JP6023053B2 - 作業機械 - Google Patents

作業機械 Download PDF

Info

Publication number
JP6023053B2
JP6023053B2 JP2013519509A JP2013519509A JP6023053B2 JP 6023053 B2 JP6023053 B2 JP 6023053B2 JP 2013519509 A JP2013519509 A JP 2013519509A JP 2013519509 A JP2013519509 A JP 2013519509A JP 6023053 B2 JP6023053 B2 JP 6023053B2
Authority
JP
Japan
Prior art keywords
speed
work machine
actuator
work
zmp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013519509A
Other languages
English (en)
Other versions
JPWO2012169531A1 (ja
Inventor
麻里子 水落
麻里子 水落
啓範 石井
啓範 石井
山口 仁一
仁一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Publication of JPWO2012169531A1 publication Critical patent/JPWO2012169531A1/ja
Application granted granted Critical
Publication of JP6023053B2 publication Critical patent/JP6023053B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P1/00Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading
    • B60P1/04Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading with a tipping movement of load-transporting element
    • B60P1/045Levelling or stabilising systems for tippers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/08Wrecking of buildings
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/047Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators the criterion being a time optimal performance criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/412Excavators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Evolutionary Computation (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Architecture (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Mechanical Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Operation Control Of Excavators (AREA)
  • Control Of Position Or Direction (AREA)

Description

本発明は、構造物解体工事、廃棄物処理、スクラップ処理、道路工事、建設工事、土木工事等に使用される作業機械に関する。
構造物解体工事、廃棄物処理、スクラップ処理、道路工事、建設工事、土木工事等に使用される作業機械として、動力系により走行する走行体の上部に旋回体を旋回自在に取り付けると共に、旋回体に多関節型の作業フロントを上下方向に揺動自在に取り付け、作業フロントを構成する各フロント部材をアクチュエータにて駆動するものが知られている。このような作業機械の一例として、油圧ショベルをベースとし、一端が旋回体に揺動自在に連結されたブームと、一端がブームの先端に揺動自在に連結されたアームと、アームの先端に装着されたグラップル、バケット、ブレーカ、クラッシャ等の作業具を備え、所望の作業を行えるようにした解体作業機械がある。
この種の作業機械は、作業フロントを構成するブーム、アーム及び作業具を旋回体の外方に突き出した状態で種々姿勢を変えながら作業を行うため、過度の作業負荷をかける、或いは、過負荷かつフロントを伸ばした状態で旧動作を行う等の無理な操作を行った場合に作業機械がバランスを崩すことがある。したがって、この種の作業機械については、従来種々の転倒防止技術が提案されている。
例えば、特許文献1には、作業機械のブーム及びアームにそれぞれ角度センサを設け、これら各角度センサの検出信号を制御装置に入力し、制御装置が、上記検出信号に基づいて作業機械全体の重心位置と、走行体の接地面における安定支点の支持力を演算し、その演算結果に基づく安定支点における支持力値を表示装置に表示すると共に、後方安定支点における支持力が安全作業確保上の限界値以下になったときには警報を発するようにした技術が開示されている。
また、特許文献2には、本体の姿勢、動作及び作業負荷を検出するセンサを備え、これら各センサの検出値に基づき、かつデータベースを参照しながら、建設機械本体の姿勢に関する現在及び未来の力学的挙動を表すモデルを構築し、本体が転倒するか否かを判別して、転倒が予知された場合は実行中の作業動作を停止させ、さらには転倒を回避するための動作を開始することにより転倒を防止し、転倒を予知した場合は操作者にもその旨を知らせる技術が開示されている。
さらに、特許文献3には、作業フロントのブーム角、アーム角、バケット角及び旋回体の旋回角を検出する角度センサと、車体の前後方向の傾きを検出する傾斜角センサとを備え、これら各角度センサ及び傾斜角センサの検出値と車体の所定部分の寸法とから作業機械の静的転倒モーメントを演算し、また、旋回体の旋回の遠心力により生じる動的転倒モーメントを旋回角速度を用いて演算し、さらには、旋回体の急停止時に生じる動的転倒モーメントを旋回の最大角加速度を用いて演算して、これらの一方又は大きい方を静的転倒モーメントに加算したものを転倒の判定条件とし、前記判定条件の成立により旋回角速度を制御する技術が開示されている。
特許第2871105号公報 特開平5−319785号公報 特開平7−180192号公報
ところで、上述の解体作業機械のような作業機械は、大質量の走行体、旋回体及び作業フロントを駆動することにより作業を行うので、何らかの理由により操作者が動作中の走行体、旋回体又は作業フロントの駆動を停止させる操作を行った場合、作業機械に大きな慣性力が作用し、安定性に大きな影響を与える。特に、搭載された警報装置から転倒の可能性を通知する警報が発せられた場合に、慌てて操作者が動作中の走行体、旋回体又は作業フロントの駆動を停止させる操作を行うと、転倒方向に大きな慣性力が重畳されて、却って転倒の可能性が高まる虞がある。
しかしながら、特許文献1に開示の技術は、静的なバランスのみを評価する構成であり、慣性力が働く環境下では安定性を正確に評価できないという問題点がある。また、特許文献2に開示の技術は、急停止による影響が考慮されておらず、急停止による転倒を防止することができない。加えて、特許文献2に開示の技術は、データベースを参照しながら建設機械本体の姿勢に関する現在及び未来の力学的挙動を表すモデルを構築し、本体が転倒するか否かを判別する構成であるため、計算処理が複雑であり、実用上リアルタイムでの処理が難しいという問題もある。さらに、特許文献3に開示の技術は、旋回体の急停止時については対応がなされているが、旋回体以外の動作による慣性力の影響や、フロント動作の急停止による影響が考慮されておらず、対応可能な動作が旋回動作のみに限られるという問題がある。また、旋回の最大角加速度から算出したモーメントと旋回角速度から算出したモーメントのうち大きい方を選択する構成であるため、条件によっては転倒可能性が過度に見積もられ、過度の動作制限により作業効率が劣化する可能性がある。
本発明は、このような従来技術の問題を解決するためになされたものであり、その目的は、走行体、旋回体及び作業フロントの急停止による影響を考慮した動的なバランスを容易に評価することができて、安定性の高い作業機械を提供することにある。
本発明は、上記課題を解決するため、走行体と、該走行体上に取り付けた作業機械本体と、該作業機械本体に対し上下方向に揺動自在に取り付けた作業フロントと、これら各部の駆動を制御する制御装置とを備えた作業機械において、前記制御装置は、前記走行体、前記作業機械本体及び前記作業フロントにおける各可動部の駆動を操作する操作レバーが操作状態から停止指令位置まで戻る前記操作レバーの操作速度の変化に応じて前記可動部が停止するまでの安定性変化の予測、及び前記可動部が停止するまでの作業機械が安定であるために必要とされる動作制限の算出とを行う安定化制御演算手段と、前記安定化制御演算手段の演算結果をもとに前記可動部を駆動するアクチュエータへの指令情報を補正する指令値生成手段を備え、前記操作レバーが瞬時に操作状態から停止位置から停止位置まで戻された場合にも機械の安定性を向上することを特徴とする。
かかる構成によると、操作レバーが操作状態から瞬時に中立位置まで戻された場合において、作業機械の各可動部が完全に停止するまでの安定性変化の予測、及び作業機械の各可動部が完全に停止するまでのいずれの時刻においても作業機械が安定であるために必要とされる動作制限の算出を安定化制御演算手段にて行い、その演算結果を基に指令値生成手段にてアクチュエータへの指令情報を補正するので、慣性力が働く環境下における作業機械の安定性を正確に評価することができて、作業機械の静的及び動的なバランスを安定に保つことができる。また、操作レバーが操作状態から瞬時に中立位置まで戻された場合、即ち、作業機械の各可動部が急停止された場合の影響を考慮してアクチュエータの駆動を制御するので、旋回体のみならず走行体やフロント部材の急停止に起因する作業機械の転倒についても防止することができる。さらに、この場合において、安定性変化の予測及び動作制限の算出を簡易な演算によって行うことができて、作業機械の安定化処理をリアルタイムで行うことができる。
また本発明は、前記構成の作業機械において、前記安定化制御演算手段は、前記動作制限として、前記可動部の減速度を制限して前記可動部を緩やかに停止させる緩停止指令値、及び前記アクチュエータの動作速度を制限する動作速度上限値の少なくともいずれか一方を算出することを特徴とする。
一般に、作業機械の各可動部は、操作レバーの操作内容に応じて各可動部を駆動するので、操作レバーが操作状態から瞬時に中立位置まで戻されると、当該操作レバーの操作に応じて駆動される可動部は急停止し、その際の減速度に応じた慣性力が発生する。したがって、操作レバーが操作状態から瞬時に中立位置まで戻された場合に、可動部の減速度を制限するか、前もってアクチュエータの動作速度を制限すれば、可動部に作用する慣性力を緩和できて、作業機械を安定に保持することができる。
また本発明は、前記構成の作業機械において、前記安定化制御演算手段は、前記走行体、前記作業機械本体及び前記作業フロントにおける各可動部の位置情報、加速度情報及び外力情報から算出されるZMP座標、並びに作業機械の各可動部の位置情報及び速度情報から算出される力学的エネルギの少なくとも一方を用いて前記動作制限を算出することを特徴とする。
ZMP(Zero Moment Point)座標は、構造体の地表面との接地部全体に分布してかかっている床反力の法線成分を、ある一点にかかっているとして置き換えたときの作用点の座標である。また、ZMP安定判別規範は、ダランベールの原理に基づいて、ZMP座標を構造体の安定性を判定するための評価指標として用いたものであり、構造体の接地している部分を凹にならないように囲む(凸包)ことによって描かれる支持多角形の内側にZMP座標が存在する場合には、構造体は地表面に安定に接地していると判定し、支持多角形の辺上にZMP座標が存在する場合には、構造体の接地部の一部が地表面から浮上する境界にあると判定するものである。このZMP安定判別規範によれば、構造体の安定度を定量的に評価できると共に、転倒可能性の有無を的確に判定することができる。一方、力学的エネルギは、構造体の一部が浮上しているとき、構造体を支持多角形上に支点を持つ倒立振子とみなし、構造体の重心がその回転中心(ZMP)の鉛直線上に達すると重力の作用により自ら転倒することを利用したもので、構造体の位置エネルギと運動エネルギの和が最高位点における位置エネルギを超えているか否かを算出することによって、接地部の一部が地表面から浮上している構造体が転倒に至るか否かを判定することができる。よって、これらの方法を用いることにより、作業機械の安定度及び転倒可能性を的確に判定することができる。
また本発明は、前記構成の作業機械において、前記安定化制御演算手段は、前記可動部の減速度の制限を予め記憶しており、該減速度の制限を満たすように、前記アクチュエータへの指令情報を補正することを特徴とする。
かかる構成によると、安定化制御演算手段は可動部の減速度の制限を予め記憶しているので、これに基づくアクチュエータへの指令情報の補正を容易に行うことができ、作業機械の安定化処理をリアルタイムで行うことができる。
また本発明は、前記構成の作業機械において、前記制御装置は、前記操作レバーが操作状態から瞬時に停止指令位置まで戻された場合における作業機械の挙動予測を行う挙動予測手段を備え、前記挙動予測手段は、速度が変化し始める時刻及びその時の速度によって表される速度変化開始点と操作レバー開放時からの速度変化量が最大となる時刻及びその時の速度によって表されるピーク到達点を極値とする3次関数をモデルとして用い、前記走行体、前記作業機械本体及び前記作業フロントの動作ごとに予め同定した、速度変化開始点とピーク到達点の速度の比によって算出されるオーバーシュート率、操作レバー開放から速度変化開始点までの時間、及び速度変化開始点からピーク到達点までの時間を用いることを特徴とする。
操作レバーが操作状態から瞬時に停止指令位置まで戻された場合において、当該操作レバーによって操作される可動部の急停止時挙動予測を行うためには、可動部が完全に停止に至るまでの位置、速度、加速度軌跡を算出する必要がある。この場合において、急停止時の速度軌跡を簡易な3次関数モデルでモデル化すると、急停止時の位置、速度、加速度軌跡の算出が容易になり、リアルタイムで急停止時挙動予測を行うことが可能になる。
本発明によれば、作業機械の操作レバーが操作状態から瞬時に停止指令位置まで戻された場合、作業機械に備えられた制御装置にて、操作された作業機械の可動部が完全に停止するまでの安定性変化の予測と、当該可動部が完全に停止するまでのいずれの時刻においても作業機械が安定であるために必要とされる動作制限の算出とを行い、かつその演算結果をもとに可動部を駆動するアクチュエータへの指令情報を補正するので、慣性力が働く環境下における作業機械の安定性を正確に評価できると共に、旋回体、走行体又はフロント部材の急停止に起因する作業機械の転倒を防止することができる。また、安定性変化の予測及び動作制限の算出を簡易な演算によって行うことができ、作業機械の安定化処理をリアルタイムで行うことができる。
本発明が適用される作業機械の側面図である。 実施形態に係る安定化制御演算に用いられる作業機械モデルを示す図である。 本発明が適用される作業機械のセンサ構成を示す側面図である。 実施形態に係る制御装置の機能ブロック図である。 実施形態に係る緩停止方法の例を示すグラフ図である。 実施形態に係る急停止時挙動予測手段に用いられる急停止モデルの一例を示すグラフ図である。 実施形態に係る安定性判定手段による安定性評価方法の手順を示すフローチャートである。 実施形態に係るZMP演算・評価手段において行われる安定性評価方法の説明図である。 実施形態に係る動作制限決定手段において行われる繰り返し演算方法の手順を示すフローチャートである。
以下、本発明に係る作業機械の実施形態を、図を参照しながら各項目ごとに説明する。
<対象装置>
図1に示すように、本実施形態に係る作業機械1は、走行体2と、走行体2の上部に旋回可能に取り付けられた旋回体3と、一端が旋回体3に連結された多関節型のリンク機構よりなる作業フロント6とを備えている。旋回体3は旋回モータ7によって中心軸3cを中心に旋回駆動される。旋回体3上には運転室4及びカウンタウエイト8が設置されている。また、この旋回体3上の所要の部分には、動力系を構成するエンジン5と、作業機械1の起動停止及び動作全般を制御する運転制御装置が備えられている。なお、図中の符号30は地表面を示している。
作業フロント6は、一端が旋回体3に連結されたブーム10と、一端がブーム10の他端に連結されたアーム12と、一端がアーム12の他端に連結されたバケット23とを有しており、これらの各部材は、それぞれ上下方向に旋回するように構成されている。ブームシリンダ11は、ブーム10を支点40の回りに回動する駆動アクチュエータであり、旋回体3とブーム10とに連結されている。アームシリンダ13は、アーム12を支点41の回りに回動する駆動アクチュエータであり、ブーム10とアーム12とに連結されている。作業具シリンダ15はバケット23を支点42の回りに回動する駆動アクチュエータであり、リンク16を介してバケット23と連結され、リンク17を介してアーム12に連結されている。バケット23は、グラップル、カッタ、ブレーカ等の、図示しない他の作業具に任意に交換可能である。
運転室4内には、オペレータが各駆動アクチュエータに対する動きの指示を入力するための操作レバー50と、オペレータが各種設定を行うためのユーザ設定入力手段55が設けてある。
<座標系の設定>
図2に、ZMP算出用の作業機械モデル(側面)と、当該モデルのワールド座標系(O−X’Y’Z’)及び機械基準座標系(O−XYZ)を示す。ワールド座標系(O−X’Y’Z’)及び機械基準座標系(O−XYZ)はいずれも直交座標系であり、ワールド座標系(O−X’Y’Z’)は図2に示すように重力方向を基準とし、重力と逆方向をZ軸としたものである。一方、機械基準座標系(O−XYZ)は走行体2を基準としたものであり、図2に示すように、原点を上部旋回体3の旋回中心線3c上で、地表面30と接する点Oを原点とし、走行体2の前後方向にX軸、左右方向にY軸、旋回中心線3c方向にZ軸を設定する。ワールド座標系と機械基準座標系との関係は、上部旋回体3に取り付けられた姿勢センサ3bを用いて検出する。この姿勢センサ3bについては、以下の<状態量検出手段>の欄でより詳細に説明する。
<モデル>
また、本実施形態では、実装の簡易性を考慮し、安定化制御演算において作業機械1を各構成部材の重心に質量が集中している集中質点モデルとして扱う。即ち、図2に示すように、走行体2、上部旋回体3、ブーム10、アーム12、バケット23のそれぞれの質点2P、3P、10P、12P、23Pを各構成部材の重心位置に設定し、それぞれの質点の質量をm2、m3、m10、m12、m23とする。そして、それぞれの質点の位置ベクトルをr2、r3、r10、r12、r23、速度ベクトルをr´2、r´3、r´10、r´12、r´23、加速度ベクトルをr´´2、r´´3、r´´10、r´´12、r´´23とする。なお、質点の設定方法はこれに限定されるものではなく、例えば、質量が集中している部位(図1に示すエンジン5、カウンタウエイト8など)を追加しても良い。
<状態量検出手段>
作業機械1の各部に取り付けられた状態量検出手段(センサ)につき、図3を参照しながら説明する。
<姿勢センサ>
上部旋回体3には、後述する重力と逆方向をZ軸としたワールド座標系に対する機械基準座標系の傾きを検出するための姿勢センサ3bが設けられる。姿勢センサ3bは、例えば傾斜角センサであり、上部旋回体3の傾斜角を検出することで、ワールド座標系に対する機械基準座標系の傾きを検出する。
<角度センサ>
上部旋回体3の旋回中心線3c上には、走行体2と上部旋回体3の旋回角度を検出するための旋回角度センサ3sが設けられる。また、上部旋回体3とブーム10の支点40には、ブーム10の回動角度を計測するためのブーム角度センサ(角度センサ)40aが設けられ、ブーム10とアーム12の支点41には、アーム12の回動角度を計測するためのアーム角度センサ(角度センサ)41aが設けられ、アーム12とバケット23の支点42には、バケット23の回動角度を計測するためのバケット角度センサ42aが設けられる。
<ピン力センサ>
アーム12とバケット23を繋ぐピン43、リンク16とバケット23を繋ぐピン44には、それぞれピン力センサ43a,44aが設けられる。ピン力センサ43a,44aは、例えば円筒状の内部にひずみゲージが挿入され、このひずみゲージに発生するひずみを計測することによって、ピン43,44にかかる力(外力)の大きさと方向を検出する。作業中はバケット23を用いて掘削等の作業を行うことにより、バケット部の質量が変化する。バケット23は、ピン43,44を介して作業フロント6と繋がっていることから、ピン43とピン44に加わる外力ベクトルF43とF44を算出することにより、バケット23の質量変化を算出することができる。なお、ピン43とピン44の位置ベクトルをs43,s44とする。
<レバー操作量センサ>
操作レバー50には、旋回モータ7への入力指令量を検出する旋回レバー操作量センサ51sと、ブームシリンダ11への入力指令量を検出するブームレバー操作量センサ51bと、アームシリンダへの入力指令量を検出するアームレバー操作量センサ51aと、作業具シリンダ15への入力指令量を検出するバケットレバー操作量センサ51oが設けられる。
<制御装置>
図4は、作業機械1が備える制御装置の機能ブロック図である。制御装置60は、作業機械1の各部に取付けられた各センサからの信号が入力される入力部60x、入力部60xに入力される信号を受けて、所定の演算を行う演算部60z、演算部60zからの出力信号を受けて、作業機械1の各駆動アクチュエータへの動作指令を出力する出力部60yを備える。
演算部60zは、図示しないCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及びフラッシュメモリ等からなる記憶部、及びこれらを備えるマイクロコンピュータ並びに図示しない周辺回路などから構成され、例えばROMに格納されるプログラムにしたがって作動する。
<安定性評価指標>
まず、演算部60zの詳細を説明する前に、実施形態における安定判別方式について説明する。本実施形態においては、作業機械1の安定性を判定するために、ZMP(Zero Moment Point)と、力学的エネルギとの2つの評価指標を用いる。以下では、各評価指標について説明する。
<ZMP>
ZMP安定判別規範は、ダランベールの原理に基づいたものである。なお、ZMPの概念ならびにZMP安定判別規範については、「LEGGED LOCOMOTION ROBOTS:Miomir Vukobratovic著(「歩行ロボットと人工の足:加藤一郎訳、日刊工業新聞社」)」に記載されている。
図1に示す作業機械1から地表面30には重力、慣性力、外力及びこれらのモーメントが作用するが、ダランベールの原理によれば、これらは地表面30から作業機械1への反作用としての床反力及び床反力モーメントと釣り合う。したがって、作業機械1が地表面30に安定に接地している場合には、作業機械1と地表面30との接地点を凹にならないように結んだ支持多角形の辺上あるいはその内側に、ピッチ軸及びロール軸方向のモーメントがゼロになる点(ZMP)が存在する。逆に言えば、ZMPが支持多角形内に存在し、作業機械1から地表面30に作用する力が地表面30を押す向き、つまり床半力が正である場合には、作業機械1は安定に接地しているといえる。つまり、ZMPが支持多角形の中心に近いほど安定性は高く、支持多角形の内側にあれば作業機械1は転倒することなく作業を行うことができる、一方、ZMPが支持多角形上に存在する場合には、作業機械1は転倒を開始する可能性がある。したがって、ZMPと作業機械1と地表面30が形成する支持多角形とを比較することによって安定性を判定することができる。
<ZMP方程式>
ZMP方程式は、重力、慣性力、外力によって発生するモーメントの釣り合いから、以下の式(1)で導出される。
ここで、
zmp:ZMP位置ベクトル
:i番目の質点の質量
:i番目の質点の位置ベクトル
r”:i番目の質点に加わる加速度ベクトル(重力加速度含む)
:j番目の外力モーメント
:k番目の外力作用点位置ベクトル
:k番目の外力ベクトル
なお、ベクトルはX成分、Y成分、Z成分で構成される3次元ベクトルである。
式(1)の左辺の第1項は、各質点mにおいて印加された加速度成分(重力加速度を含む)により生成されるZMP70(図2参照)回り(半径r−rzmp)のモーメントの総和を示す。式(1)の左辺の第2項は、作業機械1に作用する外力モーメントMの総和を示す。式(1)の左辺の第3項は、外力F(k番目の外力ベクトルFの作用点をsとする)により生成されるZMP70回り(半径s−rzmp)のモーメントの総和を示す。そして、式(1)は、各質点mにおいて印加された加速度成分(重力加速度を含む)により生成されるZMP70回り(半径r−rzmp)のモーメントの総和と、外力モーメントMの総和と、外力F(k番目の外力Fの作用点をsとする)により生成されるZMP70回り(半径s−rzmp)のモーメントの総和が釣り合うということを記述している。式(1)に示すZMP方程式より、地表面30におけるZMP70を算出することが可能となる。
ここで、対象物が停止しており、重力のみが働く場合のZMP方程式は、重力加速度ベクトルgを用いて式(2)のように表され、静的重心の地表面への投影点と一致する。
したがって、ZMPは動的状態及び静的状態を考慮した重心の投影点として扱うことが可能であり、ZMPを指標として用いることによって対象物が静止している場合と、動作を行っている場合との両方を統一的に扱うことができる。
<力学的エネルギ>
本実施形態においては、作業機械1の安定性を判定するための安定性評価指標として、ZMPに加え、力学的エネルギを用いている。前述のZMPは安定度の定量的評価や転倒可能性の有無の判定に有用である。しかし、ZMPが支持多角形の辺上にある場合には走行体2の一部が浮上するが、これはあくまで転倒に至るための必要条件であって,ZMPが支持多角形の辺上に存在するからといって必ずしも転倒するわけではない。つまり,ZMPでは走行体2の浮上の有無を判定することはできるが,実際に転倒に至るか否かを判定することはできない。そこで、走行体2の一部が浮上後、転倒に至るか否かを力学的エネルギを用いて判定する。走行体2の一部が浮上しているとき、作業機械1は支持多角形上に支点を持つ倒立振子とみなすことができる。作業機械1の重心が回転中心(ZMP)の鉛直線状に達すると重力の作用により自ら転倒する。したがって,重心が最高位点に達するか否かを判定することによって、将来、転倒に至るか否かを判定することができる。最高位点に達するのは,機械の位置エネルギ(PE)と運動エネルギ(KE)の和が最高位点における位置エネルギ(PEMAX)を超えている場合である。したがって,転倒判定は以下の式(3)を用いて行う。なお、この評価は走行体の一部が浮上している場合においてのみ有効である。
ここで、
θ:倒立振子(作業機械1の重心)の地表面からの傾き
ω:倒立振子の角速度
M:作業機械1の質量
I:回転支点回りの慣性モーメント
l:回転半径
<緩停止>
本実施形態では、安定化のための動作制限として、動作速度制限と緩停止を行う。ここでは、緩停止について説明する。
緩停止とは、停止時における可動部の減速度を制限し、可動部を緩やかに停止させることを意味する。緩停止を行うことによって急停止時の加速度を抑えることができるため、慣性力の影響が小さくなり、不安定化を抑制できる。一方で、緩停止を行うことによって制動距離が増大するため、許容制動距離を予め定め、許容制動距離内で停止できるように緩停止を行う必要がある。
緩停止の方法は種々考えられるが、ここではレバー操作量(又はレバー操作速度)を図5(a)のように単調減少させる場合を例にとり説明する。図5(a)の場合には、レバー操作量変化の傾きがkに制限される。つまり、補正後のレバー操作量は以下となる。
ここで、O(t)は時刻tにおけるレバー操作量指令値、O(t)は時刻tにおけるレバー操作量補正値である。
この他の緩停止の方法としては、図5(b)に示すように、レバー操作量変化の傾きの制限値をレバー操作量又はレバー操作速度に応じて切り替える方法が考えられる。この場合には、傾きを切り替える点及び傾きを適切に設定することによって制動距離を比較的短く保ったまま急停止時の加速度を小さく抑えることができる。
以下、図4を参照して、演算部60zの構成について説明する。
<演算部>
演算部60zは、作業機械1に備えられた各センサ及びユーザ設定入力手段55から取り込まれる信号に応じて、安定化のために必要な動作制限を算出する安定化制御演算手段60aと、安定化制御演算手段60aからの出力をもとに各駆動アクチュエータへの指令値を補正する指令値生成手段60iとから構成される。
<安定化制御演算手段>
安定化制御演算手段60aでは、急停止を行っても転倒に至らないための動作制限を算出する。ここで急停止とは、操作レバーを操作状態から瞬時に停止指令位置まで戻す操作を意味する。突発的な障害物や警告等への対応、操作ミス等により上記のような操作が行われる場合があるが、このような場合には急激に速度が減少し、その際に発生する慣性力の影響により、作業機械1の安定状態が劣化しやすくなる。安定状態が劣化した場合の対処方法としては、不安定になった状態から何らかの回避動作を行う方法が考えられる。しかしながら、オペレータの意図と異なる動作を行うことにより、操作の違和感を与えるとともに、周囲の作業者や物に危害を与えるリスクがある。そこで、本発明の安定化制御では、予め許容される制動距離を定め、必要に応じて緩停止を行い、また、いかなる場合においても所定の許容制動距離内で安全に停止できるように未然に動作速度を制限する。つまり、本発明の安定化制御は急停止時の挙動予測及び安定性評価に基づき、緩停止と動作速度制限による動作制限を行うことによって不安定化を未然に防ぐものである。なお、安定化制御演算手段60aにおいては、機械基準座標系に基づいて演算を行う。
安定化のための動作制限を算出する方法は、安定条件から逆演算を行う方法と、動作制限を変えながら挙動予測及び安定性評価を複数回繰り返す順演算による方法とがある。前者では、一度の演算で最適な動作制限を算出できるが、複雑な演算式を導出する必要がある。一方、後者は、複数回の試行が必要であるが、比較的簡易な演算式を用いることができる。以下では後者の手法を例にとって説明する。
図4に示すように、安定化制御演算手段60aは、速度推定手段60b、急停止時挙動予測手段60c、安定性判定手段60d及び動作制限決定手段60hの各機能ブロックを備える。以下、各機能ブロックの詳細について説明する。
<速度推定>
一般に、油圧ショベルに備えられた油圧シリンダの動作速度は、操作レバーの操作量に比例する。また、レバー操作と動作速度との間には油圧及び機構による遅れが存在するため、レバー操作量情報を用いることによって近未来の状態を予測することができる。速度推定手段60bでは、過去のレバー操作量、現在のレバー操作量及び現在の動作速度を用いて近未来の動作速度を予測する。推定は、以下の2ステップで行う。まず、過去のレバー操作量と現在の動作速度より速度算出モデルを同定する。次に、同定された速度算出モデルに現在のレバー操作量を入力として与えることにより、近未来の動作速度を予測する。速度算出モデルはエンジン回転数、負荷の大きさ、姿勢、油温等によって時々刻々と変化することが予想されるが、微小な時刻間では作業状況の変化が小さいので、モデルの変化も小さいものと考えてよい。速度推定手段60bのより簡易な実現手段として、レバー操作からシリンダが動き始めるまでのむだ時間Tと、下で定義する比例係数αを用いる方法がある。ここで、むだ時間Tは変化しないものと仮定し、実験により予め求めておく。T秒後の速度は、以下の手順で算出する。
ステップ1:T秒前のレバー操作量O(t−T)と現在の速度v(t)より下記の式(5)を用いて比例係数αを算出する。
ステップ2:算出した比例係数αと現在のレバー操作量O(t)より下記の式(6)を用いて、T秒後の速度の推定値v(t+T)を算出する。
<急停止時挙動予測>
急停止時挙動予測手段60cでは、急停止指令が行われた場合の作業機械1の挙動を予測する。現在の姿勢情報と速度推定手段60bの速度推定結果と急停止モデルとから、操作レバーが開放されてから完全に停止に至るまでの位置、速度、加速度軌跡を算出する。急停止モデルとしては、例えば、急停止時の速度軌跡をモデル化し、その速度軌跡から位置軌跡及び加速度軌跡を算出する方法が考えられる。予め急停止時の速度軌跡をモデル化し、時刻tにおいて急停止動作が開始(操作レバー開放)されたときの操作レバー開放時刻からt秒後のシリンダ速度をvstop(t,t)としたとき、t秒後のシリンダ長lstop(t,t)とシリンダ加速度astop(t,t)は、急停止開始時のシリンダ長lstop(t,0)を用いて以下の式(7)で算出する。
リアルタイムで急停止時挙動予測を行うためには、急停止時の速度軌跡を簡易なモデルでモデル化すると良い。急停止時の速度軌跡の簡易モデルとしては一般に1次遅れ系や多次遅れ系や多項式関数が考えられる。なお、緩停止を行う場合には、急停止動作に加え、選択できる緩停止に対してもそれぞれ同様のモデル化を行う。
<3次関数モデルによるモデル化>
以下では、3次関数モデルを用いた場合を例にとり、モデル化及び急停止時挙動予測方法について説明する。本実施形態で用いる3次関数モデルを図6に示す。3次関数モデルは、速度変化開始点とピーク到達点を極値とする3次関数であり、操作レバー開放時刻をt、速度変化開始時刻をt、ピーク到達時刻をt、速度変化開始時の速度をv、ピーク速度をvとする。急停止開始前のレバー操作量が一定であると仮定すると速度変化開始時の速度vは、操作レバー開放時の速度であることからv=vとして扱う。モデル化においては、速度変化開始速度に対する速度最大変化量をオーバーシュート率α、操作レバー開放時刻から速度変化開始時刻までの時間をむだ時間T、速度変化開始時刻からピーク到達時刻までの時間を停止完了時間Tと定義し、ブーム10、アーム12及び旋回体3の動作ごとに上記の3つのパラメータを同定する。
なお、緩停止を行う場合には、急停止時に加え選択できるそれぞれの設定の緩停止に対してもそれぞれ同様のモデル化を行い、設定ごとかつ動作ごとに上記の3つのパラメータを設定する。速度軌跡vstop(t,t)は、オーバーシュート率、むだ時間、停止完了時間及び操作レバー開放時の速度を用いて以下の式(9)ように表される。操作レバー開放時の速度には速度推定手段の推定結果を用いる。
このとき、シリンダ長軌跡及び加速度軌跡は以下の式(10)で算出できる。
ここで、
:操作レバー開放時のシリンダ長である。
<安定性判定手段>
安定性判定手段60dでは、上述した2つの安定性評価指標に基づき、急停止挙動予測手段60cにおいて予測された急停止時軌跡より、ZMPや力学的エネルギを必要に応じて算出し、いずれの点においても不安定化が生じないか否かを判定する。本実施形態では、上述のZMPと力学的エネルギとを用いた安定性評価を行う。
以下、安定性評価のフローを、図7を用いて説明する。上述の通り、ZMPは作業機械1が安定に接地している場合の安定性評価に有効であるが、走行体2が浮き始めた後の評価はできない。一方、力学的エネルギによる転倒判定は走行体2の一部が浮上した状態においてのみ有効であり、機械が安定に接地している場合の安定性評価はできない。そこで、常にZMPを監視し、ZMPが支持多角形内に設定された通常領域J内か否かを判定し、ZMPが通常領域J内にある場合にはZMPによる安定性評価を、ZMPが通常領域Jの外側にある場合には、力学的エネルギによる評価を行う。力学的エネルギが式(3)を満たすときには「不安定」、満たさないときは「安定」と判定する。
<リンク演算>
リンク演算手段60eでは、急停止時挙動予測手段60cの予測結果を用いて、各リンクにつき、順次運動学演算を行う。そして図2に示す各質点2P,3P,10P,12P,23Pの位置ベクトル軌跡r,r,r10,r12 ,r 23 と速度ベクトル軌跡r' ,r' ,r' 10,r' 12,r' 23と加速度ベクトル軌跡r'' ,r'' ,r'' 10,r'' 12,r'' 23とを機械基準座標系(O−XYZ)を基準とした値に変換する。ここで、運動学計算の方法は周知の方法を用いることができるが、例えば「ロボット制御基礎論:吉川恒夫著、コロナ社(1988)」に記載されている方法を用いることができる。
<ZMP演算・評価手段>
ZMP演算・評価手段60fは、リンク演算手段60eによって機械基準座標系に変換された各質点の位置ベクトル軌跡及び加速度ベクトル軌跡を用いてZMP70の軌跡を算出し(ステップS71)、安定性評価を行う(ステップS72)。本実施形態では、機械基準座標系の原点Oを走行体2と地表面30の接する点に設定しているため、ZMPのZ座標が地表面30上にあると仮定すると、rzmpz=0である。また、作業機械1では通常、バケット23以外の部分には外力や外力モーメントはほとんど作用しないため、その影響を無視し、外力モーメントM=0とみなす。このような条件のもとで式(1)を解き、ZMP70のX座標rzmpxを以下の式(11)を用いて算出する。
また、これと同様に、ZMP70のY座標rzmpyを以下の式(12)を用いて算出する。
式(11)及び式(12)において、mは図2に示す各質点2P,3P,10P,12P,23Pの質量であり、各質点の質量m,m,m10,m12,m23を代入する。なお、バケット23の質量m23は作業によって変化することが予想されるため、ピン力センサ43a,44aの検出値から質量m23を算出して用いる。r''は各質点の加速度であり、各質点の加速度r'' ,r'' ,r'' 10,r'' 12,r'' 23を代入する。以上のように、急停止時挙動予測手段の予測結果を用いることによって、ZMP演算・評価手段60fは、ZMP70の軌跡を算出することができる。
次に、ZMP演算・評価手段60fがZMP70の軌跡に基づいて行う領域判定による安定性算出と転倒可能性の判定について、図8を用いて説明する。
前記のように、ZMP70が、作業機械1と地表面30とで形成する支持多角形Lの十分内側の領域に存在する場合には、図1に示す作業機械1は転倒する可能性はほとんどなく、安全に作業を行うことが可能である。第1の実施形態におけるZMP演算・評価手段60fは、作業機械1と地表面30との接地点で形成される支持多角形Lを算出し、転倒の可能性が十分低い通常領域Jと、転倒の可能性がより高い転倒警告領域Nを設定し、ZMP70がいずれの領域にあるかによって安定性を判定する。走行体2が地表面30に正立している場合、支持多角形Lは、走行体2の平面形状と略等しくなる。したがって、走行体2の平面形状が矩形の場合、支持多角形Lは図8に示すように矩形となる。より具体的には、走行体2としてクローラを有している場合の支持多角形Lは、左右のスプロケットの中心点を結んだ線を前方境界線、左右のアイドラの中心点を結んだ線を後方境界線、左右それぞれのトラックリンク外側端を左右の境界線とした四角形である。なお、前方及び後方の境界は最も前方の下部ローラ及び最も後方の下部ローラの接地点としてもよい。
一方、図1に示した作業機械1は、ブレード18を有しており、ブレード18が地表面30に接地している場合には、支持多角形Lは、ブレード底部を含むように拡大する。また、バケット23を地表面に押し付けて走行体2を持ち上げるジャッキアップ動作においては、支持多角形Lは、走行体2の接地している側の2つの端点とバケット23の接地点とによって形成される多角形となる。このように、作業機械1の接地状態によって支持多角形Lの形状が不連続に変化するため、ZMP演算・評価手段60fは作業機械1の接地状況を監視し、接地状況に応じて支持多角形Lを設定する。
安定性評価においては、通常領域Jと転倒警告領域Nの境界Kを、支持多角形Lの内側に設定する。具体的には、境界Kは支持多角形Lを安全率にしたがって決定される比率に応じて、中心点側に縮小した多角形あるいは、支持多角形Lを安全率にしたがって決定される長さだけ内側に移動した多角形に設定される。ZMP70が通常領域Jにある場合には、作業機械1の安定性は十分に高いと判定する。これに対して、ZMP70が転倒警告領域Nにある場合には、作業機械が転倒の可能性ありと判定する。
上述のように、ZMPが通常領域J内に存在する場合には「安定」であると判断し、安定性判定手段60dの出力とする(ステップS75)。一方、ZMPが転倒警告領域Nに存在する場合には、走行体の一部が浮上する可能性が高いと判断し、力学的エネルギを算出して(ステップS73)、力学的エネルギによる安定性判定を行う(ステップS74)。つまり、転倒警告領域Nが大きいほど早期に力学的エネルギを計算することになる。転倒警告領域Nの大きさは、ZMP軌跡の推定誤差等を考慮して決めると良い。
<力学的エネルギ算出・評価手段60g>
ZMP演算・評価手段60fにおいて、走行体2の浮上が予知された場合には、リンク演算手段60eで算出した各質点の位置ベクトル軌跡、速度ベクトル軌跡を用いて作業機械1の重心位置軌跡を算出し、式(3)に示す運動エネルギ、位置エネルギ、回転半径を算出し、力学的エネルギに基づいた安定性判定を行う。即ち、式(3)を満たすか否かを判定することにより転倒の有無を判定できる。
第1の実施形態では、計測誤差やモデル化誤差、作業環境等の影響を考慮し、また、オペレータの熟練度や好みに合わせた制御介入を行うために安全率Sを設定する。安全率の設定方法としては、例えば、転倒判定に用いる閾値に対して安全率を設定することが考えられる。つまり、式(3)を以下の式(13)のように変更して安定性判定を行う。
式(13)を満たさない場合には、転倒の可能性は低いと判断し、安定性判定手段の判定結果を「安定」とし(ステップS76)、式(13)を満たす場合には、転倒の可能性が高いと判断し、判定結果を「不安定」として出力する(ステップS77)。
他の安全率設定方法としては、運動エネルギ演算に対して安全率を反映させる方法が考えられる。このとき、運動エネルギは以下の式(14)で算出される。
本例の場合、安定性判定はKEのかわりにKE’を用い、式(3)に基づいて行い、「安定」又は「不安定」を安定判定手段の判定結果として出力する。このように運動エネルギ演算に安全率を反映することにより安全率による速度調整が容易になる。
なお、安全率は、あらかじめ設定される所定の値であってもよいし、作業機械1を操作するオペレータの習熟度や作業内容路面や周囲の状況などによって変更される値であっても良い。この場合、予め与えられた情報や各種センサの出力値等から自動で設定する構成や、オペレータや作業管理者がユーザ設定入力装置55を用いて安全率を任意に設定する構成などが考えられる。
また、安全率は、作業機械1の作業状態に応じて作業中に変更されても良いし、前後左右について異なる値を用いる構成としても良い。安全率の設定方法として、オペレータや作業管理者が随時手動で設定を変更するほか、GPS、地図情報、作業のCAD図面などを用いる構成が考えられる。上記の情報を用いることによって転倒が発生しやすい方向や転倒時の被害の大きい方向を自動で判別し、その方向の安全率が高くなるように自動で変更をすることができる。このように、安全率を適正な値とすることによって、作業効率を低下させることなく安全な作業を行うことができる。
<動作制限決定手段>
動作制限決定手段60hでは、安定性判定手段60dの判定結果を元に更なる繰り返し演算の要否を判定し、指令値補正指令を生成する。本実施形態の安定化制御では、不安定化を回避するために緩停止と動作速度制限を行う。したがって、動作制限決定手段60hは指令値生成手段60iに対し、緩停止設定及び動作速度制限ゲインを出力する。
次に、繰り返し演算のフローを、図9を用いて説明する。第1回目の試行においては、速度推定手段60bの推定結果及び急停止モデルを用いる設定とし(ステップS91)、挙動予測(ステップS92)及び安定性判定(ステップS93)を行う。安定性判定手段60dの判定結果が「安定」であった場合には、指令値の補正は行わない。この場合には、「緩停止なし」、「動作速度制限ゲイン=1」を出力する(ステップS910)。一方、安定性判定手段60dの判定結果が「不安定」であった場合は、急停止モデルに代えて緩停止モデルを用いる設定とし(ステップS94)、挙動予測(ステップS95)及び安定性判定(ステップS96)を行う。安定性判定手段60dの判定結果が「安定」であった場合は、動作速度制限ゲインは1とし、緩停止のみを行うように指令値補正指令を行う(ステップS911)。一方、安定性判定手段60dの判定結果が「不安定」であった場合は、速度推定値に動作速度制限ゲインα(<1)を乗じたものと、緩停止モデルとを用いる設定とし(ステップS97)、挙動予測(ステップS98)及び安定性判定(ステップS99)を行う。安定性判定手段60dの判定結果が「安定」であった場合は、緩停止指令及び動作速度制限ゲインαの動作制限を行うように指令値補正指令を行う(ステップS912)。一方、安定性判定手段60dの判定結果が「不安定」であった場合は、動作速度制限ゲインαを徐々に小さくし、安定性判定手段60dの判定結果が「安定」となるまで、挙動予測(ステップS98)と安定性判定(ステップS99)を繰り返す。
なお、上記実施形態では、緩停止のパターンが一通りである場合を例にとって説明したが、緩停止の設定を複数設けても良い。この場合には、全ての緩停止設定において安定性判定結果が不安定となった場合にはじめて速度を減ずる。
また、上記実施形態では、急停止あるいは緩停止の軌跡上の停止に至るまでのすべての点について安定性評価を行い,いずれの点においても「安定」となるまで逐次的に速度を減じて安定性評価を繰り返す順演算によって安定限界速度を算出する方法を示したが、実用上はコントローラの演算処理能力を考慮し,停止軌跡上の演算点の個数及び繰り返し演算の試行回数を決定する。また、演算点の間隔は必ずしも等間隔である必要はない。
<指令値生成手段>
指令値生成手段60iでは、動作制限決定手段60hより出力された指令値補正指令に基づき、レバー操作量を補正し、各駆動アクチュエータへの入力値を生成し、出力部60yに出力する。より具体的には動作速度制限ゲインαをレバー操作量に乗じたものを指令値とし、また緩停止指令がある場合には前述の式(4)に基づいてレバー操作量を補正して出力する。
<ユーザ設定入力手段>
ユーザ設定入力手段55は、複数個の入力ボタンなどから構成され、オペレータはユーザ設定入力手段55を介して作業内容や個々人の好みに応じて警告方法や安全率などの設定を行う。
<警報装置>
また、図1に示すように、運転室4に警報装置63を設置し、安定化制御介入時や安定度に応じて、オペレータに警報を発するように構成しても良い。
<表示装置>
さらに、図1に示すように、運転室4に表示装置61を設置し、現在の安定状態や、安定状態の変動や現在の設定を表示するように構成しても良い。また、表示装置61を用いて、オペレータに安定度に応じた警告を発するようにしても良い。このように、運転室4に設置された表示装置61や警報装置63を通じて、オペレータに作業機械1の安定状態を通知することにより、オペレータによる操作レバー50の操作を、作業機械1の安全を確保する上でより適切な操作へと導くことが可能になる。
以下に、本発明に係る作業機械の他の実施形態を列挙する。
(1)上記実施形態では、安定化制御演算手段60aにおいて、走行体2、上部旋回体3、ブーム10、アーム12、バケット23のそれぞれの質点2P,3P,10P,12P,23Pを用いる例を示したが、いくつかの質点を統合する、あるいは、影響の大きい質点を抽出するなどにより、演算に使用する質点の数を減らしても良い。質点数を減らすことにより、演算量を減少させることができる。
(2)上記実施形態では、作業機械1を各構成部材の重心に質量が集中している集中質点モデルとして扱う例を示したが、剛体モデル等の他のモデル化形式に基づいて実施する構成としても良い。
(3)上記実施形態では、急停止時挙動予測手段60cにおいて、速度推定手段60bの推定結果を用いる例を示したが、急停止時挙動予測手段60cで用いる速度は、角度センサの出力値から算出される現在の動作速度であっても良い。その場合は、速度推定手段60bを除いた構成をすることができる。
(4)上記実施形態では、安定性評価指標としてZMPと力学的エネルギの2つの指標を用いる例を示したが、ZMPのみを指標として用いる構成としてもよい。その場合、安定性判定手段60dは、ZMPが通常領域Jにある場合に「安定」、転倒警告領域Nにある場合に「不安定」と判定し、動作制限決定手段60hへ出力する。ZMPのみを用いる構成とした場合には、車体の浮上を防止することができ、安全性や乗り心地をより高くなる。
(5)上記実施形態では、不安定化を回避するための動作制限として緩停止と動作速度制限を行う例を示したが、緩停止を行わず、動作速度制限のみを行う構成にしても良い。その場合には、緩停止モデルを持つ必要はなく、急停止時挙動予測手段60cは常に急停止モデルを用いて行う。また、動作制限決定手段60hにおいては、第1回目の試行における安定性判定手段60dの判定結果が「不安定」であった場合は、速度推定値に動作速度制限ゲインα(<1)を乗じ、また、動作速度制限ゲインを徐々に小さくし安定性判定手段60dの判定結果が「安定」となるまで、挙動予測と安定性判定を繰り返す。動作制限決定手段60hの出力は動作速度制限ゲインαのみとなる。このように緩停止を行わない場合には、安定化制御による制動距離増大が生じない。
(6)上記実施形態では、バケットに加わる外力の検出にピン力センサ43a,44aを設ける例を示したが、その他の検出方法として、ブームシリンダに圧力センサ11a,11bを設ける方法がある。この方法では、ブームシリンダに設けた圧力センサ11a,11bの検出値からバケット外力と作業フロント自重とを含んだモーメントMを算出し、また、ブーム10、アーム12、バケット23の各角度センサの検出値と、ブーム10、アーム12、バケット23の各重心パラメータとから作業フロントの自重モーメントMocを算出する。次いで前記モーメントMとMocとの差分及びブーム回動支点40からバケット23までの距離からバケット外力を算出する。また、作業機械1が作業具として、図示しないカッタを装備し、主に切断作業のみを行う場合、切断作業はカッタの内力を利用して行うため、作業中に作業フロント6には外力がほとんど加わらない。そこで、作業中に外力によって安定性が悪化する恐れが無い。このような場合には、ピン43,44(図1参照)に作用する外力を検出するピン力センサ43a、44aを設けない構成としても良い。
(7)上記実施形態では、オペレータが作業機械1上に備わる運転席4に搭乗して、作業機械1の操作を行うことを想定して説明した。然るに、作業機械1の操作は無線等を用いた遠隔操作が行われるケースがある。遠隔操作時には、搭乗時に比べ作業機械の姿勢や路面の傾斜等を正確に把握するのが困難であり、また、熟練したオペレータでも作業機械の安定性を感覚的に把握することが困難である。したがって、遠隔操作時においては、一層優れた効果を奏する。遠隔操作型の作業機械においては、オペレータの操作場所付近に表示装置、警報装置等を設け、作業機械の情報を付加的に与えるように構成しても良い。
(8)上記実施形態では、操作レバー50として、電気レバー方式を想定して説明したが、油圧パイロット方式の場合には、レバー操作量としてパイロット圧を計測し、安定化制御演算結果を元にパイロット圧を補正することによって安定化を行うことができる。
1 作業機械
2 走行体
3 旋回体
3b 姿勢センサ(旋回体)
3c 中心線
3s 旋回角センサ
4 運転室
5 エンジン
6 作業フロント
7 旋回モータ
8 カウンタウエイト
10 ブーム
11 ブームシリンダ
12 アーム
13 アームシリンダ
15 作業具シリンダ
16 リンク(A)
17 リンク(B)
23 バケット
30 地表面
40 ブーム回動支点
40a 角度センサ(ブーム回動支点)
41 アーム回動支点
41a 角度センサ(アーム回動支点)
42 バケット回動支点
42a 角度センサ(バケット回動支点)
43 ピン(バケット−アーム)
43a 外力センサ(ピン43)
44 ピン(バケット−リンク)
44a 外力センサ(ピン44)
50 操作レバー
51s 旋回レバー操作量センサ
51b ブームレバー操作量センサ
51a アームレバー操作量センサ
51o バケットレバー操作量センサ
55 ユーザ設定入力手段
60 制御装置
60a 安定化制御演算手段
60b 速度推定手段
60c 急停止時挙動予測手段
60d 安定性判定手段
60e リンク演算手段
60f ZMP演算・評価手段
60g 力学的エネルギ演算・評価手段
60h 動作制限決定手段
60i 指令値生成手段
60x 入力部
60y 出力部
60z 演算部
61 表示装置
63 警報装置
70 ZMP

Claims (5)

  1. 走行体と、該走行体上に取り付けた作業機械本体と、該作業機械本体に対し上下方向に揺動自在に取り付けた作業フロントと、前記走行体、前記作業機械本体及び前記作業フロントにおける各可動部と、前記各可動部を駆動するアクチュエータと、前記アクチュエータの駆動を制御する制御装置とを備えた作業機械において、
    前記制御装置は、前記走行体、前記作業機械本体及び前記作業フロントにおける前記アクチュエータを操作する操作レバーの操作量に応じて前記可動部の速度を推定する速度推定手段と、
    前記速度推定手段で推定された推定速度に基づいて、前記操作レバーが操作状態から停止指令位置まで戻された場合に、前記アクチュエータが駆動状態から停止するまでの間の、前記アクチュエータ変位である位置軌跡と前記アクチュエータ速度変化である速度軌跡と前記アクチュエータ加速度変化である加速度軌跡、とを予測する挙動予測手段と、
    前記挙動予測手段で求められた前記位置軌跡と前記速度軌跡と前記加速度軌跡に応じて前記アクチュエータが停止するまでに前記作業機械が不安定になるかならないかの予測と前記アクチュエータが停止するまで作業機械安定させる動作制限の算出を行う安定化制御演算手段と、
    前記安定化制御演算手段の演算結果をもとに前記可動部を駆動するアクチュエータへの指令情報を生成する指令値生成手段を備えることを特徴とする作業機械。
  2. 請求項1に記載の作業機械において、
    前記安定化制御演算手段は、前記動作制限として、前記可動部の減速度を制限して前記可動部を緩やかに停止させる緩停止指令値、及び前記アクチュエータの動作速度を制限する動作速度上限値の少なくともいずれか一方を算出することを特徴とする作業機械。
  3. 請求項1及び請求項2のいずれか1項に記載の作業機械において、
    前記安定化制御演算手段は、前記走行体、前記作業機械本体及び前記作業フロントにおける各可動部の位置情報、加速度情報及び外力情報から算出されるZMP座標、並びに作業機械の各可動部の位置情報及び速度情報から算出される力学的エネルギの少なくとも一方を用いて前記動作制限を算出することを特徴とする作業機械。
  4. 請求項2に記載の作業機械において、
    前記安定化制御演算手段は、前記可動部の減速度の制限を予め記憶しており、該減速度の制限を満たすように、前記アクチュエータへの指令情報を補正することを特徴とする作業機械。
  5. 請求項1乃至請求項4のいずれか1項に記載の作業機械において、
    前記挙動予測手段は、前記アクチュエータの速度が変化し始める時刻及びその時の前記アクチュエータの速度によって表される速度変化開始点と前記操作レバー開放時からの前記アクチュエータの速度変化量が最大となる時刻及びその時の前記アクチュエータの速度によって表されるピーク到達点を極値とする3次関数をモデルとして用い、前記走行体、前記作業機械本体及び前記作業フロントの動作ごとに予め同定した、前記速度変化開始点と前記ピーク到達点の速度の比によって算出されるオーバーシュート率、前記操作レバー開放から前記速度変化開始点までの時間、及び前記速度変化開始点から前記ピーク到達点までの時間を用いることを特徴とする作業機械。
JP2013519509A 2011-06-10 2012-06-06 作業機械 Active JP6023053B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011130552 2011-06-10
JP2011130552 2011-06-10
PCT/JP2012/064566 WO2012169531A1 (ja) 2011-06-10 2012-06-06 作業機械

Publications (2)

Publication Number Publication Date
JPWO2012169531A1 JPWO2012169531A1 (ja) 2015-02-23
JP6023053B2 true JP6023053B2 (ja) 2016-11-09

Family

ID=47296090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013519509A Active JP6023053B2 (ja) 2011-06-10 2012-06-06 作業機械

Country Status (6)

Country Link
US (1) US9348327B2 (ja)
JP (1) JP6023053B2 (ja)
KR (1) KR101934017B1 (ja)
CN (1) CN103597147B (ja)
DE (1) DE112012003346B4 (ja)
WO (1) WO2012169531A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019186840A1 (ja) * 2018-03-28 2019-10-03 日立建機株式会社 作業機械

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5852667B2 (ja) * 2011-10-17 2016-02-03 日立建機株式会社 ダンプトラック停車位置方向指示システムおよび運搬システム
US8958957B2 (en) 2012-01-31 2015-02-17 Harnischfeger Technologies, Inc. System and method for limiting secondary tipping moment of an industrial machine
JP5401616B1 (ja) * 2013-01-18 2014-01-29 株式会社小松製作所 油圧ショベルおよび油圧ショベルの油圧シリンダのストローク計測方法
ES2537895B1 (es) 2013-11-14 2016-05-17 Empresa De Transf Agraria S A (Tragsa) Sistema y metodo para control de estabilidad en maquinaria pesada
US9593469B2 (en) * 2013-12-20 2017-03-14 Cnh Industrial America Llc System and method for controlling a work vehicle based on a monitored tip condition of the vehicle
US9598845B2 (en) * 2014-06-04 2017-03-21 Komatsu Ltd. Posture computing apparatus for work machine, work machine, and posture computation method for work machine
WO2015192034A1 (en) * 2014-06-13 2015-12-17 Cnh Industrial America Llc Tipping indicator for a work vehicle
US9475193B2 (en) * 2015-02-09 2016-10-25 Harris Corporation Unmanned ground vehicle stability control
CN105971050A (zh) * 2015-03-13 2016-09-28 住友重机械工业株式会社 挖掘机
JP6619163B2 (ja) * 2015-06-17 2019-12-11 日立建機株式会社 作業機械
US9617708B2 (en) * 2015-08-06 2017-04-11 Honeywell International, Inc. Methods and apparatus for correcting a position of an excavation vehicle using tilt compensation
JP6373812B2 (ja) * 2015-09-10 2018-08-15 日立建機株式会社 建設機械
JP6576757B2 (ja) * 2015-09-17 2019-09-18 住友重機械工業株式会社 ショベル
JP7084722B2 (ja) * 2015-12-18 2022-06-15 住友重機械工業株式会社 ショベルおよびその制御方法
JP6487872B2 (ja) * 2016-03-30 2019-03-20 日立建機株式会社 作業機械の駆動制御装置
JP6899818B2 (ja) 2016-03-31 2021-07-07 住友重機械工業株式会社 ショベル
DE102016207200A1 (de) * 2016-04-27 2017-11-02 Deere & Company Verfahren zur Ermittlung einer Masse eines Anbaugerätes für ein Nutzfahrzeug
US20160298314A1 (en) * 2016-06-21 2016-10-13 Caterpillar Inc. System and method for machine control
JP6674862B2 (ja) * 2016-08-05 2020-04-01 株式会社神戸製鋼所 転倒防止装置
US11015320B2 (en) * 2016-09-09 2021-05-25 Volvo Construction Equipment Ab Rollover prevention system and method for construction machine
EP3521520B1 (en) * 2016-09-30 2021-11-03 Sumitomo Heavy Industries, Ltd. Shovel with stability controller
JP7084129B2 (ja) * 2016-12-05 2022-06-14 住友重機械工業株式会社 ショベル
JP6612210B2 (ja) * 2016-12-26 2019-11-27 本田技研工業株式会社 作業機
US11280059B2 (en) * 2017-03-24 2022-03-22 Hitachi Construction Machinery Tierra Co., Ltd. Hydraulic drive system for construction machine
CN108663951B (zh) * 2017-03-28 2021-08-27 株式会社安川电机 致动器控制系统、机器人及冲压加工装置
JP6824830B2 (ja) * 2017-06-19 2021-02-03 株式会社神戸製鋼所 転倒防止装置及び作業機械
JP6962743B2 (ja) * 2017-08-23 2021-11-05 大成建設株式会社 作業車両用旋回制御システム
JP6860458B2 (ja) 2017-09-15 2021-04-14 日立建機株式会社 作業機械
US11293168B2 (en) 2018-02-28 2022-04-05 Deere & Company Method of limiting flow through accelerometer feedback
US10648154B2 (en) 2018-02-28 2020-05-12 Deere & Company Method of limiting flow in response to sensed pressure
US11525238B2 (en) 2018-02-28 2022-12-13 Deere & Company Stability control for hydraulic work machine
US10954650B2 (en) 2018-02-28 2021-03-23 Deere & Company Hydraulic derate stability control
US10954654B2 (en) 2018-02-28 2021-03-23 Deere & Company Hydraulic derate stability control and calibration
US10829907B2 (en) 2018-02-28 2020-11-10 Deere & Company Method of limiting flow through sensed kinetic energy
CN110520575B (zh) * 2018-03-22 2021-11-02 日立建机株式会社 作业机械
CN111032970B (zh) * 2018-04-17 2022-02-25 日立建机株式会社 作业机械
US10962360B2 (en) * 2018-06-11 2021-03-30 Deere & Company Smartphone calibration of a grade control system for a work machine
US10759431B2 (en) * 2018-06-21 2020-09-01 Deere & Company Enhanced braking method and apparatus for hybrid machine
US10767348B2 (en) * 2018-07-30 2020-09-08 Deere & Company Machine stability detection and control
JP7146530B2 (ja) 2018-08-31 2022-10-04 コベルコ建機株式会社 建設機械
CN112384663B (zh) * 2018-09-27 2023-10-13 住友重机械工业株式会社 挖土机
WO2020071314A1 (ja) 2018-10-03 2020-04-09 住友重機械工業株式会社 ショベル
US11512447B2 (en) 2018-11-06 2022-11-29 Deere & Company Systems and methods to improve work machine stability based on operating values
KR102090409B1 (ko) * 2018-12-27 2020-03-17 한양대학교 에리카산학협력단 과부하 방지를 위한 원격 제어 굴삭기의 제어 장치 및 방법
US11185003B2 (en) * 2019-04-03 2021-11-30 Caterpillar Inc. Tipping avoidance system and method
US11851844B2 (en) * 2020-01-21 2023-12-26 Caterpillar Inc. Implement travel prediction for a work machine
CN113620191A (zh) * 2020-05-09 2021-11-09 徐州重型机械有限公司 起重机作业保护方法、装置、系统和起重机
DE102020206523A1 (de) 2020-05-26 2021-12-02 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben einer mobilen Arbeitsmaschine
EP4317611A1 (en) * 2021-03-26 2024-02-07 Hitachi Construction Machinery Co., Ltd. Work machine
CN113479780B (zh) * 2021-06-30 2022-08-19 山东理工大学 上装作业中汽车起重机底盘的姿态保持自动控制方法
CN113879979A (zh) * 2021-08-05 2022-01-04 国家石油天然气管网集团有限公司 一种液压挖掘机吊管设备作业防倾翻监测装置及方法
CN115100837A (zh) * 2022-05-13 2022-09-23 北京三一智造科技有限公司 一种工程机械稳定性预警方法、系统及工程机械

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552437A (en) * 1978-10-06 1980-04-16 Komatsu Ltd Working instrument controller
US4268214A (en) * 1979-03-26 1981-05-19 Bucyrus-Erie Company Excavator front end
US4869337A (en) * 1987-10-15 1989-09-26 Clark Equipment Company Backhoe creep lever mechanism for an excavating vehicle
JP2871105B2 (ja) * 1990-12-03 1999-03-17 油谷重工株式会社 解体作業機の安全装置
JPH05319785A (ja) * 1991-09-06 1993-12-03 Yotaro Hatamura 建設機械の姿勢制御システム
JP3170329B2 (ja) * 1991-12-03 2001-05-28 日立建機株式会社 油圧作業機械の振動抑制装置
JPH07180192A (ja) * 1993-12-24 1995-07-18 Hitachi Constr Mach Co Ltd 油圧シヨベルの転倒防止装置
JPH07279202A (ja) * 1994-04-07 1995-10-24 Shin Caterpillar Mitsubishi Ltd 重量作業部付き作業機械
KR0173835B1 (ko) * 1994-06-01 1999-02-18 오까다 하지모 건설기계의 영역제한 굴삭제어장치
AU690404B2 (en) * 1994-12-27 1998-04-23 Komatsu Limited Device and method for limiting the vehicle speed of a working vehicle
WO1998026132A1 (fr) * 1996-12-12 1998-06-18 Shin Caterpillar Mitsubishi Ltd. Dispositif de commande d'engin de construction
US6061617A (en) * 1997-10-21 2000-05-09 Case Corporation Adaptable controller for work vehicle attachments
JP2003184133A (ja) * 2001-12-20 2003-07-03 Hitachi Constr Mach Co Ltd 油圧作業機の振動抑制装置
US6819993B2 (en) * 2002-12-12 2004-11-16 Caterpillar Inc System for estimating a linkage position
US8366374B2 (en) * 2008-01-07 2013-02-05 Hitachi Construction Machinery Co., Ltd. Dual arm working machine
KR101090183B1 (ko) * 2009-05-27 2011-12-06 전자부품연구원 무인 굴삭기의 전도 방지 시스템 및 방법
JP5491516B2 (ja) * 2009-10-19 2014-05-14 日立建機株式会社 作業機械
US8768581B2 (en) * 2010-05-24 2014-07-01 Hitachi Construction Machinery Co., Ltd. Work machine safety device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019186840A1 (ja) * 2018-03-28 2019-10-03 日立建機株式会社 作業機械
CN110546327A (zh) * 2018-03-28 2019-12-06 日立建机株式会社 作业机械
JPWO2019186840A1 (ja) * 2018-03-28 2020-04-30 日立建機株式会社 作業機械
US11149404B2 (en) 2018-03-28 2021-10-19 Hitachi Construction Machinery Co., Ltd. Work machine

Also Published As

Publication number Publication date
KR101934017B1 (ko) 2018-12-31
US20140121840A1 (en) 2014-05-01
CN103597147B (zh) 2016-05-25
JPWO2012169531A1 (ja) 2015-02-23
US9348327B2 (en) 2016-05-24
DE112012003346B4 (de) 2017-01-05
CN103597147A (zh) 2014-02-19
WO2012169531A1 (ja) 2012-12-13
DE112012003346T5 (de) 2014-04-30
KR20140058433A (ko) 2014-05-14

Similar Documents

Publication Publication Date Title
JP6023053B2 (ja) 作業機械
KR101755739B1 (ko) 작업 기계
KR102225934B1 (ko) 작업 기계
JP5491627B2 (ja) 作業機械の安全装置
US11414836B2 (en) Work machine
KR101814657B1 (ko) 작업 기계
JP2017179929A (ja) 作業機械の駆動制御装置
JP5851037B2 (ja) 作業機械
JP2013204260A (ja) 車両の遠隔操作装置、車両及び車両の遠隔操作方法
JP2013189767A (ja) 電動式旋回装置
JP6917941B2 (ja) 油圧式作業機械
Abo-Shanab et al. On dynamic stability of manipulators mounted on mobile platforms

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161006

R150 Certificate of patent or registration of utility model

Ref document number: 6023053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150