WO2012169471A1 - ボトル缶の口金部検査方法および検査装置 - Google Patents

ボトル缶の口金部検査方法および検査装置 Download PDF

Info

Publication number
WO2012169471A1
WO2012169471A1 PCT/JP2012/064410 JP2012064410W WO2012169471A1 WO 2012169471 A1 WO2012169471 A1 WO 2012169471A1 JP 2012064410 W JP2012064410 W JP 2012064410W WO 2012169471 A1 WO2012169471 A1 WO 2012169471A1
Authority
WO
WIPO (PCT)
Prior art keywords
bottle
imaging
inspection
light
illumination light
Prior art date
Application number
PCT/JP2012/064410
Other languages
English (en)
French (fr)
Inventor
昭夫 黒澤
忠之 宗田
忠文 平野
Original Assignee
倉敷紡績株式会社
ユニバーサル製缶株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 倉敷紡績株式会社, ユニバーサル製缶株式会社 filed Critical 倉敷紡績株式会社
Priority to US14/123,978 priority Critical patent/US9316600B2/en
Priority to EP12796744.6A priority patent/EP2720028B1/en
Priority to KR1020137033023A priority patent/KR101936974B1/ko
Priority to CN201280028030.2A priority patent/CN103597338B/zh
Priority to BR112013031513A priority patent/BR112013031513A2/pt
Publication of WO2012169471A1 publication Critical patent/WO2012169471A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/3404Sorting according to other particular properties according to properties of containers or receptacles, e.g. rigidity, leaks, fill-level
    • B07C5/3408Sorting according to other particular properties according to properties of containers or receptacles, e.g. rigidity, leaks, fill-level for bottles, jars or other glassware
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9515Objects of complex shape, e.g. examined with use of a surface follower device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/9054Inspection of sealing surface and container finish
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/909Investigating the presence of flaws or contamination in a container or its contents in opaque containers or opaque container parts, e.g. cans, tins, caps, labels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined

Definitions

  • the present invention relates to a method and an inspection apparatus for a cap part of a bottle can.
  • a bottle-shaped can made of an aluminum alloy in which a cap is screwed onto a base portion having a male screw is known as a container filled with contents such as beverages.
  • the can is formed by forming an aluminum alloy plate into a bottomed cylindrical body in which the bottom plate and the cylindrical side surface are integrated by drawing and ironing (DI molding), coating the inner and outer surfaces, and then opening the so-called neck at the opening.
  • DI molding drawing and ironing
  • the shoulder portion and the base portion are formed by performing in-processing, and the base portion is manufactured by performing screw forming processing, curling portion forming processing, or the like.
  • the inner surface coating film in such a can is formed by using a thermosetting resin such as an epoxy acrylic resin or a polyester resin to provide the can with corrosion resistance to the filling (see Patent Document 1). .
  • the inner surface coating is formed by spraying paint onto the inner surface after drawing and ironing and before neck-in processing, but the paint scatters around and adheres to the outer surface of the can to form minute protrusions. As a result, there may be a problem that it becomes a starting point for generating wrinkles during neck-in processing.
  • the curl part is formed by bending the upper end of the base part to the outer peripheral side, and the coating film on the inner surface is formed on the surface.
  • the can is sealed by attaching a cap so as to press the liner against the curled portion (see Patent Document 2). Therefore, if the surface of the curled part, particularly the top surface, is formed with uneven shapes such as wrinkles due to the coating film as described above, or the curled part is deformed such as a dent, the contents may leak. There is. However, an uneven shape may be formed on the surface of the curled portion due to the coating film on the inner surface becoming wrinkled during molding of the base portion and molding of the curled portion.
  • illumination light is obliquely applied to the tangent plane (surface along the tangential direction of the outer surface) of the can body, and the reflected light from the wrinkles
  • Patent Document 3 A method for detecting wrinkles by observing the shadow and shadow along the tangential plane direction has been proposed (see Patent Document 3).
  • the uneven shape of the curled part will cause liquid leakage, so it must be detected reliably, but the color without the uneven shape such as a rolled pattern of aluminum material, punch pattern or dirt during DI molding The pattern does not affect the sealing performance and need not be rejected as a defective product. If such a color pattern is detected as a concavo-convex shape, a non-defective product may be excluded as a defective product and the yield may be reduced.
  • Patent Document 3 Since the detection method described in Patent Document 3 detects wrinkles by confirming the shadow of the illumination light irradiated on the can, there is little risk of detecting a color pattern as defective by this method. However, it is necessary to dispose the can at an accurate position with respect to the illumination light and the camera. If the can is displaced from the inspection position, it may be difficult to obtain an accurate detection result.
  • such an inspection apparatus has a problem that the production efficiency deteriorates because the processing time of each inspection is long.
  • the number of imaging devices is increased and a plurality of inspection devices are provided, a plurality of cans can be inspected at a time, so that the processing time can be shortened, but there is a problem that the cost of configuring the inspection device increases. Arise.
  • the present invention has been made in view of such circumstances, and can reliably detect only bottle cans having irregular shapes such as scratches that may cause liquid leakage and the like, and can reduce the processing time of inspection.
  • a method and apparatus for inspecting a base of a bottle can with excellent productivity.
  • the bottle can base part inspection method of the present invention is the bottle can having a cylindrical base part provided with a curled part in which an open end is curled outward in order to fit a cap with a liner.
  • a method of detecting an uneven shape of the curled part by imaging an imaging area set to include a part of the curled part while rotating a bottle can around a can axis, and continuously along a main conveyance path
  • the curled portion in the imaging area of the bottle cans that are sequentially conveyed is imaged by irradiating white light to detect the presence or absence of a low-luminance region from the obtained black and white inspection image.
  • a primary inspection process for removing bottle cans in which a luminance area is detected, and the imaging area while sequentially transporting the bottle cans excluded by the primary inspection process along a sub-conveyance path retracted from the main conveyance path In the above The two color illumination lights are irradiated from different directions along the substantially tangential direction of the cylindrical surface of the base part, and imaged from the signal intensity of each light color of the obtained color inspection image.
  • the region where the rolling pattern, punch pattern, dirt, etc. are present has a different color from the other regions, so that the amount of white light reflected from the white light source changes and becomes a low luminance region.
  • the primary inspection process by irradiating the curled portion of the imaging area with white light, not only irregular shapes such as scratches, but also two-dimensional dirt without irregularities is detected as a low luminance region.
  • the bottle can in which the luminance region is detected regardless of whether it has an uneven shape, it is possible to instantaneously select bottle cans that are free from dirt and unevenness. Only the bottle cans that are free of dirt and irregularities are transported along the main transport path and removed in the primary inspection process, and are sent to the sub transport path for secondary inspection.
  • the illumination light of two colors is irradiated to the curled portion of the imaging area from different directions, so that the reflected light by the uneven shape formed to block the illumination light is the light of each illumination light. Images are taken in the form of stripes of two colors according to the color. On the other hand, the reflected light due to dirt or the like without unevenness is not striped, but is imaged as a shade of mixed colors of each illumination light. Therefore, it is possible to reliably detect uneven shapes that cause liquid leakage, there is no risk of misidentifying dirt and the like as uneven shapes, and there is no problem in the sealing between the opening of the bottle can and the cap, etc. Therefore, only bottle cans having irregular shapes such as scratches can be reliably excluded.
  • the secondary inspection step in the secondary inspection step, light different from the illumination light of the two colors is applied to a portion of the curl portion irradiated with the illumination light of the two colors.
  • the color third illumination light may be irradiated from a direction intersecting with the two color illumination lights.
  • the edge position of the curled portion can be detected by the reflected light of the third illumination light, and the curled portion in the color inspection image can be specified based on the edge position, so that the shape of the curled portion becomes clear. Dents and distortions of the curled portion can be detected. Further, if the can axis and the rotation axis of the rotating means are shifted when the bottle can is rotated, the curled portion moves in the inspection image, but the curled portion can be specified by detecting the edge position of the curled portion. Therefore, the curled portion can be inspected reliably.
  • the bottle can mouthpiece inspection device of the present invention relates to the bottle can having a cylindrical mouthpiece portion provided with a curled portion with an open end curled outward in order to fit a cap with a liner.
  • An apparatus for detecting an uneven shape of the curled part by imaging an imaging area set to include a part of the curled part while rotating the bottle can around the axis of the can.
  • the primary inspection means holds the bottle can and rotates it around the can axis, and the curl portion in the imaging area.
  • a white light illuminating unit that emits white light
  • a primary imaging unit that captures the imaging area in black and white
  • a low-intensity area detected from the black and white inspection image obtained by the primary imaging unit.
  • the Secondary inspection means holding the bottle can removed by the primary inspection means and rotating it around the can axis, and the bottle
  • the curl portion in the imaging area of the can is irradiated with first illumination light that irradiates the first illumination light along a substantially tangential direction of the cylindrical surface of the base portion, and the first illumination light at the curl portion is irradiated.
  • Second illumination means for irradiating second illumination light of a light color different from that of the first illumination means along the substantially tangential direction of the base from the opposite side of the first illumination light across the imaging area; , Determining whether the bottle can is good or not by determining the presence or absence of uneven shapes based on the signal intensity of each light color of the color inspection image obtained by the secondary imaging means and the color imaging image obtained by the secondary imaging means Secondary determination means.
  • the secondary inspection means is a light different from the illumination light of the two colors for the portion of the curl portion irradiated with the illumination light of the two colors. It is good to provide the 3rd illumination means to irradiate the color 3rd illumination light from the direction which cross
  • bottle cans having irregular shapes such as scratches can be surely eliminated, the processing time for inspection can be shortened, and the production efficiency of bottle cans can be improved.
  • FIG. 1 It is the schematic which shows the nozzle
  • FIG. 1 it is a schematic diagram which shows the reflection state of the illumination light of 2 colors in uneven
  • the base part inspection apparatus 100 shown in FIG. 1 curls the opening end outward in order to fit a cap with a liner (not shown).
  • the bottle can 30 having the cylindrical base part 31 provided with the curled part 32 is set so as to include a part of the curled part 32 (part of the top surface in the present embodiment) as shown in FIG. This is a device for detecting the uneven shape of the curled portion 32 in the imaging area ⁇ .
  • the bottle cans 30 to be inspected by the inspection apparatus 100 are transported in a single row by a main transport path 101 such as a conveyor in the production line as shown in FIG. And in the middle of this main conveyance path 101, inspection device 100 which inspects mouthpiece part 31 while rotating each bottle can 30 is provided.
  • a main transport path 101 such as a conveyor in the production line as shown in FIG.
  • inspection device 100 which inspects mouthpiece part 31 while rotating each bottle can 30 is provided.
  • the inspection apparatus 100 irradiates the curled portion 32 in the imaging area ⁇ of the bottle can 30 that is continuously and sequentially transported along the main transport path 101 to capture the white light W.
  • the primary inspection means 10 that detects the low luminance area from the obtained black and white inspection image and excludes the bottle can 30b in which the low luminance area is detected, and the bottle can 30b excluded by the primary inspection means 10 While sequentially transporting along the sub-transport path 102 retracted from the main transport path 101, imaging is performed by irradiating the curled portion 32 in the imaging area ⁇ of the bottle can 30b with illumination light of two colors from different directions.
  • the second inspection means 20 includes a secondary inspection means 20 that determines the presence or absence of the uneven shape from the signal intensity of each light color of the obtained color inspection image and determines the quality of the bottle can 30b.
  • the primary inspection means 10 is white with respect to the primary rotation means 40 that holds the bottle can 30 and rotates it around the can axis X, and the curl portion 32 in the imaging area ⁇ .
  • the white light illuminating means 41 is arranged so as to irradiate obliquely from above toward the base portion 31 (part of the top surface of the curled portion 32) of the imaging area ⁇ . Further, the primary imaging means 42 is arranged above the base portion 31 of the bottle can 30 toward the imaging area ⁇ (that is, toward the top surface of the curled portion 32).
  • the secondary inspection means 20 includes a secondary rotation means 50 that holds the bottle can 30 b removed by the primary inspection means 10 and rotates it around the can axis, and in the imaging area ⁇ .
  • the third illuminating means 53 for irradiating the third illuminating light G on the portion irradiated with the first illuminating light R and the second illuminating light B at the curled portion 32, and the reflected light at the curled portion 32.
  • the 1st illumination means 51 and the 2nd illumination means 52 are arrange
  • the third illuminating unit 53 applies the third illuminating light G to the outer peripheral surface (edge detection area ⁇ ) that is bent and continuous from the portion irradiated with the first illuminating light R and the second illuminating light B in the curled portion 32. It is arranged to irradiate.
  • the first illumination means 51 is disposed on the side of the base portion 31 of the bottle can 30 b, and the red first illumination light R is emitted from the curl portion 32 in the imaging area ⁇ .
  • the surface is irradiated along the substantially tangential direction of the cylindrical surface of the base 31.
  • the second illumination unit 52 is disposed on the opposite side of the first illumination unit 51 across the imaging area ⁇ , and is blue (light color different from the red first illumination light R).
  • the second illumination light B is irradiated along the substantially tangential direction of the cylindrical surface of the base 31 to the portion of the curl portion 32 irradiated with the first illumination light R.
  • the first illumination light 51 and the second illumination light 52 overlap the curled portion 32 of the imaging area ⁇ from different directions as shown in FIG. Is irradiated.
  • the edge detection area ⁇ is bent and continuous from the imaging area ⁇ , and is set to include the outer peripheral surface of the curled portion 32.
  • the third illumination means 53 is disposed on the side of the base portion 31 of the bottle can 30b, and from the direction intersecting the first illumination light R and the second illumination light B, that is, the base
  • the curl portion 32 of the edge detection area ⁇ of the third illumination light G of green color (light color different from the first illumination light R and the second illumination light B) in a direction substantially orthogonal to the tangential direction of the cylindrical surface of the portion 31. Irradiate the outer peripheral surface of
  • the secondary imaging unit 54 is disposed above the base portion 31 of the bottle can 30 b toward the imaging area ⁇ (that is, toward the top surface of the curled portion 32). A color inspection image including each reflected light at 32 can be captured.
  • the bottle cans 30 are transported in a single row by a main transport path 101 such as a conveyor in the production line, and inspected by the inspection apparatus 100 that inspects the base part 31 while rotating each bottle can 30 in the middle of the main transport path 101. Done.
  • a main transport path 101 such as a conveyor in the production line
  • Each bottle can 30 is continuously transported to the primary inspection means 10 along the main transport path 101 and subjected to primary inspection.
  • the bottle can 30 is rotated around the can axis X by the primary rotation means 40 with respect to the white light illumination means 41 and the primary imaging means 42, thereby the base portion 31.
  • the primary rotation means 40 with respect to the white light illumination means 41 and the primary imaging means 42, thereby the base portion 31.
  • the monochrome inspection image is input to the primary determination unit 43 connected to the primary imaging unit 42.
  • the primary determination unit 43 connected to the primary imaging unit 42 takes in the black and white inspection image acquired by the primary imaging unit 42, detects the presence or absence of the low luminance region from the black and white inspection image, and detects the low luminance region.
  • the detected bottle can 30b is excluded.
  • the bottle can 30b is excluded when a low-luminance region having a predetermined size or more is detected in the black and white inspection image.
  • the bottle can 30a having no dirt or irregularities is instantly selected. Then, the bottle can 30a having no dirt or irregularities is transported along the main transport path 101, and only the bottle can 30b in which the low luminance area is detected is sent to the sub transport path 102 for secondary inspection.
  • the secondary conveyance path 102 is set to have a conveyance speed slower than that of the main conveyance path 101, and the secondary inspection unit 20 performs a precise inspection on the bottle can 30 b excluded by the primary inspection unit 10.
  • the secondary inspection means 20 rotates the bottle can 30b around the can axis X by the secondary rotation means 50 with respect to each of the illumination means 51 to 53 and the secondary imaging means 54. Scanning is performed, and a color inspection image including each reflected light in the curled portion 32 is captured.
  • the color inspection image is input to the secondary determination unit 55 connected to the secondary imaging unit 54, and is used to determine the quality of the bottle can 30b.
  • the secondary determination means 55 connected to the secondary image pickup means 54 takes in the color inspection image acquired by the secondary image pickup means 54 and makes a pass / fail determination of the bottle can 30b based on the color inspection image.
  • the secondary determination means 55 determines that the bottle can is “no” when detecting an uneven shape that causes liquid leakage from the color inspection image, and has only two-dimensional dirt and the like. A bottle can that does not have a problem such as liquid leakage is determined as “good”. Then, the bottle can 30c determined as “No” is excluded from the production line along the sub-transport path 102, and the bottle can 30a determined as “good” is returned to the main transport path 101.
  • the recognition of the uneven shape will be described more specifically. If the curled portion 32 is flat and has no uneven shape, the purple uniform reflected light p, which is a mixed color of the first illumination light R and the second illumination light B, is imaged on the top surface T of the inspection image (FIG. 6). Further, a portion a of a color pattern such as a flat rolled pattern, a punch pattern, or a stain becomes reflected light p having a different purple shade.
  • the curled portion 32 has a concavo-convex shape (for example, a dent 33) that changes the reflection direction of each illumination light
  • the first illumination light R and the second illumination light B are emitted from different directions in the same manner.
  • red reflected light r or blue reflected light b is generated according to the shape of the recess 33 as shown in FIG.
  • the secondary determination means 55 detects such reflected lights r and b, it can be seen that a concave and convex shape such as a recess 33 is formed in the curled portion 32.
  • the dent 33 extended in the radial direction of the bottle can 30b in the curl part 32 is detected.
  • the reflected light g of the third illumination light G in the edge detection area ⁇ is detected as shown in FIG.
  • the secondary determination unit 55 detects the edge position of the imaging area ⁇ from the reflected light g, and specifies the imaging area ⁇ in the color inspection image with the edge position as a reference.
  • the imaging of the reflected light g of the third illumination light G is tracked by a computer (not shown) that captures the color inspection image, and this imaging is used as an edge of the curled portion 32 to have a predetermined width from this edge. Is determined as the imaging area ⁇ .
  • the imaging of the reflected light r of the first illumination light R and the reflected light b of the second illumination light B existing in the imaging area ⁇ is recognized, and the uneven shape is determined from the result. If the displacement of the imaging of the reflected light g of the third illumination light G exceeds a predetermined value of the radial displacement of the curled portion 32, it is determined that the edge abnormality is defective.
  • reflected light g having a shape corresponding to the shape of the dent 34 is generated as shown in FIG.
  • detecting the reflected light g having a shape it is possible to detect the dent 34 formed on the edge portion of the curled portion 32.
  • the uneven shape such as the scratch 35 formed on the edge portion of the curled portion 32 causes irregular reflection of the third illumination light G. By detecting such irregular reflection, the scratch on the outer peripheral surface of the curled portion 32 is detected. 35 can be detected.
  • the reflected light g of the edge detection area ⁇ also exhibits a curved shape according to the shape thereof. By detecting such a shape, The curved portion 36 of the curled portion 32 can be detected.
  • each inspection means of the inspection apparatus 100 the entire circumference of the base part 31 can be scanned by rotating the bottle can 30 by the respective rotation means 40 and 50.
  • the position of the curled portion 32 is greatly meandered, and it becomes difficult to find defects such as bending of the curled portion 32.
  • the green reflected light g from the edge detection area ⁇ indicates the edge position E of the curled portion 32
  • Inspection can be performed while the curled portion 32 is specified. Further, by detecting the local deformation 37 of the green reflected light g, it is possible to detect a defect such as a curved deformation of the curled portion 32.
  • the reflected light r of the red first illumination light R and the reflected light b of the blue second illumination light B are mixed and incident on the secondary imaging means 54, and the purple reflected light p is detected. Since the first illumination light R and the second illumination light B are reflected also on the portion of the color pattern without unevenness such as dirt and rolling pattern attached to the curled portion 32, the purple reflected light p is detected.
  • the curled portion 32 has an uneven shape such as a dent 33 that prevents the illumination light R and B from being incident, the illumination light R and B are irradiated from different directions, so that the shape depends on the uneven shape.
  • the first illumination light R is not applied to the non-reflecting portion 33 a on the inner surface of the recess 33. For this reason, the red reflected light r by the first illumination light R enters the secondary imaging means 54 with the non-reflecting portion 33a as a shadow.
  • the second illumination light B irradiated from a direction different from the first illumination light R is not irradiated to the non-reflecting portion 33 b on the inner surface of the recess 33.
  • the blue reflected light b by the second illumination light B is incident on the secondary imaging means 54 with the non-reflecting portion 33b as a shadow. That is, blue reflected light b is incident on the secondary imaging means 54 from the non-reflecting portion 33 a and red reflected light r is incident on the non-reflecting portion 33 b.
  • the mixed color reflected light p is detected from a flat portion having no uneven shape in the curled portion 32.
  • red reflected light r and blue reflected light b are detected from the inner surface of the recess 33. Therefore, it can be seen that a concavo-convex shape such as the dent 33 is generated in the portion where the monochromatic reflected lights b and r corresponding to the respective colors of the illumination lights R and B are detected.
  • the first illumination light R and the second illumination light B have a complementary color relationship with each other, the monochromatic reflected lights r and b are clearly detected, so that the uneven shape can be reliably detected.
  • all bottle cans in which low luminance areas are detected regardless of whether or not they have an uneven shape while inspecting at high speed in the primary inspection process using white light By eliminating and precisely inspecting only the bottle can in the secondary inspection process using the color inspection image, it is possible to surely eliminate bottle cans having irregular shapes such as scratches and shorten the inspection processing time. .
  • each of the main transport path and the sub transport path is provided with only one path, but a plurality of them may be provided in parallel.
  • a plurality of bottles in parallel a plurality of bottle cans can be inspected simultaneously, and the inspection processing time can be further shortened.
  • the imaging area which irradiates 1st illumination light and 2nd illumination light is set to the top
  • the imaging area ⁇ is set on the outer peripheral surface of the curled portion 32
  • the edge detection area ⁇ is set on the top surface of the curled portion 32, as shown in FIG. Also good.
  • the inspection apparatus of the said embodiment it is set as the structure provided with 1 set of 1st illumination means and 2nd illumination means, and directs 1st illumination light and 2nd illumination light to the top
  • a plurality of sets of first illumination means and second illumination means may be provided.
  • each illumination light is blocked by the convex surface, so that the inner peripheral side of the curled portion top surface cannot be irradiated.
  • upper surface of a curl part can be detected, it is difficult to detect the uneven
  • the top surface of the curled portion 32 is provided by providing a second set of first illumination means 51A and second illumination means 52A for irradiating illumination light from the inner peripheral side of the base portion 31 toward the top surface of the curl portion 32. A wide range can be inspected.
  • a method and apparatus for inspecting a cap part of a bottle can excellent in productivity that can reliably detect only bottle cans having irregular shapes such as scratches that may cause liquid leakage and the like, and can reduce the processing time of inspection. I will provide a.
  • Base inspection apparatus 10 Primary inspection means 20 Secondary inspection means 30, 30a, 30b, 30c Bottle can 31 Base part 32 Curl part 33 Recess 33a, 33b Non-reflective part 34 Scratch 35 Scratch 36 Bending part 37 Deformation 40 1 Secondary rotation means 41 White light illumination means 42 Primary imaging means 43 Primary determination means 50 Secondary rotation means 51, 51A First illumination means 52, 52A Second illumination means 53 Third illumination means 54 Secondary imaging means 55 Secondary Determination means R First illumination light B Second illumination light G Third illumination light r Red reflected light b Blue reflected light g Green reflected light p Purple reflected light X Can axis Y Rotating axis ⁇ Imaging area ⁇ Edge detection area E Edge position T Top

Abstract

 液漏れ等を生じるおそれのある傷等の凹凸形状を有するボトル缶のみを確実に検出でき、検査の処理時間を短縮できる生産性に優れたボトル缶の口金部検査方法及び検査装置を提供する。 主搬送路101に沿って連続的に順次搬送されるボトル缶30の撮像エリアα内のカール部32に対して白色光Wを照射して撮像を行い、得られた白黒検査画像から低輝度領域の有無を検知して低輝度領域が検知されたボトル缶30bを排除する1次検査工程と、1次検査工程によって排除されたボトル缶30bを主搬送路101から退避した副搬送路102に沿って順次搬送しながら撮像エリアα内のカール部32に対して、口金部31の円筒面略接線方向に沿って2色の照明光をそれぞれ異なる方向から照射して撮像を行い、得られたカラー検査画像の各光色の信号強度からカール部32における凹凸形状の有無を判別し、ボトル缶の良否を判定する2次検査工程とを備える。

Description

ボトル缶の口金部検査方法および検査装置
 本発明は、ボトル缶の口金部検査方法および検査装置に関する。
 本願は、2011年6月6日に出願された特願2011-126217号について優先権を主張し、その内容をここに援用する。
 飲料等の内容物が充填される容器として、雄ねじを有する口金部にキャップが螺着されるアルミニウム合金製のボトル形状の缶が知られている。缶は、アルミニウム合金板を絞り加工およびしごき加工(DI成形)により底板と円筒状側面とが一体である有底円筒体に成形し、その内外面に塗装を施した後、開口部にいわゆるネックイン加工を施して肩部および口金部を形成し、この口金部にねじ成形加工やカール部形成加工等を施すことにより製造される。
 このような缶における内面塗膜は、エポキシアクリル系樹脂やポリエステル系樹脂等の熱硬化性樹脂により、充填物に対する耐腐食性を缶に具備させる等のために形成される(特許文献1参照)。内面塗膜は、絞り・しごき加工後、ネックイン加工前に内面に塗料を吹き付けることにより形成されるが、塗料が周囲に飛散したり、缶の外表面に付着して微小な突起体を形成してネックイン加工時にしわを発生させる起点となったりする問題が生じるおそれがある。
 カール部は、口金部の上端を外周側に折り曲げることにより形成されており、内面の塗膜が表面に形成されている。缶は、このカール部にライナーを押しつけるようにキャップが装着されることにより密封される(特許文献2参照)。したがって、カール部の表面、特に天面に、前述のような塗膜によるしわなどの凹凸形状が形成されていたり、カール部に打痕などの変形が生じていたりすると、内容物が漏洩するおそれがある。しかしながら、カール部の表面には、口金部の成形およびカール部の成形の際に内面の塗膜がよれて皺となることによる凹凸形状が形成される場合がある。
 このため、カール部に変形がないこと、しわ等の凹凸形状がカール部の天面に形成されていないことが重要であるとともに、凹凸形状が形成された場合にはこれを検査工程で検出して欠陥品として確実に排除することが求められる。
 たとえば、缶の外面に生じる微細な凹凸形状(皺等)を検出する方法として、缶胴の接平面(外面の接線方向に沿う面)に対して斜めに照明光を照射し、皺による反射光や陰を接平面方向に沿って観察することにより皺を検出する方法が提案されている(特許文献3参照)。
特開2007-84081号公報 特開2004-83128号公報 特開2004-264132号公報
 ボトル缶において、カール部の凹凸形状は液漏れの原因となるため、確実に検出する必要がある一方で、アルミニウム材の圧延模様、DI成形時のパンチ模様や汚れのような凹凸形状のない色模様は密封性に影響がなく、不良品として排除する必要はない。このような色模様を凹凸形状として検出してしまうと、良品を不良品として排除してしまい、歩留まりを低下させてしまうおそれがある。
 特許文献3に記載された検出方法は、缶に照射した照明光の影を確認することにより皺を検出しているので、この方法により色模様を不良として検出してしまうおそれは小さい。しかしながら、照明光およびカメラに対して缶を正確な位置に配置する必要があり、缶が検査位置からずれた場合には、正確な検出結果を得るのが難しくなるおそれがある。
 また、このような検査装置では、個々の検査の処理時間が長いため、生産効率が悪くなるという問題がある。撮像装置の数を増やし、検査装置を複数設けた場合には、複数個の缶を一度に検査できるので処理時間を短縮することは可能であるが、検査装置を構成する費用が嵩むという問題が生じる。
 本発明は、このような事情に鑑みてなされたもので、液漏れ等を生じるおそれのある傷等の凹凸形状を有するボトル缶のみを確実に検出できるとともに、検査の処理時間を短縮することができる生産性に優れたボトル缶の口金部検査方法および検査装置を提供する。
 本発明のボトル缶の口金部検査方法は、ライナー付キャップを被嵌するために開口端を外方へ向かってカールさせたカール部が設けられた円筒状の口金部を有するボトル缶について、前記ボトル缶を缶軸まわりに回転させながら前記カール部の一部を含むように設定された撮像エリアを撮像して前記カール部の凹凸形状を検出する方法であって、主搬送路に沿って連続的に順次搬送される前記ボトル缶の前記撮像エリア内の前記カール部に対して白色光を照射して撮像を行い、得られた白黒検査画像から低輝度領域の有無を検知して、該低輝度領域が検知されたボトル缶を排除する1次検査工程と、前記1次検査工程によって排除されたボトル缶を前記主搬送路から退避した副搬送路に沿って順次搬送しながら、前記撮像エリア内の前記カール部に対して、前記口金部の円筒面略接線方向に沿って2色の照明光をそれぞれ異なる方向から照射して撮像を行い、得られたカラー検査画像の各光色の信号強度から前記カール部における前記凹凸形状の有無を判別し、ボトル缶の良否を判定する2次検査工程とを備える。
 圧延模様、パンチ模様、汚れ等が存在する領域は、その他の領域とは色が異なることから、白色光源から投光される白色光の反射量が変化して低輝度領域となる。1次検査工程では、撮像エリアのカール部に対して白色光を照射することにより、傷等の凹凸形状だけでなく、凹凸のない2次元的な汚れ等も低輝度領域として検知され、この低輝度領域が検知されたボトル缶を、凹凸形状を有するか否かに関わらず排除することにより、汚れや凹凸のないボトル缶を瞬時に選別することができる。これら汚れや凹凸のないボトル缶は、主搬送路に沿って搬送され、1次検査工程で排除されたボトル缶のみ、副搬送路に送り出されて2次検査される。
 2次検査工程では、カラー検査画像により判別することで、より高密度の検査が可能となっている。2次検査工程においては、撮像エリアのカール部に対して2色の照明光を異なる方向から照射することにより、照明光を遮るように形成された凹凸形状による反射光が、各照明光の光色に応じた2色の縞状に撮像される。一方、凹凸のない汚れ等による反射光は縞状にならず、各照明光の混色の濃淡として撮像される。したがって、液漏れを生じさせるような凹凸形状を確実に検出でき、汚れ等を凹凸形状と誤認するおそれがなく、ボトル缶の開口部とキャップとの密封性に問題がない2次元的な汚れ等だけを有するボトル缶を選別できるので、傷等の凹凸形状を有するボトル缶のみを確実に排除することができる。
 このように、白色光による1次検査工程で高速に検査しながら、凹凸形状を有するか否かに関わらず低輝度領域が検知されたボトル缶を全て排除し、そのボトル缶だけをカラー検査画像による2次検査工程で精密に検査することで、傷等の凹凸形状を有するボトル缶を確実に排除できるとともに、検査の処理時間を短縮することができる。
 また、本発明のボトル缶の口金部検査方法において、前記2次検査工程では、前記カール部における前記2色の照明光が照射された部分に対して、前記2色の照明光とは異なる光色の第3照明光を、前記2色の照明光に交差する方向から照射するとよい。
 第3照明光の反射光により、カール部のエッジ位置を検出することができ、このエッジ位置を基準としてカラー検査画像中のカール部を特定することができるので、カール部の形状が明確になり、カール部の凹みや歪みを検出できる。また、ボトル缶を回転させる際に缶軸と回転手段の回転軸とがずれていると、カール部が検査画像中で移動するが、カール部のエッジ位置を検出することによりカール部を特定できるので、確実にカール部を検査することができる。
 本発明のボトル缶の口金部検査装置は、ライナー付キャップを被嵌するために開口端を外方へ向かってカールさせたカール部が設けられた円筒状の口金部を有するボトル缶について、前記ボトル缶を缶軸まわりに回転させながら前記カール部の一部を含むように設定された撮像エリアを撮像して前記カール部の凹凸形状を検出する装置であって、ボトル缶を順次搬送する主搬送路と、前記主搬送路に沿って連続的に順次搬送される前記ボトル缶の前記撮像エリア内の前記カール部に対して白色光を照射して撮像を行い、得られた白黒検査画像から低輝度領域の有無を検知して、該低輝度領域が検知されたボトル缶を排除する1次検査手段と、前記1次検査手段によって排除されたボトル缶を搬送する副搬送路と、前記副搬送路に沿って前記ボトル缶を順次搬送しながら、前記撮像エリア内の前記カール部に対して2色の照明光をそれぞれ異なる方向から照射して撮像を行い、得られたカラー検査画像の各光色の信号強度から前記カール部における前記凹凸形状の有無を判別し、ボトル缶の良否を判定する2次検査手段とを備える。
 また、本発明のボトル缶の口金部検査装置において、前記1次検査手段は、前記ボトル缶を保持して缶軸まわりに回転させる1次回転手段と、前記撮像エリア内の前記カール部に対して白色光を照射する白色光照明手段と、前記撮像エリアを白黒で撮像する1次撮像手段と、前記1次撮像手段により得られた白黒検査画像から低輝度領域を検知し、その検知結果に基づきボトル缶を排除する1次判定手段とを備え、前記2次検査手段は、前記1次検査手段によって排除されたボトル缶を保持して缶軸まわりに回転させる2次回転手段と、該ボトル缶の撮像エリア内の前記カール部に対して、前記口金部の円筒面略接線方向に沿って第1照明光を照射する第1照明手段と、前記カール部における前記第1照明光が照射された部分に対して、前記第1照明手段とは異なる光色の第2照明光を、前記撮像エリアを挟んで前記第1照明光の反対側から、前記口金部の前記略接線方向に沿って照射する第2照明手段と、前記撮像エリアをカラーで撮像する2次撮像手段と、前記2次撮像手段により得られたカラー検査画像の各光色の信号強度に基づき凹凸形状の有無を判別し、ボトル缶の良否を判定する2次判定手段とを備える。
 また、本発明のボトル缶の口金部検査装置において、前記2次検査手段は、前記カール部における前記2色の照明光が照射された部分に対して、前記2色の照明光とは異なる光色の第3照明光を、前記2色の照明光に交差する方向から照射する第3照明手段を備えているとよい。
 本発明によれば、傷等の凹凸形状を有するボトル缶を確実に排除できるとともに、検査の処理時間を短縮することができ、ボトル缶の生産効率を向上させることができる。
本発明に係るボトル缶の口金部検査装置を示す概略図である。 1次検査手段を示す側面図である。 図2に示す1次検査手段の上面図である。 2次検査手段を示す側面図である。 図4に示す2次検査手段の上面図である。 図1に示す検査装置において、凹凸形状のないカール部が撮像された検査画像を示す図である。 図1に示す検査装置において、天面に凹凸形状が形成されたカール部が撮像された検査画像を示す図である。 図1に示す検査装置において、打痕や傷が形成されたカール部が撮像された検査画像を示す図である。 図1に示す検査装置において、外周面に湾曲部が形成されたカール部が撮像された検査画像を示す図である。 図1に示す検査装置において、回転中心から偏心したボトル缶を回転させながらカール部を撮像して得られた検査画像を示す図である。 図1に示す検査装置において、回転中心から偏心したボトル缶を回転させながらカール部を撮像して得られた検査画像であって、カール部の外周部に凹みが形成されている場合を示す図である。 図1に示す検査装置において、凹凸形状における2色の照明光の反射状態を示す模式図である。 本発明に係る口金部検査装置において、撮像エリアをカール部の外周面に設定した例を示す断面図である。 本発明に係る口金部検査装置において、第1照明手段および第2照明手段を2組ずつ備える例を示す断面図である。 図14の検査装置を示す上面図である。
 以下、本発明に係るボトル缶の口金部検査方法および検査装置の実施形態について説明する。
 図1に示す口金部検査装置(以下、「検査装置」)100は、図2に示すように、ライナー付キャップ(図示せず)を被嵌するために開口端を外方へ向かってカールさせたカール部32が設けられた円筒状の口金部31を有するボトル缶30について、図3に示すようにカール部32の一部(本実施形態では天面の一部)を含むように設定された撮像エリアαにおけるカール部32の凹凸形状を検出する装置である。
 この検査装置100で検査されるボトル缶30は、図1に示すように、製造ラインにおいてコンベア等の主搬送路101によって単列搬送される。そして、この主搬送路101の途中に、各ボトル缶30を回転させながら口金部31を検査する検査装置100が備えられている。
 検査装置100は、図1に示すように、主搬送路101に沿って連続的に順次搬送されるボトル缶30の撮像エリアα内のカール部32に対して白色光Wを照射して撮像を行い、得られた白黒検査画像から低輝度領域を検知して、低輝度領域が検知されたボトル缶30bを排除する1次検査手段10と、1次検査手段10によって排除されたボトル缶30bを主搬送路101から退避した副搬送路102に沿って順次搬送しながら、ボトル缶30bの撮像エリアα内のカール部32に対して2色の照明光をそれぞれ異なる方向から照射して撮像を行い、得られたカラー検査画像の各光色の信号強度から凹凸形状の有無を判別し、ボトル缶30bの良否を判定する2次検査手段20との二つの検査手段を有する。
 1次検査手段10は、図2および図3に示すように、ボトル缶30を保持して缶軸Xまわりに回転させる1次回転手段40と、撮像エリアα内のカール部32に対して白色光Wを照射する白色光照明手段41と、撮像エリアαを白黒画像で撮像する1次撮像手段42と、この1次撮像手段42により得られた白黒画像から低輝度領域を検知してボトル缶を排除する1次判定手段43とを備える。
 白色光照明手段41は、図2に示すように、撮像エリアαの口金部31(カール部32の天面の一部)に向かって斜め上方から照射するように配置されている。また、1次撮像手段42は、ボトル缶30の口金部31の上方に、撮像エリアαに向かって(すなわちカール部32の天面に向かって)配置されている。
 2次検査手段20は、図4および図5に示すように、1次検査手段10によって排除されたボトル缶30bを保持して缶軸まわりに回転させる2次回転手段50と、撮像エリアα内のカール部32に対して赤色の第1照明光Rを照射する第1照明手段51と、撮像エリアα内のカール部32に対して青色の第2照明光Bを照射する第2照明手段52と、カール部32における第1照明光Rおよび第2照明光Bが照射された部分に対して緑色の第3照明光Gを照射する第3照明手段53と、カール部32における各反射光を含むカラー検査画像を取得する2次撮像手段54と、この2次撮像手段54によって得られたカラー検査画像に基づきボトル缶30bの良否を判定する2次判定手段55とを備える。
 第1照明手段51および第2照明手段52は、第1照明光Rおよび第2照明光Bが撮像エリアαの口金部31(カール部32の天面の一部)を照射するように配置されている(図5)。第3照明手段53は、カール部32において第1照明光Rおよび第2照明光Bが照射された部分から屈曲して連続する外周面(エッジ検出エリアβ)に対して、第3照明光Gを照射するように配置されている。
 第1照明手段51は、図4および図5に示すように、ボトル缶30bの口金部31の側方に配置され、赤色の第1照明光Rを、撮像エリアα内のカール部32の天面に対して、口金部31の円筒面略接線方向に沿って照射する。
 第2照明手段52は、図4および図5に示すように、撮像エリアαを挟んで第1照明手段51の反対側に配置され、青色(赤色の第1照明光Rとは異なる光色)の第2照明光Bを、カール部32における第1照明光Rが照射された部分に対して、口金部31の円筒面略接線方向に沿って照射する。
 つまり、撮像エリアαのカール部32には、図5に示すように、第1照明手段51および第2照明手段52によって、第1照明光Rと第2照明光Bとが異なる方向から重なるように照射される。
 ボトル缶30bにおいて、エッジ検出エリアβは、撮像エリアαから屈曲して連続し、カール部32の外周面を含むように設定されている。図4および図5に示すように、第3照明手段53は、ボトル缶30bの口金部31の側方に配置され、第1照明光Rおよび第2照明光Bに交差する方向から、すなわち口金部31の円筒面接線方向に対してほぼ直交する方向に、緑色(第1照明光Rおよび第2照明光Bとは異なる光色)の第3照明光Gをエッジ検出エリアβのカール部32の外周面に対して照射する。
 2次撮像手段54は、図4に示すように、ボトル缶30bの口金部31の上方に、撮像エリアαに向かって(すなわちカール部32の天面に向かって)配置されており、カール部32における各反射光を含むカラー検査画像を撮像できる。
 次に、このように構成した検査装置100を用いてボトル缶の口金部を検査する方法について説明する。
 ボトル缶30は、製造ラインにおいてコンベア等の主搬送路101によって単列搬送され、この主搬送路101の途中に、各ボトル缶30を回転させながら口金部31を検査する検査装置100により検査が行われる。
(1次検査工程)
 各ボトル缶30は、主搬送路101に沿って1次検査手段10に連続的に搬送され、1次検査される。1次検査手段10では、ボトル缶30を、白色光照明手段41および1次撮像手段42に対して、1次回転手段40によってボトル缶30を缶軸Xまわりに回転させることにより、口金部31の全周を走査し、撮像エリアαの白黒検査画像を撮像する。白黒検査画像は、1次撮像手段42に接続された1次判定手段43に入力される。
 この1次撮像手段42に接続された1次判定手段43は、1次撮像手段42の取得した白黒検査画像を取り込み、この白黒検査画像から低輝度領域の有無を検知して、低輝度領域が検知されたボトル缶30bを排除する。
 圧延模様、パンチ模様、汚れ等が存在する領域は、その他の領域とは色が異なることから、白色光照明手段41から投光される白色光Wの反射量が変化して低輝度領域として写し出される。白黒検査画像中に、所定の大きさ以上の低輝度領域を検出したときに、そのボトル缶30bは排除される。
 1次検査工程では、傷等の凹凸形状だけでなく、凹凸のない2次元的な汚れ等も低輝度領域として検知され、この低輝度領域が検知されたボトル缶を凹凸を有するか否かに関わらず排除することにより、汚れや凹凸のないボトル缶30aが瞬時に選別される。そして、これら汚れや凹凸のないボトル缶30aは、主搬送路101に沿って搬送され、低輝度領域が検知されたボトル缶30bのみ、副搬送路102に送りだされて2次検査される。
(2次検査工程)
 副搬送路102は、主搬送路101と比べて搬送速度が遅く設定されており、2次検査手段20では、1次検査手段10で排除されたボトル缶30bについて精密な検査が行われる。2次検査手段20は、各照明手段51~53および2次撮像手段54に対して、ボトル缶30bを2次回転手段50によって缶軸Xまわりに回転させることにより、口金部31の全周を走査し、カール部32における各反射光を含むカラー検査画像を撮像する。カラー検査画像は、2次撮像手段54に接続された2次判定手段55に入力され、ボトル缶30bの良否判定に用いられる。
 この2次撮像手段54に接続された2次判定手段55は、2次撮像手段54の取得したカラー検査画像を取り込み、このカラー検査画像に基づいてボトル缶30bの良否判定を行う。
 凹凸形状を有する領域のカラー検査画像には、後述するように、凹凸形状による反射光が各照明光の光色に応じた2色の縞状に写し出される。一方、凹凸のない汚れ等の領域の反射光は縞状にならず、各照明光の混色の濃淡として写し出される。したがって、2次判定手段55は、カラー検査画像から液漏れを生じさせるような凹凸形状を検出したときに、そのボトル缶を「否」と判定し、2次元的な汚れ等だけを有し、液漏れの等の問題がないボトル缶を「良」と判定する。そして、「否」と判定されたボトル缶30cは、副搬送路102に沿って製造ラインから排除され、「良」と判定されたボトル缶30aは、主搬送路101に戻される。
 ここで、凹凸形状の認識についてより具体的に説明する。カール部32に凹凸形状がなく平坦であれば、検査画像の天面Tでは第1照明光Rおよび第2照明光Bの混色である紫色の一様な反射光pが撮像される(図6)。また、平坦な圧延模様、パンチ模様、汚れのような色模様の部分aは、紫色の濃淡が異なる反射光pとなる。
 一方、カール部32に各照明光の反射方向を変える凹凸形状(たとえば凹み33)がある場合には、第1照明光Rおよび第2照明光Bが異なる方向から照射されていることから同様に反射せず、図7に示すように、凹み33の形状に応じて、赤色の反射光rまたは青色の反射光bが生じる。2次判定手段55がこのような反射光r,bを検出することにより、カール部32に凹み33のような凹凸形状が形成されていることがわかる。
 なお、第1照明光Rおよび第2照明光Bの照射方向が口金部31の円筒面略接線方向に沿っていることにより、カール部32においてボトル缶30bの径方向に延びる凹み33を検出しやすい。
 また、2次撮像手段54により取得されたカラー検査画像には、図6に示すように、エッジ検出エリアβにおける第3照明光Gの反射光gが検出される。2次判定手段55は、この反射光gにより撮像エリアαのエッジ位置を検出し、このエッジ位置を基準としてカラー検査画像中の撮像エリアαを特定する。
 より具体的には、カラー検査画像を取り込んだコンピュータ(図示せず)により、第3照明光Gの反射光gの撮像を追尾し、この撮像をカール部32のエッジとして、このエッジから所定幅の範囲を撮像エリアαとして割り出す。この撮像エリアα内に存在する第1照明光Rの反射光rおよび第2照明光Bの反射光bの撮像を認識し、その結果から凹凸形状を判別する。また、第3照明光Gの反射光gの撮像の変位がカール部32の半径方向の変位の所定値を超える場合には、エッジ異常の不良と判別する。
 また、カール部32のエッジ部分に打痕34などの凹凸形状が形成されている場合、図8に示すように、打痕34の形状に応じた形状の反射光gが生じるので、このような形状の反射光gを検出することにより、カール部32のエッジ部分に形成された打痕34等を検出することができる。
 さらに、カール部32のエッジ部分に形成された傷35などの凹凸形状は、第3照明光Gの乱反射を生じさせるので、このような乱反射を検出することにより、カール部32の外周面の傷35を検出することができる。また、図9に示すように局所的な湾曲部36が形成されている場合、その形状に応じてエッジ検出エリアβの反射光gも湾曲形状を示すので、このような形状を検出することにより、カール部32の湾曲部36を検出することができる。
 また、検査装置100の各検査手段では、ボトル缶30を各回転手段40,50によって回転させることにより、口金部31の全周を走査することができる。
 2次検査工程においては、ボトル缶30bの缶軸Xと2次回転手段50の回転軸Yとがずれていると、ボトル缶30bの回転に伴い、図10に示すように、2次撮像手段54によって撮像されたカラー検査画像において、カール部32の位置が大きく蛇行してしまい、カール部32の湾曲等の不良を発見しにくくなってしまう。しかしながら、2次検査手段20においては、エッジ検出エリアβからの緑色の反射光gがカール部32のエッジ位置Eを示しているので、この反射光g(すなわちエッジ位置E)を追うことにより、カール部32を特定しながら検査ができる。また、緑色の反射光gの局所的な変形37を検出することにより、カール部32の湾曲変形等の不良を検出することができる。
 図10および図11に、2次検査工程においてボトル缶30bを回転させながら撮像することにより得られる口金部31のカラー検査画像を示す。このカラー検査画像において、ボトル缶30bの缶軸Xが2次回転手段50の回転軸Yに対して距離dだけずれている場合、エッジ位置Eは、その偏心量に等しい幅dで緩やかに蛇行する(図10)。これに対し、口金部31が変形している場合には、図11に示すように、エッジ位置E全体の湾曲形状とは明確に異なる形状の、局所的な変形37が発生する。したがって、このような変形37の検出によりカール部32の湾曲部分を容易に検出できるので、ボトル缶30bが偏心回転しても、カール部32を正確に認識しながら、不良形状を確実に検出することができる。
 ここで、カラー検査画像における凹凸形状の検出について図12を参照して説明する。カール部32の表面が平坦である場合、赤い第1照明光Rの反射光rと青い第2照明光Bの反射光bとが混合して2次撮像手段54に入射し、紫色の反射光pが検出される。カール部32に付着した汚れ、圧延模様などの凹凸のない色模様の部分についても、第1照明光Rと第2照明光Bとが反射するため、紫色の反射光pが検出される。しかしながら、カール部32に各照明光R,Bの入射を妨げるたとえば凹み33のような凹凸形状がある場合は、各照明光R,Bが異なる方向から照射されていることから、凹凸形状に応じていずれか一方の照明光の反射光のみが2次撮像手段54によって検出される部分が生じる。このため、混合色でない反射光b,rを検出することにより、色模様を検出せずに凹凸形状のみを検出することができる。
 図12に示すように、カール部32に凹み33がある場合、第1照明光Rは凹み33の内面の非反射部33aに照射されない。このため、第1照明光Rによる赤色の反射光rは、この非反射部33aが影となって2次撮像手段54に入射する。一方、第1照明光Rとは異なる方向から照射される第2照明光Bは、凹み33の内面の非反射部33bに照射されない。このため、第2照明光Bによる青色の反射光bは、この非反射部33bが影となって2次撮像手段54に入射する。つまり、非反射部33aからは青色の反射光b、非反射部33bからは赤色の反射光rが2次撮像手段54に入射する。
 これら第1照明光Rおよび第2照明光Bが同時に照射されることにより、図12に示すように、カール部32において凹凸形状のない平坦な部分からは、混色の反射光pが検出される。一方で、凹み33の内面からは、赤色の反射光rおよび青色の反射光bが検出される。したがって、各照明光R,Bの各色に応じた単色の反射光b,rが検出された部分に、凹み33のような凹凸形状が生じていることがわかる。特に、第1照明光Rと第2照明光Bとが互いに補色の関係を有することにより、単色の反射光r,bが明確に検出されるので、凹凸形状を確実に検出することができる。
 以上説明したように、本発明の検査装置によれば、白色光による1次検査工程で高速に検査しながら、凹凸形状を有するか否かに関わらず低輝度領域が検知されたボトル缶を全て排除し、そのボトル缶だけをカラー検査画像による2次検査工程で精密に検査することで、傷等の凹凸形状を有するボトル缶を確実に排除できるとともに、検査の処理時間を短縮することができる。
 なお、本発明は前記実施形態の構成のものに限定されるものではなく、細部構成においては、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 たとえば、前記実施形態の検査装置においては、主搬送路および副搬送路ともそれぞれを一経路のみ設ける構成としていたが、それぞれ複数並列に設けてもよい。複数並列に設けることで、複数のボトル缶に対して同時に検査を行うことができ、検査の処理時間をさらに短縮することができる。
 また、前記実施形態の検査装置においては、第1照明光および第2照明光を照射する撮像エリアをカール部の天面に設定し、第3照明光をカール部の外周面に対して照射するように設定したが、この実施形態とは反対に、図13に示すように、撮像エリアαをカール部32の外周面に設定し、エッジ検出エリアβをカール部32の天面に設定してもよい。この場合、カール部32の外周面に形成された凹凸形状を色模様等とは区別して検出できるとともに、カール部32の天面高さがばらつくような変形等の不良を検出できる。
 また、前記実施形態の検査装置においては、第1照明手段および第2照明手段を1組備える構成とし、第1照明光および第2照明光を口金部の外周側からカール部の天面に向けて照射したが、第1照明手段および第2照明手段を複数組備えてもよい。たとえば、カール部の天面が凸湾曲形状である場合、各照明光が凸面によって遮られてしまうため、カール部天面の内周側を照射できない。このため、カール部の天面の外周側の凹凸形状は検出できるが、内周側の凹凸形状の検出が困難である。
 このような場合、図14および図15に示すように、口金部31の外周側からカール部32の天面に向けて照明光を照射する第1照明手段51および第2照明手段52に加えて、口金部31の内周側からカール部32の天面に向けて照明光を照射する2組目の第1照明手段51Aおよび第2照明手段52Aを備えることにより、カール部32の天面を広い範囲にわたって検査することができる。
 液漏れ等を生じるおそれのある傷等の凹凸形状を有するボトル缶のみを確実に検出できるとともに、検査の処理時間を短縮することができる生産性に優れたボトル缶の口金部検査方法および検査装置を提供する。
100 口金部検査装置
10 1次検査手段
20 2次検査手段
30,30a,30b,30c ボトル缶
31 口金部
32 カール部
33 凹み
33a,33b 非反射部
34 打痕
35 傷
36 湾曲部
37 変形
40 1次回転手段
41 白色光照明手段
42 1次撮像手段
43 1次判定手段
50 2次回転手段
51,51A 第1照明手段
52,52A 第2照明手段
53 第3照明手段
54 2次撮像手段
55 2次判定手段
R 第1照明光
B 第2照明光
G 第3照明光
r 赤色の反射光
b 青色の反射光
g 緑色の反射光
p 紫色の反射光
X 缶軸
Y 回転軸
α 撮像エリア
β エッジ検出エリア
E エッジ位置
T 天面

Claims (5)

  1.  ライナー付キャップを被嵌するために開口端を外方へ向かってカールさせたカール部が設けられた円筒状の口金部を有するボトル缶について、前記ボトル缶を缶軸まわりに回転させながら前記カール部の一部を含むように設定された撮像エリアを撮像して前記カール部の凹凸形状を検出する方法であって、
     主搬送路に沿って連続的に順次搬送される前記ボトル缶の前記撮像エリア内の前記カール部に対して白色光を照射して撮像を行い、得られた白黒検査画像から低輝度領域の有無を検知して、該低輝度領域が検知されたボトル缶を排除する1次検査工程と、
     前記1次検査工程によって排除されたボトル缶を前記主搬送路から退避した副搬送路に沿って順次搬送しながら、前記撮像エリア内の前記カール部に対して、前記口金部の円筒面略接線方向に沿って2色の照明光をそれぞれ異なる方向から照射して撮像を行い、得られたカラー検査画像の各光色の信号強度から前記カール部における前記凹凸形状の有無を判別し、ボトル缶の良否を判定する2次検査工程と
    を備えることを特徴とするボトル缶の口金部検査方法。
  2.  前記2次検査工程では、前記カール部における前記2色の照明光が照射された部分に対して、前記2色の照明光とは異なる光色の第3照明光を、前記2色の照明光に交差する方向から照射することを特徴とする請求項1記載のボトル缶の口金部検査方法。
  3.  ライナー付キャップを被嵌するために開口端を外方へ向かってカールさせたカール部が設けられた円筒状の口金部を有するボトル缶について、前記ボトル缶を缶軸まわりに回転させながら前記カール部の一部を含むように設定された撮像エリアを撮像して前記カール部の凹凸形状を検出する装置であって、
     ボトル缶を順次搬送する主搬送路と、前記主搬送路に沿って連続的に順次搬送される前記ボトル缶の前記撮像エリア内の前記カール部に対して白色光を照射して撮像を行い、得られた白黒検査画像から低輝度領域の有無を検知して、該低輝度領域が検知されたボトル缶を排除する1次検査手段と、
     前記1次検査手段によって排除されたボトル缶を搬送する副搬送路と、
     前記副搬送路に沿って前記ボトル缶を順次搬送しながら、前記撮像エリア内の前記カール部に対して2色の照明光をそれぞれ異なる方向から照射して撮像を行い、得られたカラー検査画像の各光色の信号強度から前記カール部における前記凹凸形状の有無を判別し、ボトル缶の良否を判定する2次検査手段と
    を備えることを特徴とするボトル缶の口金部検査装置。
  4.  前記1次検査手段は、
     前記ボトル缶を保持して缶軸まわりに回転させる1次回転手段と、
     前記撮像エリア内の前記カール部に対して白色光を照射する白色光照明手段と、
     前記撮像エリアを白黒で撮像する1次撮像手段と、
     前記1次撮像手段により得られた白黒検査画像から低輝度領域を検知し、その検知結果に基づきボトル缶を排除する1次判定手段と
    を備え、前記2次検査手段は、
     前記1次検査手段によって排除されたボトル缶を保持して缶軸まわりに回転させる2次回転手段と、
     該ボトル缶の撮像エリア内の前記カール部に対して、前記口金部の円筒面略接線方向に沿って第1照明光を照射する第1照明手段と、
     前記カール部における前記第1照明光が照射された部分に対して、前記第1照明手段とは異なる光色の第2照明光を、前記撮像エリアを挟んで前記第1照明光の反対側から、前記口金部の前記略接線方向に沿って照射する第2照明手段と、
     前記撮像エリアをカラーで撮像する2次撮像手段と、前記2次撮像手段により得られたカラー検査画像の各光色の信号強度に基づき凹凸形状の有無を判別し、ボトル缶の良否を判定する2次判定手段と
    を備えることを特徴とする請求項3記載のボトル缶の口金部検査装置。
  5.  前記2次検査手段は、前記カール部における前記2色の照明光が照射された部分に対して、前記2色の照明光とは異なる光色の第3照明光を、前記2色の照明光に交差する方向から照射する第3照明手段を備えていることを特徴とする請求項3又は4に記載のボトル缶の口金部検査装置。
PCT/JP2012/064410 2011-06-06 2012-06-04 ボトル缶の口金部検査方法および検査装置 WO2012169471A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/123,978 US9316600B2 (en) 2011-06-06 2012-06-04 Inspection method and inspection equipment for mouth section of bottle-can
EP12796744.6A EP2720028B1 (en) 2011-06-06 2012-06-04 Method and apparatus for inspecting neck finish of metal bottle
KR1020137033023A KR101936974B1 (ko) 2011-06-06 2012-06-04 보틀캔의 구금부 검사 방법 및 검사 장치
CN201280028030.2A CN103597338B (zh) 2011-06-06 2012-06-04 瓶罐的口部检查方法及检查装置
BR112013031513A BR112013031513A2 (pt) 2011-06-06 2012-06-04 método e aparelho para inspecionar o gargalo de garra-fa de metal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011126217A JP5877657B2 (ja) 2011-06-06 2011-06-06 ボトル缶の口金部検査方法および検査装置
JP2011-126217 2011-06-06

Publications (1)

Publication Number Publication Date
WO2012169471A1 true WO2012169471A1 (ja) 2012-12-13

Family

ID=47296034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064410 WO2012169471A1 (ja) 2011-06-06 2012-06-04 ボトル缶の口金部検査方法および検査装置

Country Status (7)

Country Link
US (1) US9316600B2 (ja)
EP (1) EP2720028B1 (ja)
JP (1) JP5877657B2 (ja)
KR (1) KR101936974B1 (ja)
CN (1) CN103597338B (ja)
BR (1) BR112013031513A2 (ja)
WO (1) WO2012169471A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120243003A1 (en) * 2009-12-22 2012-09-27 Tadafumi Hirano Asperity detection device for can

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3027428B1 (fr) * 2014-10-17 2016-12-09 Msc & Sgcc Procede, dispositif et ligne d'inspection pour la lecture optique de reliefs sur une paroi laterale d'un recipient
US10422755B2 (en) * 2016-12-07 2019-09-24 Applied Vision Corporation Identifying defects in transparent containers
WO2018142614A1 (ja) * 2017-02-06 2018-08-09 東洋ガラス株式会社 ガラスびんの検査装置
IT201700072654A1 (it) * 2017-06-28 2018-12-28 Arol Spa Metodo e apparecchio per il trasferimento di articoli da e a una linea di trasporto
JP6886952B2 (ja) * 2018-09-28 2021-06-16 シスメックス株式会社 検体測定装置および検体測定方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120490A (en) * 1977-03-28 1978-10-20 Nippon Pirooburotsuku Seizou K Lighting apparatus for detection of flaw and crack at opening of glass bottle
JPS6212845A (ja) * 1985-07-10 1987-01-21 Kirin Brewery Co Ltd 壜のねじ口部欠陥検出装置
JP2002296192A (ja) * 2001-03-30 2002-10-09 Rozefu Technol:Kk カラー照明を用いた欠陥検査方法
JP2003215055A (ja) * 2002-01-24 2003-07-30 Mitsubishi Materials Corp 検査装置
JP2003307498A (ja) * 2002-04-16 2003-10-31 Mitsubishi Materials Corp 検査装置
JP2004083128A (ja) 2001-12-28 2004-03-18 Mitsubishi Materials Corp ボトル缶体およびボトル
JP2004264132A (ja) 2003-02-28 2004-09-24 Toyo Seikan Kaisha Ltd 缶外面の皺検出方法
JP2007084081A (ja) 2005-09-20 2007-04-05 Universal Seikan Kk ボトル缶の製造方法
JP2007285983A (ja) * 2006-04-20 2007-11-01 Honda Motor Co Ltd ワークの傷等検出方法及びその装置
JP2011133266A (ja) * 2009-12-22 2011-07-07 Universal Seikan Kk 缶の凹凸検出装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915237A (en) 1986-09-11 1990-04-10 Inex/Vistech Technologies, Inc. Comprehensive container inspection system
DE3728183C2 (de) * 1987-08-24 1995-07-20 Datz Falk Wilhelm Auf einem gemeinsamen Maschinentisch angeordnete Vorrichtung zum mehrstufigen Behandeln von Getränke-Rücklaufflaschen
JP2759231B2 (ja) * 1991-03-22 1998-05-28 山村硝子株式会社 ガラス壜口部の欠陥検査装置
DE59712137D1 (de) * 1996-10-30 2005-01-27 Krones Ag Inspektionsvorrichtung für Flaschen oder dgl.
JP2000206055A (ja) * 1999-01-07 2000-07-28 Murata Mach Ltd パッケ―ジ検査方法
JP2000206056A (ja) * 1999-01-07 2000-07-28 Murata Mach Ltd パッケ―ジ検査方法及びシステム
JP4227272B2 (ja) * 1999-08-11 2009-02-18 株式会社エヌテック 異なる波長の光を用いた物品の検査装置
US6104482A (en) * 1999-12-02 2000-08-15 Owens-Brockway Glass Container Inc. Container finish check detection
JP2002156338A (ja) 2000-11-15 2002-05-31 Lion Engineering Co Ltd 缶蓋接合部の検査装置
JP2002196192A (ja) * 2000-12-25 2002-07-10 Kyocera Corp ラインモニタ
JP3920115B2 (ja) 2002-03-08 2007-05-30 ユニバーサル製缶株式会社 ボトル缶の測定検査方法
DE102004048515A1 (de) * 2004-10-06 2006-04-13 Krones Ag Sortiervorrichtung und Fördervorrichtung für Stückgut sowie Verfahren zum Sortieren oder Fördern von Stückgut
US7800009B2 (en) * 2007-10-30 2010-09-21 Logical Systems Incorporated Air separator conveyor and vision system
GB0801307D0 (en) 2008-01-24 2008-03-05 3Dx Ray Ltd Can seam inspection

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120490A (en) * 1977-03-28 1978-10-20 Nippon Pirooburotsuku Seizou K Lighting apparatus for detection of flaw and crack at opening of glass bottle
JPS6212845A (ja) * 1985-07-10 1987-01-21 Kirin Brewery Co Ltd 壜のねじ口部欠陥検出装置
JP2002296192A (ja) * 2001-03-30 2002-10-09 Rozefu Technol:Kk カラー照明を用いた欠陥検査方法
JP2004083128A (ja) 2001-12-28 2004-03-18 Mitsubishi Materials Corp ボトル缶体およびボトル
JP2003215055A (ja) * 2002-01-24 2003-07-30 Mitsubishi Materials Corp 検査装置
JP2003307498A (ja) * 2002-04-16 2003-10-31 Mitsubishi Materials Corp 検査装置
JP2004264132A (ja) 2003-02-28 2004-09-24 Toyo Seikan Kaisha Ltd 缶外面の皺検出方法
JP2007084081A (ja) 2005-09-20 2007-04-05 Universal Seikan Kk ボトル缶の製造方法
JP2007285983A (ja) * 2006-04-20 2007-11-01 Honda Motor Co Ltd ワークの傷等検出方法及びその装置
JP2011133266A (ja) * 2009-12-22 2011-07-07 Universal Seikan Kk 缶の凹凸検出装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120243003A1 (en) * 2009-12-22 2012-09-27 Tadafumi Hirano Asperity detection device for can
US8786865B2 (en) * 2009-12-22 2014-07-22 Universal Can Corporation Asperity detection device for can

Also Published As

Publication number Publication date
JP2012251930A (ja) 2012-12-20
CN103597338B (zh) 2016-10-12
US9316600B2 (en) 2016-04-19
BR112013031513A2 (pt) 2017-01-17
KR101936974B1 (ko) 2019-01-09
KR20140057210A (ko) 2014-05-12
CN103597338A (zh) 2014-02-19
US20140125796A1 (en) 2014-05-08
JP5877657B2 (ja) 2016-03-08
EP2720028A1 (en) 2014-04-16
EP2720028B1 (en) 2017-08-02
EP2720028A4 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5734104B2 (ja) ボトル缶の口金部検査装置
JP5324415B2 (ja) 缶の凹凸検出装置
WO2012169471A1 (ja) ボトル缶の口金部検査方法および検査装置
JP5698608B2 (ja) ボトル缶のねじ部検査装置
JP2000180382A (ja) 外観検査装置
JP2011079564A (ja) 包装不良検査方法及び装置
JP3989739B2 (ja) 検査装置
JP2019060722A (ja) 管状体内表面検査装置及び管状体内表面検査方法
JP5959430B2 (ja) ボトルキャップの外観検査装置及び外観検査方法
JP6360424B2 (ja) 撮像装置および座屈検査装置
JP5827028B2 (ja) ボトル缶の口金部検査装置
JP3586383B2 (ja) スリーピース缶の内面検査方法
JP2002310629A (ja) 周面撮像装置及び周面検査装置
JP2021107779A (ja) 検査装置および検査方法
JP6420180B2 (ja) 表面検査装置および表面検査方法
JP2023158295A (ja) チューブ容器検査装置
JP2020204521A (ja) ラベル検査装置
JP5679650B2 (ja) 錠剤検査装置及びptp包装機
JPH04121648A (ja) 金属缶端部の外観検査方法
JPS62257007A (ja) 容器の集中検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796744

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012796744

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012796744

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14123978

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137033023

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013031513

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013031513

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131206