WO2017170555A1 - ショベル - Google Patents

ショベル Download PDF

Info

Publication number
WO2017170555A1
WO2017170555A1 PCT/JP2017/012648 JP2017012648W WO2017170555A1 WO 2017170555 A1 WO2017170555 A1 WO 2017170555A1 JP 2017012648 W JP2017012648 W JP 2017012648W WO 2017170555 A1 WO2017170555 A1 WO 2017170555A1
Authority
WO
WIPO (PCT)
Prior art keywords
stability
attachment
shovel
excavator
display unit
Prior art date
Application number
PCT/JP2017/012648
Other languages
English (en)
French (fr)
Inventor
岡田 純一
一則 平沼
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2018508075A priority Critical patent/JP6899818B2/ja
Priority to CN201780010595.0A priority patent/CN108603360B/zh
Priority to EP17775092.4A priority patent/EP3438354B1/en
Priority to KR1020187022723A priority patent/KR102353868B1/ko
Publication of WO2017170555A1 publication Critical patent/WO2017170555A1/ja
Priority to US16/128,521 priority patent/US10858808B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/12Static balancing; Determining position of centre of gravity
    • G01M1/122Determining position of centre of gravity
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/301Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom with more than two arms (boom included), e.g. two-part boom with additional dipper-arm
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2616Earth moving, work machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45012Excavator

Definitions

  • the present invention relates to an excavator.
  • the excavator mainly includes a traveling body (also referred to as a crawler or a lower), an upper turning body, and an attachment.
  • the upper swing body is rotatably attached to the traveling body, and its position is controlled by a swing motor.
  • the attachment has a boom, an arm, and a bucket, is attached to the upper swing body, and each axis can be operated independently.
  • the excavator is designed not to fall down regardless of the attachment posture as long as it is static in a flat work field.
  • the attachment is controlled while the work field is inclined or heavy earth and sand is piled on the bucket, there is a risk of falling.
  • the conventional fall prevention greatly depends on the skill of the operator, and if the reaction is delayed, the excavator may fall.
  • the present invention has been made in view of the above problems, and one of the exemplary purposes of an aspect thereof is to prevent the excavator from falling.
  • An aspect of the present invention relates to an excavator.
  • the excavator visually predicts the stability of the traveling body, the revolving body provided on the traveling body, the attachment attached to the revolving body, and the stability of the shovel after operating the attachment.
  • a display unit for displaying for displaying.
  • the display unit predicts at least one of bucket position, attachment speed, attachment power, attachment operation means operation amount, and operation amount change after operating the attachment.
  • the relationship between stability may be displayed visually.
  • the display unit may display the predicted stability in gradation.
  • the display unit may distinguish and display an area where the attachment can be operated without restriction and an area where the operation of the attachment should be restricted.
  • the predicted stability may change corresponding to the inclination angle of the shovel as the state of the shovel.
  • the bucket position at which the vehicle body becomes unstable and the operation of the attachment change depending on the inclination of the work field. Therefore, the stability can be accurately calculated by considering the inclination.
  • the predicted stability may change corresponding to the turning angle of the upper turning body.
  • the upper swing body and the traveling body face the same direction (turning angle 0 degree) and the state where the upper turning body turns 90 degrees, the latter makes the vehicle body more unstable. Therefore, the stability can be accurately calculated by considering the turning angle.
  • the predicted stability may change corresponding to the weight of the bucket as the state of the excavator.
  • the bucket position at which the vehicle body becomes unstable and the operation of the attachment change according to the weight of earth and sand loaded on the bucket or the weight of the load in the crane mode. Therefore, stability can be appropriately evaluated by considering the bucket weight.
  • the predicted stability may change corresponding to the engine speed (hydraulic pump speed) as the excavator state. Since the base value (upper limit value) of the amount of pressure oil discharged from the hydraulic pump changes, the actual attachment speed changes. Therefore, stability can be appropriately evaluated by considering the engine speed.
  • the predicted stability may change as the state of the excavator corresponding to the setting of the excavator work mode (for example, power, normal, eco, etc.) regarding the work amount. Since the excavator's behavior for the same operation input changes depending on the work mode, the stability can be appropriately evaluated by considering the work mode.
  • the excavator work mode for example, power, normal, eco, etc.
  • the display unit may distinguish and display a region where the operation of the arm shaft should be suppressed and a region where the operation of the boom shaft should be suppressed.
  • the display unit may distinguish and display a region where the operation of the arm shaft should be suppressed and a region where the operation of the boom shaft should be suppressed.
  • the display unit may display the predicted stability as a view of the attachment viewed from the side.
  • the display unit may display the current posture of the attachment together with the relationship.
  • the display unit may display the predicted stability superimposed on the real field of view.
  • the display unit may display the predicted stability in a graph and display the current stability together.
  • the operator may further include a stability calculating unit that calculates the predicted stability indicating the stability of the shovel posture after the operation based on the current state of the shovel.
  • An aspect of the present invention relates to an excavator.
  • the excavator is assumed to be stable in the posture of the excavator after the operation, assuming that the traveling body, the upper swinging body provided rotatably on the traveling body, the attachment attached to the upper swinging body, and the operator operating the attachment.
  • a stability calculation unit that calculates the predicted stability representing the sex based on the current state of the shovel, and a display unit that visually displays the predicted stability.
  • the operator visually and intuitively obtains information on whether or not the excavator's posture becomes unstable (or is stable) when the lever is operated. Can prevent the excavator from falling or shaking.
  • the stability calculation unit may calculate the predicted stability using at least one of the position of the bucket, the speed of the attachment, and the power of the attachment as a parameter.
  • the display unit may visually display the relationship between the parameter and the predicted stability. In this case, what kind of operation input will make the excavator's posture unstable, specifically, what position the bucket will move to become unstable, and how fast the attachment will move? Or how much the attachment power is unstable can be visually presented to the operator.
  • the excavator can be prevented from falling.
  • FIGS. 3A to 3C are diagrams for explaining the state of the shovel used for the calculation of the predicted stability of the shovel.
  • FIGS. 4A to 4C are diagrams showing the display of the display unit according to the first embodiment.
  • FIGS. 5A and 5B are diagrams showing display on the display unit according to the second embodiment.
  • FIGS. 6A to 6C are diagrams showing the display on the display unit according to the third embodiment. It is a figure which shows the display of the display part which concerns on 4th Example. It is a figure which shows the display of the display part which concerns on 6th Example.
  • the state in which the member A is connected to the member B means that the member A and the member B are electrically connected to each other in addition to the case where the member A and the member B are physically directly connected. It includes cases where the connection is indirectly made through other members that do not substantially affect the general connection state, or that do not impair the functions and effects achieved by their combination.
  • FIG. 1 is a perspective view showing an external appearance of an excavator 1 according to the embodiment.
  • the excavator 1 mainly includes a traveling body (also referred to as a lower or a crawler) 2 and an upper revolving body 4 that is rotatably mounted on the upper portion of the traveling body 2 via a revolving device 3.
  • a traveling body also referred to as a lower or a crawler
  • an upper revolving body 4 that is rotatably mounted on the upper portion of the traveling body 2 via a revolving device 3.
  • the attachment 12 is attached to the upper swing body 4.
  • the attachment 12 is provided with a boom 5, an arm 6 linked to the tip of the boom 5, and a bucket 10 linked to the tip of the arm 6.
  • the bucket 10 is a facility for capturing suspended loads such as earth and sand and steel materials.
  • the boom 5, the arm 6, and the bucket 10 are hydraulically driven by a boom cylinder 7, an arm cylinder 8, and a bucket cylinder 9, respectively.
  • the upper swing body 4 is provided with a power source such as an operator cab 4a for accommodating an operator (driver) and an engine 11 for generating hydraulic pressure.
  • the engine 11 is composed of, for example, a diesel engine.
  • FIG. 2 is a block diagram of an electric system and a hydraulic system of the excavator 1 according to the embodiment.
  • the mechanical power transmission system is indicated by a double line
  • the hydraulic system is indicated by a thick solid line
  • the steering system is indicated by a broken line
  • the electrical system is indicated by a thin solid line.
  • the engine 11 as a mechanical drive unit is connected to a main pump 14 and a pilot pump 15 as a hydraulic pump.
  • a control valve 17 is connected to the main pump 14 via a high pressure hydraulic line 16.
  • Two hydraulic circuits for supplying hydraulic pressure to the hydraulic actuator may be provided.
  • the main pump 14 includes two hydraulic pumps. In this specification, the case where the main pump is one system will be described for easy understanding.
  • the control valve 17 is a device that controls the hydraulic system in the excavator 1.
  • the boom cylinder 7, the arm cylinder 8 and the bucket cylinder 9 are connected to the control valve 17 via a high pressure hydraulic line.
  • the control valve 17 controls the hydraulic pressure (control pressure) supplied to them according to the operation input of the operator.
  • a swing hydraulic motor 21 for driving the swing device 3 is connected to the control valve 17.
  • the swing hydraulic motor 21 is connected to the control valve 17 through a hydraulic circuit of the swing controller, but the hydraulic circuit of the swing controller is not shown in FIG. 3 and is simplified.
  • An operating device 26 (operating means) is connected to the pilot pump 15 via a pilot line 25.
  • the operating device 26 is an operating means for operating the traveling body 2, the turning device 3, the boom 5, the arm 6, and the bucket 10, and is operated by an operator.
  • a control valve 17 is connected to the operating device 26 via a hydraulic line 27.
  • the operating device 26 includes hydraulic pilot type operating levers 26A to 26D.
  • the operation levers 26A to 26D are operation levers corresponding to the boom axis, the arm axis, the bucket axis, and the turning axis, respectively.
  • two operation levers are provided, and two axes are assigned in the vertical and horizontal directions of one operation lever, and the remaining two axes are assigned in the vertical and horizontal directions of the remaining operation levers.
  • the operation device 26 includes a pedal (not shown) for controlling the travel axis.
  • the operating device 26 converts the hydraulic pressure (primary hydraulic pressure) supplied through the pilot line 25 into hydraulic pressure (secondary hydraulic pressure) corresponding to the operation amount of the operator and outputs it.
  • the secondary side hydraulic pressure (control pressure) output from the operating device 26 is supplied to the control valve 17 through the hydraulic line 27.
  • one hydraulic line 27 is drawn, but actually there are hydraulic lines of control command values for the left traveling hydraulic motor, the right traveling hydraulic motor, and the turning.
  • the controller 30 is a main control unit that performs drive control of the excavator 1.
  • the controller 30 is configured by a processing unit including a CPU (Central Processing Unit) and an internal memory, and is realized by the CPU executing a drive control program stored in the memory.
  • a processing unit including a CPU (Central Processing Unit) and an internal memory, and is realized by the CPU executing a drive control program stored in the memory.
  • CPU Central Processing Unit
  • the excavator 1 is further provided with a stability calculation unit 500 and a display unit 502.
  • stability calculation unit 500 is implemented as a function of controller 30.
  • the stability calculation unit 500 may be implemented by hardware separate from the controller 30.
  • the stability calculation unit 500 determines the predicted stability (unpredicted stability) of the attitude of the shovel 1.
  • the predicted stability of the posture can also be grasped as an index indicating the possibility of the shovel 1 to fall.
  • the predicted stability is an index representing the stability of the posture of the excavator 1 as a binary value (safe or non-safe) or a multivalue of three or more values.
  • the stability calculation unit 500 calculates a predicted stability representing the stability of the posture of the shovel 1 after the operation based on the current state of the shovel 1.
  • the display unit 502 visually displays the predicted stability calculated by the stability calculation unit 500.
  • the operator can visually and intuitively know whether or not the shovel 1 is unstable (or stable) when the lever is operated, before performing the lever operation.
  • the fall and shake of the excavator 1 can be prevented.
  • the stability calculation unit 500 calculates the predicted stability using at least one of the position of the bucket 10, the speed of the attachment 12, and the power of the attachment 12 as a parameter.
  • the display unit 502 visually displays the relationship between the parameter and the predicted stability.
  • the stability calculation unit 500 calculates the stability of the shovel 1 for each assumed position when the bucket 10 is moved to each of a plurality of assumed positions that the bucket 10 can reach.
  • the display unit 502 visually displays a relationship between a plurality of assumed positions and the predicted stability.
  • the stability calculation unit 500 calculates the stability of the shovel 1 for each assumed speed when the attachment 12 is moved at a plurality of assumed speeds.
  • the display unit 502 visually displays a relationship between a plurality of assumed speeds and the predicted stability.
  • the stability calculation unit 500 calculates the stability of the shovel 1 for each assumed power when the attachment 12 is moved with a plurality of assumed powers.
  • the display unit 502 visually displays a relationship between a plurality of assumed powers and the predicted stability.
  • the speed of the attachment 12 may be the speed of the boom 5, the speed of the arm 6, or the speed of the bucket 10 obtained by combining them.
  • the power of the attachment 12 may be the power of the boom 5, the power of the arm 6, or the power of the entire attachment 12 obtained by combining them.
  • the stability calculation unit 500 takes into account the current state of the excavator 1 in consideration of the inclination angle ⁇ of the vehicle body, the relative turning angle ⁇ of the upper-part turning body 4 and the traveling body 2, and the load weight M of the bucket 10. Thus, the predicted stability of the shovel 1 is calculated.
  • the predicted stability of the position of the shovel 1 is calculated by calculating the position of the center of gravity of the shovel 1, and whether the position of the center of gravity is within the range of the traveling body 2 or protrudes to the outside of the traveling body 2 (or to what extent ) Can be calculated.
  • the display unit 502 has a display attached to the cab 4a.
  • This display may be a dedicated display for displaying the predicted stability (safety level), or may be used as a display for displaying other information.
  • the stability calculation unit 500 calculates the predicted stability in consideration of the information S1 regarding the inclination angle of the excavator 1, the information S2 regarding the rotation angle of the upper swing body 4, and the information S3 regarding the weight of the bucket 10. To do.
  • FIG. 3A shows the inclination angle ⁇ of the excavator 1.
  • the inclination angle ⁇ can be acquired by an inclination angle sensor 510 mounted on the excavator 1.
  • FIG. 3B shows the turning angle ⁇ of the turning body 4.
  • the turning angle ⁇ is generated based on the output S2 of the turning angle sensor 512.
  • a gyro sensor, an encoder, or a resolver may be used as the turning angle sensor 512.
  • FIG. 3C shows the load weight M of the bucket 10.
  • the loaded weight M may be estimated from a cylinder thrust obtained from the pressure sensor 514 (which can be calculated from the difference between the bottom pressure and the rod pressure).
  • a weight sensor may be provided in the bucket 10.
  • the current state of the attachment 12 may be taken into consideration.
  • the predicted stability may be calculated based on an output from a sensor for measuring the posture of the attachment 12.
  • An encoder or a potentiometer can be used as a sensor for measuring the attitude, but is not particularly limited.
  • (First embodiment) 4A to 4C are diagrams showing the display of the display unit 502 according to the first embodiment.
  • the position of the bucket 10 is a parameter, and the relationship between the position of the bucket 10 and the predicted stability is visually shown.
  • the predicted stability is a binary value, safe and non-safe.
  • the prediction stability may be calculated with three or more values, and converted to binary by comparison with a predetermined threshold value.
  • the display unit 502 displays the predicted stability as a side view of the attachment 12 viewed from the side.
  • the movable range (stable range) of the bucket 10 in which the excavator 1 is stable and the unstable region are partitioned and displayed.
  • the display unit 502 highlights and shows the stable range.
  • the display unit 502 may show an unstable range (an unstable range) with emphasis.
  • the display unit 502 also shows the current posture of the excavator 1.
  • the operator in the current state of the excavator 1, the operator can confirm before the operation whether there is no problem even if the bucket 10 is moved to any extent.
  • FIGS. 5A and 5B are diagrams showing the display of the display unit 502 according to the second embodiment. Also in the second embodiment, the posture of the attachment 12, more specifically, the position of the bucket 10 is a parameter, and the relationship between it and the predicted stability is visually shown. In this example, the predicted stability is represented by ternary values, and is displayed divided into regions for each value.
  • the first area (i) indicates a safe area
  • the second area (ii) indicates an area requiring attention
  • the third area (iii) indicates an unstable area.
  • each area (i) to (iii) can be associated with the operation of the attachment 12. That is, the first area (i) can be grasped as an area where there is no problem even if the attachment 12 is moved at high speed, in other words, an area where the operation can be performed without any restrictions.
  • the second region (ii) is a region in which the speed (or power) of the attachment 12 is lowered and should be operated at a low to medium speed
  • the third region (iii) is a region in which the attachment 12 is to be operated at a low speed (low power). is there.
  • the display of the second embodiment distinguishes between the region (i) where the attachment 12 can be operated without restriction and the regions (ii) and (iii) where the operation of the attachment should be restricted. It can be said that.
  • the display of the second embodiment is a visual indication of the predicted stability of the excavator 1 with the bucket position and the speed (or power) of the attachment 12 as parameters. I can say that.
  • FIG. 5B the turning angle ⁇ is 90 degrees, and the width of the traveling body 2 is narrower than that in the case of FIG. Accordingly, the first region (i) in FIG. 5 (b) is narrower than that in FIG. 5 (a).
  • the operator in the current state of the excavator 1, can confirm before the operation whether there is no problem even if the bucket 10 is moved to any extent. Alternatively, the operator can confirm before the operation whether there is no problem even if the bucket 10 is moved at any speed or with any power.
  • FIGS. 6A to 6C are diagrams showing displays on the display unit 502 according to the third embodiment.
  • 6 (a) and 6 (b) differ in the inclination angle of the shovel
  • FIG. 6 (a) shows the stability on flat ground
  • FIG. 6 (b) shows the stability on slope
  • 6 (a) and 6 (c) are different in the turning angle of the turning body 4, and
  • FIG. 6 (a) shows the stability when the attachment 12 faces the same direction as the traveling body 2.
  • 6 (c) shows the stability when the attachment 12 faces the direction perpendicular to the traveling body 2.
  • the work area is partitioned into a matrix, and the predicted stability is shown by color or pattern for each partition.
  • FIGS. 6A to 6C The display of each area in FIGS. 6A to 6C is an example.
  • FIG. 6 (b) shows that there are more stable regions than FIG. 6 (c), but this does not necessarily mean that the operation on the slope is more stable than the operation with a turning angle of 90 degrees. .
  • the operation at the turning angle of 90 degrees has a larger safety area than the operation on the inclined ground.
  • the operator in the current state of the excavator 1, the operator can confirm in which region there is no problem when the boom or arm is driven before the operation.
  • FIG. 7 is a diagram illustrating a display on the display unit 502 according to the fourth embodiment.
  • the stability is displayed in a form superimposed on the windshield.
  • a display panel for displaying the boundary lines A and B may be embedded in the windshield, and the actual visual field seen beyond the windshield and the boundary lines A and B may be superimposed.
  • a safe area first area in FIG. 5 before the boundary line A
  • an attention area second area in FIG. 5
  • an unstable area second area in FIG. 5
  • This may correspond to the third region in FIG.
  • the blocks shown in FIG. 6 and color-coded (pattern-divided) may be displayed.
  • the predicted stability may be displayed on the field view monitor. Or you may display prediction stability on the display provided corresponding to information-ized construction (ICT construction: Information and Communication Technology).
  • ICT construction Information and Communication Technology
  • FIG. 8 is a diagram illustrating the display of the display unit according to the sixth embodiment.
  • the length of the bar B varies depending on the situation where the excavator 1 is currently placed. In situations where the same lever operation can be made more unstable, the length of the bar B becomes shorter, which corresponds to a narrowing of the stable region.
  • the bar may be displayed vertically.
  • the bucket weight is suitable as a parameter that defines the length of the bar B.
  • the engine speed is suitable as a parameter that defines the length of the bar B.
  • the work mode is suitable as a parameter that defines the length of the bar B.
  • the left ends of bar A and bar B are coincident, and bar A changes within the range of the length of bar B.
  • the length of the bar A represents the stability calculated from the operation of the attachment (attachment posture, acceleration of each axis, etc.), and when it approaches the length of the bar B, it represents that it is unstable.
  • the length of the bars A and B may change continuously or may change discretely. In other words, the relative relationship between the bar A and the bar B represents the predicted stability of the shovel posture.
  • the length of the bar A may correspond to the position of the center of gravity of the shovel, and the length of the bar B may represent the range of the center of gravity where the shovel is stable.
  • the length of the bar A will increase because the excavator center of gravity moves forward.
  • the center of gravity can be calculated similarly, and the length of the bar A becomes longer.
  • the shortening of the bar B indicates that, for example, in a situation where the position of the bucket is the same or the excavator center of gravity is the same, an unstable situation is likely to occur.
  • the length of the bar A In the base information, the degree of inclination, the direction of the swinging body, the weight of the bucket, etc. strictly affect the position of the center of gravity of the shovel. Therefore, although the length of the bar A can be strictly changed, Preferably, the length of A does not depend on the base information, but depends only on the operation of the operation lever, and instead, the length of the bar B is changed based on the base information. Thereby, when the same operation is performed, since the length of the bar A becomes the same, the stability (or instability) can be intuitively grasped.
  • the length of the bar A may represent the magnitude of the overturning moment exerted on the shovel
  • the length of the bar B may represent the stability moment of the shovel.
  • the tipping moment may be a static tipping moment that does not consider the momentum of the attachment.
  • the length of the bar A may represent a dynamic overturning moment considering the momentum of the attachment
  • the length of the bar B may represent the stability moment of the shovel. For example, as the bucket extends in the tip direction (or deep digging direction), the overturning moment increases, so the length of the bar A will increase. Alternatively, if the arm or boom is moved suddenly, that is, if the speed or acceleration of the attachment is increased, the overturning moment resulting from the momentum increases, so the length of the bar A will be longer.
  • the shortening of the bar B may indicate that, for example, when the attachment posture is the same, or when the attachment is moved at the same speed and acceleration, the excavator is more easily tilted.
  • the shortening of the bar B may indicate that when the attachment is moved with the same power, it is likely to slip or float due to the excavation reaction force.
  • the degree of inclination, the orientation of the swinging body, the weight of the bucket, and the like affect the overturning moment. Therefore, these changes can strictly change the length of the bar A. It is preferable to make the length of the bar B depend only on the operation of the operation lever without depending on the base information, and instead change the length of the bar B based on the base information. Thereby, when the same operation is performed, since the length of the bar A becomes the same, the stability (or instability) can be intuitively grasped.
  • the operation of the attachment operation means (the operation amount itself, a sudden change in the operation amount) is immediately increased. It may indicate that an unstable situation is likely to occur.
  • the length of the bar A may represent the speed, acceleration, or power of the attachment, or may more simply represent the operation amount of the arm or boom.
  • the display modes in some of the embodiments described above may be switchable according to the state of the excavator 1 and the preference of the operator.
  • switching means for switching the display mode such as a switch or a panel, may be provided in the cab.
  • the present invention can be used for excavators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

アタッチメントは、上部旋回体に取り付けられる。表示部502は、ショベルを操作した後のショベルの姿勢の安定性を表す予測安定度を視覚的に表示する。

Description

ショベル
 本発明は、ショベルに関する。
 ショベルは、主として走行体(クローラ、ロワーともいう)、上部旋回体、アタッチメントを備える。上部旋回体は走行体に対して回動自在に取り付けられており、旋回モータによって位置が制御される。アタッチメントは、ブーム、アーム、バケットを有しており、上部旋回体に取り付けられており、各軸は独立に操作可能となっている。
特開2009-197436号公報
 ショベルは、ある程度平坦な作業フィールドでは、静的である限りにおいて、アタッチメントの姿勢によらずに転倒しないよう設計されている。しかしながら、作業フィールドが傾斜していたり、バケットに重い土砂を積した状態でアタッチメントを制御すると、転倒のおそれがある。従来ではオペレータが、ショベルの車体の不安定を体感し、転倒のおそれを察知すると、操作レバーを微調節する必要があった。したがって従来の転倒防止は、オペレータの技能に大いに依存したものであり、反応が遅れると、ショベルが転倒するおそれがある。
 本発明は係る課題に鑑みてなされたものであり、そのある態様の例示的な目的のひとつは、ショベルの転倒の予防にある。
 本発明のある態様はショベルに関する。ショベルは、走行体と、走行体に回動自在に設けられる旋回体と、旋回体に取り付けられたアタッチメントと、アタッチメントを操作した後のショベルの姿勢の安定性を表す予測安定度を視覚的に表示する表示部と、を備える。
 この態様によると、ショベルの姿勢が不安定となるか否か(あるいは安定であるか)の情報をレバー操作を行う前に視覚的に直感的に取得でき、ショベルの転倒や揺れを予防できる
 現在のショベルの状態に基づいて、アタッチメントを操作した後の、バケットの位置、アタッチメントの速度、アタッチメントのパワー、アタッチメントの操作手段の操作量、操作量の変化の少なくともひとつに関して、表示部に、予測安定度との間の関係を視覚的に表示してもよい。
 表示部は、予測安定度を階調的に表示してもよい。
 表示部は、アタッチメントを制約無く動作可能な領域と、アタッチメントの動作を制約すべき領域と、を区別して表示してもよい。
 予測安定度は、ショベルの状態としてショベルの傾斜角に対応して変化してもよい。作業フィールドの傾斜の状況に応じて、車体が不安定となるバケット位置や、アタッチメントの動作は変化する。そこで傾斜を考慮することで、安定性を正確に演算できる。
 予測安定度は、上部旋回体の旋回角に対応して変化してもよい。上部旋回体と走行体が同じ方向を向いている場合(旋回角0度)と、90度旋回した状態とでは、後者の方が車体は不安定となる。そこで旋回角を考慮することで、安定性を正確に演算できる。
 予測安定度は、ショベルの状態としてバケットの重量に対応して変化してもよい。バケットが積載する土砂の重量、あるいはクレーンモード時の荷物の重量に応じて、車体が不安定となるバケット位置やアタッチメントの動作は変化する。そこでバケット重量を考慮することで、安定性を適切に評価できる。
 予測安定度は、ショベルの状態としてエンジン回転数(油圧ポンプの回転数)に対応して変化してもよい。油圧ポンプから吐出される圧油の量のベース値(上限値)が変化するため、実態としてはアタッチメントの速度が変化する。そこでエンジンの回転数を考慮することで、安定性を適切に評価できる。
 予測安定度は、ショベルの状態として、作業量に関するショベルの作業モード(たとえば、パワー、普通、エコなど)の設定に対応して変化してもよい。作業モードに応じて、同じ操作入力に対するショベルの振る舞いが変化するため、作業モードを考慮することで、安定性を適切に評価できる。
 表示部は、アーム軸の動作を抑制すべき領域と、ブーム軸の動作を抑制すべき領域と、を区別して表示してもよい。バケットの位置に応じて、アーム軸の駆動が転倒を引き起こす場合と、ブーム軸の駆動が転倒を引き起こす場合とが存在する。それらを区別して表示することで、より安全性を高めることができる。
 表示部は、予測安定度を、アタッチメントを側方から見た図として表示してもよい。表示部は、現在のアタッチメントの姿勢を、関係と併せて表示してもよい。
 表示部は、予測安定度を、実視野と重ね合わせて表示してもよい。
 表示部は、予測安定度を、グラフで表示し、現在の安定度を合わせて表示させてもよい。
 オペレータがアタッチメントを操作したと仮定して、操作後のショベルの姿勢の安定性を表す予測安定度を、現在のショベルの状態にもとづいて演算する安定度演算部をさらに備えてもよい。
 本発明のある態様はショベルに関する。ショベルは、走行体と、走行体に回動自在に設けられる上部旋回体と、上部旋回体に取り付けられたアタッチメントと、オペレータがアタッチメントを操作したと仮定して、操作後のショベルの姿勢の安定性を表す予測安定度を、現在の前記ショベルの状態にもとづいて演算する安定度演算部と、予測安定度を視覚的に表示する表示部と、を備える。
 この態様によると、オペレータは、レバー操作を行った場合にショベルの姿勢が不安定となるか否か(あるいは安定であるか)の情報を、レバー操作を行う前に視覚的に直感的に取得でき、ショベルの転倒や揺れを予防できる。
 安定度演算部は、バケットの位置、アタッチメントの速度、アタッチメントのパワーの少なくともひとつをパラメータとして、予測安定度を演算してもよい。表示部は、パラメータと予測安定度の関係を視覚的に表示してもよい。
 この場合、どのような操作入力を行うとショベルの姿勢が不安定となるのか、具体的には、バケットをどの位置に移動すると不安定になるか、アタッチメントをどの程度の速度で動かすと不安定となるか、アタッチメントのパワーをどの程度とすると不安定となるか、をオペレータに視覚的に提示することができる。
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。
 本発明によれば、ショベルの転倒を予防できる。
実施の形態に係るショベルの外観を示す斜視図である。 実施の形態に係るショベルの電気系統および油圧系統のブロック図である。 図3(a)~(c)は、ショベルの予測安定度の演算に利用されるショベルの状態を説明する図である。 図4(a)~(c)は、第1実施例に係る表示部の表示を示す図である。 図5(a)、(b)は、第2実施例に係る表示部の表示を示す図である。 図6(a)~(c)は、第3実施例に係る表示部の表示を示す図である。 第4実施例に係る表示部の表示を示す図である。 第6実施例に係る表示部の表示を示す図である。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。
 図1は、実施の形態に係るショベル1の外観を示す斜視図である。ショベル1は、主として走行体(ロワー、クローラともいう)2と、走行体2の上部に旋回装置3を介して回動自在に搭載された上部旋回体4と、を備えている。
 上部旋回体4には、アタッチメント12が取り付けられる。アタッチメント12は、ブーム5と、ブーム5の先端にリンク接続されたアーム6と、アーム6の先端にリンク接続されたバケット10とが取り付けられている。バケット10は、土砂、鋼材などの吊荷を捕獲するための設備である。ブーム5、アーム6、及びバケット10は、それぞれブームシリンダ7、アームシリンダ8、及びバケットシリンダ9によって油圧駆動される。また、上部旋回体4には、オペレータ(運転者)を収容するための運転室4aや、油圧を発生するためのエンジン11といった動力源が設けられている。エンジン11は、例えばディーゼルエンジンで構成される。
 図2は、実施の形態に係るショベル1の電気系統および油圧系統のブロック図である。なお、図2では、機械的に動力を伝達する系統を二重線で、油圧系統を太い実線で、操縦系統を破線で、電気系統を細い実線でそれぞれ示している。なおここでは油圧ショベルについて説明するが、旋回に電動機を用いるハイブリッドショベルにも本発明は適用可能である。
 機械式駆動部としてのエンジン11は、油圧ポンプとしてメインポンプ14及びパイロットポンプ15に接続されている。メインポンプ14には、高圧油圧ライン16を介してコントロールバルブ17が接続されている。なお、油圧アクチュエータに油圧を供給する油圧回路は2系統設けられることがあり、その場合にはメインポンプ14は2つの油圧ポンプを含む。本明細書では理解の容易化のため、メインポンプが1系統の場合を説明する。
 コントロールバルブ17は、ショベル1における油圧系の制御を行う装置である。コントロールバルブ17には、図1に示した走行体2を駆動するための走行油圧モータ2A及び2Bの他、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9が高圧油圧ラインを介して接続されており、コントロールバルブ17は、これらに供給する油圧(制御圧)をオペレータの操作入力に応じて制御する。
 また、旋回装置3を駆動するための旋回油圧モータ21がコントロールバルブ17に接続される。旋回油圧モータ21は、旋回コントローラの油圧回路を介してコントロールバルブ17に接続されるが、図3には旋回コントローラの油圧回路は示されず、簡略化されている。
 パイロットポンプ15には、パイロットライン25を介して操作装置26(操作手段)が接続されている。操作装置26は、走行体2、旋回装置3、ブーム5、アーム6、及びバケット10を操作するための操作手段であり、オペレータによって操作される。操作装置26には、油圧ライン27を介してコントロールバルブ17が接続される。
 たとえば操作装置26は、油圧パイロット式の操作レバー26A~26Dを含む。操作レバー26A~26Dはそれぞれ、ブーム軸、アーム軸、バケット軸および旋回軸に対応する操作レバーである。実際には、操作レバーは二個設けられ、一方の操作レバーの縦方向、横方向に2軸が、残りの操作レバーの縦方向、横方向に残りの2軸が割り当てられる。また操作装置26は、走行軸を制御するためのペダル(不図示)を含む。
 操作装置26は、パイロットライン25を通じて供給される油圧(1次側の油圧)をオペレータの操作量に応じた油圧(2次側の油圧)に変換して出力する。操作装置26から出力される2次側の油圧(制御圧)は、油圧ライン27を通じてコントロールバルブ17に供給される。なお図2において油圧ライン27は1本で描かれているが、実際には左走行油圧モータ、右走行油圧モータ、旋回それぞれの制御指令値の油圧ラインが存在する。
 コントローラ30は、ショベル1の駆動制御を行う主制御部である。コントローラ30は、CPU(Central Processing Unit)及び内部メモリを含む演算処理装置で構成され、CPUがメモリに格納された駆動制御用のプログラムを実行することにより実現される。
 ショベル1にはさらに、安定度演算部500および表示部502が設けられる。本実施の形態において安定度演算部500はコントローラ30の一機能として実装される。なお安定度演算部500を、コントローラ30とは個別のハードウェアで実装してもよい。
 安定度演算部500は、ショベル1の姿勢の予測安定度(不予測安定度)を判定する。姿勢の予測安定度は、ショベル1の転倒の可能性を示す指標としても把握できる。予測安定度は、ショベル1の姿勢の安定性を、2値(安全、非安全)あるいは3値以上の多値で表す指標である。
 安定度演算部500は、オペレータがアタッチメント12を操作したと仮定して、操作後のショベル1の姿勢の安定性を表す予測安定度を、現在のショベル1の状態にもとづいて演算する。表示部502は、安定度演算部500が演算した予測安定度を視覚的に表示する。
 これによりオペレータは、レバー操作を行った場合にショベル1の姿勢が不安定となるか否か(あるいは安定であるか)を、レバー操作を行う前に視覚的に直感的に知ることができ、ショベル1の転倒や揺れを予防できる。
 たとえば安定度演算部500は、バケット10の位置、アタッチメント12の速度、アタッチメント12のパワーの少なくともひとつをパラメータとして、予測安定度を演算する。表示部502は、パラメータと予測安定度の関係を視覚的に表示する。
 バケット10の位置がパラメータの場合、安定度演算部500は、バケット10が到達可能な複数の想定位置それぞれに移動させたときに、想定位置ごとにショベル1の姿勢の安定性を演算する。表示部502は、複数の想定位置と、予測安定度の関係を視覚的に表示する。
 アタッチメント12の速度がパラメータの場合、安定度演算部500は、アタッチメント12を複数の想定速度で動かしたときに、想定速度ごとにショベル1の姿勢の安定性を演算する。表示部502は、複数の想定速度と、予測安定度の関係を視覚的に表示する。
 アタッチメント12のパワーがパラメータの場合、安定度演算部500は、アタッチメント12を複数の想定パワーで動かしたときに、想定パワーごとにショベル1の姿勢の安定性を演算する。表示部502は、複数の想定パワーと、予測安定度の関係を視覚的に表示する。
 アタッチメント12の速度は、ブーム5の速度であってもよいし、アーム6の速度であってもよいし、それらの合成で得られるバケット10の速度であってもよい。同様に、アタッチメント12のパワーは、ブーム5のパワーであってもよいし、アーム6のパワーであってもよいし、それらの合成で得られるアタッチメント12全体としてのパワーであってもよい。
 これらの制御により、バケット10をどの位置に移動すると不安定になるか、アタッチメント12をどの程度の速度で動かすと不安定となるか、アタッチメント12のパワーをどの程度とすると不安定となるか、をオペレータに視覚的に提示することができる。
 安定度演算部500は、ショベル1の現在の状態として、車体の傾斜角θ、上部旋回体4と走行体2の相対的な旋回角φ、バケット10の積載重量Mを考慮し、それらにもとづいて、ショベル1の姿勢の予測安定度を演算する。
 たとえばショベル1の姿勢の予測安定度は、ショベル1の重心位置を計算し、この重心位置が、走行体2の範囲内に収まっているか、走行体2の外側にはみ出すか(あるいはどの程度はみ出すか)を評価することで、演算できる。
 表示部502は、運転室4aに取り付けられるディスプレイを有する。このディスプレイは、予測安定度(安全度)を表示するための専用ディスプレイであってもよいし、その他の情報を表示するためのディスプレイを兼用してもよい。
 図3(a)~(c)は、ショベル1の予測安定度の演算に利用されるショベル1の状態を説明する図である。本実施の形態において、安定度演算部500は、ショベル1の傾斜角に関する情報S1、上部旋回体4の旋回角に関する情報S2、バケット10の重量に関する情報S3を考慮して、予測安定度を演算する。
 図3(a)には、ショベル1の傾斜角θが示される。傾斜角θは、ショベル1に搭載された傾斜角センサ510によって取得することができる。
 図3(b)には、旋回体4の旋回角φが示される。旋回角φは、旋回角センサ512の出力S2にもとづいて生成される。たとえば旋回角センサ512としては、ジャイロセンサ、エンコーダ、あるいはレゾルバを用いてもよい。
 図3(c)には、バケット10の積載重量Mが示される。積載重量Mは、圧力センサ514から得られるシリンダ推力(ボトム圧とロッド圧の差分から計算できる)から推定してもよい。あるいは重量センサをバケット10に設けてもよい。
 予測安定度を演算する際のパラメータとして、アタッチメント12のパワーや速度を選択する場合、現在のアタッチメント12の状態を考慮してもよい。この場合、アタッチメント12の姿勢を測定するためのセンサからの出力にもとづいて、予測安定度を演算してもよい。姿勢を測定するためのセンサとしては、エンコーダやポテンショメータが利用しうるが特に限定されない。
 表示部502による予測安定度の表示について、いくつかの実施例を説明する。
(第1実施例)
 図4(a)~(c)は、第1実施例に係る表示部502の表示を示す図である。第1実施例では、バケット10の位置がパラメータとされ、バケット10の位置と、予測安定度の関係が視覚的に示されている。予測安定度は、安全、非安全の2値である。あるいは、予測安定度を3値以上で演算し、所定のしきい値との比較により2値に変換してもよい。表示部502は、予測安定度を、アタッチメント12を側方から見た側面図として表示する。この実施例では、ショベル1が安定であるバケット10の可動範囲(安定範囲)と、不安定な領域が区画して表示される。図4(a)~(c)において表示部502は、安定範囲を強調して示す。
 反対に表示部502は、不安定な、すなわち転倒のおそれのある範囲(不安定範囲)を強調して示してもよい。
 図4(a)~(c)では、傾斜角θが異なっており、傾斜角が大きくなるほど、可動範囲が小さくなることが示される。表示部502には、現在のショベル1の姿勢もあわせて示される。
 この実施例によれば、現在のショベル1の状態において、バケット10をどこまで移動させても問題が無いのかをオペレータが動作前に確認できる。
(第2実施例)
 図5(a)、(b)は、第2実施例に係る表示部502の表示を示す図である。第2実施例においても、アタッチメント12の姿勢、より詳しくは、バケット10の位置がパラメータであり、それと予測安定度の関係が視覚的に示されている。この例では、予測安定度は3値で表されており、値ごとの領域に区画して表示される。第1領域(i)は、安全な領域を、第2領域(ii)は注意を要する領域を、第3領域(iii)は不安定な領域を示している。
 各領域(i)~(iii)の表示は、アタッチメント12の動作と関連付けることができる。すなわち第1領域(i)はアタッチメント12を高速で動かしても問題ない領域、言い換えれば、何の制約も受けずに動作させることができる領域と把握できる。第2領域(ii)は、アタッチメント12の速度(あるいはパワー)を落として低速~中速で動作させるべき領域、第3領域(iii)は、アタッチメント12を低速(低パワー)運転すべき領域である。
 別の観点からみると第2実施例の表示は、アタッチメント12を制約無く動作可能な領域(i)と、アタッチメントの動作を制約すべき領域(ii)、(iii)と、を区別して表示したものと言える。
 さらに別の観点から見ると、第2実施例の表示は、ショベル1の予測安定度を、バケットの位置およびアタッチメント12の速度(あるいはパワー)の2つをパラメータとして、視覚的に示したものと言える。
 図5(a)と(b)とでは、旋回角φが異なっている。図5(b)では、旋回角φ=90度であり、走行体2の幅が、図5(a)の場合に比べて狭くなるため、転倒しやすいといえる。したがって図5(b)の第1領域(i)は、図5(a)のそれよりも狭くなっている。
 この実施例によれば、現在のショベル1の状態において、バケット10をどこまで移動させても問題が無いのかをオペレータが動作前に確認できる。あるいは、バケット10をどの程度の速度、あるいはどの程度のパワーで移動させても問題が無いのかを、オペレータが動作前に確認できる。
(第3実施例)
 図6(a)~(c)は、第3実施例に係る表示部502の表示を示す図である。図6(a)と(b)は、ショベルの傾斜角が異なっており、図6(a)は、平地での安定度を、図6(b)は、傾斜地での安定度を示す。また図6(a)と(c)は、旋回体4の旋回角が異なっており、図6(a)は、アタッチメント12が走行体2と同じ方向を向いているときの安定度を、図6(c)は、アタッチメント12が走行体2と直角方向を向いているときの安定度を示す。この実施例では、作業領域がマトリクス状に区画され、区画ごとに、予測安定度が色分けあるいはパターン分けして示される。この例では、アーム軸の動作を抑制すべき領域(アーム注意)と、ブーム軸の動作を抑制すべき領域(ブーム注意)と、が区別して表示される。これにより、オペレータは、操作入力を制限すべき軸を直感的に知ることができる。図6(a)~(c)の各領域の表示は一例である。たとえば図6(b)は図6(c)より安定領域が多いことを示すが、これは必ずしも傾斜地での動作の方が、旋回角90度の動作より安定であることを意味するものではない。バケットの積載重量やエンジン出力などのパラメータ、傾斜角度によっては、、傾斜地での動作よりも、旋回角90度の動作の方が安全領域が多い場合も当然にあり得る。
 この実施例によれば、現在のショベル1の状態において、どの領域でブームやアームを駆動すると問題が無いのかを、オペレータが動作前に確認できる。
(第4実施例)
 図7は、第4実施例に係る表示部502の表示を示す図である。この実施例では、フロントガラスに重畳した形式で、安定度が表示される。たとえばフロントガラスに、境界線A,Bを表示するための表示パネルを埋め込み、フロントガラスの向こうに見える実視野と、境界線A,Bを重ね合わせてもよい。たとえば境界線Aより手前は安全な領域(図5の第1領域)、境界線AとBの間は注意領域(図5の第2領域)、境界線Bより向こう側は、不安定領域(図5の第3領域)に対応してもよい。境界を表示することに代えて、図6の区画、色分け(パターン分け)されたブロックを表示してもよい。実視野と予測安定度の表示を重ね合わせることで、オペレータはさらに直感的に、転倒や揺れが生じうる操作を把握することができる。
(第5実施例)
 そのほか、ショベル1の死角を含めた周期画像をオペレータに提示するフィールドビューモニタが搭載される場合、それに予測安定度を表示してもよい。あるいは情報化施工(ICT施工:Information and Communication Technology)に対応して設けられたディスプレイに、予測安定度を表示してもよい。
(第6実施例)
 図4~7では、予測安定度を2次元で表示したがその限りでなく、1次元で表示してもよい。図8は、第6実施例に係る表示部の表示を示す図である。図8ではバーBの長さは、ショベル1が現在置かれている状況に応じて変化する。同じレバー操作を行った場合に、より不安定になりうる状況では、バーBの長さが短くなり、これは安定領域が狭まることに対応する。バーは、垂直方向に表示してもよい。
 バーBの長さに影響を与えるショベル1が現在置かれている状況は、
 ・傾斜の程度(図6(b))
 ・旋回体の向き(図6(c))
の他に、
 ・バケットの重量
 ・エンジン回転数
 ・作業モード
などを含みうる。これらをベース情報と称する。
 たとえばバケットが積載する土砂の重量、あるいはクレーンモード時の荷物の重量に応じて、車体が不安定となるバケット位置やアタッチメントの動作は変化する。したがってバケット重量は、バーBの長さを規定するパラメータとして好適である。
 油圧ポンプから吐出される圧油の量のベース値(上限値)が変化するため、実態としてはアタッチメントの速度が変化する。したがってエンジンの回転数は、バーBの長さを規定するパラメータとして好適である。
 また、ショベルによっては、作業モード(たとえば、パワー、普通、エコなど)が切替え可能なものが存在する。この場合、作業モードに応じて、同じ操作入力に対するショベルの振る舞いが変化するため、作業モードは、バーBの長さを規定するパラメータとして好適である。
 バーAとバーBの左端は一致しており、バーAは、バーBの長さの範囲で変化する。バーAの長さは、アタッチメントの操作(アタッチメントの姿勢、各軸の加速度など)から計算される安定度を表しており、バーBの長さに近づくと、不安定であることを表す。バーA,Bの長さは連続的に変化してもよいし、離散的に変化してもよい。言い換えれば、バーAとバーBの相対的な関係が、ショベルの姿勢の予測安定度を表している。
(1) たとえばバーAの長さは、ショベルの重心の位置に対応しており、バーBの長さは、ショベルが安定である重心の範囲を表してもよい。たとえばバケットが先端方向に延びていくと、ショベル重心が前方に移動していくため、バーAの長さは長くなるであろう。あるいはバケットが深堀状態で延びていく場合も同様に重心演算が可能であり、バーAの長さは長くなる。バーBが短くなることは、たとえばバケットの位置が同一あるいはショベル重心が同一である状況において、より不安定状況になりやすいことを示す。
 なお、ベース情報のうち、傾斜の程度、旋回体の向き、バケットの重量などは、厳密にはショベルの重心位置に影響を与えるため、厳密にはバーAの長さを変化させうるが、バーAの長さはベース情報に依存せずに、操作レバーの操作のみに依存させ、その代わりに、ベース情報にもとづいてバーBの長さを変化させることが好ましい。これにより、同じ操作を行った場合に、バーAの長さは同じになるため、安定度(あるいは不安定度)を直感的に把握できる。
(2) 別の例として、バーAの長さは、ショベルに及ぼす転倒モーメントの大きさを表し、バーBの長さは、ショベルの安定モーメントを表してもよい。転倒モーメントは、アタッチメントの運動量を考慮しない静的な転倒モーメントであってもよい。
 より好ましくはバーAの長さは、アタッチメントの運動量も考慮した動的な転倒モーメントを表し、バーBの長さは、ショベルの安定モーメントを表してもよい。たとえばバケットが先端方向(あるいは深掘方向)に延びていくと転倒モーメントは増大するため、バーAの長さは長くなるであろう。あるいはアームやブームを急激に動かすと、すなわちアタッチメントの速度や加速度が大きくなると、運動量に起因する転倒モーメントが増大するため、バーAの長さは長くなるであろう。
 バーBが短くなることは、たとえばアタッチメントの姿勢が同一である場合、あるいはアタッチメントを同一の速度、加速度で動かした場合に、よりショベルが傾きやすいことを示してもよい。あるいはバーBが短くなることは、アタッチメントを同一のパワーで動かした場合に、掘削反力で、滑ったり、浮いたりする状況になりやすいことを示してもよい。
 なお、ベース情報のうち、傾斜の程度、旋回体の向き、バケットの重量などは、転倒モーメントに影響を与えるため、それらの変化は厳密にはバーAの長さを変化させうるが、バーAの長さはベース情報に依存させずに、操作レバーの操作のみに依存させ、その代わりに、ベース情報にもとづいてバーBの長さを変化させることが好ましい。これにより、同じ操作を行った場合に、バーAの長さは同じになるため、安定度(あるいは不安定度)を直感的に把握できる。
 別の例として、バーBの上限(右端)が後退してバーが短くなることは、アタッチメント操作手段の操作(操作量自体、操作量の急変)が大きくなるように操作してしまうと、すぐに不安定状況になりやすいことを示してもよい。
(3) バーAの長さは、アタッチメントの速度、加速度、あるいはパワーを表してもよいし、よりシンプルに、アームやブームの操作量を表してもよい。
 なお、上述したいくつかの実施例における表示モードは、ショベル1の状態や、オペレータの好みに応じて切りかえ可能としてもよい。このために、運転室内に、表示モードを切りかえるための切りかえ手段、たとえばスイッチやパネルを設けてもよい。
 実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。
1…ショベル、2…走行体、2A,2B…走行油圧モータ、3…旋回装置、4…旋回体、4a…運転室、5…ブーム、6…アーム、7…ブームシリンダ、8…アームシリンダ、9…バケットシリンダ、10…バケット、11…エンジン、12…アタッチメント、14…メインポンプ、15…パイロットポンプ、17…コントロールバルブ、21…旋回油圧モータ、26…操作装置、30…コントローラ、500…安定度演算部、502…表示部、510…傾斜角センサ、512…レゾルバ、514…圧力センサ。
 本発明はショベルに利用できる。

Claims (14)

  1.  ショベルであって、
     走行体と、
     前記走行体に回動自在に設けられる旋回体と、
     前記旋回体に取り付けられたアタッチメントと、
     前記アタッチメントを操作した後の前記ショベルの姿勢の安定性を表す予測安定度を視覚的に表示する表示部と、
     を備えることを特徴とするショベル。
  2.  現在のショベルの状態に基づいて、前記アタッチメントを操作した後の、バケットの位置、前記アタッチメントの速度、前記アタッチメントのパワー、前記アタッチメントの操作手段の操作量、操作量の変化の少なくともひとつに関して、前記表示部に、前記予測安定度との間の関係を視覚的に表示することを特徴とする請求項1に記載のショベル。
  3.  前記表示部は、前記予測安定度を階調的に表示することを特徴とする請求項1または2に記載のショベル。
  4.  前記表示部は、前記アタッチメントを制約無く動作可能な領域と、前記アタッチメントの動作を制約すべき領域と、を区別して表示することを特徴とする請求項1から3のいずれかに記載のショベル。
  5.  前記予測安定度は、前記ショベルの状態として前記ショベルの傾斜角に対応して変化することを特徴とする請求項1から4のいずれかに記載のショベル。
  6.  前記予測安定度は、前記上部旋回体の旋回角に対応して変化することを特徴とする請求項1から5のいずれかに記載のショベル。
  7.  前記予測安定度は、前記ショベルの状態としてバケットの重量に対応して変化することを特徴とする請求項1から6のいずれかに記載のショベル。
  8.  前記予測安定度は、前記ショベルの状態としてエンジン回転数に対応して変化することを特徴とする請求項1から6のいずれかに記載のショベル。
  9.  前記予測安定度は、前記ショベルの状態として、作業量に関するショベルの作業モードの設定に対応して変化することを特徴とする請求項1から6のいずれかに記載のショベル。
  10.  前記表示部は、アーム軸の動作を抑制すべき領域と、ブーム軸の動作を抑制すべき領域と、を区別して表示することを特徴とする請求項1から9のいずれかに記載のショベル。
  11.  前記表示部は、前記予測安定度を、前記アタッチメントを側方から見た図として表示することを特徴とする請求項1から9のいずれかに記載のショベル。
  12.  前記表示部は、前記予測安定度を、実視野と重ね合わせて表示することを特徴とする請求項1から9のいずれかに記載のショベル。
  13.  前記表示部は、前記予測安定度を、グラフで表示し、現在の安定度を合わせて表示させることを特徴とする請求項1から9のいずれかに記載のショベル。
  14.  オペレータが前記アタッチメントを操作したと仮定して、操作後の前記ショベルの姿勢の安定性を表す予測安定度を、現在の前記ショベルの状態にもとづいて演算する安定度演算部をさらに備えることを特徴とする請求項1から13のいずれかに記載のショベル。
PCT/JP2017/012648 2016-03-31 2017-03-28 ショベル WO2017170555A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018508075A JP6899818B2 (ja) 2016-03-31 2017-03-28 ショベル
CN201780010595.0A CN108603360B (zh) 2016-03-31 2017-03-28 挖土机
EP17775092.4A EP3438354B1 (en) 2016-03-31 2017-03-28 Mechanical shovel
KR1020187022723A KR102353868B1 (ko) 2016-03-31 2017-03-28 쇼벨
US16/128,521 US10858808B2 (en) 2016-03-31 2018-09-12 Excavator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-072763 2016-03-31
JP2016072763 2016-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/128,521 Continuation US10858808B2 (en) 2016-03-31 2018-09-12 Excavator

Publications (1)

Publication Number Publication Date
WO2017170555A1 true WO2017170555A1 (ja) 2017-10-05

Family

ID=59965791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012648 WO2017170555A1 (ja) 2016-03-31 2017-03-28 ショベル

Country Status (6)

Country Link
US (1) US10858808B2 (ja)
EP (1) EP3438354B1 (ja)
JP (1) JP6899818B2 (ja)
KR (1) KR102353868B1 (ja)
CN (1) CN108603360B (ja)
WO (1) WO2017170555A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112783A (ja) * 2017-12-21 2019-07-11 住友重機械工業株式会社 ショベル
WO2019244574A1 (ja) * 2018-06-19 2019-12-26 住友建機株式会社 掘削機、情報処理装置
EP3862491A4 (en) * 2018-10-03 2021-12-15 Sumitomo Heavy Industries, Ltd. EXCAVATOR
US11939747B2 (en) 2019-02-28 2024-03-26 Sumitomo Heavy Industries, Ltd. Display device, shovel, information processing apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3392415B1 (en) * 2015-12-18 2023-07-12 Sumitomo Heavy Industries, Ltd. Shovel and control method for same
WO2018062374A1 (ja) * 2016-09-30 2018-04-05 住友建機株式会社 ショベル
US10691847B2 (en) * 2017-01-13 2020-06-23 Sap Se Real-time damage determination of an asset
EP3680399B1 (en) * 2017-09-07 2023-11-15 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. Excavator
US10988188B2 (en) * 2018-12-12 2021-04-27 Continental Automotive Systems, Inc. Overturn control by side support
KR102090409B1 (ko) * 2018-12-27 2020-03-17 한양대학교 에리카산학협력단 과부하 방지를 위한 원격 제어 굴삭기의 제어 장치 및 방법
JP7252762B2 (ja) * 2019-01-08 2023-04-05 日立建機株式会社 作業機械
JP7336853B2 (ja) * 2019-02-01 2023-09-01 株式会社小松製作所 建設機械の制御システム、建設機械、及び建設機械の制御方法
JP7197392B2 (ja) * 2019-02-01 2022-12-27 株式会社小松製作所 建設機械の制御システム、建設機械、及び建設機械の制御方法
WO2021225361A1 (ko) * 2020-05-07 2021-11-11 두산인프라코어 주식회사 굴삭기 및 이의 제어 방법
JP7441733B2 (ja) * 2020-06-04 2024-03-01 コベルコ建機株式会社 実機状態監視システムおよび実機状態監視方法
US11914749B2 (en) 2021-12-07 2024-02-27 Motorola Solutions, Inc. Selective and protected release of private information to an incident response team

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319785A (ja) * 1991-09-06 1993-12-03 Yotaro Hatamura 建設機械の姿勢制御システム
JP2007186953A (ja) * 2006-01-16 2007-07-26 Hitachi Constr Mach Co Ltd アーム作業機の警報装置、警報方法およびアーム作業機
JP2010138657A (ja) * 2008-12-15 2010-06-24 Caterpillar Japan Ltd 解体作業機
WO2011148946A1 (ja) * 2010-05-24 2011-12-01 日立建機株式会社 作業機械の安全装置
WO2012169531A1 (ja) * 2011-06-10 2012-12-13 日立建機株式会社 作業機械
JP2013238097A (ja) * 2012-05-17 2013-11-28 Sumitomo Heavy Ind Ltd 建設機械の転倒防止装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707118B1 (en) * 1994-04-28 1999-07-28 Hitachi Construction Machinery Co., Ltd. Aera limiting digging control device for a building machine
KR0173835B1 (ko) * 1994-06-01 1999-02-18 오까다 하지모 건설기계의 영역제한 굴삭제어장치
JP3571142B2 (ja) * 1996-04-26 2004-09-29 日立建機株式会社 建設機械の軌跡制御装置
WO1998026132A1 (fr) * 1996-12-12 1998-06-18 Shin Caterpillar Mitsubishi Ltd. Dispositif de commande d'engin de construction
JPH10273921A (ja) * 1997-01-31 1998-10-13 Komatsu Ltd 建設機械の転倒防止装置
US7532967B2 (en) * 2002-09-17 2009-05-12 Hitachi Construction Machinery Co., Ltd. Excavation teaching apparatus for construction machine
US7441404B2 (en) * 2004-11-30 2008-10-28 Caterpillar Inc. Configurable hydraulic control system
GB2426106A (en) * 2005-05-11 2006-11-15 Harborough Rail Systems Ltd Instability alarm for a vehicle with a load bearing arm
US8065060B2 (en) * 2006-01-18 2011-11-22 The Board Of Regents Of The University And Community College System On Behalf Of The University Of Nevada Coordinated joint motion control system with position error correction
US7748279B2 (en) * 2007-09-28 2010-07-06 Caterpillar Inc Hydraulics management for bounded implements
KR100979427B1 (ko) * 2007-10-02 2010-09-02 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 중장비의 자동 레벨링 제어시스템과 그 제어방법
JP4997138B2 (ja) 2008-02-20 2012-08-08 日立建機株式会社 荷重負荷機械
CN201169787Y (zh) * 2008-03-31 2008-12-24 山东交通学院 一种拖挂式作业自行走挖掘机
JP2010248777A (ja) * 2009-04-15 2010-11-04 Caterpillar Sarl 作業機械の管理システム
WO2011049079A1 (ja) * 2009-10-19 2011-04-28 日立建機株式会社 作業機械
RU2428546C1 (ru) * 2010-03-02 2011-09-10 Владимир Никитич Тарасов Энергосберегающее рабочее оборудование гидравлического экскаватора прямая лопата
KR101243455B1 (ko) * 2011-04-14 2013-03-13 연세대학교 산학협력단 타워크레인 네비게이션 시스템
JP6147037B2 (ja) * 2013-03-14 2017-06-14 株式会社トプコン 建設機械制御システム
US20150063968A1 (en) * 2013-09-05 2015-03-05 Caterpillar Inc. Flywheel excavator
CN104838234B (zh) * 2013-09-19 2016-10-05 株式会社小松制作所 测定工具
WO2015063309A1 (en) * 2013-11-03 2015-05-07 Desarrollo Tecnológico Agroindustrial Dynamic rollover protection system
ES2537895B1 (es) * 2013-11-14 2016-05-17 Empresa De Transf Agraria S A (Tragsa) Sistema y metodo para control de estabilidad en maquinaria pesada
CN204530818U (zh) * 2014-12-26 2015-08-05 刘进勇 挖掘机
CN204715434U (zh) * 2015-04-03 2015-10-21 湖南中立重工科技有限公司 一种挖掘机
JP6522441B2 (ja) * 2015-06-29 2019-05-29 日立建機株式会社 作業機械の作業支援システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319785A (ja) * 1991-09-06 1993-12-03 Yotaro Hatamura 建設機械の姿勢制御システム
JP2007186953A (ja) * 2006-01-16 2007-07-26 Hitachi Constr Mach Co Ltd アーム作業機の警報装置、警報方法およびアーム作業機
JP2010138657A (ja) * 2008-12-15 2010-06-24 Caterpillar Japan Ltd 解体作業機
WO2011148946A1 (ja) * 2010-05-24 2011-12-01 日立建機株式会社 作業機械の安全装置
WO2012169531A1 (ja) * 2011-06-10 2012-12-13 日立建機株式会社 作業機械
JP2013238097A (ja) * 2012-05-17 2013-11-28 Sumitomo Heavy Ind Ltd 建設機械の転倒防止装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3438354A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112783A (ja) * 2017-12-21 2019-07-11 住友重機械工業株式会社 ショベル
JP6991056B2 (ja) 2017-12-21 2022-01-12 住友重機械工業株式会社 ショベル
WO2019244574A1 (ja) * 2018-06-19 2019-12-26 住友建機株式会社 掘削機、情報処理装置
CN112041510A (zh) * 2018-06-19 2020-12-04 住友建机株式会社 挖掘机、信息处理装置
JPWO2019244574A1 (ja) * 2018-06-19 2021-06-24 住友建機株式会社 掘削機、情報処理装置
JP7358349B2 (ja) 2018-06-19 2023-10-10 住友建機株式会社 掘削機、情報処理装置
US11959253B2 (en) 2018-06-19 2024-04-16 Sumitomo Construction Machinery Co., Ltd. Excavator and information processing apparatus
EP3862491A4 (en) * 2018-10-03 2021-12-15 Sumitomo Heavy Industries, Ltd. EXCAVATOR
US11987957B2 (en) 2018-10-03 2024-05-21 Sumitomo Heavy Industries, Ltd. Shovel
US11939747B2 (en) 2019-02-28 2024-03-26 Sumitomo Heavy Industries, Ltd. Display device, shovel, information processing apparatus

Also Published As

Publication number Publication date
JPWO2017170555A1 (ja) 2019-02-07
JP6899818B2 (ja) 2021-07-07
US10858808B2 (en) 2020-12-08
CN108603360A (zh) 2018-09-28
EP3438354A1 (en) 2019-02-06
EP3438354B1 (en) 2023-07-26
EP3438354A4 (en) 2020-01-22
KR102353868B1 (ko) 2022-01-19
KR20180132039A (ko) 2018-12-11
US20190017248A1 (en) 2019-01-17
CN108603360B (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
WO2017170555A1 (ja) ショベル
JP4793352B2 (ja) 旋回制御装置及びこれを備えた作業機械
JP5048068B2 (ja) 作業車両及び作業車両の作動油量制御方法
KR100834799B1 (ko) 선회 제어 장치, 선회 제어 방법, 및 건설 기계
CN107532409B (zh) 工程机械的控制装置
JP5192605B1 (ja) ホイールローダ
JP6419721B2 (ja) 作業車両
KR20200028993A (ko) 작업 기계
JP5970625B1 (ja) 建設機械、ハイブリッド油圧ショベル、および電動発電機の出力トルク制御方法
WO2020166241A1 (ja) 監視装置及び建設機械
JP6214327B2 (ja) ハイブリッド式建設機械
JP2009121127A (ja) 旋回制御装置
US11225771B2 (en) Shovel
CN115928836A (zh) 防止工业机械中的失控状态的系统和方法
WO2022210776A1 (ja) ショベル
CN109844229B (zh) 轮式装载机
JPWO2017138070A1 (ja) 作業車両および動作制御方法
KR102590162B1 (ko) 작업 기계
JP6991056B2 (ja) ショベル
JP2022147725A (ja) 油圧ショベル
JP2023052712A (ja) 作業車両
JP2021042602A (ja) ショベル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018508075

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187022723

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017775092

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017775092

Country of ref document: EP

Effective date: 20181031

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775092

Country of ref document: EP

Kind code of ref document: A1