装置
JPH05319785A (ja) 1991-09-06 1993-12-03 Yotaro Hatamura 建設機械の姿勢制御システム
JP3170329B2 (ja) * 1991-12-03 2001-05-28 日立建機株式会社 油圧作業機械の振動抑制装置
KR0173835B1 (ko) * 1994-06-01 1999-02-18 오까다 하지모 건설기계의 영역제한 굴삭제어장치
AU690404B2 (en) * 1994-12-27 1998-04-23 Komatsu Limited Device and method for limiting the vehicle speed of a working vehicle
CN1077187C (zh) * 1996-12-12 2002-01-02 新卡特彼勒三菱株式会社 用于建工机械的控制装置
US6061617A (en) * 1997-10-21 2000-05-09 Case Corporation Adaptable controller for work vehicle attachments
JP2003184133A (ja) * 2001-12-20 2003-07-03 Hitachi Constr Mach Co Ltd 油圧作業機の振動抑制装置
US6819993B2 (en) * 2002-12-12 2004-11-16 Caterpillar Inc System for estimating a linkage position
WO2009087795A1 (ja) * 2008-01-07 2009-07-16 Hitachi Construction Machinery Co., Ltd. 双腕作業機械
KR101090183B1 (ko) * 2009-05-27 2011-12-06 전자부품연구원 무인 굴삭기의 전도 방지 시스템 및 방법
EP2492404A4 (en) * 2009-10-19 2015-12-09 Hitachi Construction Machinery OPERATING MACHINE
US8768581B2 (en) * 2010-05-24 2014-07-01 Hitachi Construction Machinery Co., Ltd. Work machine safety device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180192A (ja) * 1993-12-24 1995-07-18 Hitachi Constr Mach Co Ltd 油圧シヨベルの転倒防止装置
JPH07279202A (ja) * 1994-04-07 1995-10-24 Shin Caterpillar Mitsubishi Ltd 重量作業部付き作業機械

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8958957B2 (en) 2012-01-31 2015-02-17 Harnischfeger Technologies, Inc. System and method for limiting secondary tipping moment of an industrial machine
AU2013200540B2 (en) * 2012-01-31 2015-02-26 Joy Global Surface Mining Inc System and method for limiting secondary tipping moment of an industrial machine
US9115483B2 (en) 2013-01-18 2015-08-25 Komatsu Ltd. Hydraulic excavator and method for measuring stroke of hydraulic cylinder of hydraulic excavator
JP5401616B1 (ja) * 2013-01-18 2014-01-29 株式会社小松製作所 油圧ショベルおよび油圧ショベルの油圧シリンダのストローク計測方法
US9745727B2 (en) 2013-11-14 2017-08-29 Empresa De Transfomacion Agraria S.A. (Tragsa) System and method for controlling stability in heavy machinery
WO2015071520A1 (es) * 2013-11-14 2015-05-21 Empresa De Transformacion Agraria, S.A. (Tragsa) Sistema y método para control de estabilidad en maquinaria pesada
CN105971050A (zh) * 2015-03-13 2016-09-28 住友重机械工业株式会社 挖掘机
EP3106572A1 (en) 2015-06-17 2016-12-21 Hitachi Construction Machinery Co., Ltd. Work machine
KR20160149139A (ko) 2015-06-17 2016-12-27 히다치 겡키 가부시키 가이샤 작업 기계
JP2017008501A (ja) * 2015-06-17 2017-01-12 日立建機株式会社 作業機械
US10024032B2 (en) 2015-06-17 2018-07-17 Hitachi Construction Machinery Co., Ltd. Work machine
EP3225751A1 (en) 2016-03-30 2017-10-04 Hitachi Construction Machinery Co., Ltd. Drive control system for work machine
JP2017179929A (ja) * 2016-03-30 2017-10-05 日立建機株式会社 作業機械の駆動制御装置
US10041225B2 (en) 2016-03-30 2018-08-07 Hitachi Construction Machinery Co., Ltd. Drive control system for work machine
US10858808B2 (en) 2016-03-31 2020-12-08 Sumitomo Heavy Industries, Ltd. Excavator
WO2017170555A1 (ja) * 2016-03-31 2017-10-05 住友重機械工業株式会社 ショベル
JPWO2017170555A1 (ja) * 2016-03-31 2019-02-07 住友重機械工業株式会社 ショベル
JP2018021416A (ja) * 2016-08-05 2018-02-08 株式会社神戸製鋼所 転倒防止装置
JP2018091131A (ja) * 2016-12-05 2018-06-14 住友重機械工業株式会社 ショベル
JP7084129B2 (ja) 2016-12-05 2022-06-14 住友重機械工業株式会社 ショベル
JP2019002242A (ja) * 2017-06-19 2019-01-10 株式会社神戸製鋼所 転倒防止装置及び作業機械
JP2019039182A (ja) * 2017-08-23 2019-03-14 大成建設株式会社 作業車両用旋回制御システム
WO2020045579A1 (ja) 2018-08-31 2020-03-05 コベルコ建機株式会社 建設機械
US11391016B2 (en) 2018-08-31 2022-07-19 Kobelco Construction Machinery Co., Ltd. Construction machine
WO2022201905A1 (ja) * 2021-03-26 2022-09-29 日立建機株式会社 作業機械
JP7401715B2 (ja) 2021-03-26 2023-12-19 日立建機株式会社 作業機械
CN113479780A (zh) * 2021-06-30 2021-10-08 山东理工大学 上装作业中汽车起重机底盘的姿态保持自动控制方法
CN113479780B (zh) * 2021-06-30 2022-08-19 山东理工大学 上装作业中汽车起重机底盘的姿态保持自动控制方法

Also Published As

Publication number Publication date
US9348327B2 (en) 2016-05-24
CN103597147B (zh) 2016-05-25
KR20140058433A (ko) 2014-05-14
DE112012003346T5 (de) 2014-04-30
DE112012003346B4 (de) 2017-01-05
JP6023053B2 (ja) 2016-11-09
CN103597147A (zh) 2014-02-19
JPWO2012169531A1 (ja) 2015-02-23
US20140121840A1 (en) 2014-05-01
KR101934017B1 (ko) 2018-12-31

Similar Documents

Publication Publication Date Title
JP6023053B2 (ja) 作業機械
KR102225934B1 (ko) 작업 기계
KR101755739B1 (ko) 작업 기계
JP5491627B2 (ja) 作業機械の安全装置
JP6860458B2 (ja) 作業機械
KR101814657B1 (ko) 작업 기계
JP5851037B2 (ja) 作業機械
JP2017179929A (ja) 作業機械の駆動制御装置
JP2013204260A (ja) 車両の遠隔操作装置、車両及び車両の遠隔操作方法
JP2013189767A (ja) 電動式旋回装置
JP6917941B2 (ja) 油圧式作業機械
Lee et al. Development of a Numerical Evaluation Method for Tip-Over Stability of Mobile Manipulator Considering Tip-Over Angle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796983

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013519509

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137032642

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14124787

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1120120033469

Country of ref document: DE

Ref document number: 112012003346

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: DE

Effective date: 20131210

122 Ep: pct application non-entry in european phase

Ref document number: 12796983

Country of ref document: EP

Kind code of ref document: A1