WO2012169351A1 - 抽出を含む流体処理方法 - Google Patents

抽出を含む流体処理方法 Download PDF

Info

Publication number
WO2012169351A1
WO2012169351A1 PCT/JP2012/063125 JP2012063125W WO2012169351A1 WO 2012169351 A1 WO2012169351 A1 WO 2012169351A1 JP 2012063125 W JP2012063125 W JP 2012063125W WO 2012169351 A1 WO2012169351 A1 WO 2012169351A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
processing
extraction
processed
fluids
Prior art date
Application number
PCT/JP2012/063125
Other languages
English (en)
French (fr)
Inventor
荒木加永子
本田大介
榎村眞一
Original Assignee
エム・テクニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エム・テクニック株式会社 filed Critical エム・テクニック株式会社
Priority to CN2012800049642A priority Critical patent/CN103298533A/zh
Priority to KR1020137016951A priority patent/KR101892947B1/ko
Priority to US14/125,030 priority patent/US9764250B2/en
Priority to JP2012540217A priority patent/JP5213001B1/ja
Priority to EP12797290.9A priority patent/EP2719433B1/en
Publication of WO2012169351A1 publication Critical patent/WO2012169351A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0446Juxtaposition of mixers-settlers
    • B01D11/0461Juxtaposition of mixers-settlers mixing by counter-current streams provoked by centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0446Juxtaposition of mixers-settlers
    • B01D11/0465Juxtaposition of mixers-settlers comprising vibrating mechanisms, radiations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/271Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator
    • B01F27/2712Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator provided with ribs, ridges or grooves on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/271Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator
    • B01F27/2714Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator the relative position of the stator and the rotor, gap in between or gap with the walls being adjustable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7176Feed mechanisms characterised by the means for feeding the components to the mixer using pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0476Moving receptacles, e.g. rotating receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0476Moving receptacles, e.g. rotating receptacles
    • B01D11/048Mixing by counter-current streams provoked by centrifugal force, in rotating coils or in other rotating spaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/271Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator

Definitions

  • the present invention relates to a method for extracting an extract using a thin film fluid and a fluid processing method using the same.
  • Extraction is one of the typical treatments for separating and purifying the target substance (hereinafter referred to as an extract).
  • a batch system using a separatory funnel or the like is generally used as an apparatus and method for extracting an extract, but extraction is insufficient when scaled up for actual production.
  • problems such as a longer processing time, various continuous extraction methods have been provided so far.
  • Patent Documents 1 to 3 As devices and methods for continuously extracting an extract, there are those described in Patent Documents 1 to 3, but the state (gas, liquid or solid) of the extract, its size, physical / chemical It is necessary to use various forms according to various conditions such as physical properties and throughput. Further, as a device or a method for continuously extracting a noble metal such as a platinum group element or a rare metal such as indium or a method thereof, a countercurrent continuous extraction device as disclosed in Patent Document 4 or Patent Document 5 is disclosed. And a separation and recovery method using supercriticality as described in the above.
  • a noble metal such as a platinum group element or a rare metal such as indium or a method thereof
  • the present invention solves the above-described problems, and an object of the present invention is to provide a fluid processing method including extraction that can extract an extraction target continuously with high efficiency. More desirably, it is an object of the present invention to provide a fluid processing method including extraction, which can extract an extract continuously in high yield.
  • the present invention has been completed by finding that extraction can be efficiently and effectively extracted into an extraction solvent by mixing between at least two processing surfaces rotating at least one relative to the other. I let you.
  • the present invention provides at least one kind of extraction target in a thin film fluid formed between at least two processing surfaces which are arranged so as to be able to approach and separate from each other and at least one rotates relative to the other.
  • a fluid processing method characterized by extracting a substance into at least one kind of extraction solvent capable of extracting the substance to be extracted.
  • the present invention uses at least two kinds of fluids as the fluid to be treated, and at least one of the fluids is a fluid containing the at least one kind of extract, and is a fluid other than the above.
  • the at least one other type of fluid is an extraction fluid containing the at least one type of extraction solvent, and the fluid containing the at least one type of extraction object that is the fluid to be processed and the extraction fluid.
  • the present invention provides that the fluid to be treated of either the fluid containing the at least one kind of the extraction object or the extraction fluid passes between the processing surfaces while forming the thin film fluid. And a separate introduction path independent of the flow path through which any one of the fluids to be treated flows, and at least one of the at least two processing surfaces has an opening leading to the introduction path. At least one of the fluid containing at least one kind of the extraction object and the extraction fluid, and introducing the other fluid to be processed between the processing surfaces through the opening,
  • the extraction fluid can be implemented by mixing the fluid containing at least one type of extraction object and the extraction fluid in the thin film fluid and extracting the extraction object into the extraction solvent.
  • the present invention provides at least two processing units, a first processing unit and a second processing unit that can approach and leave the first processing unit, and the first processing unit described above.
  • a rotation drive mechanism that relatively rotates the second processing unit, and the first processing surface and the second processing surface at positions facing each other in the first and second processing units, The at least two processing surfaces are provided, and the processing target fluid is processed between the first processing surface and the second processing surface, and can be approached and separated.
  • the fluid to be processed is passed between the first processing surface and the second processing surface, which are disposed to face each other and at least one of which rotates relative to the other, and the processing target
  • the fluid passes between the two processing surfaces while forming the thin film fluid, thereby allowing the extract to be extracted. It can implement as what extracts to an extraction solvent.
  • the present invention also includes a fluid pressure applying mechanism that applies pressure to the fluid to be processed, and the fluid to be processed to which the first processing surface and the second processing surface are applied with the pressure. Is formed in a part of the forced flow path, and at least the second processing part of the first processing part and the second processing part has a pressure receiving surface.
  • at least a part of the pressure receiving surface is constituted by the second processing surface, and the pressure receiving surface receives the pressure applied to the fluid to be processed by the fluid pressure applying mechanism and receives the first processing surface.
  • Fluid containing the at least one type of extraction object between the second processing surface At least one additional introduction path independent of the flow path through which any one of the extraction fluids and the fluid to be processed flows and the flow of any one of the fluids to be processed flows, At least one of the first processing surface and the second processing surface is provided with at least one opening that communicates with the introduction path, and includes the fluid containing at least one kind of the extract and the extraction fluid.
  • the other fluid to be treated is introduced between the processing surfaces through the opening, and the fluid to be treated introduced between the processing surfaces forms the thin film fluid.
  • the present invention also includes a fluid pressure applying mechanism that applies pressure to the fluid to be processed, and the fluid to be processed to which the first processing surface and the second processing surface are applied with the pressure. Is formed in a part of the forced flow path, and at least the second processing part of the first processing part and the second processing part has a pressure receiving surface.
  • at least a part of the pressure receiving surface is constituted by the second processing surface, and the pressure receiving surface receives the pressure applied to the fluid to be processed by the fluid pressure applying mechanism and receives the first processing surface. Generating a force for moving the second processing surface away from the first processing surface, facing each other so as to be able to approach and separate, and at least one of which rotates relative to the other.
  • Fluid containing the at least one type of extraction object between the second processing surface At least one additional introduction path independent of the flow path through which any one of the extraction fluids and the fluid to be processed flows and the flow of any one of the fluids to be processed flows, At least one of the first processing surface and the second processing surface is provided with at least one opening that communicates with the introduction path, and includes the fluid containing at least one kind of the extract and the extraction fluid. Either one of the fluids to be treated is introduced between the processing surfaces through the opening, and the fluids to be treated introduced between the processing surfaces form the thin film fluid while forming the thin film fluid. By passing between the processing surfaces and mixing and reacting these fluids to be processed, the extraction object can be extracted into the extraction solvent.
  • the present invention uses at least three kinds of fluids, ie, first, second, and third, as the fluid to be treated, and at least one of the first fluid and the second fluid.
  • the fluid includes at least one kind of extract in an unreacted state, and the third fluid extracts the extract in an unreacted state or a state after reaction.
  • An extraction fluid containing at least one type of extraction solvent, and at least any one of the fluids to be processed passes between the two processing surfaces while forming the thin film fluid; At least two separate introduction paths independent of the flow path through which at least one of the fluids flows are provided, and the at least two separate introduction paths are independent from each other, and the first processing surface And less surface for second processing Any one of the above-mentioned at least two separate introduction paths, each of which has an opening that communicates separately, and the remaining fluid to be treated that is different from at least one of the fluids is separated from the separate openings. It introduces between the processing surfaces, mixes the fluid to be treated in the thin film fluid, and reacts the first fluid and the second fluid to react with the reaction main product generated in the reaction. At least any one of the by-products can be extracted as the extraction target and extracted into the extraction solvent.
  • the extraction process can be performed efficiently and effectively continuously, it can be performed more easily, at lower energy and at a lower cost, and the product that requires extraction in the industry. Can be provided inexpensively and stably.
  • the yield extraction efficiency
  • an extract according to the purpose can be provided.
  • the extraction treatment and the fluid treatment such as reaction, precipitation, dissolution, and molecular dispersion can be performed continuously, so that fluid treatment including extraction can be performed with higher efficiency.
  • FIG. 1 is a schematic cross-sectional view of a fluid processing apparatus according to an embodiment of the present invention.
  • A is a schematic plan view of a first processing surface of the fluid processing apparatus shown in FIG. 1, and
  • A) is sectional drawing of the 2nd introducing
  • B) is a principal part enlarged view of the processing surface for demonstrating the 2nd introducing
  • the extract in the present invention is not particularly limited. It is possible to use an extract according to the purpose.
  • a naturally occurring one naturally occurring one (natural product), an artificially synthesized organic material, an inorganic material, or an organic / inorganic composite material may be mentioned.
  • a natural product for example, it is a component contained in living bodies, such as animals and plants, fungi, or soil, a river, and the sea. Examples include proteins, amino acids, carotenes and catechins.
  • components such as metals and non-metals, or compounds and ions thereof can be used.
  • the metal or non-metal compound is not particularly limited, and examples include a metal or non-metal salt, oxide, nitride, carbide, complex, organic salt, organic complex, organic compound, or water of these compounds. Examples thereof include solvates and organic solvates.
  • the above-mentioned extracts are mixed or dissolved in a gas or liquid solvent to be described later and used as a fluid containing at least one type of extract and face each other so as to be able to approach and separate. And at least one of the fluids containing at least one extractable substance and at least one of the extractable substances can be extracted between at least two processing surfaces rotating relative to the other. It is possible to extract the extract into the extraction solvent by mixing with an extraction fluid for extracting the extract including one type of extraction solvent.
  • the state in the fluid before and after the extraction process of the extraction object is not particularly limited. It may be in a state of being dissolved or molecularly dispersed in a solvent in a gas state or a liquid state described later, or may be in a suspended state such as a state where fine particles such as a solid or an emulsion are dispersed in the solvent. In addition, before and after the extraction processing of the extraction object, it may be accompanied by reaction, precipitation, dissolution, molecular dispersion, and the like.
  • the target compound (main product) produced by the reaction or the by-product produced by the reaction reduces the reaction efficiency, the reaction and the above-mentioned target compound (main product) or by-product By continuously performing the extraction, the target compound can be obtained more efficiently and effectively than before.
  • the target compound (main product) or by-product is the extractable.
  • metal ions are extracted as an example, a decrease in the distribution coefficient is reduced by performing the extraction in a certain pH range.
  • water is generated as a by-product in organic reactions and organic synthesis and the reaction does not proceed due to an equilibrium reaction
  • by extracting water as a by-product into an aqueous solvent and removing it outside the system The production reaction can proceed.
  • the target compound (main product) is extracted into an organic solvent and removed from the system. What is necessary is just to extract at least any 1 type of a target product (main product) and a by-product to an extraction solvent as a to-be-extracted object.
  • the present invention is not limited to these, and by combining all reactions and extraction, it becomes possible to efficiently and effectively obtain the target product.
  • the distribution coefficient in the present invention is the amount of the at least one extract to be transferred into the extraction solvent after the extraction process / the at least the remaining in the fluid containing the at least one extract. The amount of one type of extractables
  • the fluid containing at least one kind of extraction object or the extraction fluid described later may be in a liquid state or a gas state, and may be in a supercritical state or a subcritical state.
  • the solvent that can be used for the fluid containing at least one kind of the extract is not particularly limited, and examples thereof include water, an organic solvent, and a mixed solvent composed of a plurality of them. These may be in a liquid state or in a gas state.
  • examples of the water include tap water, ion-exchanged water, pure water, ultrapure water, and RO water.
  • examples of the organic solvent include alcohol compound solvents, amide compound solvents, ketone compound solvents, ether compound solvents.
  • Organic phosphate compound solvents aromatic compound solvents, carbon disulfide solvents, aliphatic compound solvents, nitrile compound solvents, sulfoxide compound solvents, halogen compound solvents, ester compound solvents, ionic liquids, Examples thereof include carboxylic acid compounds and sulfonic acid compounds.
  • Each of the above solvents may be used alone or in combination of two or more.
  • Basic substances include metal hydroxides such as sodium hydroxide and potassium hydroxide, carbonates such as sodium bicarbonate and sodium carbonate, metal alkoxides such as sodium methoxide and sodium isopropoxide, and triethylamine and diethylamino.
  • metal hydroxides such as sodium hydroxide and potassium hydroxide
  • carbonates such as sodium bicarbonate and sodium carbonate
  • metal alkoxides such as sodium methoxide and sodium isopropoxide
  • triethylamine and diethylamino examples include amine compounds such as ethanol and diethylamine, and ammonia.
  • Acidic substances include aqua regia, hydrochloric acid, nitric acid, fuming nitric acid, sulfuric acid, fuming sulfuric acid, formic acid, acetic acid, chloroacetic acid, dichloroacetic acid, oxalic acid, citric acid, ascorbic acid, phosphoric acid, trifluoroacetic acid, Examples include organic acids such as trichloroacetic acid. These basic substances or acidic substances can be carried out by mixing with various solvents as described above, or can be used alone.
  • the extraction fluid for extracting the extract by mixing with the fluid containing the at least one extract is to include at least one extraction solvent capable of extracting the extract.
  • the extraction solvent a solvent similar to the solvent that can be used for the fluid containing at least one kind of the extraction object can be used.
  • the solvent used for the fluid containing at least one extract and the extraction solvent used for the extraction fluid can be selected as appropriate.
  • the fluid containing at least one kind of extraction object and the fluid for extraction containing at least one kind of extraction solvent are arranged to face each other so as to be able to approach and separate, and at least As a method and apparatus for uniformly stirring and mixing in a thin film fluid formed between at least two processing surfaces, one of which rotates relative to the other, for example, Patent Document 6 or Patent Document by the applicant of the present application. It is desirable to use a device that has the same principle as described in 7. By using the apparatus of such a principle, it is possible to perform extraction processing efficiently and effectively continuously.
  • the fluid processing apparatus shown in FIGS. 1 to 3 is the same as the apparatus described in Patent Document 7, and is provided between processing surfaces in a processing unit in which at least one that can be approached / separated rotates relative to the other.
  • a first fluid that is a first fluid to be treated among the fluids to be treated is introduced between the processing surfaces, and a flow path into which the first fluid is introduced.
  • the second fluid which is the second fluid to be treated among the fluids to be treated, is introduced between the processing surfaces from another flow path having an opening communicating between the processing surfaces. It is an apparatus that performs processing by mixing and stirring the first fluid and the second fluid between the surfaces.
  • U indicates the upper side
  • S indicates the lower side.
  • the upper, lower, front, rear, left and right only indicate a relative positional relationship, and do not specify an absolute position.
  • R indicates the direction of rotation.
  • C indicates the centrifugal force direction (radial direction).
  • This apparatus uses at least two kinds of fluids as a fluid to be treated, and at least one kind of fluid includes at least one kind of an object to be treated and is opposed to each other so as to be able to approach and separate.
  • a processing surface at least one of which rotates with respect to the other, and the above-mentioned fluids are merged between these processing surfaces to form a thin film fluid.
  • An apparatus for processing an object to be processed As described above, this apparatus can process a plurality of fluids to be processed, but can also process a single fluid to be processed.
  • This fluid processing apparatus includes first and second processing units 10 and 20 that face each other, and at least one of the processing units rotates.
  • the opposing surfaces of both processing parts 10 and 20 are processing surfaces.
  • the first processing unit 10 includes a first processing surface 1
  • the second processing unit 20 includes a second processing surface 2.
  • Both the processing surfaces 1 and 2 are connected to the flow path of the fluid to be processed and constitute a part of the flow path of the fluid to be processed.
  • the distance between the processing surfaces 1 and 2 can be changed as appropriate, but is usually adjusted to 1 mm or less, for example, a minute distance of about 0.1 ⁇ m to 50 ⁇ m.
  • the fluid to be processed that passes between the processing surfaces 1 and 2 becomes a forced thin film fluid forced by the processing surfaces 1 and 2.
  • the apparatus When processing a plurality of fluids to be processed using this apparatus, the apparatus is connected to the flow path of the first fluid to be processed and forms a part of the flow path of the first fluid to be processed. At the same time, a part of the flow path of the second fluid to be treated is formed separately from the first fluid to be treated. And this apparatus performs processing of fluid, such as making both flow paths merge and mixing both the to-be-processed fluids between the processing surfaces 1 and 2, and making it react.
  • “treatment” is not limited to a form in which the object to be treated reacts, but also includes a form in which only mixing and dispersion are performed without any reaction.
  • the first holder 11 that holds the first processing portion 10 the second holder 21 that holds the second processing portion 20, a contact pressure applying mechanism, a rotation drive mechanism, A first introduction part d1, a second introduction part d2, and a fluid pressure imparting mechanism p are provided.
  • the first processing portion 10 is an annular body, more specifically, a ring-shaped disk.
  • the second processing unit 20 is also a ring-shaped disk.
  • the materials of the first and second processing parts 10 and 20 are metal, carbon, ceramic, sintered metal, wear-resistant steel, sapphire, and other metals that have undergone hardening treatment, Those with coating, plating, etc. can be used.
  • at least a part of the first and second processing surfaces 1 and 2 facing each other is mirror-polished in the processing units 10 and 20.
  • the surface roughness of this mirror polishing is not particularly limited, but is preferably Ra 0.01 to 1.0 ⁇ m, more preferably Ra 0.03 to 0.3 ⁇ m.
  • At least one of the holders can be rotated relative to the other holder by a rotational drive mechanism (not shown) such as an electric motor.
  • Reference numeral 50 in FIG. 1 denotes a rotation shaft of the rotation drive mechanism.
  • the first holder 11 attached to the rotation shaft 50 rotates and is used for the first processing supported by the first holder 11.
  • the unit 10 rotates with respect to the second processing unit 20.
  • the second processing unit 20 may be rotated, or both may be rotated.
  • the first and second holders 11 and 21 are fixed, and the first and second processing parts 10 and 20 are rotated with respect to the first and second holders 11 and 21. May be.
  • At least one of the first processing unit 10 and the second processing unit 20 can be approached / separated from at least either one, and both processing surfaces 1 and 2 can be approached / separated. .
  • the second processing unit 20 approaches and separates from the first processing unit 10, and the second processing unit 20 is disposed in the storage unit 41 provided in the second holder 21. It is housed in a hauntable manner.
  • the first processing unit 10 may approach or separate from the second processing unit 20, and both the processing units 10 and 20 may approach or separate from each other. It may be a thing.
  • the accommodating portion 41 is a concave portion that mainly accommodates a portion of the second processing portion 20 on the side opposite to the processing surface 2 side, and is a groove that has a circular shape, that is, is formed in an annular shape in plan view. .
  • the accommodating portion 41 accommodates the second processing portion 20 with a sufficient clearance that allows the second processing portion 20 to rotate.
  • the second processing unit 20 may be arranged so that only the parallel movement in the axial direction is possible, but by increasing the clearance, the second processing unit 20
  • the center line of the processing part 20 may be inclined and displaced so as to break the relationship parallel to the axial direction of the storage part 41. Further, the center line of the second processing part 20 and the storage part 41 may be displaced. The center line may be displaced so as to deviate in the radial direction. As described above, it is desirable to hold the second processing unit 20 by the floating mechanism that holds the three-dimensionally displaceably.
  • the above-described fluid to be treated is subjected to both treatment surfaces from the first introduction part d1 and the second introduction part d2 in a state where pressure is applied by a fluid pressure application mechanism p configured by various pumps, potential energy, and the like. It is introduced between 1 and 2.
  • the first introduction part d1 is a passage provided in the center of the annular second holder 21, and one end of the first introduction part d1 is formed on both processing surfaces from the inside of the annular processing parts 10, 20. It is introduced between 1 and 2.
  • the second introduction part d2 supplies the second processing fluid to be reacted with the first processing fluid to the processing surfaces 1 and 2.
  • the second introduction part d ⁇ b> 2 is a passage provided inside the second processing part 20, and one end thereof opens at the second processing surface 2.
  • the first fluid to be processed that has been pressurized by the fluid pressure imparting mechanism p is introduced from the first introduction part d1 into the space inside the processing parts 10 and 20, and the first processing surface 1 and the second processing surface 2 are supplied. It passes between the processing surfaces 2 and tries to pass outside the processing portions 10 and 20. Between these processing surfaces 1 and 2, the second fluid to be treated pressurized by the fluid pressure applying mechanism p is supplied from the second introduction part d 2, merged with the first fluid to be treated, and mixed.
  • the above-mentioned contact surface pressure applying mechanism applies a force that acts in a direction in which the first processing surface 1 and the second processing surface 2 approach each other to the processing portion.
  • the contact pressure applying mechanism is provided in the second holder 21 and biases the second processing portion 20 toward the first processing portion 10.
  • the contact surface pressure applying mechanism is a force that pushes the first processing surface 1 of the first processing portion 10 and the second processing surface 2 of the second processing portion 20 in the approaching direction (hereinafter referred to as a contact surface).
  • This is a mechanism for generating pressure.
  • a thin film fluid having a minute film thickness of nm to ⁇ m is generated by the balance between the contact pressure and the force for separating the processing surfaces 1 and 2 such as fluid pressure. In other words, the distance between the processing surfaces 1 and 2 is kept at a predetermined minute distance by the balance of the forces.
  • the contact surface pressure applying mechanism is arranged between the accommodating portion 41 and the second processing portion 20.
  • a spring 43 that biases the second processing portion 20 in a direction approaching the first processing portion 10 and a biasing fluid introduction portion 44 that introduces a biasing fluid such as air or oil.
  • the contact surface pressure is applied by the spring 43 and the fluid pressure of the biasing fluid. Any one of the spring 43 and the fluid pressure of the urging fluid may be applied, and other force such as magnetic force or gravity may be used.
  • the second processing unit 20 causes the first treatment by the separation force generated by the pressure or viscosity of the fluid to be treated which is pressurized by the fluid pressure imparting mechanism p against the bias of the contact surface pressure imparting mechanism.
  • the first processing surface 1 and the second processing surface 2 are set with an accuracy of ⁇ m by the balance between the contact surface pressure and the separation force, and a minute amount between the processing surfaces 1 and 2 is set. An interval is set.
  • the separation force the fluid pressure and viscosity of the fluid to be processed, the centrifugal force due to the rotation of the processing portion, the negative pressure when the urging fluid introduction portion 44 is negatively applied, and the spring 43 are pulled.
  • the force of the spring when it is used as a spring can be mentioned.
  • This contact surface pressure imparting mechanism may be provided not in the second processing unit 20 but in the first processing unit 10 or in both.
  • the second processing unit 20 has the second processing surface 2 and the inside of the second processing surface 2 (that is, the first processing surface 1 and the second processing surface 2).
  • a separation adjusting surface 23 is provided adjacent to the second processing surface 2 and located on the entrance side of the fluid to be processed between the processing surface 2 and the processing surface 2.
  • the separation adjusting surface 23 is implemented as an inclined surface, but may be a horizontal surface.
  • the pressure of the fluid to be processed acts on the separation adjusting surface 23 to generate a force in a direction in which the second processing unit 20 is separated from the first processing unit 10. Accordingly, the pressure receiving surfaces for generating the separation force are the second processing surface 2 and the separation adjusting surface 23.
  • the proximity adjustment surface 24 is formed on the second processing portion 20.
  • the proximity adjustment surface 24 is a surface opposite to the separation adjustment surface 23 in the axial direction, and the pressure of the fluid to be processed acts to bring the second processing portion 20 closer to the first processing portion 10. Generate force in the direction of
  • the pressure of the fluid to be processed that acts on the second processing surface 2 and the separation adjusting surface 23, that is, the fluid pressure, is understood as a force constituting an opening force in the mechanical seal.
  • the projected area A1 of the proximity adjustment surface 24 projected on a virtual plane orthogonal to the approaching / separating direction of the processing surfaces 1 and 2, that is, the protruding and protruding direction (axial direction in FIG. 1) of the second processing unit 20 The area ratio A1 / A2 of the total area A2 of the projected areas of the second processing surface 2 and the separation adjusting surface 23 of the second processing unit 20 projected onto the virtual plane is called a balance ratio K. This is important for the adjustment of the opening force.
  • the opening force can be adjusted by the pressure of the fluid to be processed, that is, the fluid pressure, by changing the balance line, that is, the area A1 of the adjustment surface 24 for proximity.
  • P1 represents the pressure of the fluid to be treated, that is, the fluid pressure
  • K represents the balance ratio
  • k represents the opening force coefficient
  • Ps represents the spring and back pressure
  • the proximity adjustment surface 24 may be implemented with a larger area than the separation adjustment surface 23.
  • the fluid to be processed becomes a thin film fluid forced by the two processing surfaces 1 and 2 holding the minute gaps, and tends to move to the outside of the annular processing surfaces 1 and 2.
  • the mixed fluid to be processed does not move linearly from the inside to the outside of the two processing surfaces 1 and 2, but instead has an annular radius.
  • a combined vector of the movement vector in the direction and the movement vector in the circumferential direction acts on the fluid to be processed and moves in a substantially spiral shape from the inside to the outside.
  • the rotating shaft 50 is not limited to what was arrange
  • At least one of the first and second processing parts 10 and 20 may be cooled or heated to adjust the temperature.
  • the first and second processing parts 10 and 10 are adjusted.
  • 20 are provided with temperature control mechanisms (temperature control mechanisms) J1, J2.
  • the temperature of the introduced fluid to be treated may be adjusted by cooling or heating. These temperatures can also be used for the deposition of the treated material, and also to generate Benard convection or Marangoni convection in the fluid to be treated between the first and second processing surfaces 1 and 2. May be set.
  • a groove-like recess 13 extending from the center side of the first processing portion 10 to the outside, that is, in the radial direction is formed on the first processing surface 1 of the first processing portion 10. May be implemented.
  • the planar shape of the recess 13 is curved or spirally extending on the first processing surface 1, or is not shown, but extends straight outward, L It may be bent or curved into a letter shape or the like, continuous, intermittent, or branched.
  • the recess 13 can be implemented as one formed on the second processing surface 2, and can also be implemented as one formed on both the first and second processing surfaces 1, 2.
  • the base end of the recess 13 reaches the inner periphery of the first processing unit 10.
  • the tip of the recess 13 extends toward the outer peripheral surface of the first processing surface 1, and the depth (cross-sectional area) gradually decreases from the base end toward the tip.
  • a flat surface 16 without the recess 13 is provided between the tip of the recess 13 and the outer peripheral surface of the first processing surface 1.
  • the opening d20 of the second introduction part d2 is provided in the second processing surface 2, it is preferably provided at a position facing the flat surface 16 of the facing first processing surface 1.
  • the opening d20 is desirably provided on the downstream side (outside in this example) from the concave portion 13 of the first processing surface 1.
  • it is installed at a position facing the flat surface 16 on the outer diameter side from the point where the flow direction when introduced by the micropump effect is converted into a laminar flow direction in a spiral shape formed between the processing surfaces. It is desirable to do.
  • the distance n in the radial direction from the outermost position of the recess 13 provided in the first processing surface 1 is preferably about 0.5 mm or more.
  • the shape of the opening d20 may be circular as shown in FIGS. 2B and 3B, and although not shown, a concentric circle surrounding the central opening of the processing surface 2 that is a ring-shaped disk.
  • An annular shape may be used. Further, when the opening has an annular shape, the annular opening may be continuous or discontinuous.
  • the second introduction part d2 can have directionality.
  • the introduction direction from the opening d20 of the second processing surface 2 is inclined with respect to the second processing surface 2 at a predetermined elevation angle ( ⁇ 1).
  • the elevation angle ( ⁇ 1) is set to be more than 0 degrees and less than 90 degrees, and in the case of a reaction with a higher reaction rate, it is preferably set at 1 to 45 degrees.
  • the introduction direction from the opening d ⁇ b> 20 of the second processing surface 2 has directionality in the plane along the second processing surface 2.
  • the introduction direction of the second fluid is a component in the radial direction of the processing surface that is an outward direction away from the center and a component with respect to the rotation direction of the fluid between the rotating processing surfaces. Is forward.
  • a line segment in the radial direction passing through the opening d20 and extending outward is defined as a reference line g and has a predetermined angle ( ⁇ 2) from the reference line g to the rotation direction R. This angle ( ⁇ 2) is also preferably set to more than 0 degree and less than 90 degrees.
  • This angle ( ⁇ 2) can be changed and implemented in accordance with various conditions such as the type of fluid, reaction speed, viscosity, and rotational speed of the processing surface.
  • the second introduction part d2 may not have any directionality.
  • the number of fluids to be treated and the number of flow paths are two, but may be one, or may be three or more.
  • the second fluid is introduced between the processing surfaces 1 and 2 from the second introduction part d2, but this introduction part may be provided in the first processing part 10 or provided in both. Good.
  • the shape, size, and number of the opening for introduction provided in each processing portion are not particularly limited, and can be appropriately changed. Further, an introduction opening may be provided immediately before or between the first and second processing surfaces 1 and 2 and further upstream.
  • the fluid to be treated is mixed with an extraction fluid containing at least one kind of extraction solvent and a fluid containing at least one kind of extraction object, and the extraction object is extracted into the extraction solvent.
  • the extraction of the object to be extracted is forcibly performed between the processing surfaces 1 and 2 of the apparatus shown in FIG. 1 which are disposed so as to be able to approach and separate from each other and at least one rotates relative to the other. Occurs with uniform mixing.
  • an extraction fluid containing at least one kind of extraction solvent as a first fluid is disposed so as to be able to approach and separate from the first introduction part d1 which is one flow path, and at least one of them is placed on the other side.
  • membrane which is a thin film fluid comprised from the 1st fluid between these processing surfaces 1 and 2 is made.
  • a fluid containing at least one kind of extraction target as a second fluid is directly introduced into the first fluid film formed between the processing surfaces 1 and 2 from the second introduction part d2 which is a separate flow path.
  • the first fluid and the second fluid are disposed between the processing surfaces 1 and 2 whose distance is fixed by the pressure balance between the supply pressure of the fluid to be processed and the pressure applied between the rotating processing surfaces. And can be extracted.
  • Each of the fluids is formed by mixing the first and second fluids into a film between the processing surfaces 1 and 2 where the distance between the processing surfaces 1 and 2 and the mixing condition of the fluid to be processed are stabilized.
  • Surface area can be increased to facilitate its mixing and / or diffusion. Therefore, it is possible to extract the object to be extracted instantaneously, and it is possible to extract the object to be extracted into the extraction solvent with high yield (extraction efficiency).
  • each of the plurality of extracts can be extracted into an extraction solvent with a high yield, and the plurality of extracts can be extracted. The extraction ratio of the extraction object can be stabilized.
  • the second fluid is introduced from the first introduction part d1 and the first fluid is introduced from the second introduction part d2, contrary to the above. May be introduced.
  • the expressions “first” and “second” in each fluid have only an implication for identification that they are the nth of a plurality of fluids, and a third or higher fluid may exist.
  • a third introduction part d3 having an opening d30 in the second processing surface 2 may be provided in the processing apparatus.
  • an extraction fluid containing at least one kind of extraction solvent as the first fluid, a fluid containing at least one kind of extraction object as the second fluid, and a third fluid Extraction fluids containing at least one type of extraction solvent different from the first fluid can be separately introduced into the processing apparatus. If it does so, the temperature and pressure in each fluid can be managed individually, and extraction processing, such as a change and fine adjustment of a distribution coefficient, can be controlled more stably and precisely.
  • the position of the opening part d30 of the 3rd introduction part d3 shall not be ask
  • a combination of fluids to be processed (first fluid to third fluid) to be introduced into each introduction portion can be arbitrarily set. The same applies to the case where the fourth or more introduction portions are provided, and the fluid introduced into the processing apparatus can be subdivided in this way.
  • the temperature of the fluid to be processed such as the first and second fluids is controlled, and the temperature difference between the first fluid and the second fluid (that is, the temperature difference of each fluid to be processed to be supplied) is controlled. You can also.
  • the temperature of each processed fluid (processing device, more specifically, the temperature immediately before being introduced between the processing surfaces 1 and 2) is measured. It is also possible to add a mechanism for heating or cooling each fluid to be processed introduced between the processing surfaces 1 and 2.
  • the present invention is not limited to using at least two kinds of fluids, that is, a fluid containing at least one kind of extraction object and an extraction fluid containing at least one kind of extraction solvent.
  • a fluid containing at least one type of extraction object and an extraction fluid containing at least one type of extraction solvent are mixed in advance and introduced as a single type of fluid between the processing surfaces 1 and 2 to form a thin film fluid (fluid Extraction processing can also be performed by using a film.
  • separate mixing, diffusion, reaction, and synthesis are provided between the processing surfaces 1 and 2 that are disposed so as to be able to approach and separate from each other and at least one rotates relative to the other.
  • -It is also possible to perform a process such as crystallization and perform the above extraction process as a process before and after the process.
  • a fluid containing at least one kind of extract as the first fluid from each of the first to third introduction parts (d1, d2, d3) the second fluid
  • a fluid containing at least one kind of extract different from the first fluid and an extraction fluid containing at least one kind of extraction solvent as a third fluid are separately introduced into the processing device, and the first fluid and the second fluid are introduced.
  • the above mixing, diffusion, reaction, synthesis, crystallization, and the like are performed using the, and the extraction fluid is introduced between the processing surfaces 1 and 2 as a third fluid, thereby mixing between the processing surfaces 1 and 2. ⁇ Diffusion, reaction, synthesis, crystallization, etc., and extraction or separation / purification can be performed continuously.
  • the third fluid which is an extraction fluid
  • the third fluid can be extracted with the first fluid and the second fluid by mixing with the first fluid and / or the second fluid to extract the substance to be extracted from each fluid.
  • the extract as a target substance obtained by reacting the extract in an unreacted state can also be extracted.
  • the type of extraction solvent and the time at which the extraction fluid is introduced between the processing surfaces 1 and 2 are appropriately determined. Can be selected and implemented.
  • the first fluid and the second fluid each contain at least one different type of extract, but the state of the extract until immediately before extraction is an unreacted state.
  • the unreacted extract may be reacted.
  • the substance to be extracted does not matter in what state until just before extraction.
  • the extraction solvent can extract the extract regardless of the state of the extract at the time of extraction.
  • the state at the time of extraction of the extract may be an unreacted state, or may be an extract in a post-reaction state in which the unreacted extract is reacted, Both states may be mixed.
  • the extraction solvent can be appropriately selected depending on the state of the target extract.
  • Main products and by-products By extracting the extraction solvent at least one kind as the extract out the reaction can be promoted, the reaction can be performed with the extraction and continuously.
  • three kinds of fluids of the first to third fluids are used.
  • the first to third fluids are mixed in advance and introduced between the processing surfaces 1 and 2 as one kind of fluid. Even in this case, the reaction and the extraction can be performed continuously.
  • two types of fluids including at least one type of extract as the first fluid, and at least one type of extract different from the first fluid as the second fluid and an extraction fluid including at least one type of extraction solvent. Even if a fluid is introduced between the processing surfaces 1 and 2, the reaction and the extraction can be performed continuously.
  • Reactions performed before and after the extraction treatment are not particularly limited, but organic reactions and inorganic reactions, pH changes, oxidation / reduction reactions, hydrolysis reactions, polycondensation reactions, reactions using chelating agents, reverse micelles or micelles. Examples include various reactions used, and reactions in which a substance to be precipitated is precipitated by dissolving the substance to be precipitated in a good solvent and mixing with a poor solvent having a lower solubility in the substance to be precipitated than the good solvent.
  • an esterification reaction and extraction which is a kind of organic reaction, are disposed between the processing surfaces 1 and 2 which are disposed so as to be able to approach and separate from each other and at least one rotates relative to the other.
  • a fluid processing method that performs processing. Using the apparatus shown in FIG. 4, from each of the first to third introduction parts (d1, d2, d3), a fluid containing carboxylic acid as the first fluid, a fluid containing alcohol as the second fluid, and a third fluid Extraction fluids containing an extraction solvent capable of extracting either the main product or the by-product are separately introduced into the processing apparatus and mixed between the processing surfaces 1 and 2.
  • the first to third fluids are formed into a film and mixed, and an esterification reaction for reacting a carboxylic acid and an alcohol, and an ester (main product) generated by the esterification reaction ) Or water (by-product) can be continuously extracted into an extraction solvent. That is, the reaction can be promoted by extracting the main product or by-product into the extraction solvent and removing it from the system.
  • the extract is a main product or a by-product
  • the fluid containing at least one kind of the extract contains at least one component constituting at least one kind of the extract. It can be said that the above-mentioned at least one kind of extract is contained in an unreacted state.
  • an extraction fluid containing an extraction solvent capable of extracting both the main product and the by-product is used as the third fluid, or an extraction solvent and a by-product that can be extracted by selecting the main product as the third fluid.
  • an extraction fluid containing an extraction solvent that can be selected and extracted is used, a reaction between the processing surfaces 1 and 2 and an extraction solvent for the main product and by-products generated by the reaction Extraction can be performed continuously.
  • “from the center” means “from the first introduction part d1” of the processing apparatus shown in FIG. 1 or FIG. 4, and the first fluid is from the first introduction part d1.
  • the first fluid to be treated is introduced, and the second fluid is the second fluid to be treated introduced from the second introduction part d2 of the treatment apparatus shown in FIG. 1 or FIG. .
  • the third fluid is a fluid to be processed introduced from the third introduction part d3 of the processing apparatus shown in FIG.
  • a fluid containing the extractable substance of the second fluid a 1N-nitric acid solution of indium nitrate having a metal conversion concentration of 200 g / L is introduced between the processing surfaces 1 and 2 at 20 mL / min and 40 ° C.
  • One fluid and the second fluid were mixed in the thin film fluid.
  • the liquid supply temperatures of the first fluid and the second fluid are measured immediately before the introduction of the processing apparatus (more specifically, immediately before being introduced between the processing surfaces 1 and 2). did.
  • indium ions were extracted by di (2-ethylhexyl) phosphoric acid as an extraction solvent and transferred into the extraction solvent.
  • a mixed solution of the first fluid and the second fluid to which the indium ions were transferred was discharged from between the processing surfaces 1 and 2.
  • the mixed solution of the first fluid and the second fluid to which the discharged indium ions migrated was allowed to stand, and then separated by a difference in solvent specific gravity.
  • Comparative Example 1 As Comparative Example 1, 50 mL of di (2-ethylhexyl) phosphoric acid and 10 mL of nitric acid solution of indium nitrate having a metal conversion concentration of 200 g / L were subjected to an extraction operation using a separatory funnel. Specifically, 50 mL of (2-ethylhexyl) phosphoric acid at 40 ° C. and 10 mL of 1N nitric acid solution of indium nitrate at a metal conversion concentration of 200 g / L at 40 ° C. are placed in a separatory funnel and vibrated for 3 minutes. Was extracted into 50 mL of (2-ethylhexyl) phosphoric acid. Then, after leaving the mixed solution of both in a separatory funnel still, it isolate
  • a fluid containing the extractable substance of the second fluid a 1N-nitric acid solution of indium nitrate with a metal conversion concentration of 200 g / L is 20 mL / min at 40 ° C., and 5 mL of 1N sodium hydroxide aqueous solution is used as the third fluid.
  • the first to third fluids were mixed in the thin film fluid.
  • the liquid supply temperatures of the first to third fluids were measured immediately before the introduction of the processing apparatus (more specifically, immediately before being introduced between the processing surfaces 1 and 2).
  • the indium ions were extracted by di (2-ethylhexyl) phosphoric acid as an extraction solvent and transferred into the extraction solvent.
  • a mixed solution of the first fluid, the second fluid, and the third fluid in which the indium ions migrated was discharged from between the processing surfaces 1 and 2.
  • the mixed solution of the first fluid, the second fluid, and the third fluid to which the discharged indium ions migrated was allowed to stand, and then separated by a difference in solvent specific gravity.
  • the 1N sodium hydroxide aqueous solution of the third fluid was introduced between the processing surfaces 1 and 2 from the beginning of the implementation.
  • 1N-nitric acid solution of indium nitrate having a metal equivalent concentration of 200 g / L is introduced between the processing surfaces 1 and 2 at 50 mL / min and 40 ° C. as a fluid containing the extractable substance of the second fluid.
  • the fluid and the second fluid were mixed in the thin film fluid.
  • the liquid supply temperatures of the first fluid and the second fluid are measured immediately before the introduction of the processing apparatus (more specifically, immediately before being introduced between the processing surfaces 1 and 2), respectively. did.
  • indium ions were extracted by di (2-ethylhexyl) phosphoric acid as an extraction solvent and transferred into the extraction solvent.
  • a mixed solution of the first fluid and the second fluid to which the indium ions were transferred was discharged from between the processing surfaces 1 and 2.
  • the mixed solution of the first fluid and the second fluid to which the discharged indium ions migrated was allowed to stand, and then separated by a difference in solvent specific gravity.
  • Example 4 From the center, a 1N-nitric acid solution of indium nitrate with a metal conversion concentration of 200 g / L is supplied as the fluid containing the first fluid to be processed.
  • Supply pressure / back pressure 0.30 MPaG / 0.02 MPaG, rotational speed 1700 rpm, 50 mL / min.
  • di (2-ethylhexyl) phosphoric acid is introduced between the processing surfaces 1 and 2 at 100 mL / min and 40 ° C. as an extraction fluid containing the extraction solvent of the second fluid while feeding at 40 ° C.
  • One fluid and the second fluid were mixed in the thin film fluid.
  • the liquid supply temperatures of the first fluid and the second fluid are measured immediately before the introduction of the processing apparatus (more specifically, immediately before being introduced between the processing surfaces 1 and 2), respectively. did.
  • indium ions were extracted by di (2-ethylhexyl) phosphoric acid as an extraction solvent and transferred into the extraction solvent.
  • a mixed solution of the first fluid and the second fluid to which the indium ions were transferred was discharged from between the processing surfaces 1 and 2.
  • the mixed solution of the first fluid and the second fluid to which the discharged indium ions migrated was allowed to stand, and then separated by a difference in solvent specific gravity.
  • Examples 1 to 4 and Comparative Example 1 the indium concentration on the water phase side was measured using ICP emission spectroscopic analysis.
  • ICP emission spectroscopic analysis ICPS-8100 (sequential type) manufactured by Shimadzu Corporation was used.
  • the aqueous phase in Examples 1 to 4 and Comparative Example 1 refers to di (2-ethylhexyl) phosphorus in which indium ions are extracted by extraction from the two layers separated when the mixed solution after extraction treatment is allowed to stand. A solution containing a 1N nitric acid solution of indium nitrate that has been transferred to an acid.
  • the yield was calculated from the indium concentration of the 1N nitric acid solution of indium nitrate before extraction (concentration in terms of metal: 200 g / L) and the indium concentration on the aqueous phase side after extraction shown in Table 1.
  • the indium concentration and yield on the water phase side as determined from the ICP measurement results are as shown in Table 1 below.
  • Example 1 the yield (extraction efficiency) of indium ions was improved as compared with Comparative Example 1 using a separatory funnel. Further, comparing Example 1 and Example 2, in Example 2, the yield (extraction efficiency) was further improved by adding alkali, which is one of basic substances, in the thin film fluid.
  • alkali which is one of basic substances
  • Example 1 and Example 3 the extraction processing capacity is increased by adjusting and optimizing the amount of the extraction fluid containing the extraction solvent and the amount of the fluid containing the extract. It was confirmed that it could be possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

 高効率で連続的に被抽出物を抽出することができる、抽出を含む流体処理方法を提供することを課題とする。 接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する少なくとも2つの処理用面1,2間にできる薄膜流体中において、少なくとも1種類の被抽出物を、上記被抽出物を抽出することができる少なくとも1種類の抽出溶媒に抽出させる流体処理を行う。また、上記少なくとも1種類の被抽出物を含む流体と、上記少なくとも1種類の抽出溶媒を含む抽出用流体とを、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する少なくとも2つの処理用面1,2間にできる薄膜流体中で混合し、上記少なくとも1種類の被抽出物を、上記少なくとも1種類の抽出溶媒に抽出させる流体処理を行う。

Description

抽出を含む流体処理方法
 本発明は、薄膜流体を利用した被抽出物の抽出方法及びそれを用いた流体処理方法に関する。
 目的とする物質(以下、被抽出物とする)を分離・精製するための代表的な処理の一つとして抽出がある。被抽出物を抽出する装置やその方法としては、実験室における分液漏斗などを用いたバッチ式が一般的であるが、実生産に向けてスケールアップした場合には抽出が不十分となるだけでなく、自ずと処理時間が長くなるなどの問題があるため、これまでにも様々な連続式の抽出方法が提供されて来た。
 被抽出物を連続して抽出する装置やその方法としては、特許文献1~3のようなものがあるが、被抽出物の状態(気体、液体または固体)やその大きさ、物理的・化学的性質あるいは処理量等の諸条件に応じて、各種形態のものを使用する必要がある。また、白金族元素等の貴金属やインジウム等の希少金属等の金属を連続して抽出するための装置やその方法としては、特許文献4にあるような向流式連続抽出装置や、特許文献5に記載されているような超臨界を利用した分離回収方法などが挙げられる。
 しかし、上記に挙げたような抽出装置や抽出方法を生産スケールに適用しようとすると、装置が高価となったり、抽出工程が複雑化するために処理時間が長くなるなど、エネルギーやコストの低減には繋がらない場合があった。
 また、本願出願人によって、特許文献6や特許文献7のような、対向して配設された、接近・離反可能な、少なくとも一方が他方に対して相対的に回転する少なくとも2つの処理用面間において流体を混合・攪拌し、反応・合成・晶析などの処理を行う流体処理装置及び処理方法が提供されているが、被抽出物を抽出する抽出方法については開示されていなかった。そのため、高い抽出効率(以下、高収率とする)で容易に被抽出物を抽出可能な抽出方法が懇願されていた。
特開2000-254406号公報 特開2008-100149号公報 特開平10-263303号公報 特開2004-323947号公報 特開平8-291345号公報 特開2004-49957号公報 国際公開WO2009/008394号パンフレット
 本発明は、上記の問題を解決するものであり、その目的は、高効率で連続的に被抽出物を抽出することができる、抽出を含む流体処理方法を提供する事である。より望ましくは、高収率で連続して被抽出物を抽出することができる、抽出を含む流体処理方法の提供を図らんとするものである。
 本発明者は、鋭意検討の結果、被抽出物を含む流体と上記被抽出物を抽出することができる抽出溶媒を含む抽出用流体とを、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する少なくとも2つの処理用面間において混合する事によって、被抽出物を抽出溶媒に効率的且つ効果的に抽出する処理ができることを見出し、本発明を完成させた。
 本発明は、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する少なくとも2つの処理用面の間にできる薄膜流体中において、少なくとも1種類の被抽出物を、上記被抽出物を抽出することができる少なくとも1種類の抽出溶媒に抽出する事を特徴とする流体処理方法を提供する。
 また、本発明は、被処理流動体として少なくとも2種類の流体を用いるものであり、そのうちで少なくとも1種類の流体は、上記少なくとも1種類の被抽出物を含む流体であり、上記以外の流体で少なくとも他の1種類の流体は、上記少なくとも1種類の抽出溶媒を含む抽出用流体であり、上記被処理流動体である上記少なくとも1種類の被抽出物を含む流体と上記抽出用流体とを、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する少なくとも2つの処理用面の間にできる薄膜流体中で混合し、上記被抽出物を上記抽出溶媒に抽出するものとして実施することができる。
 また、本発明は、上記少なくとも1種類の被抽出物を含む流体と上記抽出用流体とのうちの何れか一方の被処理流動体が上記薄膜流体を形成しながら上記処理用面間を通過し、上記何れか一方の被処理流動体が流される流路とは独立した別途の導入路を備えており、上記少なくとも2つの処理用面の少なくとも何れか一方に、上記の導入路に通じる開口部を少なくとも一つ備え、上記少なくとも1種類の被抽出物を含む流体と上記抽出用流体とのうちの何れか他方の被処理流動体を、上記開口部から上記処理用面間に導入し、上記少なくとも1種類の被抽出物を含む流体と上記抽出用流体とを上記薄膜流体中で混合し、上記被抽出物を上記抽出溶媒に抽出するものとして実施することができる。
 また、本発明は、第1処理用部と、第1処理用部に対して接近・離反可能な第2処理用部との、少なくとも2つの処理用部と、上記の第1処理用部と第2処理用部とを相対的に回転させる回転駆動機構とを備え、上記の第1及び第2処理用部において互いに対向する位置に、第1処理用面、及び第2処理用面の、上記少なくとも2つの処理用面が設けられており、上記第1処理用面と第2処理用面との間にて、上記の被処理流動体の処理を行うものであり、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する上記第1処理用面と上記第2処理用面との間に、上記被処理流動体が通され、上記被処理流動体が上記薄膜流体を形成しながら上記両処理用面間を通過することによって、上記被抽出物を上記抽出溶媒に抽出するものとして実施することができる。
 また、本発明は、上記の被処理流動体に圧力を付与する流体圧付与機構を備え、上記の第1処理用面と第2処理用面は、上記の圧力が付与された被処理流動体が流される、強制状態の流路の一部を構成するものであり、上記第1処理用部と第2処理用部のうちの少なくとも第2処理用部には、受圧面を備えるものであり、且つ、この受圧面の少なくとも一部が上記第2処理用面により構成され、この受圧面は、上記の流体圧付与機構が被処理流動体に付与する圧力を受けて上記第1処理用面から第2処理用面を離反させる方向に移動させる力を発生させ、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する上記第1処理用面と上記第2処理用面との間に上記少なくとも1種類の被抽出物を含む流体と上記抽出用流体とのうちの何れか一方の被処理流動体を導入し、上記いずれか一方の被処理流動体が流される流路とは独立した別途の導入路を少なくとも一つ備え、上記第1処理用面と第2処理用面の少なくともいずれか一方に、上記の導入路に通じる開口部を少なくとも一つ備え、上記少なくとも1種類の被抽出物を含む流体と上記抽出用流体とのうちの何れか他方の被処理流動体を、上記開口部から上記両処理用面間に導入し、上記両処理用面間に導入されたこれらの被処理流動体が上記薄膜流体を形成しながら上記両処理用面間を通過して、これらの被処理流動体を混合するによって、上記被抽出物を上記抽出溶媒に抽出するものとして実施することができる。
 また、本発明は、上記の被処理流動体に圧力を付与する流体圧付与機構を備え、上記の第1処理用面と第2処理用面は、上記の圧力が付与された被処理流動体が流される、強制状態の流路の一部を構成するものであり、上記第1処理用部と第2処理用部のうちの少なくとも第2処理用部には、受圧面を備えるものであり、且つ、この受圧面の少なくとも一部が上記第2処理用面により構成され、この受圧面は、上記流体圧付与機構が被処理流動体に付与する圧力を受けて上記の第1処理用面から第2処理用面を離反させる方向に移動させる力を発生させ、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する上記第1処理用面と上記第2処理用面との間に上記少なくとも1種類の被抽出物を含む流体と上記抽出用流体とのうちの何れか一方の被処理流動体を導入し、上記いずれか一方の被処理流動体が流される流路とは独立した別途の導入路を少なくとも一つ備え、上記第1処理用面と第2処理用面の少なくともいずれか一方に、上記の導入路に通じる開口部を少なくとも一つ備え、上記少なくとも1種類の被抽出物を含む流体と上記抽出用流体とのうちの何れか他方の被処理流動体を上記開口部から上記両処理用面間に導入し、上記両処理用面間に導入されたこれらの被処理流動体が上記薄膜流体を形成しながら上記両処理用面間を通過して、これらの被処理流動体を混合・反応させることによって、上記被抽出物を上記抽出溶媒に抽出するものとして実施することができる。
 また、本発明は、被処理流動体として第1、第2、第3の、少なくとも3種類の流体を用いるものであり、上記第1の流体と上記第2の流体のうちの少なくとも何れか一方の流体には、上記少なくとも1種類の被抽出物を未反応の状態で含むものであり、上記第3の流体は、上記被抽出物を未反応の状態または反応後の状態で抽出することができる上記少なくとも1種類の抽出溶媒を含む抽出用流体であり、上記の被処理流動体のうちの少なくともいずれか1種の流体が上記薄膜流体を形成しながら上記両処理用面間を通過し、上記少なくともいずれか1種の流体が流される流路とは独立した別途の導入路を少なくとも2つ備えており、この少なくとも2つの別途の導入路は互いに独立しており、上記第1処理用面と第2処理用面の少なくとも何れか一方に、上記少なくとも2つの別途の導入路毎に別々に通じる開口部を備え、上記少なくともいずれか1種の流体とは異なる残りの被処理流動体を、上記別々の開口部から上記処理用面の間に導入し、上記の被処理流動体を上記薄膜流体中で混合し上記第1流体と上記第2流体とを反応させることによって、上記反応で生じた反応主生成物と反応副生成物のうちの少なくとも何れか1種を上記被抽出物として上記抽出溶媒に抽出するものとして実施することができる。
 本発明によれば、抽出処理を効率的かつ効果的に連続して行うことができるため、これまで以上に簡単かつ低エネルギー、低コストで行う事ができ、産業上において抽出を必要とする製品を安価且つ安定的に提供できる。また、本発明によれば、収率(抽出効率)の制御についても容易に行えるため、目的に応じた抽出物を提供できる。さらに、本発明によれば、抽出処理と反応や析出、溶解や分子分散等の流体処理とを連続して行うことができるため、より高効率に抽出を含む流体処理を行うことができる。
本発明の実施の形態に係る流体処理装置の略断面図である。 (A)は図1に示す流体処理装置の第1処理用面の略平面図であり、(B)は同装置の処理用面の要部拡大図である。 (A)は同装置の第2導入部の断面図であり、(B)は同第2導入部を説明するための処理用面の要部拡大図である。 本発明の他の実施の形態に係る同装置の略断面図であある。
 以下、本発明について詳細を説明する。しかし、本発明の技術的範囲は、下記実施形態及び実施例によって限定されるものではない。
 本発明における被抽出物は、特に限定されない。目的に応じた被抽出物を用いる事が可能である。一例を挙げると、天然に存在するもの(天然物)や、人工的に合成された有機物、無機物または有機・無機の複合物が挙げられる。天然物としては、特に限定されないが、例えば、動植物や菌類などの生体、または土壌や河川・海中などに含まれる成分である。一例としては、タンパク質やアミノ酸、カロテンやカテキンなどが挙げられる。その他、金属や非金属、またはそれらの化合物やイオンなどの成分が挙げられる。金属または非金属の化合物としては、特に限定されないが、一例を挙げると、金属または非金属の塩、酸化物、窒化物、炭化物、錯体、有機塩、有機錯体、有機化合物、またはそれら化合物の水和物や有機溶媒和物などが挙げられる。
 本発明においては、上記被抽出物を、後述する気体状態または液体状態の溶媒に混合または溶解して、少なくとも1種類の被抽出物を含む流体として用いるものであり、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する少なくとも2つの処理用面間において、少なくとも1種類の被抽出物を含む流体と、上記被抽出物を抽出することができる少なくとも1種類の抽出溶媒を含む、上記被抽出物を抽出するための抽出用流体とを混合する事によって、上記被抽出物を上記抽出溶媒に抽出する事が可能である。
 上記被抽出物の抽出処理前後の流体中における状態は特に限定されない。後述する気体状態または液体状態の溶媒に溶解または分子分散された状態でも良いし、固体またはエマルションなどの微粒子が溶媒に分散された状態のように、懸濁された状態でも良い。また、上記被抽出物の抽出処理の前後においては、反応や析出、溶解や分子分散等を伴うものであっても良い。特に、反応によって生じた目的化合物(主生成物)または前記反応によって生じた副生成物が、その反応効率を低下させる場合には、反応と上記の目的化合物(主生成物)または副生成物の抽出とを連続的に実施することによって、これまで以上に効率的且つ効果的に目的化合物を得ることができる。この場合には、上記の目的化合物(主生成物)または副生成物が上記被抽出物となる。
 例えば、一事例として金属イオンの抽出を行う場合、ある一定のpH域で実施することにより分配係数の低下が軽減される。また、有機反応・有機合成において副生成物として水が生成されることにより平衡反応となり反応が進まない事例においては、副生成物である水を水性溶媒に抽出して系外に除去することによって生成反応を進行させることができる。本事例においては、副生成物である水を水性溶媒に抽出して系外に除去する以外に、目的化合物(主生成物)を有機溶媒に抽出して系外に除去しても生成反応を進行させることができ、目的生成物(主生成物)と副生成物のうちの少なくとも何れか1種を被抽出物として抽出溶媒に抽出すればよい。これらに限ったことではなく、あらゆる反応と抽出とを組み合わせることにより、効率的且つ効果的に目的物を得ることが可能となる。なお、本発明における分配係数とは、抽出処理後における、上記抽出溶媒中に移行した上記少なくとも1種類の被抽出物の量/上記少なくとも1種類の被抽出物を含む流体中に残った上記少なくとも1種類の被抽出物の量とする。
 また、被抽出物を少なくとも1種類含む流体や後述する抽出用流体は、液体状態でも気体状態であってもよく、超臨界状態や亜臨界状態であっても良い。
 上記被抽出物を少なくとも1種類含む流体に用いる事のできる溶媒としては、特に限定されないが、例えば水や有機溶媒、またはそれらの複数からなる混合溶媒が挙げられる。これらは液体状態であっても気体状態であっても良い。前記水としては、水道水やイオン交換水、純水や超純水、RO水などが挙げられ、有機溶媒としては、アルコール化合物系溶媒、アミド化合物系溶媒、ケトン化合物系溶媒、エーテル化合物系溶媒、有機リン酸化合物系溶媒、芳香族化合物系溶媒、二硫化炭素系溶媒、脂肪族化合物系溶媒、ニトリル化合物系溶媒、スルホキシド化合物系溶媒、ハロゲン化合物系溶媒、エステル化合物系溶媒、イオン性液体、カルボン酸化合物、スルホン酸化合物などが挙げられる。上記の溶媒はそれぞれ単独で使用しても良く、または複数以上を混合して使用しても良い。
 その他、上記溶媒に塩基性物質または酸性物質を混合または溶解しても実施できる。塩基性物質としては、水酸化ナトリウムや水酸化カリウムなどの金属水酸化物、炭酸水素ナトリウムや炭酸ナトリウムのような炭酸塩、ナトリウムメトキシドやナトリウムイソプロポキシドのような金属アルコキシド、さらにトリエチルアミンやジエチルアミノエタノール、ジエチルアミンなどのアミン系化合物やアンモニアなどが挙げられる。酸性物質としては、王水、塩酸、硝酸、発煙硝酸、硫酸、発煙硫酸などの無機酸や、ギ酸、酢酸、クロロ酢酸、ジクロロ酢酸、シュウ酸、クエン酸、アスコルビン酸、燐酸、トリフルオロ酢酸、トリクロロ酢酸などの有機酸が挙げられる。これらの塩基性物質または酸性物質は、上記の通り各種溶媒と混合しても実施できるし、それぞれ単独でも使用できる。
 上記少なくとも1種類の被抽出物を含む流体と混合して被抽出物を抽出させるための抽出用流体としては、上記被抽出物を抽出することができる少なくとも1種類の抽出溶媒を含むものとする。上記の抽出溶媒には、上記被抽出物を少なくとも1種類含む流体に用いることのできる溶媒と同様のものが使用できる。目的とする被抽出物によって被抽出物を少なくとも1種類含む流体に用いる溶媒と抽出用流体に用いる抽出溶媒とを適宜選択して実施できる。
 本発明において、上記少なくとも1種類の被抽出物を含む流体と上記少なくとも1種類の抽出溶媒を含む抽出用流体との混合を行うための、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する少なくとも2つの処理用面の間にできる薄膜流体中で均一に攪拌・混合する方法及び装置としては、例えば、本願出願人による、特許文献6または特許文献7に記載されたものと同原理である装置を使用することが望ましい。このような原理の装置を用いる事によって、効率的且つ効果的に連続して抽出処理を行う事が可能である。
 以下、図面を用いて上記装置の実施の形態について説明する。
 図1~図3に示す流体処理装置は、特許文献7に記載の装置と同様であり、接近・離反可能な少なくとも一方が他方に対して相対的に回転する処理用部における処理用面の間で被処理物を処理するものであって、被処理流動体のうちの第1の被処理流動体である第1流体を処理用面間に導入し、前記第1流体を導入した流路とは独立し、処理用面間に通じる開口部を備えた別の流路から被処理流動体のうちの第2の被処理流動体である第2流体を処理用面間に導入して処理用面間で上記第1流体と第2流体を混合・攪拌して処理を行う装置である。なお、図1においてUは上方を、Sは下方をそれぞれ示しているが、本発明において上下前後左右は相対的な位置関係を示すに止まり、絶対的な位置を特定するものではない。図2(A)、図3(B)においてRは回転方向を示している。図3(B)においてCは遠心力方向(半径方向)を示している。
 この装置は、被処理流動体として少なくとも2種類の流体を用いるものであり、そのうちで少なくとも1種類の流体については被処理物を少なくとも1種類含むものであり、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面を備え、これらの処理用面の間で上記の各流体を合流させて薄膜流体とするものであり、当該薄膜流体中において上記の被処理物を処理する装置である。この装置は、上述のとおり、複数の被処理流動体を処理することができるが、単一の被処理流動体を処理することもできる。
 この流体処理装置は、対向する第1及び第2の、2つの処理用部10,20を備え、少なくとも一方の処理用部が回転する。両処理用部10,20の対向する面が、夫々処理用面となる。第1処理用部10は第1処理用面1を備え、第2処理用部20は第2処理用面2を備える。
 両処理用面1,2は、被処理流動体の流路に接続され、被処理流動体の流路の一部を構成する。この両処理用面1,2間の間隔は、適宜変更して実施することができるが、通常は、1mm以下、例えば0.1μmから50μm程度の微小間隔に調整される。これによって、この両処理用面1,2間を通過する被処理流動体は、両処理用面1,2によって強制された強制薄膜流体となる。
 この装置を用いて、複数の被処理流動体を処理する場合、この装置は、第1の被処理流動体の流路に接続され、当該第1被処理流動体の流路の一部を形成すると共に、第1被処理流動体とは別の、第2被処理流動体の流路の一部を形成する。そして、この装置は、両流路を合流させて、処理用面1,2間において、両被処理流動体を混合し、反応させるなどの流体の処理を行なう。なお、ここで「処理」とは、被処理物が反応する形態に限らず、反応を伴わずに混合・分散のみがなされる形態も含む。
 具体的に説明すると、上記の第1処理用部10を保持する第1ホルダ11と、第2処理用部20を保持する第2ホルダ21と、接面圧付与機構と、回転駆動機構と、第1導入部d1と、第2導入部d2と、流体圧付与機構pとを備える。
 図2(A)へ示す通り、この実施の形態において、第1処理用部10は、環状体であり、より詳しくはリング状のディスクである。また、第2処理用部20もリング状のディスクである。第1、第2処理用部10、20の材質は、金属、カーボンの他、セラミックや焼結金属、耐磨耗鋼、サファイア、その他金属に硬化処理を施したものや、硬質材をライニングやコーティング、メッキなどを施工したものを採用することができる。この実施の形態において、両処理用部10,20は、互いに対向する第1、第2の処理用面1、2の少なくとも一部が鏡面研磨されている。
 この鏡面研磨の面粗度は、特に限定されないが、好ましくはRa0.01~1.0μm、より好ましくはRa0.03~0.3μmとする。
 少なくとも一方のホルダは、電動機などの回転駆動機構(図示せず)にて、他方のホルダに対して相対的に回転することができる。図1の50は、回転駆動機構の回転軸を示しており、この例では、この回転軸50に取り付けられた第1ホルダ11が回転し、この第1ホルダ11に支持された第1処理用部10が第2処理用部20に対して回転する。もちろん、第2処理用部20を回転させるようにしてもよく、双方を回転させるようにしてもよい。また、この例では、第1、第2ホルダ11、21を固定しておき、この第1、第2ホルダ11、21に対して第1、第2処理用部10、20が回転するようにしてもよい。
 第1処理用部10と第2処理用部20とは、少なくとも何れか一方が、少なくとも何れか他方に、接近・離反可能となっており、両処理用面1,2は、接近・離反できる。
 この実施の形態では、第1処理用部10に対して、第2処理用部20が接近・離反するもので、第2ホルダ21に設けられた収容部41に、第2処理用部20が出没可能に収容されている。但し、これとは、逆に、第1処理用部10が、第2処理用部20に対して接近・離反するものであってもよく、両処理用部10,20が互いに接近・離反するものであってもよい。
 この収容部41は、第2処理用部20の、主として処理用面2側と反対側の部位を収容する凹部であり、平面視において、円を呈する、即ち環状に形成された、溝である。この収容部41は、第2処理用部20を回転させ得る十分なクリアランスを持って、第2処理用部20を収容する。なお、第2処理用部20は軸方向に平行移動のみが可能なように配置してもよいが、上記クリアランスを大きくすることにより、第2処理用部20は、収容部41に対して、処理用部20の中心線を、上記収容部41の軸方向と平行の関係を崩すように傾斜して変位できるようにしてもよく、さらに、第2処理用部20の中心線と収容部41の中心線とが半径方向にずれるように変位できるようにしてもよい。
 このように、3次元的に変位可能に保持するフローティング機構によって、第2処理用部20を保持することが望ましい。
 上記の被処理流動体は、各種のポンプや位置エネルギーなどによって構成される流体圧付与機構pによって圧力が付与された状態で、第1導入部d1と、第2導入部d2から両処理用面1、2間に導入される。この実施の形態において、第1導入部d1は、環状の第2ホルダ21の中央に設けられた通路であり、その一端が、環状の両処理用部10、20の内側から、両処理用面1、2間に導入される。第2導入部d2は、第1の被処理動流体と反応させる第2の被処理流動体を処理用面1,2へ供給する。この実施の形態において、第2導入部d2は、第2処理用部20の内部に設けられた通路であり、その一端が、第2処理用面2にて開口する。流体圧付与機構pにより加圧された第1の被処理流動体は、第1導入部d1から、両処理用部10,20の内側の空間に導入され、第1処理用面1と第2処理用面2との間を通り、両処理用部10,20の外側に通り抜けようとする。これらの処理用面1,2間において、第2導入部d2から流体圧付与機構pにより加圧された第2の被処理流動体が供給され、第1の被処理流動体と合流し、混合、攪拌、乳化、分散、反応、晶出、晶析、析出などの種々の流体処理がなされ、両処理用面1,2から、両処理用部10,20の外側に排出される。なお、減圧ポンプにより両処理用部10,20の外側の環境を負圧にすることもできる。
 上記の接面圧付与機構は、第1処理用面1と第2処理用面2とを接近させる方向に作用させる力を、処理用部に付与する。この実施の形態では、接面圧付与機構は、第2ホルダ21に設けられ、第2処理用部20を第1処理用部10に向けて付勢する。
 前記の接面圧付与機構は、第1処理用部10の第1処理用面1と第2処理用部20の第2処理用面2とが、接近する方向に押す力(以下、接面圧力という)を発生するための機構である。この接面圧力と、流体圧力などの両処理用面1、2間を離反させる力との均衡によって、nm単位ないしμm単位の微小な膜厚を有する薄膜流体を発生させる。言い換えれば、上記力の均衡によって、両処理用面1、2間の間隔を所定の微小間隔に保つ。
 図1に示す実施の形態において、接面圧付与機構は、上記の収容部41と第2処理用部20との間に配位される。具体的には、第2処理用部20を第1処理用部10に近づく方向に付勢するスプリング43と、空気や油などの付勢用流体を導入する付勢用流体導入部44とにて構成され、スプリング43と上記付勢用流体の流体圧力とによって、上記の接面圧力を付与する。このスプリング43と上記付勢用流体の流体圧力とは、いずれか一方が付与されるものであればよく、磁力や重力などの他の力であってもよい。この接面圧付与機構の付勢に抗して、流体圧付与機構pにより加圧された被処理流動体の圧力や粘性などによって生じる離反力によって、第2処理用部20は、第1処理用部10から遠ざかり、両処理用面間に微小な間隔を開ける。このように、この接面圧力と離反力とのバランスによって、第1処理用面1と第2処理用面2とは、μm単位の精度で設定され、両処理用面1,2間の微小間隔の設定がなされる。上記離反力としては、被処理流動体の流体圧や粘性と、処理用部の回転による遠心力と、付勢用流体導入部44に負圧を掛けた場合の当該負圧、スプリング43を引っ張りスプリングとした場合のバネの力などを挙げることができる。この接面圧付与機構は、第2処理用部20ではなく、第1処理用部10に設けてもよく、双方に設けてもよい。
 上記の離反力について、具体的に説明すると、第2処理用部20は、上記の第2処理用面2と共に、第2処理用面2の内側(即ち、第1処理用面1と第2処理用面2との間への被処理流動体の進入口側)に位置して当該第2処理用面2に隣接する離反用調整面23を備える。この例では、離反用調整面23は、傾斜面として実施されているが、水平面であってもよい。被処理流動体の圧力が、離反用調整面23に作用して、第2処理用部20を第1処理用部10から離反させる方向への力を発生させる。従って、離反力を発生させるための受圧面は、第2処理用面2と離反用調整面23とになる。
 さらに、この図1の例では、第2処理用部20に近接用調整面24が形成されている。この近接用調整面24は、離反用調整面23と軸方向において反対側の面であり、被処理流動体の圧力が作用して、第2処理用部20を第1処理用部10に接近させる方向への力を発生させる。
 なお、第2処理用面2及び離反用調整面23に作用する被処理流動体の圧力、即ち流体圧は、メカニカルシールにおけるオープニングフォースを構成する力として理解される。処理用面1,2の接近・離反の方向、即ち第2処理用部20の出没方向(図1においては軸方向)と直交する仮想平面上に投影した近接用調整面24の投影面積A1と、当該仮想平面上に投影した第2処理用部20の第2処理用面2及び離反用調整面23との投影面積の合計面積A2との、面積比A1/A2は、バランス比Kと呼ばれ、上記オープニングフォースの調整に重要である。このオープニングフォースについては、上記バランスライン、即ち近接用調整面24の面積A1を変更することで、被処理流動体の圧力、即ち流体圧により調整できる。
 摺動面の実面圧P、即ち、接面圧力のうち流体圧によるものは次式で計算される。
 P=P1×(K-k)+Ps
 ここでP1は、被処理流動体の圧力即ち流体圧を示し、Kは上記のバランス比を示し、kはオープニングフォース係数を示し、Psはスプリング及び背圧力を示す。
 このバランスラインの調整により摺動面の実面圧Pを調整することで処理用面1,2間を所望の微小隙間量にし被処理流動体による流動体膜を形成させ、生成物などの処理された被処理物を微細とし、また、均一な反応処理を行うのである。
 なお、図示は省略するが、近接用調整面24を離反用調整面23よりも広い面積を持ったものとして実施することも可能である。
 被処理流動体は、上記の微小な隙間を保持する両処理用面1,2によって強制された薄膜流体となり、環状の両処理用面1、2の外側に移動しようとする。ところが、第1処理用部10は回転しているので、混合された被処理流動体は、環状の両処理用面1,2の内側から外側へ直線的に移動するのではなく、環状の半径方向への移動ベクトルと周方向への移動ベクトルとの合成ベクトルが被処理流動体に作用して、内側から外側へ略渦巻き状に移動する。
 尚、回転軸50は、鉛直に配置されたものに限定するものではなく、水平方向に配位されたものであってもよく、傾斜して配位されたものであってよい。被処理流動体は両処理用面1,2間の微細な間隔にて処理がなされるものであり、実質的に重力の影響を排除できるからである。また、この接面圧付与機構は、前述の第2処理用部20を変位可能に保持するフローティング機構と併用することによって、微振動や回転アライメントの緩衝機構としても機能する。
 第1、第2処理用部10、20は、その少なくともいずれか一方を、冷却或いは加熱して、その温度を調整するようにしてもよく、図1では、第1、第2処理用部10、20に温調機構(温度調整機構)J1,J2を設けた例を図示している。また、導入される被処理流動体を冷却或いは加熱して、その温度を調整するようにしてもよい。これらの温度は、処理された被処理物の析出のために用いることもでき、また、第1、第2処理用面1、2間における被処理流動体にベナール対流若しくはマランゴニ対流を発生させるために設定してもよい。
 図2に示すように、第1処理用部10の第1処理用面1には、第1処理用部10の中心側から外側に向けて、即ち径方向について伸びる溝状の凹部13を形成して実施してもよい。この凹部13の平面形状は、図2(B)へ示すように、第1処理用面1上をカーブして或いは渦巻き状に伸びるものや、図示はしないが、真っ直ぐ外方向に伸びるもの、L字状などに屈曲あるいは湾曲するもの、連続したもの、断続するもの、枝分かれするものであってもよい。また、この凹部13は、第2処理用面2に形成するものとしても実施可能であり、第1及び第2の処理用面1,2の双方に形成するものとしても実施可能である。この様な凹部13を形成することによりマイクロポンプ効果を得ることができ、被処理流動体を第1及び第2の処理用面1,2間に吸引することができる効果がある。
 この凹部13の基端は第1処理用部10の内周に達することが望ましい。この凹部13の先端は、第1処理用面1の外周面側に向けて伸びるもので、その深さ(横断面積)は、基端から先端に向かうにつれて、漸次減少するものとしている。
 この凹部13の先端と第1処理用面1の外周面との間には、凹部13のない平坦面16が設けられている。
 前述の第2導入部d2の開口部d20を第2処理用面2に設ける場合は、対向する上記第1処理用面1の平坦面16と対向する位置に設けることが好ましい。
 この開口部d20は、第1処理用面1の凹部13からよりも下流側(この例では外側)に設けることが望ましい。特に、マイクロポンプ効果によって導入される際の流れ方向が処理用面間で形成されるスパイラル状で層流の流れ方向に変換される点よりも外径側の平坦面16に対向する位置に設置することが望ましい。具体的には、図2(B)において、第1処理用面1に設けられた凹部13の最も外側の位置から、径方向への距離nを、約0.5mm以上とするのが好ましい。特に、流体中から微粒子を析出させる場合には、層流条件下にて複数の被処理流動体の混合と、微粒子の析出が行なわれることが望ましい。開口部d20の形状は、図2(B)や図3(B)に示すように円形状であってもよく、図示しないが、リング状ディスクである処理用面2の中央の開口を取り巻く同心円状の円環形状であってもよい。また、開口部を円環形状とした場合、その円環形状の開口部は連続していてもよいし、不連続であってもよい。
 この第2導入部d2は方向性を持たせることができる。例えば、図3(A)に示すように、上記の第2処理用面2の開口部d20からの導入方向が、第2処理用面2に対して所定の仰角(θ1)で傾斜している。この仰角(θ1)は、0度を超えて90度未満に設定されており、さらに反応速度が速い反応の場合には1度以上45度以下で設置されるのが好ましい。
 また、図3(B)に示すように、上記の第2処理用面2の開口部d20からの導入方向が、上記の第2処理用面2に沿う平面において、方向性を有するものである。この第2流体の導入方向は、処理用面の半径方向の成分にあっては中心から遠ざかる外方向であって、且つ、回転する処理用面間における流体の回転方向に対しての成分にあっては順方向である。言い換えると、開口部d20を通る半径方向であって外方向の線分を基準線gとして、この基準線gから回転方向Rへの所定の角度(θ2)を有するものである。この角度(θ2)についても、0度を超えて90度未満に設定されることが好ましい。
 この角度(θ2)は、流体の種類、反応速度、粘度、処理用面の回転速度などの種々の条件に応じて、変更して実施することができる。また、第2導入部d2に方向性を全く持たせないこともできる。
 上記の被処理流動体の種類とその流路の数は、図1の例では、2つとしたが、1つであってもよく、3つ以上であってもよい。図1の例では、第2導入部d2から処理用面1,2間に第2流体を導入したが、この導入部は、第1処理用部10に設けてもよく、双方に設けてもよい。また、一種類の被処理流動体に対して、複数の導入部を用意してもよい。また、各処理用部に設けられる導入用の開口部は、その形状や大きさや数は特に制限はなく適宜変更して実施し得る。また、上記第1及び第2の処理用面1,2間の直前或いはさらに上流側に導入用の開口部を設けてもよい。
 以下、上記の装置を用いて行う抽出を含む流体処理方法の具体的な態様について説明する。
 上記装置においては、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する処理用面1,2の間に形成される薄膜流体中(強制薄膜中)で、被処理流動体して少なくとも1種類の抽出溶媒を含む抽出用流体と少なくとも1種類の被抽出物を含む流体とを混合させ、被抽出物を抽出溶媒に抽出させる。
 被抽出物の抽出は、図1に示す装置の、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する処理用面1,2間で強制的に均一混合しながら起こる。
 まず、一つの流路である第1導入部d1より、第1流体として少なくとも1種類の抽出溶媒を含む抽出用流体を、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面1,2間に導入して、この処理用面1,2間に第1流体から構成された薄膜流体である第1流体膜を作る。
 次いで別流路である第2導入部d2より、第2流体として少なくとも1種類の被抽出物を含む流体を、上記処理用面1,2間に作られた第1流体膜に直接導入する。
 上記のように、被処理流動体の供給圧と回転する処理用面の間にかかる圧力との圧力バランスによって距離を固定された処理用面1,2間にて、第1流体と第2流体とが混合され、抽出を行う事が出来る。
 常に処理用面1,2間の距離及び被処理流動体の混合条件を安定化された処理用面1,2間において、上記第1及び第2流体を膜化して混合することによって、各流体の表面積が増大され、その混合及び/または拡散を助長する事ができる。そのため、瞬間的な被抽出物の抽出が可能となり、被抽出物を高収率(抽出効率)で抽出溶媒に抽出する事が可能である。また、処理用面1,2間において、複数の被抽出物を抽出する場合においては、それら複数の被抽出物のそれぞれを高収率で抽出溶媒に抽出することができ、かつ、それら複数の被抽出物の抽出比率を安定化させることができる。
 なお、処理用面1,2間にて上記抽出を行う事が出来れば良いので、上記とは逆に、第1導入部d1より第2流体を導入し、第2導入部d2より第1流体を導入するものであっても良い。つまり、各流体における第1、第2という表現は、複数存在する流体の第n番目であるという、識別のための意味合いを持つに過ぎないものであり、第3以上の流体も存在し得る。
 前述のように、図4に示すように、第1導入部d1、第2導入部d2以外に第2処理用面2に開口部d30を有する第3導入部d3を処理装置に設けることもできるが、この場合にあっては、例えば各導入部から、第1流体として少なくとも1種類の抽出溶媒を含む抽出用流体、第2流体として少なくとも1種類の被抽出物を含む流体、第3流体として第1流体とは異なる少なくとも1種類の抽出溶媒を含む抽出用流体をそれぞれ別々に処理装置に導入することが可能である。そうすると、各流体中の温度や圧力を個々に管理することができ、分配係数の変更や微調整など、抽出処理をより安定して精密に制御することができる。なお、第3導入部d3の開口部d30の位置は問わないものとする。各導入部へ導入する被処理流動体(第1流体~第3流体)の組み合わせは、任意に設定できる。第4以上の導入部を設けた場合も同様であって、このように処理装置へ導入する流体を細分化できる。
 また、第1、第2流体等の被処理流動体の温度を制御したり、第1流体と第2流体等との温度差(即ち、供給する各被処理流動体の温度差)を制御することもできる。供給する各被処理流動体の温度や温度差を制御するために、各被処理流動体の温度(処理装置、より詳しくは、処理用面1,2間に導入される直前の温度)を測定し、処理用面1,2間に導入される各被処理流動体の加熱又は冷却を行う機構を付加して実施することも可能である。
 本発明においては、少なくとも1種類の被抽出物を含む流体と少なくとも1種類の抽出溶媒を含む抽出用流体の少なくとも2種類の流体を用いる事に限定されるものでは無い。少なくとも1種類の被抽出物を含む流体と少なくとも1種類の抽出溶媒を含む抽出用流体とを予め混合しておき、1種類の流体として処理用面1,2間に導入して薄膜流体(流体膜)とする事によって、抽出処理を行う事もできる。
 さらに、本発明においては、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する処理用面1,2間において、別途の混合・拡散・反応・合成・晶析などの処理を行い、その前後の処理として上記抽出処理を行うことも可能である。その場合にあっては、特に限定されないが、例えば、第1~第3の各導入部(d1,d2,d3)から、第1流体として少なくとも1種類の被抽出物を含む流体、第2流体として第1流体とは異なる少なくとも1種類の被抽出物を含む流体、第3流体として少なくとも1種類の抽出溶媒を含む抽出用流体をそれぞれ別々に処理装置に導入し、第1流体及び第2流体を用いて上記混合・拡散・反応・合成・晶析などの処理を行い、第3流体として抽出用流体を処理用面1,2間に導入する事によって、処理用面1,2間において混合・拡散・反応・合成・晶析などの処理と、抽出処理または分離・精製処理とを連続的に行う事も可能である。抽出用流体である第3流体は、第1流体及び/又は第2流体と混合することで、それぞれの流体より目的物質である被抽出物を抽出することもできるし、第1流体と第2流体とを混合した混合流体と混合することで、未反応な状態の被抽出物を反応させた目的物質である被抽出物を抽出することもできる。反応や合成、析出や晶析などの種類やそれによって得る事のできる被抽出物の種類によって、抽出溶媒の種類や抽出用流体をどの時点で処理用面1,2間に導入するかを適宜選択して実施できる。なお、この場合においては、第1流体と第2流体には、それぞれ異なる少なくとも1種類の被抽出物を含んでいるが、抽出直前までの被抽出物の状態は、未反応の状態であっても未反応な状態の被抽出物を反応させた状態であってもよい。本発明において、被抽出物とは、抽出直前までどのような状態で存在するかは問わない。また、本発明において、抽出溶媒とは、抽出時の被抽出物の状態を問わず、被抽出物を抽出することができるものとする。被抽出物の抽出時の状態が、未反応の状態であってもよいし、未反応な状態の被抽出物を反応させた状態である反応後の状態の被抽出物であってもよく、両方の状態が混在していてもよい。目的とする被抽出物の状態によって抽出溶媒を適宜選択して実施できる。
 上述の、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する処理用面1,2間において、反応と抽出とを組み合わせて行う際に、例えば、第1~第3の各導入部(d1,d2,d3)から、第1流体として少なくとも1種類の被抽出物を含む流体、第2流体として第1流体とは異なる少なくとも1種類の被抽出物を含む流体、第3流体として少なくとも1種類の抽出溶媒を含む抽出用流体をそれぞれ別々に処理装置に導入し、処理用面1,2間において第1流体~第3流体を混合すると、第1流体と第2流体とが反応することによって生成した主生成物と副生成物のうちの少なくとも何れか1種を被抽出物として第3流体に含まれる抽出溶媒に抽出することができるだけでなく、主生成物と副生成物のうちの少なくとも何れか1種を被抽出物として抽出溶媒に抽出することによって、反応を促進することができ、反応と抽出とを連続して行うことができる。
 本例においては、第1~第3流体の3種類の流体を用いたが、上記の第1~第3流体を予め混合しておき、1種類の流体として処理用面1,2間に導入しても反応と抽出とを連続して行うことができる。また、第1流体として少なくとも1種類の被抽出物を含む流体、第2流体として第1流体とは異なる少なくとも1種類の被抽出物と少なくとも1種類の抽出溶媒を含む抽出用流体の2種類の流体を処理用面1,2間に導入しても反応と抽出とを連続して行うことができる。
 上記抽出処理の前後に行う反応としては、特に限定されないが、有機反応や無機反応、pH変化、酸化・還元反応、加水分解反応、縮重合反応、キレート剤を用いた反応、逆ミセルまたはミセルを用いた各種反応や、被析出物質を良溶媒に溶解し、上記良溶媒よりも被析出物質に対する溶解度の低い貧溶媒と混合をさせることによって、被析出物質を析出させるような反応も挙げられる。
 具体例として、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する処理用面1,2間において、有機反応の1種であるエステル化反応と抽出処理とを行う流体処理方法を考える。図4に示す装置を用いて、第1~第3の各導入部(d1,d2,d3)から、第1流体としてカルボン酸を含む流体、第2流体としてアルコールを含む流体、第3流体として主生成物または副生成物のどちらか一方を抽出できる抽出溶媒を含む抽出用流体をそれぞれ別々に処理装置に導入し、処理用面1,2間において混合する。すると、処理用面1,2間において、上記第1~第3流体が膜化して混合され、カルボン酸とアルコールとを反応させるエステル化反応と、エステル化反応によって生成されるエステル(主生成物)または水(副生成物)の抽出溶媒への抽出とを連続して行うことができる。つまり、主生成物または副生成物を抽出溶媒に抽出して系外に除去することによって、反応を促進させることができる。本例においては、被抽出物は主生成物または副生成物であり、上記被抽出物を少なくとも1種類含む流体は、少なくとも1種類の上記被抽出物を構成する少なくとも1種類の成分を含むものであり、上記少なくとも1種類の被抽出物を未反応の状態で含んでいると言える。 
 また、第3流体として主生成物と副生成物の両方を抽出できる抽出溶媒を含む抽出用流体を用いた場合や、第3流体として主生成物を選択して抽出できる抽出溶媒と副生成物を選択して抽出できる抽出溶媒とを含む抽出用流体を用いた場合には、処理用面1,2間において、反応と、その反応によって生成される主生成物と副生成物との抽出溶媒への抽出とを連続して行うことができる。
 このように本発明開示の方法を用いると、抽出方法が複雑化することなく容易に連続的な処理が可能となり、収率(抽出効率)よく処理量を増加させることが可能である。
 以下、本発明について実施例を掲げて更に詳しく説明するが、本発明はこれらの実施例のみに限定されるものではない。
 尚、以下の実施例において、「中央から」というのは、図1又は図4に示す処理装置の「第1導入部d1から」という意味であり、第1流体は、第1導入部d1から導入される、前述の第1被処理流動体を指し、第2流体は、図1又は図4に示す処理装置の第2導入部d2から導入される、前述の第2被処理流動体を指す。また、第3流体は、図4に示す処理装置の第3導入部d3から導入される被処理流動体をとする。
(実施例1)
 中央から第1流体の抽出溶媒を含む抽出用流体として、ジ(2-エチルヘキシル)リン酸を供給圧力/背圧力=0.30MPaG/0.02MPaG、回転数1700rpm、100mL/min、40℃で送液しながら、第2流体の被抽出物を含む流体として、金属換算濃度200g/Lの硝酸インジウムの1N-硝酸溶液を20mL/min、40℃で処理用面1,2間に導入し、第1流体と第2流体とを薄膜流体中で混合した。第1流体並びに第2流体の送液温度は、第1流体と第2流体のそれぞれの温度を処理装置導入直前(より詳しくは、処理用面1,2間に導入される直前)にて測定した。第1流体と第2流体とを薄膜流体中で混合することにより、インジウムイオンは抽出溶媒であるジ(2-エチルヘキシル)リン酸によって抽出されて抽出溶媒中へ移行した。インジウムイオンが移行した第1流体と第2流体との混合溶液が処理用面1,2間より吐出された。吐出されたインジウムイオンが移行した第1流体と第2流体との混合溶液を静置後、溶媒比重差によって分離した。
(比較例1)
 比較例1として、ジ(2-エチルヘキシル)リン酸50mLと金属換算濃度200g/Lの硝酸インジウムの硝酸溶液10mLとを、分液漏斗を用いて抽出操作を行った。具体的には、40℃の(2-エチルヘキシル)リン酸50mLと40℃の金属換算濃度200g/Lの硝酸インジウムの1N硝酸溶液10mLとを分液漏斗に入れ、3分間振動させて、インジウムイオンを(2-エチルヘキシル)リン酸50mLに抽出させた。その後、分液漏斗中の両者の混合溶液を静置した後、溶媒比重差によって分離した。
(実施例2)
 中央から第1流体の抽出溶媒を含む抽出用流体として、ジ(2-エチルヘキシル)リン酸を供給圧力/背圧力=0.30MPaG/0.02MPaG、回転数1700rpm、100mL/min、40℃で送液しながら、第2流体の被抽出物を含む流体として、金属換算濃度200g/Lの硝酸インジウムの1N-硝酸溶液を20mL/min、40℃で、第3流体として1N水酸化ナトリウム水溶液を5mL/min、40℃で処理用面1,2間に導入し、第1~第3流体を薄膜流体中で混合した。第1~第3流体の送液温度は、第1~第3流体のそれぞれの温度を処理装置導入直前(より詳しくは、処理用面1,2間に導入される直前)にて測定した。第1流体~第3流体を薄膜流体中で混合することにより、インジウムイオンは抽出溶媒であるジ(2-エチルヘキシル)リン酸によって抽出されて抽出溶媒中へ移行した。インジウムイオンが移行した第1流体と、第2流体と、第3流体との混合溶液が処理用面1,2間より吐出された。吐出されたインジウムイオンが移行した第1流体と、第2流体と、第3流体との混合溶液を静置後、溶媒比重差によって分離した。なお、第3流体の1N水酸化ナトリウム水溶液は、実施当初から処理用面1,2間に導入した。
(実施例3)
 中央から第1流体の抽出溶媒を含む抽出用流体として、ジ(2-エチルヘキシル)リン酸を供給圧力/背圧力=0.30MPaG/0.02MPaG、回転数1700rpm、150mL/min、40℃で送液しながら、金属換算濃度200g/Lの硝酸インジウムの1N-硝酸溶液を第2流体の被抽出物を含む流体として50mL/min、40℃で処理用面1,2間に導入し、第1流体と第2流体を薄膜流体中で混合した。第1流体及び第2流体の送液温度は、第1流体と第2流体のそれぞれの温度を処理装置導入直前(より詳しくは、処理用面1,2間に導入される直前)にて測定した。第1流体と第2流体とを薄膜流体中で混合することにより、インジウムイオンは抽出溶媒であるジ(2-エチルヘキシル)リン酸によって抽出されて抽出溶媒中へ移行した。インジウムイオンが移行した第1流体と第2流体との混合溶液が処理用面1,2間より吐出された。吐出されたインジウムイオンが移行した第1流体と第2流体との混合溶液を静置後、溶媒比重差によって分離した。
(実施例4)
 中央から第1流体の被処理物を含む流体として、金属換算濃度200g/Lの硝酸インジウムの1N-硝酸溶液を供給圧力/背圧力=0.30MPaG/0.02MPaG、回転数1700rpm、50mL/min、40℃で送液しながら、第2流体の抽出溶媒を含む抽出用流体として、ジ(2-エチルヘキシル)リン酸を100mL/min、40℃で処理用面1,2間に導入し、第1流体と第2流体を薄膜流体中で混合した。第1流体及び第2流体の送液温度は、第1流体と第2流体のそれぞれの温度を処理装置導入直前(より詳しくは、処理用面1,2間に導入される直前)にて測定した。第1流体と第2流体とを薄膜流体中で混合することにより、インジウムイオンは抽出溶媒であるジ(2-エチルヘキシル)リン酸によって抽出されて抽出溶媒中へ移行した。インジウムイオンが移行した第1流体と第2流体との混合溶液が処理用面1,2間より吐出された。吐出されたインジウムイオンが移行した第1流体と第2流体との混合溶液を静置後、溶媒比重差によって分離した。
 上記実施例1~4および比較例1について、ICP発光分光分析を用いて水相側のインジウム濃度を測定した。ICP発光分光分析には、(株)島津製作所製、ICPS-8100(シーケンシャル型)を用いた。実施例1~4及び比較例1における水相とは、抽出処理後の混合溶液を静置した際に分離される二層のうちの、抽出によってインジウムイオンが抽出されジ(2-エチルヘキシル)リン酸に移行された、硝酸インジウムの1N硝酸溶液を含む溶液のことである。
 また、抽出前の硝酸インジウムの1N硝酸溶液のインジウム濃度(金属換算濃度200g/L)と表1に示す抽出後の水相側のインジウム濃度から収率(抽出効率)を算出した。
 ICP測定結果による水相側のインジウム濃度及び収率は下記表1の通りとなった。なお、表1に示す実施例1~4および比較例1のそれぞれのデータは、実施例1~4および比較例1をそれぞれ5回ずつ(n=5)実施して採取したデータの平均値である。
Figure JPOXMLDOC01-appb-T000001
 実施例1~4は、分液漏斗を用いた比較例1に比べて、インジウムイオンの収率(抽出効率)が向上した。また、実施例1と実施例2とを比較すると、実施例2においては、塩基性物質の1種であるアルカリを薄膜流体中で加えることにより更に収率(抽出効率)が向上した。
 また、金属換算濃度200g/Lの硝酸インジウムの1N硝酸溶液5Lをジ(2-エチルヘキシル)リン酸を用いて抽出処理するのに、容積1Lの分液漏斗を用いて実施した場合、比較例1に記載した割合で1バッチあたり750mL処理すると40回行う必要があり、600~700min程度を要したのに対し、実施例1の方法では250min程度で処理可能であった。上述の分液漏斗を用いた場合と比較すると、1/2以上の処理時間を短縮することが可能であった。また、実施例1~4の方法では収率(抽出効率)にばらつきはみられなかったが、比較例1については、収率(抽出効率)が65~80%とばらつきがみられた。
 以上のことから、本願発明に係る抽出を含む流体処理方法を用いることによって、高効率、かつ高収率で連続して被抽出物を抽出できることが確認された。
 また、実施例1と実施例3から、抽出溶媒を含む抽出用流体の送液量と被抽出物を含む流体の送液量とを調整して最適化することで、抽出処理能力を上昇させることが可能になり得ることが確認された。
  1   第1処理用面
  2   第2処理用面
  10  第1処理用部
  11  第1ホルダ
  20  第2処理用部
  21  第2ホルダ
  d1  第1導入部
  d2  第2導入部
  d3  第3導入部
  d20 開口部
  d30 開口部 

Claims (7)

  1.  接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する少なくとも2つの処理用面の間にできる薄膜流体中において、
    少なくとも1種類の被抽出物を、上記被抽出物を抽出することができる少なくとも1種類の抽出溶媒に抽出する事を特徴とする流体処理方法。
  2.  被処理流動体として少なくとも2種類の流体を用いるものであり、
    そのうちで少なくとも1種類の流体は、上記少なくとも1種類の被抽出物を含む流体であり、
    上記以外の流体で少なくとも他の1種類の流体は、上記少なくとも1種類の抽出溶媒を含む抽出用流体であり、
    上記被処理流動体である上記少なくとも1種類の被抽出物を含む流体と上記抽出用流体とを、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する少なくとも2つの処理用面の間にできる薄膜流体中で混合し、上記被抽出物を上記抽出溶媒に抽出する事を特徴とする請求項1に記載の流体処理方法。
  3.  上記少なくとも1種類の被抽出物を含む流体と上記抽出用流体とのうちの何れか一方の被処理流動体が上記薄膜流体を形成しながら上記処理用面間を通過し、
    上記何れか一方の被処理流動体が流される流路とは独立した別途の導入路を備えており、
    上記少なくとも2つの処理用面の少なくとも何れか一方に、上記の導入路に通じる開口部を少なくとも一つ備え、
    上記少なくとも1種類の被抽出物を含む流体と上記抽出用流体とのうちの何れか他方の被処理流動体を、上記開口部から上記処理用面間に導入し、
    上記少なくとも1種類の被抽出物を含む流体と上記抽出用流体とを上記薄膜流体中で混合し、上記被抽出物を上記抽出溶媒に抽出することを特徴とする請求項2に記載の流体処理方法。
  4.  第1処理用部と、第1処理用部に対して接近・離反可能な第2処理用部との、少なくとも2つの処理用部と、
    上記の第1処理用部と第2処理用部とを相対的に回転させる回転駆動機構とを備え、
    上記の第1及び第2処理用部において互いに対向する位置に、第1処理用面、及び第2処理用面の、上記少なくとも2つの処理用面が設けられており、
    上記第1処理用面と第2処理用面との間にて、上記の被処理流動体の処理を行うものであり、
    接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する上記第1処理用面と上記第2処理用面との間に、上記被処理流動体が通され、
    上記被処理流動体が上記薄膜流体を形成しながら上記両処理用面間を通過することによって、上記被抽出物を上記抽出溶媒に抽出する事を特徴とする請求項2に記載の流体処理方法。
  5.  上記の被処理流動体に圧力を付与する流体圧付与機構を備え、
    上記の第1処理用面と第2処理用面は、上記の圧力が付与された被処理流動体が流される、強制状態の流路の一部を構成するものであり、
    上記第1処理用部と第2処理用部のうちの少なくとも第2処理用部には、受圧面を備えるものであり、且つ、この受圧面の少なくとも一部が上記第2処理用面により構成され、この受圧面は、上記の流体圧付与機構が被処理流動体に付与する圧力を受けて上記の第1処理用面から第2処理用面を離反させる方向に移動させる力を発生させ、
    接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する上記第1処理用面と上記第2処理用面との間に上記少なくとも1種類の被抽出物を含む流体と上記抽出用流体とのうちの何れか一方の被処理流動体を導入し、
    上記いずれか一方の被処理流動体が流される流路とは独立した別途の導入路を少なくとも一つ備え、
    上記第1処理用面と第2処理用面の少なくとも何れか一方に、上記の導入路に通じる開口部を少なくとも一つ備え、
    上記少なくとも1種類の被抽出物を含む流体と上記抽出用流体とのうちの何れか他方の被処理流動体を、上記開口部から上記両処理用面間に導入し、
    上記両処理用面間に導入されたこれらの被処理流動体が上記薄膜流体を形成しながら上記両処理用面間を通過して、これらの被処理流動体を混合することによって、上記被抽出物を上記抽出溶媒に抽出することを特徴とする請求項4に記載の流体処理方法。
  6.  上記の被処理流動体に圧力を付与する流体圧付与機構を備え、
    上記の第1処理用面と第2処理用面は、上記の圧力が付与された被処理流動体が流される、強制状態の流路の一部を構成するものであり、
    上記第1処理用部と第2処理用部のうちの少なくとも第2処理用部には、受圧面を備えるものであり、且つ、この受圧面の少なくとも一部が上記第2処理用面により構成され、この受圧面は、上記流体圧付与機構が被処理流動体に付与する圧力を受けて上記の第1処理用面から第2処理用面を離反させる方向に移動させる力を発生させ、
    接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する上記第1処理用面と上記第2処理用面との間に上記少なくとも1種類の被抽出物を含む流体と上記抽出用流体とのうちの何れか一方の被処理流動体を導入し、
    上記いずれか一方の被処理流動体が流される流路とは独立した別途の導入路を少なくとも一つ備え、
    上記第1処理用面と第2処理用面の少なくとも何れか一方に、上記の導入路に通じる開口部を少なくとも一つ備え、
    上記少なくとも1種類の被抽出物を含む流体と上記抽出用流体とのうちの何れか他方の被処理流動体を上記開口部から上記両処理用面間に導入し、
    上記両処理用面間に導入されたこれらの被処理流動体が上記薄膜流体を形成しながら上記両処理用面間を通過して、これらの被処理流動体を混合・反応させることによって、上記被抽出物を上記抽出溶媒に抽出することを特徴とする請求項4に記載の流体処理方法。
  7.  被処理流動体として第1、第2、第3の、少なくとも3種類の流体を用いるものであり、
    上記第1の流体と上記第2の流体のうちの少なくとも何れか一方の流体には、上記少なくとも1種類の被抽出物を未反応の状態で含むものであり、
    上記第3の流体は、上記被抽出物を未反応の状態または反応後の状態で抽出することができる上記少なくとも1種類の抽出溶媒を含む抽出用流体であり、
    上記の被処理流動体のうちの少なくともいずれか1種の流体が上記薄膜流体を形成しながら上記両処理用面間を通過し、
    上記少なくともいずれか1種の流体が流される流路とは独立した別途の導入路を少なくとも2つ備えており、
    この少なくとも2つの別途の導入路は互いに独立しており、
    上記第1処理用面と第2処理用面の少なくとも何れか一方に、上記少なくとも2つの別途の導入路毎に別々に通じる開口部を備え、
    上記少なくともいずれか1種の流体とは異なる残りの被処理流動体を、上記別々の開口部から上記処理用面の間に導入し、上記の被処理流動体を上記薄膜流体中で混合し上記第1流体と上記第2流体とを反応させることによって、上記反応で生じた反応主生成物と反応副生成物のうちの少なくとも何れか1種を上記被抽出物として上記抽出溶媒に抽出することを特徴とする請求項6に記載の流体処理方法。
PCT/JP2012/063125 2011-06-10 2012-05-23 抽出を含む流体処理方法 WO2012169351A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2012800049642A CN103298533A (zh) 2011-06-10 2012-05-23 包括萃取的流体处理方法
KR1020137016951A KR101892947B1 (ko) 2011-06-10 2012-05-23 추출을 포함하는 유체 처리 방법
US14/125,030 US9764250B2 (en) 2011-06-10 2012-05-23 Fluid processing method including extraction
JP2012540217A JP5213001B1 (ja) 2011-06-10 2012-05-23 抽出を含む流体処理方法
EP12797290.9A EP2719433B1 (en) 2011-06-10 2012-05-23 Fluid treatment method including extraction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-130703 2011-06-10
JP2011130703 2011-06-10

Publications (1)

Publication Number Publication Date
WO2012169351A1 true WO2012169351A1 (ja) 2012-12-13

Family

ID=47295919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063125 WO2012169351A1 (ja) 2011-06-10 2012-05-23 抽出を含む流体処理方法

Country Status (6)

Country Link
US (1) US9764250B2 (ja)
EP (1) EP2719433B1 (ja)
JP (1) JP5213001B1 (ja)
KR (1) KR101892947B1 (ja)
CN (2) CN103298533A (ja)
WO (1) WO2012169351A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104771932A (zh) * 2015-03-25 2015-07-15 合肥通用机械研究院 一种离心萃取机外置式本级回流装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101912136B1 (ko) * 2011-05-28 2018-10-26 엠. 테크닉 가부시키가이샤 강제 박막식 유체 처리 장치를 사용한 미립자의 생산량 증가 방법
US11633359B2 (en) 2014-12-15 2023-04-25 M. Technique Co., Ltd. Method for producing organic material microparticles, and method for modifying organic material microparticles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291345A (ja) 1995-04-20 1996-11-05 Mitsubishi Materials Corp 溶液中の白金族元素の分離・回収方法
JPH10263303A (ja) 1997-03-26 1998-10-06 Hisaka Works Ltd 木材の連続抽出方法およびそれに用いる装置
JP2000254406A (ja) 1999-03-10 2000-09-19 Suntory Ltd 可動式攪拌翼付き連続抽出機
JP2004049957A (ja) 2002-07-16 2004-02-19 M Technique Co Ltd 分散乳化装置及び分散乳化方法
JP2004323947A (ja) 2003-04-28 2004-11-18 Asahi Pretec Corp 連続抽出装置及びそれを用いた金属の抽出方法
JP2008100149A (ja) 2006-10-18 2008-05-01 Kawamura Inst Of Chem Res 連続多段抽出デバイス及び連続抽出方法
JP2008522817A (ja) * 2004-12-13 2008-07-03 亜申科技研發中心(上海)有限公司 材料処理装置およびその応用
WO2009008394A1 (ja) 2007-07-06 2009-01-15 M.Technique Co., Ltd. 流体処理装置及び処理方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741138B2 (ja) * 1992-08-05 1995-05-10 ナカヤ実業株式会社 粉状廃棄物の処理方法及びその装置
JPH07171329A (ja) * 1993-12-20 1995-07-11 Nobuhiro Suzuki 脱煙脱臭処理装置及びこれを備えた焼却装置
WO2006063508A1 (fr) 2004-12-13 2006-06-22 Accelergy Shanghai R & D Center Procede et systeme de traitement de liquides ioniques par electrophorese capillaire
JP2006341232A (ja) * 2005-06-10 2006-12-21 Canon Inc 流体処理装置および流体処理方法
KR101402734B1 (ko) * 2007-07-06 2014-06-02 엠. 테크닉 가부시키가이샤 강제 초박막 회전식 처리법을 사용한 나노입자의 제조방법
JP4654450B2 (ja) 2007-11-09 2011-03-23 エム・テクニック株式会社 有機化合物の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291345A (ja) 1995-04-20 1996-11-05 Mitsubishi Materials Corp 溶液中の白金族元素の分離・回収方法
JPH10263303A (ja) 1997-03-26 1998-10-06 Hisaka Works Ltd 木材の連続抽出方法およびそれに用いる装置
JP2000254406A (ja) 1999-03-10 2000-09-19 Suntory Ltd 可動式攪拌翼付き連続抽出機
JP2004049957A (ja) 2002-07-16 2004-02-19 M Technique Co Ltd 分散乳化装置及び分散乳化方法
JP2004323947A (ja) 2003-04-28 2004-11-18 Asahi Pretec Corp 連続抽出装置及びそれを用いた金属の抽出方法
JP2008522817A (ja) * 2004-12-13 2008-07-03 亜申科技研發中心(上海)有限公司 材料処理装置およびその応用
JP2008100149A (ja) 2006-10-18 2008-05-01 Kawamura Inst Of Chem Res 連続多段抽出デバイス及び連続抽出方法
WO2009008394A1 (ja) 2007-07-06 2009-01-15 M.Technique Co., Ltd. 流体処理装置及び処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2719433A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104771932A (zh) * 2015-03-25 2015-07-15 合肥通用机械研究院 一种离心萃取机外置式本级回流装置

Also Published As

Publication number Publication date
EP2719433A4 (en) 2015-03-11
JPWO2012169351A1 (ja) 2015-02-23
EP2719433B1 (en) 2021-04-28
KR20140019305A (ko) 2014-02-14
CN106039764A (zh) 2016-10-26
KR101892947B1 (ko) 2018-08-29
US20140110336A1 (en) 2014-04-24
EP2719433A1 (en) 2014-04-16
US9764250B2 (en) 2017-09-19
JP5213001B1 (ja) 2013-06-19
CN103298533A (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
JP6035499B2 (ja) 微粒子の製造方法
WO2012014530A1 (ja) 粒子径を制御された微粒子の製造方法
JP2017113751A (ja) 結晶子径を制御された微粒子の製造方法
JP4868558B1 (ja) 酸化物・水酸化物の製造方法
KR101876767B1 (ko) 금속 미립자의 제조 방법
WO2012164652A1 (ja) 微小気泡発生装置、微小気泡発生方法及びそれを用いた気液反応方法
JP5213001B1 (ja) 抽出を含む流体処理方法
JP5831821B2 (ja) 金属微粒子の製造方法
JP5950476B2 (ja) 微粒子の製造方法
EP2695860B1 (en) Processes for producing barium titanyl salt and barium titanate
JP5821071B2 (ja) 流体処理装置及び処理方法
JP6146928B2 (ja) 微小気泡発生装置、微小気泡発生方法及びそれを用いた気液反応方法
JP5261780B1 (ja) 金属微粒子の製造方法
JP2013231226A (ja) 微粒子の製造方法
JP6123054B2 (ja) 微粒子の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012540217

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12797290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137016951

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14125030

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012797290

Country of ref document: EP