WO2012169104A1 - 電子機器、構造体、及び、ヒートシンク - Google Patents

電子機器、構造体、及び、ヒートシンク Download PDF

Info

Publication number
WO2012169104A1
WO2012169104A1 PCT/JP2012/002516 JP2012002516W WO2012169104A1 WO 2012169104 A1 WO2012169104 A1 WO 2012169104A1 JP 2012002516 W JP2012002516 W JP 2012002516W WO 2012169104 A1 WO2012169104 A1 WO 2012169104A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat sink
conductor
electronic circuit
stub
conductor via
Prior art date
Application number
PCT/JP2012/002516
Other languages
English (en)
French (fr)
Inventor
嘉晃 笠原
博 鳥屋尾
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2013519352A priority Critical patent/JP5821954B2/ja
Priority to US14/124,664 priority patent/US9629282B2/en
Publication of WO2012169104A1 publication Critical patent/WO2012169104A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2005Electromagnetic photonic bandgaps [EPB], or photonic bandgaps [PBG]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0236Electromagnetic band-gap structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components

Definitions

  • the present invention relates to an electronic device, a structure, and a heat sink.
  • Electronic circuits such as ICs and LSIs mounted on a substrate are highly integrated in order to realize high speed and high functionality, and thus consume a large current.
  • a heat sink is often provided on the electronic circuit.
  • the heat sink is made of, for example, metal, and efficiently dissipates heat generated in the electronic circuit to the atmosphere, thereby suppressing an increase in the temperature of the electronic circuit.
  • radiation noise particularly strong electromagnetic radiation noise (hereinafter referred to as “radiation noise”) is radiated into the atmosphere when the high-frequency component of the electromagnetic wave generated in the electronic circuit is combined with the heat sink and the heat sink becomes resonant. There is a problem. Since radiation noise causes a reduction in the wireless performance of the device, a means for suppressing radiation noise is desired.
  • Patent Document 1 describes an electromagnetic wave absorbing material that alleviates the influence of the above problem.
  • the electromagnetic wave absorbing material 1 has a sheet-like shape, and includes a first layer 11 made of a composite magnetic material having a high relative permeability and a second layer made of a composite dielectric material having a high relative permittivity.
  • the layer 12 is laminated.
  • Patent Document 1 describes that according to the electromagnetic wave absorbing material 1, a sufficient electromagnetic wave countermeasure effect can be obtained even if the sheet is thinned. And since a sheet
  • the electromagnetic wave absorption frequency should be adjusted by controlling the relative permeability by adjusting the blending ratio of the magnetic materials that make up the composite magnetic material and by controlling the relative permittivity by adjusting the blending ratio of the dielectric materials that make up the composite dielectric material. Is described.
  • Patent Document 2 describes another method for solving the problem of radiation noise. That is, as shown in FIG. 25, by connecting the inner layer pattern 121 having the common potential and the heat sink 3, the inner layer pattern 121, the mounting pattern 13, the mounting stud 14, and the heat sink 3 can be made equipotential. It is said that a heat sink device capable of attenuating radiation noise by an electric shielding (shielding) effect can be obtained. Further, by making the pad diameter of the mounting pattern 13 and the diameter of the mounting stud 14 substantially the same, space saving is realized and a heat sink device suitable for high-density mounting is obtained.
  • Patent Literature 1 and Patent Literature 2 have the following problems.
  • the first problem is that in the case of the technique of Patent Document 1 in which an electromagnetic wave absorbing material is inserted between a heat sink and an electronic circuit, the problem that the electromagnetic wave absorbing material causes a decrease in the thermal contact between the heat sink and the electronic circuit is essentially a problem. It is not solved. In other words, even if the decrease in thermal contact can be reduced by reducing the thickness of the electromagnetic wave absorbing material, the electromagnetic wave absorbing material exists between the heat sink and the electronic circuit, so that the thermal caused by the electromagnetic wave absorbing material still remains. The loss of contact remains.
  • the second problem is that a frequency having an electromagnetic wave suppression effect cannot be freely controlled.
  • the application frequency can be controlled by controlling the blending ratio of the magnetic material and the blending ratio of the dielectric material constituting each layer.
  • the blending ratio of the magnetic material and the blending ratio of the dielectric material are limited for the purpose of obtaining sufficient flexibility and an electromagnetic wave attenuation effect.
  • the frequency that can be actually used is considered to be about 700 MHz to 900 MHz, and cannot cope with a high frequency band such as the GHz band used in wireless communication in recent years.
  • Patent Document 2 space saving can be realized.
  • the mounting stud 14 requires the mounting pattern 13 having through holes up to the inner layer, a mounting space is required up to the inner layer of the multilayer printed board 11.
  • this is not desirable because there is a layer in which wirings are arranged at a high density in the signal layer of the inner layer of the substrate.
  • An object of the present invention is to provide an electronic device including a substrate and a heat sink, which can suppress radiation noise of an arbitrary frequency without causing a decrease in thermal contact between the heat sink and the electronic circuit.
  • a substrate a conductor plane provided on the inner layer or surface of the substrate, an electronic circuit mounted on the substrate, and an electronic circuit mounted on the upper surface of the electronic circuit, the electronic circuit in a plan view.
  • a heat sink made of a conductive material that has a portion that does not overlap with the conductor plane, and is connected to the heat sink at a surface in contact with the electronic circuit of the heat sink and extends toward the conductor plane.
  • an electronic device having a conductive via and a stub connected to the conductive via and extending opposite to the conductive plane.
  • the heat sink attached to the inner layer or the upper surface of the electronic circuit mounted on the substrate having the conductor plane on the surface is attached to the region excluding the region in contact with the electronic circuit.
  • the heat sink is attached to the upper surface of an electronic circuit mounted on an inner layer or a substrate having a conductor plane on the surface, excluding a region in contact with the electronic circuit on a surface in contact with the electronic circuit.
  • a heat sink having the structure attached thereto is provided in the region.
  • radiation noise may occur when the heat sink and the conductor plane become parallel plate waveguides and behave as a cavity resonator with an open end.
  • the stub forms a microstrip line having a conductor plane as a return path, and operates as an open stub.
  • the parallel plate waveguide is described by an inductance that is a series impedance part and a capacitance that is a parallel admittance part.
  • the electronic apparatus of the present invention has a unit structure in which an open stub and an inductance by a conductor via are added in series as parallel admittance to a parallel plate waveguide.
  • the unit structure includes a series impedance portion (inductance component of a parallel plate waveguide), a parallel admittance portion (“capacitance component of a parallel plate line”, and a component in which an inductance and an open stub of a conductor via are connected in series. "Is connected in parallel to each other). The amplitude of the electromagnetic wave propagating in such an equivalent circuit is attenuated as it travels in a frequency band where the parallel admittance portion becomes inductive.
  • the structure behaves as an electromagnetic bandgap (EBG) structure at a frequency at which the parallel admittance portion becomes inductive.
  • ECG electromagnetic bandgap
  • an electronic device including a substrate and a heat sink, and an electronic device capable of suppressing radiation noise of an arbitrary frequency without causing a decrease in thermal contact between the heat sink and the substrate is realized.
  • FIGS. 1 and 2 are cross-sectional views of the electronic apparatus according to the first embodiment of the present invention. 1 is a cross-sectional view taken along the line BB ′ in FIG. 2, and FIG. 2 is a cross-sectional view taken along the line AA ′ in FIG. Note that the x, y, and z axes are defined as shown in FIGS.
  • the electronic device of the present embodiment includes a substrate 101, an electronic circuit 102, and a heat sink 103.
  • An electronic circuit 102 such as an IC / LSI is mounted on a substrate 101, and a heat sink 103 is attached on the electronic circuit 102.
  • the substrate 101 includes a conductor plane 104 made of, for example, copper, aluminum, or the like on the surface on which the electronic circuit 102 is mounted or on the inner layer.
  • the conductor plane 104 is provided so as to face the heat sink 103.
  • the conductor plane 104 is provided in parallel with the xy plane.
  • the layer in the substrate 101 on which the conductor plane 104 is formed is not particularly limited.
  • the conductor plane 104 can be formed near the surface layer of the substrate 101.
  • the layer of the conductor plane 104 may be formed immediately below the resist layer formed on the surface of the substrate 101.
  • the conductor plane 104 can be formed in a lower layer in the substrate 101 than in this example. That is, the conductor plane 104 layer may be formed in a lower layer than the signal line layer formed in the substrate 101.
  • the laminated structure of the substrate 101 is not particularly limited, but it is preferable that a layer made of a conductive material such as a wiring is not located near the stub 106 described below.
  • the heat sink 103 is made of a conductive material such as metal.
  • the heat sink 103 has a portion that does not overlap the electronic circuit 102 in plan view, and the portion faces the conductor plane 104.
  • a dielectric layer 107 (hereinafter referred to as “dielectric material”) is formed on at least a part of the region other than the region in contact with the electronic circuit 102.
  • Layer 107 a dielectric layer (hereinafter referred to as “dielectric material”) is formed on at least a part of the region other than the region in contact with the electronic circuit 102.
  • the dielectric layer 107 may be formed on the first surface via a conductive layer (not shown) made of copper or the like. In this way, the connection between the conductor via 105 and the heat sink 103 described below is sufficiently ensured.
  • the shape of the first surface of the heat sink 103 is not particularly limited, and may be any shape such as a rectangle, other polygons, and a circle in addition to the square shown in FIG.
  • At least one conductor via 105 connected to the heat sink 103 exists inside the dielectric layer 107.
  • the conductor via 105 is connected to the heat sink 103 via the conductive layer. That is, the conductor via 105 is connected to the heat sink 103 on the surface that contacts the electronic circuit 102 of the heat sink 103.
  • the conductor via 105 extends toward the conductor plane 104. Note that one end of the conductor via 105 does not contact the conductor plane 104.
  • At least one stub 106 is formed on the surface of the dielectric layer 107 opposite to the surface in contact with the heat sink 103 (the lower surface in FIG. 1) or inside the dielectric layer 107 so as to face the conductor plane 104. Is formed.
  • the stub 106 is made of a conductive material, is connected to the conductor via 105 via one end side, and extends opposite to the conductor plane 104.
  • the stub 106 shown in FIG. 2 is connected to the conductor via 105 through one end and extends linearly in parallel with the xy plane.
  • the shape of the stub 106 is not limited to a linear shape, and any shape can be selected within a range that does not affect the essential effects of the present embodiment described below.
  • a spiral shape as shown in FIG. 3, a meander shape as shown in FIG. 4, or other shapes may be used.
  • the planar shapes of the plurality of stubs 106 may all be the same, or different ones may be mixed. Even if it does in this way, the essential effect of this embodiment demonstrated below is not affected.
  • the degree of freedom of arrangement of the stubs 106 is increased, it is possible to arrange more stubs 106 regardless of the shape and size of the area where the stubs 106 are arranged.
  • the electronic component 110 is present on the surface of the substrate 101, and the electronic component 110 has reached the height at which the stub 106 is disposed, which hinders the placement of the stub 106. Even in such a case, the stub 106 can be arranged avoiding such an electronic component 110.
  • the electronic apparatus of the present embodiment includes a stub 106, a conductor via 105 connected to the stub 106, a partial region including a region facing the stub 106 of the conductor plane 104, and a heat sink. At least one unit structure 109 having a partial region including a region facing the stub 106 of 103 is provided. In the case where the electronic apparatus has a plurality of unit structures 109, the unit structures 109 may be repeatedly (eg, periodically) arranged with a certain regularity, but are not limited to such an arrangement.
  • a region through which the first surface passes when the first surface is moved parallel to the z-axis direction to the conductor plane 104 is referred to as a region (i) 108 (see FIG. 1).
  • FIG. 6 shows a part of the cross-sectional view along CC ′ in FIG. 2 (in the vicinity of the unit structure 109).
  • h / w is set to 1 or less. Is preferred.
  • FIG. 7 shows an example of a graph in which the h / w dependency of the electromagnetic bandgap frequency band is plotted based on an equivalent circuit.
  • the frequency band that behaves as an electromagnetic bandgap structure becomes wider. That is, radiation noise can be suppressed in a wide frequency band by designing so that h / w becomes a small value.
  • FIG. 8 is a cross-sectional view showing an example of the manufacturing process of the present embodiment.
  • a dielectric layer 107 (dielectric substrate) having copper foils 111 and 112 formed on both sides is prepared.
  • the copper foil 111 and 112 and the through-hole which penetrates the dielectric material layer 107 are formed, and copper is plated inside the said through-hole, and it is a conductor via.
  • the state shown in (c) is obtained.
  • the conductor via 105 is connected to the copper foils 111 and 112.
  • the stub 106 is formed by forming a desired pattern on the copper foil 112 by etching.
  • the copper foil 111, the stub 106, and a partial region of the dielectric layer 107 are hollowed out to obtain the state (d).
  • the structure shown in (d) is attached to the bottom surface of the heat sink 103. The attachment is performed using a conductive adhesive, tape, or the like, so that the connection between the conductor via 105 and the heat sink 103 via the copper foil 111 is ensured.
  • the substrate 101 includes a conductor plane 104 on the surface on which the electronic circuit 102 is mounted or an inner layer, and the electronic circuit 102 is mounted at a predetermined position.
  • FIG. 9 shows an equivalent circuit diagram of a unit structure included in the electronic device of the present embodiment.
  • the first surface of the heat sink 103 and the conductor plane 104 provided on the substrate 101 form a parallel plate waveguide.
  • the stub 106 forms a microstrip line with the conductor plane 104 as a return path, and functions as an open stub.
  • the series impedance and parallel admittance of the equivalent circuit are expressed by the following equations (1) and (2), respectively.
  • (beta) contained in Formula (2) is represented by Formula (3).
  • the propagation of the electric field component of the electromagnetic wave in the one-dimensional transmission line is expressed by the following equation (4) except for the time-dependent factor, where the traveling direction of the electromagnetic wave is the x-axis direction.
  • ⁇ included in Expression (4) is expressed by Expression (5).
  • E one-dimensional transmission line of an electromagnetic wave electric field component
  • E 0 amplitude of an electromagnetic wave electric field component of the one-dimensional transmission line
  • gamma propagation constant in the one-dimensional transmission line
  • Equation (4) becomes an electric field that attenuates as it proceeds in the x-axis positive direction. It can be seen that has a characteristic as an electromagnetic band gap. That is, this structure behaves as an electromagnetic bandgap structure in a frequency band where Equation (2) is inductive. In the electromagnetic bandgap structure, propagation of electromagnetic waves is prohibited, so that the electromagnetic bandgap structure can be used for suppressing the resonance phenomenon. This can be used to suppress radiation noise from the heat sink 103.
  • the frequency band having the electromagnetic bandgap structure can be adjusted by adjusting the stub length of the stub 106 constituting the parallel admittance part. That is, by adjusting the stub length, it is possible to control the frequency band in which this structure behaves as an electromagnetic band gap structure.
  • FIG. 10 shows a graph comparing the amount of radiated noise by analyzing the electronic device of the present embodiment and the electronic device of the comparative example by electromagnetic field analysis.
  • “Comparative example 1” has the same configuration as that of the electronic apparatus of the present embodiment, except that the unit structure of the present embodiment is not included.
  • “Comparative example 2” has the same configuration as that of the electronic apparatus of the present embodiment, except that the dielectric layer 107, the conductor via 105, and the stub 106 of the present embodiment are not included.
  • the amount of radiation noise from the electronic apparatus of the present embodiment is Comparative Example 1. It can be seen that the amount of radiation noise from the electronic devices 2 and 2 is smaller. That is, according to the electronic apparatus of this embodiment, it can be seen that the amount of radiation noise can be reduced.
  • the propagation of electromagnetic waves in the region (i) 108 can be suppressed.
  • the heat dissipation performance of the heat sink 103 is not essentially hindered.
  • the frequency having the radiation noise suppressing effect can be adjusted by adjusting the length of the stub 106. For this reason, it is applicable to radiation noise suppression of an arbitrary frequency.
  • 11 and 12 are plan views showing the relationship between the stub and the conductor via of the present embodiment.
  • one stub 106 is connected to one conductor via 105 (see FIGS. 2 to 5).
  • two stubs 106 and 106 ' can be connected to one conductor via 105 (see FIG. 11).
  • three stubs 106, 106 ′ and 106 ′′ can be connected to one conductor via 105 (see FIG. 12).
  • four or more stubs can be connected to one conductor via 105.
  • the planar shape of each stub is not particularly limited, and any shape can be selected.
  • the electronic device of the present embodiment includes a plurality of conductor vias 105
  • the number of stubs connected to each conductor via 105 may be the same or different numbers may be mixed.
  • a plurality of stubs connected to one conductor via 105 may have different lengths (stub lengths). For example, all the lengths of the plurality of stubs connected to one conductor via 105 may be different. In addition, all the lengths of a plurality of stubs connected to one conductor via 105 can be made the same.
  • Such a method of manufacturing an electronic device according to the present embodiment can be realized in the same manner as in the first embodiment. That is, the pattern when etching the copper foil 112 to form the stub from the state shown in FIG. 8C is changed according to the present embodiment, and the other steps are the same as in the first embodiment.
  • the electronic device of this embodiment can be manufactured.
  • the unit structure 109 of the present embodiment includes a conductor via 105, one or more stubs connected to the conductor via 105, a partial region including a region facing the one or more stubs of the conductor plane 104, a heat sink 103 including a partial region including a region facing the one or more stubs.
  • FIG. 13 shows an equivalent circuit diagram of a unit structure in which two stubs 106 and 106 ′ are connected to one conductor via 105 as shown in FIG.
  • FIG. 14 shows an equivalent circuit diagram of a unit structure 109 in which three stubs 106, 106 ′ and 106 ′′ are connected to one conductor via 105 as shown in FIG.
  • the frequency band in which the structure of this embodiment behaves as an electromagnetic bandgap structure can be adjusted by the stub length of the stub.
  • a plurality of stubs having different lengths can be provided in the unit structure 109. In such a case, it behaves as an electromagnetic bandgap structure in the frequency band corresponding to each stub length.
  • the frequency band of radiation noise that can suppress propagation by such a unit structure 109 is a frequency band that includes all frequency bands corresponding to each stub length. That is, according to the present embodiment, the frequency band of radiation noise that can suppress propagation is widened.
  • the frequency band of radiation noise that can suppress propagation may be a continuous range (eg, 1 GHz to 5 GHz) or an intermittent range (eg, 1 GHz to 5 GHz). In some cases, 2.5 GHz and 3.5 GHz to 5 GHz.
  • these stubs have the effect of widening the electromagnetic band gap corresponding to the stub length. That is, radiation noise can be suppressed in a wider frequency band.
  • FIG. 15 is a cross-sectional view in which a part of the electronic device of the present embodiment is extracted.
  • a space filled with air is formed in a space between the substrate 101 having the conductor plane 104 and the dielectric layer 107 in which the conductor via 105 and the stub 106 are formed. Existed (see FIG. 1).
  • part or all of the gap is filled with the dielectric layer 113.
  • the conductor plane 104 and the stub 106 are obtained.
  • a dielectric material having fluidity may be poured into the gaps between the two and then solidified.
  • the thickness of the dielectric layer 107 in which the copper foils 111 and 112 are formed on both surfaces shown in FIG. 8A is made equal to the thickness of the electronic circuit 102, so that FIG.
  • the gap may be designed to be eliminated (see FIG. 16).
  • a step corresponding to the thickness of the stub 106 is formed between the stub 106 formed by patterning the copper foil 112 and a region where the stub 106 is not formed. A slight gap remains in the vicinity of the step.
  • the conductor plane 104 is formed inside the substrate 101, and a dielectric layer that is a part of the substrate 101 exists between the conductor plane 104 and the stub 106. Become. That is, the conductor plane 104 and the stub 106 do not contact each other.
  • Equation (3) the frequency dependence of the input impedance of the open stub formed by the stub increases as the effective relative dielectric constant of the open stub increases. That is, by using a material having a high relative dielectric constant (eg, dielectric ceramics for LTCC (Low Temperature Ceramics)) as the material used for the dielectric layer 113 shown in FIG. 15, the stub length l is not increased. It is possible to lower the frequency band that behaves as an electromagnetic bandgap structure.
  • a material having a high relative dielectric constant eg, dielectric ceramics for LTCC (Low Temperature Ceramics)
  • the effective dielectric constant of the open stub becomes larger than the dielectric constant of the vacuum due to the reduction of the volume occupied by the air gap.
  • the unit structure shown in the first and second embodiments can be reduced in size. As a result, the number of unit structures that can be arranged per unit area can be increased.
  • the fourth embodiment of the present invention will be described below with reference to the drawings.
  • the present embodiment is different from the first to third embodiments in that a plurality of types of unit structures 109 having different frequency bands of radiation noise that can suppress propagation are arranged. Since other configurations are the same as those of the first, second, or third embodiment, description thereof is omitted here.
  • FIGS. 17 and 18 are cross-sectional views of the electronic apparatus of the present embodiment, and correspond to FIG. 2 used in the description of the first embodiment.
  • the unit structure 109 is simply shown as a square.
  • the second unit structure 109 ′ is arranged in a donut shape so as to surround the electronic circuit 102
  • the first unit structure 109 is arranged in a donut shape so as to surround the electronic circuit 102 on the outer periphery thereof. Has been placed.
  • the first unit structure 109 and the second unit structure 109 ′ are different in the frequency band of radiation noise that can suppress propagation.
  • means for making the length of the stub 106 included in the first unit structure 109 different from the length of the stub 106 included in the second unit structure 109 ′ may be considered.
  • means for making the number of stubs 106 included in each unit structure different is also conceivable. Note that “the frequency bands of radiation noise that can suppress propagation are different” means that they do not completely match, and some frequency bands may overlap.
  • the first unit structures 109 and the second unit structures 109 ′ are alternately arranged in a row in a donut shape so as to surround the electronic circuit 102.
  • the number of various unit structures to be arranged is not particularly limited, and one or a plurality of unit structures can be arranged. Furthermore, the number of unit structures to be arranged may be different for each type. Further, the unit structures may be regularly arranged as shown in FIGS. 17 and 18, or the unit structures may be randomly arranged so as not to have regularity.
  • the manufacturing method of the electronic device of the present embodiment can be realized according to the manufacturing method described in the first to third embodiments.
  • the frequency band in which the structure of this embodiment behaves as an electromagnetic bandgap structure can be adjusted by the stub length of the stub. That is, for example, when the stub lengths of a plurality of types of unit structures included in the electronic device of the present embodiment are different for each unit structure, each unit structure has an electromagnetic band gap characteristic corresponding to each stub length. . Further, when the number of stubs included in each unit structure is different, each unit structure has respective electromagnetic band gap characteristics corresponding to the number and length of each stub.
  • the electronic apparatus of the present embodiment having a plurality of types of unit structures having different electromagnetic band gap characteristics, it is possible to realize the electromagnetic band gap characteristics covering a wide frequency band as a whole of the plurality of types of unit structures. it can. As a result, radiation noise can be suppressed in a wide frequency band.
  • the frequency band of radiation noise that can suppress propagation may be a continuous range (eg, 1 GHz to 5 GHz) or an intermittent range (eg, 1 GHz to 5 GHz). In some cases, 2.5 GHz and 3.5 GHz to 5 GHz.
  • FIG. 19 is a cross-sectional view of the electronic apparatus of the present embodiment, and corresponds to FIG. 2 used in the description of the first embodiment.
  • a plurality of unit structures 109 having conductor vias 105 are provided in the region (ii) 114, and the plurality of unit structures 109 are arranged with the following relationship. That is, when any one of the plurality of unit structures 109 having the conductor via 105 in the region (ii) 114 is selected, the distance from the conductor via 105 of the unit structure 109 is less than ⁇ / 2, preferably ⁇ / Within four, at least one conductor via 105 included in another unit structure 109 is located.
  • the conductor via 105 is located in the region (ii) 114.
  • a unit structure 109 that does not have the conductor via 105 may be included in the region (ii) 114.
  • FIG. 20 shows another example of the electronic device of the present embodiment.
  • the electronic device has the same configuration as that described with reference to FIG.
  • the manufacturing method of the electronic device of the present embodiment can be realized in the same manner as in the first to fourth embodiments.
  • the unit structure having the conductor via 105 in the region (ii) 114 can suppress the ⁇ / 4 resonance in which the conductor via 105 is a short-circuited end and the end of the heat sink 103 is an open end.
  • the positional relationship of the plurality of unit structures having the conductor vias 105 in the region (ii) 114 is arranged such that the other conductor vias 105 are arranged within a distance of less than ⁇ / 2, preferably within ⁇ / 4 from one conductor via 105.
  • the resonance that causes the electromagnetic wave having the wavelength ⁇ to be radiated in the vicinity of the end of the heat sink 103 can be suppressed, so that a large radiation noise suppressing effect can be obtained.
  • the frequency of the electromagnetic wave for which a radiation noise suppression effect is desired is a design matter, and for example, the 2.4 GHz band and / or the 5 GHz band can be considered.
  • FIG. 21 is a cross-sectional view of the electronic apparatus of the present embodiment, and corresponds to FIG. 2 used in the description of the first embodiment.
  • the length of the line segment connecting any two points on the outer periphery of the first surface of the heat sink 103 is ⁇ A bottom surface that is less than / 2.
  • the length of the diagonal line is less than ⁇ / 2.
  • the diameter of the said circle is less than (lambda) / 2.
  • the electronic device of this embodiment has only one unit structure.
  • the method for manufacturing an electronic device according to the present embodiment can be realized in the same manner as in the first to fifth embodiments.
  • the unit structure provided in the heat sink 103 of the present embodiment operates so as to suppress the ⁇ / 4 resonance in which the conductor via 105 is always a short-circuited end and the end of the heat sink 103 is an open end. Therefore, the radiation noise suppression effect can be realized with only one unit structure.
  • the seventh embodiment of the present invention will be described below with reference to the drawings.
  • the configuration of the unit structure 109 is different from those of the first to sixth embodiments.
  • Other configurations are the same as those in the first, second, third, fourth, fifth, or sixth embodiment, and thus description thereof is omitted here.
  • FIG. 22 is a cross-sectional view of the electronic apparatus of the present embodiment, and shows a part necessary for the description of the present embodiment.
  • the unit structure 109 of this embodiment is different from the first to sixth embodiments in that an island-shaped conductor 115 is formed instead of the stub 106.
  • Other configurations of the unit structure 109 are the same as those in the first to sixth embodiments.
  • the island-shaped conductor 115 is connected to the conductor via 105 and faces the conductor plane 104 and the heat sink 103.
  • the planar shape of the island-shaped conductor 115 is not particularly limited, and may be any shape other than a square, a rectangle, another quadrangle, and a circle. In addition, when it has the some island-like conductor 115, those plane shapes may all be the same, and different plane shapes may be mixed.
  • the manufacturing method of the electronic device of the present embodiment can be realized in the same manner as in the first to sixth embodiments.
  • FIG. 23 shows an equivalent circuit diagram of the unit structure of the present embodiment.
  • the first surface of the heat sink 103 and the conductor plane 104 provided on the substrate 101 form a parallel plate waveguide.
  • the island-shaped conductor 115 forms a parallel plate capacitance with the conductor plane 104.
  • the series impedance and parallel admittance of the equivalent circuit are expressed by the following equations (6) and (7), respectively.
  • the frequency behaves as an electromagnetic band gap structure at a frequency where equation (7) is inductive (Im [Y] ⁇ 0). That is, according to the unit structure of the present embodiment, the frequency band that behaves as an electromagnetic bandgap structure is adjusted by adjusting the size of the island-shaped conductor 115 and / or the length of the conductor via 105, etc. It can be adjusted by adjusting Lvia and Cpatch.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Structure Of Printed Boards (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

基板(101)と、基板(101)の内層に設けられた導体プレーン(104)と、基板(101)に実装された電子回路(102)と、電子回路(102)の上面に取り付けられ、平面視で電子回路(102)と重ならない部分を有し、導体プレーン(104)と対峙する導電性の材料で構成されたヒートシンク(103)と、ヒートシンク(103)の電子回路(102)と接する面でヒートシンク(103)と接続するとともに、導体プレーン(104)に向かって延伸する導体ビア(105)と、導体ビア(105)と接続し、導体プレーン(104)と対峙して延伸するスタブ(106)とを有する電子機器。

Description

電子機器、構造体、及び、ヒートシンク
 本発明は、電子機器、構造体、及び、ヒートシンクに関する。
 基板上に搭載されるIC・LSI等の電子回路は、高速・高機能化を実現するために高集積化が進んでおり、そのため、大電流を消費する。この大電流による発熱により、電子回路が許容温度を超えるのを防止するため、しばしば電子回路上にヒートシンクが設けられる。ヒートシンクは、例えば金属で構成され、電子回路で発生した熱を効率よく大気中に放熱し、電子回路の温度上昇を抑える。
 こうしたヒートシンクを備えた場合、電子回路で発生した電磁波の高周波成分がヒートシンクと結合し、ヒートシンクが共振状態となるときに、特に強い電磁放射ノイズ(以下、「放射ノイズ」)が大気中に放射される問題がある。放射ノイズは、機器の無線性能の低下をもたらすため、放射ノイズを抑制する手段が望まれる。
 上記放射ノイズの問題を解決するために、電子回路とヒートシンクの間に電磁波吸収材料を挿入する手法がある。しかし、従来の電磁波吸収材料で十分な電磁波吸収効果を得るためには、電磁波吸収材料をある程度の厚みにしなくてはならなかった。そのため、電子回路とヒートシンクとの間の熱的接触の低下が起こり、電子回路を十分に冷却できないという課題があった。
 特許文献1には、上記問題の影響を緩和する電磁波吸収材料が記載されている。図24に示すように、この電磁波吸収材料1はシート状の形状をなしており、比透磁率の高い複合磁性材料よりなる第1層11と、比誘電率の高い複合誘電材料よりなる第2層12とを積層した構造になっている。
 特許文献1には、当該電磁波吸収材料1によれば、シートを薄型化しても十分な電磁波対策効果を得られると記載されている。そして、シートを薄型化できるため、熱的接触の低下を低減できると記載されている。また、電磁波の吸収周波数の調整は、複合磁性材料を構成する磁性材料の配合比調整による比透磁率制御と、複合誘電材料を構成する誘電材料の配合比調整による比誘電率制御により行われることが記載されている。
 特許文献2には、放射ノイズの問題を解決する別の手法が記載されている。すなわち、図25に示すように、共通電位の内層パターン121とヒートシンク3を接続することにより、内層パターン121、取り付けパターン13、取り付けスタッド14、ヒートシンク3を等電位にすることが可能になり、静電シールド(遮蔽)効果により放射ノイズを減衰することのできるヒートシンク装置が得られるとしている。また、取り付けパターン13のパッド直径と取り付けスタッド14の直径をほぼ同等にすることにより、省スペース化を実現し、高密度実装に適したヒートシンク装置が得られるとしている。
特開2007-221064号公報 特開2007-258385号公報
 しかしながら、特許文献1、及び、特許文献2の技術には、以下の課題が存在する。
 まず、特許文献1の技術の課題を述べる。第一の課題は、ヒートシンクと電子回路の間に電磁波吸収材料を挿入する特許文献1の技術の場合、電磁波吸収材料がヒートシンク-電子回路間の熱的接触の低下を引き起こすという問題を、本質的には解決していないことである。すなわち、電磁波吸収材料の厚さを薄くすることで熱的接触の低下を軽減できたとしても、ヒートシンク-電子回路間には電磁波吸収材料が存在するため、依然、電磁波吸収材料に起因した熱的接触の低下は残存する。
 第二の課題は、電磁波抑制効果のある周波数を自由に制御できないことである。特許文献1に記載の電磁波吸収シートでは、上述の通り、各層を構成する磁性材料配合比、誘電材料配合比を制御することにより適用周波数の制御が可能であるとしている。しかし、磁性材料の配合比、誘電体材料の配合比は十分な柔軟性、電磁波減衰効果を得る目的から制限を受ける。そのため、実際に利用可能な周波数は700MHzから900MHz程度と考えられ、例えば近年無線通信で用いられているGHz帯のような高周波数帯には対応できない。
 次に、特許文献2の技術の課題を述べる。特許文献2では、省スペース化を実現できるとしている。しかし、取り付けスタッド14が内層までのスルーホールを備える取り付けパターン13を必要とすることが原因となり、多層プリント基板11の内層にまで取り付けスペースが必要となる。通常、基板内層の信号層には高密度に配線が配設される層が存在するため、このことは望ましくない。
 本発明は、基板とヒートシンクとを備える電子機器であって、ヒートシンクと電子回路間の熱的接触の低下を引き起こすことなく、任意の周波数の放射ノイズを抑制可能な電子機器を提供することを課題とする。
 本発明によれば、基板と、前記基板の内層、または、表面に設けられた導体プレーンと、前記基板に実装された電子回路と、前記電子回路の上面に取り付けられ、平面視で前記電子回路と重ならない部分を有し、前記導体プレーンと対峙する、導電性の材料で構成されたヒートシンクと、前記ヒートシンクの前記電子回路と接する面で前記ヒートシンクと接続するとともに、前記導体プレーンに向かって延伸する導体ビアと、前記導体ビアと接続し、前記導体プレーンと対峙して延伸するスタブとを有する電子機器が提供される。
 また、本発明によれば、内層、または、表面に導体プレーンを有する基板に実装された電子回路の上面に取り付けられるヒートシンクの前記電子回路と接する面における前記電子回路と接する領域を除く領域に取り付けられる構造体であって、前記ヒートシンクに取り付けられた状態で、前記ヒートシンクの前記電子回路と接する面で前記ヒートシンクと接続する導体ビアと、前記導体ビアと接続し、前記ヒートシンクが前記基板に実装された前記電子回路の上面に取り付けられた状態で、前記導体プレーンと対峙するように延伸しているスタブと、を有する構造体が提供される。
 また、本発明によれば、内層、または、表面に導体プレーンを有する基板に実装された電子回路の上面に取り付けられるヒートシンクであって、前記電子回路と接する面における前記電子回路と接する領域を除く領域に、上記構造体が取り付けられたヒートシンクが提供される。
 従来の電子機器の場合、ヒートシンクと導体プレーンが平行平板導波路となり端部開放の空洞共振器として振る舞うことで、放射ノイズが生じる可能性がある。
 上記問題を解決するため、本発明では、スタブが導体プレーンをリターンパスとするマイクロストリップラインを形成し、オープンスタブとして動作する。また、等価回路モデルにおいて、平行平板導波路は、直列インピーダンス部であるインダクタンスと、並列アドミタンス部であるキャパシタンスとで記述される。
 本発明の電子機器は、平行平板導波路に、オープンスタブと、導体ビアによるインダクタンスとを直列に並列アドミタンスとして付加した単位構造を有する。つまり、当該単位構造は、直列インピーダンス部(平行平板導波路のインダクタンス成分)と、並列アドミタンス部(「平行平板線路のキャパシタンス成分」と、「導体ビアのインダクタンス及びオープンスタブが直列に接続された成分」と、が並列に接続されたもの)を含んだ等価回路で記述される。このような等価回路中を伝搬する電磁波は、並列アドミタンス部がインダクタンス性となる周波数帯において進行するにつれて振幅が減衰していく。つまり、並列アドミタンス部がインダクタンス性となる周波数において、本構造は電磁バンドギャップ(EBG)構造として振る舞う。これより、電子回路からの電磁ノイズによる空洞共振器の共振現象は、単位構造を配置することにより抑制され、ヒートシンクからの放射ノイズを抑えることが可能となる。
 本発明によれば、基板とヒートシンクとを備える電子機器であって、ヒートシンクと基板間の熱的接触の低下を引き起こすことなく、任意の周波数の放射ノイズを抑制可能な電子機器が実現される。
 上述した目的、および、その他の目的、特徴および利点は、以下に述べる好適な実施の形態、および、それに付随する以下の図面によって、さらに明らかになる。
本実施形態の電子機器の一例を示す断面図である。 本実施形態の電子機器の一例を示す断面図である。 本実施形態のスタブの平面形状の一例を示す平面図である。 本実施形態のスタブの平面形状の一例を示す平面図である。 本実施形態の電子機器の一例を示す断面図である。 本実施形態の電子機器の一例を示す断面図である。 本実施形態の電子機器の効果を説明するための図である。 本実施形態の電子機器の製造方法の一例を示す断面工程図である。 本実施形態の単位構造の等価回路図である。 本実施形態の電子機器の効果を説明するための図である。 本実施形態のスタブの平面形状の一例を示す平面図である。 本実施形態のスタブの平面形状の一例を示す平面図である。 本実施形態の単位構造の等価回路図である。 本実施形態の単位構造の等価回路図である。 本実施形態の電子機器の一例を示す断面図である。 本実施形態の電子機器の一例を示す断面図である。 本実施形態の電子機器の一例を示す断面図である。 本実施形態の電子機器の一例を示す断面図である。 本実施形態の電子機器の一例を示す断面図である。 本実施形態の電子機器の一例を示す断面図である。 本実施形態の電子機器の一例を示す断面図である。 本実施形態の電子機器の一例を示す断面図である。 本実施形態の単位構造の等価回路図である。 従来例の図である。 従来例の図である。
 以下、本発明の実施形態を図面に基づいて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
<第1の実施形態>
 以下、本発明の第1の実施の形態について図面を参照して説明する。
 図1及び図2は、本発明の第1の実施の形態である電子機器の断面図である。図1は図2のB-B´間の断面図であり、図2は図1のA-A´間の断面図である。なお、図1及び図2に示すようにx、y及びz軸を定義する。
 図1に示すように、本実施形態の電子機器は、基板101と、電子回路102と、ヒートシンク103とを有する。IC・LSI等の電子回路102は基板101上に実装され、ヒートシンク103は電子回路102上に取り付けられる。
 基板101は、電子回路102が実装される側の表面、又は、内層に、例えば銅、アルミ等で構成される導体プレーン104を備える。導体プレーン104は、ヒートシンク103と対峙するように設けられる。図示する例の場合、導体プレーン104は、x-y平面と平行に設けられている。なお、導体プレーン104を基板101の内層に設ける場合、導体プレーン104を基板101内のどの層に形成するかは特段制限されない。例えば、基板101の表層付近に導体プレーン104を形成することもできる。具体的には、基板101の表面に形成されたレジスト層の直下の層に導体プレーン104の層を形成してもよい。その他、当該例よりも、基板101内のより下位層に導体プレーン104を形成することもできる。すなわち、基板101内に形成された信号線の層等よりも下位層に導体プレーン104の層を形成してもよい。このように、基板101の積層構造は特段制限されないが、以下で説明するスタブ106付近に、配線等の導電材料で構成された層が位置しないようにするのが好ましい。
 ヒートシンク103は金属等の導電性の材料で構成される。ヒートシンク103は、平面視で電子回路102と重ならない部分を有し、当該部分は、導体プレーン104と対峙する。
 ヒートシンク103の電子回路102と接する側の面(以下、「第1の面」)には、電子回路102と接する領域以外の領域の少なくとも一部に、誘電体の層107(以下、「誘電体層107」)が形成されている。なお、銅等で構成される導電層(図示せず)を介して、第1の面に誘電体層107が形成されてもよい。このようにすれば、以下で説明する導体ビア105とヒートシンク103との接続が十分に確保される。ヒートシンク103の第1面の形状は特段制限されず、図2に示す正方形の他、長方形、その他の多角形、円形などあらゆる形状とすることができる。
 誘電体層107の内部には、ヒートシンク103と接続する導体ビア105が少なくとも1つ存在する。ヒートシンク103と誘電体層107の間に導電層(図示せず)が存在する場合には、導体ビア105は当該導電層を介して、ヒートシンク103と接続される。すなわち、導体ビア105は、ヒートシンク103の電子回路102と接する面で、ヒートシンク103と接続する。そして、導体ビア105は、導体プレーン104に向かって延伸する。なお、導体ビア105の一端が導体プレーン104と接することはない。
 誘電体層107のヒートシンク103と接する面と反対側の面(図1中、下側の面)、又は、誘電体層107の内部には、導体プレーン104と対峙するように少なくとも1つのスタブ106が形成されている。
 スタブ106は、導電性の材料で構成され、一端側を介して導体ビア105と接続し、導体プレーン104と対峙して延伸している。図2に示すスタブ106は、一端を介して導体ビア105と接続し、x-y平面と平行に直線状に延伸している。
 なお、スタブ106の形状は直線状に限定されず、以下で説明する本実施形態の本質的な効果に影響を与えない範囲で、あらゆる形状を選択できる。例えば、図3に示すようなスパイラル形状であってもよいし、図4に示すようなミアンダ形状であってもよいし、その他の形状であってもよい。また、スタブ106を複数設ける場合、複数のスタブ106の平面形状はすべて同じでもよいし、異なるものが混在してもよい。このようにしても、以下で説明する本実施形態の本質的な効果に影響を与えない。かかる場合、スタブ106の配置の自由度が増すので、スタブ106を配置する領域がどのような形状・大きさであっても、より多くのスタブ106を配置することが可能となる。例えば、図5に示すように、基板101の表面上に電子部品110が存在し、かつ、当該電子部品110がスタブ106を配置する高さにまで到達しており、スタブ106の配置の妨げになるような場合であっても、このような電子部品110を避けてスタブ106を配置できる。
 図1及び図2に戻り、本実施形態の電子機器は、スタブ106と、当該スタブ106と接続する導体ビア105と、導体プレーン104の当該スタブ106と対峙する領域を含む一部領域と、ヒートシンク103の当該スタブ106と対峙する領域を含む一部領域とを有する単位構造109を少なくとも1つ有する。なお、電子機器が単位構造109を複数有する場合、単位構造109は、一定の規則性を持って繰り返し(例えば周期的に)配置されてもよいが、このような配置に限定されない。
 ここで、第1の面をz軸方向へ平行に導体プレーン104まで移動させたときに当該面が通過する領域を領域(i)108と名付ける(図1参照)。
 図6は、図2のC-C´間の断面図の一部(単位構造109付近)を示している。本実施形態においては、スタブ106の幅wと、スタブ106と導体プレーン104間の距離hの比(h/w)を小さくするのが好ましく、具体的には、h/wを1以下とするのが好ましい。ここで、図7に、電磁バンドギャップ周波数帯のh/w依存性を等価回路をもとにプロットしたグラフの一例を示す。図7よりわかる通り、本実施形態の電子機器は、h/wが小さくなると電磁バンドギャップ構造として振る舞う周波数帯域が広くなる。つまり、h/wが小さい値になるように設計することにより、広い周波数帯域で放射ノイズを抑制できる。
 次に、本実施形態の電子機器の製造方法の一例について、図8を用いて説明する。図8は、本実施の形態の製造工程の一例を示す断面図である。
 まず、(a)に示すように、両面に銅箔111及び112が形成された誘電体層107(誘電体基板)を用意する。次に、(b)に示すように、ドリルを用いて、銅箔111及び112、及び、誘電体層107を貫通する貫通穴を形成し、当該貫通穴の内部に銅をメッキして導体ビア105を形成することで、(c)に示す状態を得る。なお、導体ビア105は、銅箔111及び112と接続している。
 その後、エッチングにより銅箔112に所望のパターンを形成することで、スタブ106を形成する。次に、電子回路102とヒートシンク103とが接触する領域を確保するために、銅箔111、スタブ106、及び、誘電体層107の一部領域をくりぬき、(d)の状態を得る。その後、(e)に示すように、(d)に示す構造体を、ヒートシンク103の底面に貼り付ける。当該貼付は、導電性の接着剤、テープ等を用いて行うことで、銅箔111を介した導体ビア105とヒートシンク103との接続が確保される。
 その後、(f)に示すように、基板101を準備する。基板101は、電子回路102が実装される側の表面、又は、内層に導体プレーン104を備え、所定位置に電子回路102が搭載されている。当該電子回路102に、(e)に示す構造体を取り付けることにより、本実施形態の電子機器が得られる。
 次に、本実施形態の作用効果について説明する。
 図9に、本実施形態の電子機器が有する単位構造の等価回路図を示す。本実施形態の電子機器は、ヒートシンク103の第1の面と、基板101に設けられた導体プレーン104とが、平行平板導波路を形成する。また、スタブ106は、導体プレーン104をリターンパスとするマイクロストリップラインを形成し、オープンスタブとして機能する。等価回路の直列インピーダンス、並列アドミタンスは、それぞれ次式(1)、(2)で表される。なお、式(2)に含まれるβは、式(3)で表わされる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
j: 虚数単位
ω: 角周波数
ppw: 平行平板導波路インダクタンス
ppw: 平行平板導波路キャパシタンス
os: オープンスタブ特性インピーダンス
β: オープンスタブの位相定数
l: オープンスタブのスタブ長
via: 導体ビアインダクタンス
εeff: オープンスタブの実効比誘電率
ε: 真空中の誘電率
μ: 真空中の透磁率
Z: 伝送線路の直列インピーダンス
Y: 伝送線路の並列アドミタンス
 また、一次元伝送線路の電磁波の電場成分の伝搬は、電磁波の進行方向をx軸方向とし、時間依存因子を除いて次式(4)で表される。なお、式(4)に含まれるγは、式(5)で表わされる。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
E: 一次元伝送線路の電磁波の電場成分
: 一次元伝送線路の電磁波の電場成分の振幅
γ: 一次元伝送線路中の伝搬定数
 式(1)から(5)より、式(2)がインダクタンス性(Im[Y]<0)である周波数では、式(4)はx軸正方向に進行するにつれて減衰する電場となり、本構造が電磁バンドギャップとしての特性を持つことが分かる。つまり、本構造は、式(2)がインダクタンス性となる周波数帯にて電磁バンドギャップ構造として振る舞う。電磁バンドギャップ構造中では、電磁波の伝搬が禁止されるため、共振現象を抑える用途に用いることができる。これより、ヒートシンク103からの放射ノイズを抑えるのに利用できる。
 また、電磁バンドギャップ構造となる周波数帯は、式(2)より、並列アドミタンス部を構成するスタブ106のスタブ長を調整することにより調整可能であることが分かる。つまり、スタブ長の調整により、本構造が電磁バンドギャップ構造として振る舞う周波数帯を制御できる。
 図10に、本実施形態の電子機器と、比較例の電子機器とを電磁界解析により解析し、放射ノイズ量を比較したグラフを示す。「比較例1」は、本実施形態が有する上記単位構造を有さない点を除いて、本実施形態の電子機器と同様の構成となっている。「比較例2」は、本実施形態が有する誘電体層107、導体ビア105及びスタブ106を有さない点を除いて、本実施形態の電子機器と同様の構成となっている。
 グラフから分かる通り、本実施形態の電子機器(図中実線)が電磁バンドギャップ構造として振る舞う周波数帯(図中網掛け部)では、本実施形態の電子機器からの放射ノイズ量は、比較例1及び2の電子機器からの放射ノイズ量よりも少ないことが分かる。すなわち、本実施形態の電子機器によれば、放射ノイズ量を減らせることが分かる。
 以上説明した本実施形態の電子機器によれば、領域(i)108内における電磁波の伝搬を抑制することができる。
 なお、本実施形態の場合、電子回路102とヒートシンク103の間に特別な材料を挿入する必要がないため、本質的にヒートシンク103の放熱性能を妨げることはない。
 また、本実施形態の場合、スタブ106の長さを調整することで、放射ノイズ抑制効果のある周波数を調整することができる。このため、任意周波数の放射ノイズ抑制に適用可能である。
 さらに、本実施形態の場合、基板101の内層に、特許文献2に記載の技術のような取り付けスペースを設ける必要がないので、省スペースで放射ノイズ抑制効果を実現可能である。
<第2の実施形態>
 以下、本発明の第2の実施の形態について図面を参照して説明する。本実施形態は、スタブと導体ビアとの関係が第1の実施形態と異なる。その他の構成は第1の実施形態と同様であるので、ここでの説明は省略する。
 図11及び図12は、本実施形態のスタブと導体ビアの関係を示す平面図である。第1の実施形態では、1つの導体ビア105に1つのスタブ106が接続していた(図2乃至図5参照)。これに対し、本実施形態では、1つの導体ビア105に、例えば2つのスタブ106及び106´を接続することができる(図11参照)。また、本実施形態では、1つの導体ビア105に、例えば3つのスタブ106、106´及び106´´を接続することもできる(図12参照)。さらに、本実施形態では、1つの導体ビア105に、4つ以上のスタブを接続することもできる。各スタブの平面形状は特段制限されず、あらゆる形状を選択することができる。
 なお、本実施形態の電子機器が複数の導体ビア105を備える場合、各導体ビア105に接続するスタブの数はすべて同じであってもよいし、異なる数が混在してもよい。また、1つのスタブのみが接続した導体ビア105が存在してもよい。
 また、1つの導体ビア105に接続する複数のスタブの中には、長さ(スタブ長)が異なるものが混在してもよい。例えば、1つの導体ビア105に接続する複数のスタブのすべての長さが異なってもよい。その他、1つの導体ビア105に接続する複数のスタブのすべての長さを同じにすることもできる。
 このような本実施形態の電子機器の製造方法は、第1の実施形態と同様にして実現することができる。すなわち、図8(c)に示す状態から銅箔112をエッチングしてスタブを形成する際のパターンを本実施形態に合わせて変更し、その他の工程は第1の実施形態と同様にすることで、本実施形態の電子機器を製造することができる。
 本実施形態の電子機器によれば、第1の実施形態と同様の作用効果に加えて、以下のような作用効果が実現される。
 本実施形態の単位構造109は、導体ビア105と、当該導体ビア105と接続する1つ以上のスタブと、導体プレーン104の当該1つ以上のスタブと対峙する領域を含む一部領域と、ヒートシンク103の当該1つ以上のスタブと対峙する領域を含む一部領域とを含んで構成される。
 ここで、図13に、図11に示すように1つの導体ビア105に2つのスタブ106及び106´が接続した単位構造の等価回路図を示す。また、図14に、図12に示すように1つの導体ビア105に3つのスタブ106、106´及び106´´が接続した単位構造109の等価回路図を示す。
 第1の実施の形態で説明した通り、本実施形態の構造が電磁バンドギャップ構造として振る舞う周波数帯は、スタブのスタブ長により調整可能である。本実施形態の場合、単位構造109の中に長さの異なるスタブを複数設けることができる。かかる場合、各スタブ長に対応した周波数帯において、電磁バンドギャップ構造として振る舞う。このような単位構造109により伝搬を抑制可能な放射ノイズの周波数帯は、各スタブ長に対応した周波数帯すべてを含んだ周波数帯となる。すなわち、本実施形態によれば、伝搬を抑制可能な放射ノイズの周波数帯が広くなる。なお、このような本実施形態の場合、伝播を抑制可能な放射ノイズの周波数帯は、連続的な範囲(例:1GHz~5GHz)となる場合もあれば、間欠的な範囲(例:1GHz~2.5GHzかつ3.5GHz~5GHz)となる場合もある。
 また、単位構造内にスタブ長が同一のスタブが複数ある場合は、それらのスタブは、そのスタブ長に対応する電磁バンドギャップの帯域を広げる効果を持つ。つまり、より広い周波数帯において放射ノイズを抑制することが可能となる。
<第3の実施形態>
 以下、本発明の第3の実施の形態について図面を参照して説明する。本実施形態は、導体プレーン104を備えた基板101と、導体ビア105及びスタブ106が形成された誘電体層107とで挟まれた空間における構成が、第1及び第2の実施形態と異なる。その他の構成は第1又は第2の実施形態と同様であるので、ここでの説明は省略する。
 図15は、本実施形態の電子機器の一部を抽出した断面図である。第1及び第2の実施形態においては、導体プレーン104を備えた基板101と、導体ビア105及びスタブ106が形成された誘電体層107とで挟まれた空間に、空気で満たされた空隙が存在していた(図1参照)。これに対し、本実施形態では、当該空隙の一部又は全部を誘電体の層113で埋めている。
 このような本実施形態の電気機器の製造方法としては、例えば、第1の実施形態又は第2の実施形態と同様にして図8(f)の状態を得た後、導体プレーン104とスタブ106との間に存在する空隙に、流動性を有する誘電体材料を流し込み、その後、固めることで形成してもよい。
 又は、図8(a)に示す両面に銅箔111及び112が形成された誘電体層107の厚さを、電子回路102の厚さと同等の厚さにすることで、図8(f)に示すように電子回路102上にヒートシンク103を取り付けると、上記空隙がなくなるように設計してもよい(図16参照)。かかる場合、図16に示すように、銅箔112をパターニングして形成されるスタブ106と、スタブ106が形成されていない領域との間に、スタブ106の厚さ分の段差が形成される。そして、当該段差の近傍には、わずかな空隙が残ることとなる。しかし当該空隙は十分に小さいものとなるので、以下で説明する本実施形態の作用効果を十分に実現することができる。
 なお、図16に示す例の場合、導体プレーン104は基板101の内部に形成され、導体プレーン104とスタブ106との間には、基板101の一部である誘電体の層が存在することとなる。すなわち、導体プレーン104とスタブ106とが接することはない。
 本実施形態の電子機器によれば、第1及び第2の実施形態と同様の作用効果に加えて、以下のような作用効果が実現される。
 式(3)によれば、スタブが形成するオープンスタブの入力インピーダンスの周波数依存性は、オープンスタブの実効比誘電率が大きいほど、強くなる。つまり、図15に示した誘電体の層113に用いる物質として比誘電率の高い物質(例:LTCC(Low Temperature Cofired Ceramics)用誘電体セラミックス)を用いることにより、スタブ長lを長くすることなく電磁バンドギャップ構造として振る舞う周波数帯を低周波化することが可能になる。
 また、図16に示した構造においても、オープンスタブの実効誘電率は、空隙の占める体積が減少することにより真空の誘電率よりも大きくなる。これより、本実施形態の場合、第1及び第2の実施形態に示した単位構造の小型化が可能となる。結果、単位面積あたりに配置できる単位構造の数を増やすことが可能となる。
<第4の実施形態>
 以下、本発明の第4の実施の形態について図面を参照して説明する。本実施形態は、伝搬を抑制できる放射ノイズの周波数帯が異なる複数種類の単位構造109が配置されている点で、第1乃至第3の実施形態と異なる。その他の構成は第1、第2又は第3の実施形態と同様であるので、ここでの説明は省略する。
 図17及び図18は、本実施形態の電子機器の断面図であり、第1の実施形態の説明で利用した図2に相当する。なお、図17及び図18においては、単位構造109を簡易的に正方形で示している。
 図17に示す例の場合、第2の単位構造109´が電子回路102を囲むようにドーナツ状に配置され、その外周に、第1の単位構造109が電子回路102を囲むようにドーナツ状に配置されている。
 第1の単位構造109と第2の単位構造109´は、伝搬を抑制できる放射ノイズの周波数帯が異なる。このような構成を実現する手段としては、第1の単位構造109が有するスタブ106の長さと、第2の単位構造109´が有するスタブ106の長さを異なるものにする手段が考えられる。その他、各単位構造に含まれるスタブ106の数を異なるものにする手段も考えられる。なお、「伝搬を抑制できる放射ノイズの周波数帯が異なる」とは、完全に一致しないことを意味し、一部の周波数帯が重なってもよい。
 図18に示す例の場合、第1の単位構造109と第2の単位構造109´が交互に一列に、電子回路102を囲むようにドーナツ状に配置されている。
 なお、図17及び図18に示す例の場合、2種類の単位構造が配置されているが、3種類以上の単位構造を配置することも可能である。また、各種単位構造を配置する数は特段制限されず、1つ又は複数配置することができる。さらに、配置する単位構造の数は、種類ごとに異なっていてもよい。さらに、図17及び図18に示すように規則正しく単位構造を配置してもよいし、規則性を有さないようにランダムに単位構造を配置してもよい。
 本実施形態の電子機器の製造方法は、第1乃至第3の実施形態で説明した製造方法に準じて実現することができる。
 本実施形態の電子機器によれば、第1乃至第3の実施形態と同様の作用効果に加えて、以下のような作用効果が実現される。
 第1の実施形態で説明した通り、本実施形態の構造が電磁バンドギャップ構造として振る舞う周波数帯は、スタブのスタブ長により調整可能である。つまり、例えば、本実施形態の電子機器が有する複数種類の単位構造のスタブ長を単位構造ごとに異なるものとした場合、各単位構造は各々のスタブ長に対応した各々の電磁バンドギャップ特性を持つ。また、各単位構造が有するスタブの数を異なるものとした場合、各単位構造は各々のスタブの数及び長さに対応した各々の電磁バンドギャップ特性を持つ。
 このような異なる電磁バンドギャップ特性を有する複数種類の単位構造を有する本実施形態の電子機器によれば、複数種類の単位構造全体として、広い周波数帯を網羅した電磁バンドギャップ特性を実現することができる。結果、広い周波数帯において放射ノイズを抑制することが可能となる。なお、このような本実施形態の場合、伝播を抑制可能な放射ノイズの周波数帯は、連続的な範囲(例:1GHz~5GHz)となる場合もあれば、間欠的な範囲(例:1GHz~2.5GHzかつ3.5GHz~5GHz)となる場合もある。
<第5の実施形態>
 以下、本発明の第5の実施の形態について図面を参照して説明する。本実施形態は、単位構造109の配置方法が、第1乃至第4の実施形態と異なる。その他の構成は第1、第2、第3又は第4の実施形態と同様であるので、ここでの説明は省略する。
 図19は、本実施形態の電子機器の断面図であり、第1の実施形態の説明で利用した図2に相当する。放射ノイズ抑制効果を得たい電磁波の周波数に対する波長をλとしたとき、ヒートシンク端部からの距離がλ/4未満の領域、好ましくはλ/8以下の領域を、領域(ii)114と名付ける。
 本実施形態では、領域(ii)114内に導体ビア105を有する単位構造109を複数有し、これら複数の単位構造109は以下のような関係を有して配置される。すなわち、領域(ii)114内に導体ビア105を有する複数の単位構造109の中の任意の1つを選んだ際、その単位構造109の導体ビア105から距離λ/2未満、好ましくはλ/4以内に、別の単位構造109に含まれる少なくとも1つの導体ビア105が位置する。当該導体ビア105は、領域(ii)114内に位置する。なお、図示するように、本実施形態では、領域(ii)114内に導体ビア105を有さない単位構造109も併せて有することもできる。
 図20に、本実施形態の電子機器の他の例を示す。当該電子機器は、図19を用いて説明したものと同様に構成されている。
 本実施形態の電子機器の製造方法は、第1乃至第4の実施形態と同様にして実現することができる。
 本実施形態の電子機器によれば、第1乃至第4の実施形態と同様の作用効果に加えて、以下のような作用効果が実現される。
 本実施形態によれば、領域(ii)114内に導体ビア105を有する単位構造により、導体ビア105を短絡端、ヒートシンク103の端部を開放端とする、λ/4共振を抑制できる。また、領域(ii)114内に導体ビア105を有する複数の単位構造の位置関係を、1つの導体ビア105からλ/2未満、好ましくはλ/4以内に他の導体ビア105を配置するように構成することで、導体ビア105を短絡端とするλ/2共振がヒートシンク103の端部付近で生じるのを抑制できる。
 つまり、本実施形態によれば、ヒートシンク103の端部付近において、波長λの電磁波を放射する原因となる共振を抑制できることになるため、大きな放射ノイズ抑制効果を得ることができる。
 なお、放射ノイズ抑制効果を得たい電磁波の周波数は設計的事項であるが、例えば2.4GHz帯、及び/又は、5GHz帯などが考えられる。
<第6の実施形態>
 以下、本発明の第6の実施形態について図面を参照して説明する。本実施形態は、ヒートシンク103の構造、及び、単位構造109の配置の仕方が、第1乃至第5の実施形態と異なる。その他の構成は第1、第2、第3、第4又は第5の実施形態と同様であるので、ここでの説明は省略する。
 図21は、本実施形態の電子機器の断面図であり、第1の実施形態の説明で利用した図2に相当する。本実施形態のヒートシンク103は、放射ノイズ抑制効果を得たい電磁波の周波数に対する波長をλとした時、ヒートシンク103の第1の面の外周の任意の2点を結ぶ線分の長さが、λ/2未満であるような底面を有する。例えば、ヒートシンク103の第1の面の形状が図21に示すような四角形である場合、対角線の長さはλ/2未満である。また、ヒートシンク103の第1の面の形状が円形である場合、当該円の直径はλ/2未満である。
 そして、本実施形態の電子機器は、ただ1つの単位構造を有する。
 本実施形態の電子機器の製造方法は、第1乃至第5の実施形態と同様にして実現することができる。
 本実施形態の電子機器によれば、第1乃至第5の実施形態と同様の作用効果が実現される。
 すなわち、本実施形態のヒートシンク103に設けられた単位構造は、必ず導体ビア105を短絡端とし、ヒートシンク103の端部を開放端とするλ/4共振を抑えるように動作する。そのため、ただ1つの単位構造で放射ノイズ抑制効果を実現することができる。
<第7の実施形態>
 以下、本発明の第7の実施形態について図面を参照して説明する。本実施形態は、単位構造109の構成が、第1乃至第6の実施形態と異なる。その他の構成は第1、第2、第3、第4、第5又は第6の実施形態と同様であるので、ここでの説明は省略する。
 図22は、本実施形態の電子機器の断面図であり、本実施形態の説明に必要な部分を抽出して示している。本実施形態の単位構造109は、スタブ106に代えて島状導体115を形成している点で、第1乃至第6の実施形態と異なる。単位構造109のその他の構成は、第1乃至第6の実施形態と同様である。
 島状導体115は、導体ビア105と接続し、導体プレーン104及びヒートシンク103と対峙している。島状導体115の平面形状は特段制限されず、正方形、長方形、その他の四角形、円形の他、あらゆる形状とすることができる。なお、複数の島状導体115を有する場合、それらの平面形状はすべて同一であってもよいし、異なる平面形状が混在していてもよい。
 本実施形態の電子機器の製造方法は、第1乃至第6の実施形態と同様にして実現することができる。
 本実施形態の電子機器によれば、第1乃至第6の実施形態と同様の作用効果が実現される。なお、図23に、本実施形態の単位構造の等価回路図を示す。 本実施形態の電子機器は、ヒートシンク103の第1の面と、基板101に設けられた導体プレーン104とが、平行平板導波路を形成する。また、島状導体115は、導体プレーン104と平行平板キャパシタンスを形成する。等価回路の直列インピーダンス、並列アドミタンスは、それぞれ次式(6)、(7)で表される。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
j: 虚数単位
ω: 角周波数
Lppw: 平行平板導波路インダクタンス
Cppw: 平行平板導波路キャパシタンス
Zos: オープンスタブ特性インピーダンス
Lvia: 導体ビアインダクタンス
Cpatch: 島状導体と導体プレーン間のキャパシタンス
Z: 伝送線路の直列インピーダンス
Y: 伝送線路の並列アドミタンス
 段落[0041]と同様の議論により、式(7)がインダクタンス性(Im[Y]<0)である周波数では、電磁バンドギャップ構造として振る舞うことが分かる。つまり、本実施形態の単位構造によれば、電磁バンドギャップ構造として振る舞う周波数帯は、島状導体115の大きさ、及び/又は、導体ビア105の長さ等を調整し、式(7)中のLvia、Cpatchを調整することで、調整可能である。
 この出願は、2011年6月10日に出願された日本特許出願特願2011-130358号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (13)

  1.  基板と、
     前記基板の内層、または、表面に設けられた導体プレーンと、
     前記基板に実装された電子回路と、
     前記電子回路の上面に取り付けられ、平面視で前記電子回路と重ならない部分を有し、前記導体プレーンと対峙する、導電性の材料で構成されたヒートシンクと、
     前記ヒートシンクの前記電子回路と接する面で前記ヒートシンクと接続するとともに、前記導体プレーンに向かって延伸する導体ビアと、
     前記導体ビアと接続し、前記導体プレーンと対峙して延伸するスタブと
    を有する電子機器。
  2.  請求項1に記載の電子機器において、
     前記ヒートシンクの前記電子回路と接する面上であって、前記電子回路と接する領域を除く領域に形成された誘電体層を有し、
     前記導体ビアは、前記誘電体層の内部に形成され、
     前記スタブは、前記誘電体層の内部又は表面に形成される電子機器。
  3.  請求項1または2に記載の電子機器において、
     1つの前記導体ビアに、当該導体ビアを起点として延伸する複数の前記スタブが接続している電子機器。
  4.  請求項1から3のいずれか1項に記載の電子機器において、
     前記導体ビアは複数設けられ、
     第1の前記導体ビアと接続する第1の前記スタブの長さと、第2の前記導体ビアと接続する第2の前記スタブの長さは異なる電子機器。
  5.  請求項1から4のいずれか1項に記載の電子機器において、
     放射ノイズを抑制したい電磁波の周波数に対する波長をλとした場合、
     平面視で、前記ヒートシンクの外縁部からの距離がλ/4未満である前記導体ビアを複数有し、
     平面視で、第1の前記導体ビアからλ/2未満の距離に、前記ヒートシンクの外縁部からの距離がλ/4未満である他の前記導体ビアが存在する電子機器。
  6.  請求項5に記載の電子機器において、
     前記放射ノイズを抑制したい電磁波の周波数は、2.4GHz帯及び/又は5GHz帯である電子機器。
  7.  内層、または、表面に導体プレーンを有する基板に実装された電子回路の上面に取り付けられるヒートシンクの前記電子回路と接する面における前記電子回路と接する領域を除く領域に取り付けられる構造体であって、
     前記ヒートシンクに取り付けられた状態で、前記ヒートシンクの前記電子回路と接する面で前記ヒートシンクと接続する導体ビアと、
     前記導体ビアと接続し、前記ヒートシンクが前記基板に実装された前記電子回路の上面に取り付けられた状態で、前記導体プレーンと対峙するように延伸しているスタブと、
    を有する構造体。
  8.  請求項7に記載の構造体において、
     誘電体層をさらに有し、
     前記導体ビアは、前記誘電体層の内部に設けられ、
     前記スタブは、前記誘電体層の内部又は表面に設けられている構造体。
  9.  請求項7または8に記載の構造体において、
     1つの前記導体ビアに、当該導体ビアを起点として延伸する複数の前記スタブが接続している構造体。
  10.  請求項7から9のいずれか1項に記載の構造体において、
     前記導体ビアは複数設けられており、
     第1の前記導体ビアと接続する第1の前記スタブの長さと、第2の前記導体ビアと接続する第2の前記スタブの長さは異なる構造体。
  11.  請求項7から10のいずれか1項に記載の構造体において、
     放射ノイズを抑制したい電磁波の周波数に対する波長をλとした場合、
     前記ヒートシンクに取り付けられた状態における平面視で、
      前記ヒートシンクの外縁部からの距離がλ/4未満となる前記導体ビアを複数有し、
      第1の前記導体ビアからλ/2未満の距離に、前記ヒートシンクの外縁部からの距離がλ/4未満である他の前記導体ビアが存在する構造体。
  12.  請求項11に記載の構造体において、
     前記放射ノイズを抑制したい電磁波の周波数は、2.4GHz帯及び/又は5GHz帯である構造体。
  13.  内層、または、表面に導体プレーンを有する基板に実装された電子回路の上面に取り付けられるヒートシンクであって、
     前記電子回路と接する面における前記電子回路と接する領域を除く領域に、請求項7から12のいずれか1項に記載の構造体が取り付けられたヒートシンク。
PCT/JP2012/002516 2011-06-10 2012-04-11 電子機器、構造体、及び、ヒートシンク WO2012169104A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013519352A JP5821954B2 (ja) 2011-06-10 2012-04-11 電子機器、構造体、及び、ヒートシンク
US14/124,664 US9629282B2 (en) 2011-06-10 2012-04-11 Electronic device, structure, and heat sink

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011130358 2011-06-10
JP2011-130358 2011-06-10

Publications (1)

Publication Number Publication Date
WO2012169104A1 true WO2012169104A1 (ja) 2012-12-13

Family

ID=47295697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002516 WO2012169104A1 (ja) 2011-06-10 2012-04-11 電子機器、構造体、及び、ヒートシンク

Country Status (3)

Country Link
US (1) US9629282B2 (ja)
JP (1) JP5821954B2 (ja)
WO (1) WO2012169104A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069658A1 (ja) * 2012-11-05 2014-05-08 株式会社デンソー 高周波モジュール
JP2016039743A (ja) * 2014-08-11 2016-03-22 日産自動車株式会社 電源装置
JP2018137329A (ja) * 2017-02-22 2018-08-30 日立オートモティブシステムズ株式会社 電子制御装置
WO2024142337A1 (ja) * 2022-12-27 2024-07-04 日立Astemo株式会社 電子制御装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10122074B2 (en) * 2014-11-19 2018-11-06 Panasonic Intellectual Property Management Co., Ltd. Antenna device using EBG structure, wireless communication device, and radar device
JP6582717B2 (ja) 2015-08-18 2019-10-02 富士電機株式会社 電子電気機器
DE102018107094B4 (de) * 2018-03-26 2021-04-15 Infineon Technologies Austria Ag Multi-Package-Oberseitenkühlung und Verfahren zu deren Herstellung
CN111587037B (zh) * 2020-05-13 2022-10-28 江苏富联通讯技术有限公司 一种设置有散热结构的5g通信滤波器模块及其装配方法
CN113966070B (zh) * 2021-10-20 2022-04-26 深圳市嘉海辉电子科技有限公司 一种基于ai封装识别系统的电子元件制造用封装结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009100168A (ja) * 2007-10-16 2009-05-07 Mitsubishi Electric Corp 送受信モジュール
JP2009283768A (ja) * 2008-05-23 2009-12-03 Yokogawa Electric Corp 冷却シールド装置
JP2011040742A (ja) * 2009-08-06 2011-02-24 Internatl Business Mach Corp <Ibm> 周期的パターンを有するベースプレート構造を含むヒートシンク、ならびに関連する装置および方法(周期的パターンを有するベースプレート構造を含むヒートシンク)
WO2011070736A1 (ja) * 2009-12-08 2011-06-16 日本電気株式会社 ノイズ抑制テープ
JP2011124503A (ja) * 2009-12-14 2011-06-23 Nec Corp 電子装置及びノイズ抑制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69401040T2 (de) * 1993-07-12 1997-06-05 Nippon Electric Co Gehäusestruktur für Mikrowellenschaltung
JP4859028B2 (ja) 2006-02-20 2012-01-18 北川工業株式会社 電磁波対策シート、電磁波対策シートの製造方法、および電子部品の電磁波対策構造
JP2007258385A (ja) 2006-03-23 2007-10-04 Yokogawa Electric Corp ヒートシンク装置
WO2008035540A1 (en) * 2006-09-19 2008-03-27 Nec Corporation Apparatus with electronic device mounted therein and method for suppressing resonance of the apparatus
JP5380919B2 (ja) * 2008-06-24 2014-01-08 日本電気株式会社 導波路構造およびプリント配線板
JP5241358B2 (ja) * 2008-07-11 2013-07-17 キヤノン株式会社 プリント基板設計支援プログラム、プリント基板設計支援方法及びプリント基板設計支援装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009100168A (ja) * 2007-10-16 2009-05-07 Mitsubishi Electric Corp 送受信モジュール
JP2009283768A (ja) * 2008-05-23 2009-12-03 Yokogawa Electric Corp 冷却シールド装置
JP2011040742A (ja) * 2009-08-06 2011-02-24 Internatl Business Mach Corp <Ibm> 周期的パターンを有するベースプレート構造を含むヒートシンク、ならびに関連する装置および方法(周期的パターンを有するベースプレート構造を含むヒートシンク)
WO2011070736A1 (ja) * 2009-12-08 2011-06-16 日本電気株式会社 ノイズ抑制テープ
JP2011124503A (ja) * 2009-12-14 2011-06-23 Nec Corp 電子装置及びノイズ抑制方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069658A1 (ja) * 2012-11-05 2014-05-08 株式会社デンソー 高周波モジュール
US9445535B2 (en) 2012-11-05 2016-09-13 Denso Corporation High-frequency module
JP2016039743A (ja) * 2014-08-11 2016-03-22 日産自動車株式会社 電源装置
JP2018137329A (ja) * 2017-02-22 2018-08-30 日立オートモティブシステムズ株式会社 電子制御装置
WO2024142337A1 (ja) * 2022-12-27 2024-07-04 日立Astemo株式会社 電子制御装置

Also Published As

Publication number Publication date
US9629282B2 (en) 2017-04-18
US20140098499A1 (en) 2014-04-10
JPWO2012169104A1 (ja) 2015-02-23
JP5821954B2 (ja) 2015-11-24

Similar Documents

Publication Publication Date Title
JP5821954B2 (ja) 電子機器、構造体、及び、ヒートシンク
US8779874B2 (en) Waveguide structure and printed-circuit board
US8004369B2 (en) Arrangement structure of electromagnetic band-gap for suppressing noise and improving signal integrity
US8159413B2 (en) Double-stacked EBG structure
US20050104678A1 (en) System and method for noise mitigation in high speed printed circuit boards using electromagnetic bandgap structures
US9468089B2 (en) EBG structure, semiconductor device, and circuit board
US8330048B2 (en) Electromagnetic bandgap structure and printed circuit board having the same
JP2010532590A (ja) メタマテリアルを用いた伝送線路の設計方法
JPWO2011111313A1 (ja) 電子装置、配線基板およびノイズ遮蔽方法
JP5761184B2 (ja) 配線基板及び電子装置
US8253025B2 (en) Printed circuit board having electromagnetic bandgap structure
US8558120B2 (en) Multilayer board for suppressing unwanted electromagnetic waves and noise
US11309615B2 (en) Dual slot common mode noise filter
JP6123802B2 (ja) 構造体及び配線基板
JP5353042B2 (ja) プリント配線基板
JP6176242B2 (ja) Ebg特性を有する導波路構造
WO2014136595A1 (ja) 構造体、配線基板及び電子装置
JP5673552B2 (ja) 電子機器
JP2008270363A (ja) 高周波パッケージ
JPWO2008010445A1 (ja) 多層プリント回路基板
KR20120019634A (ko) 광대역 노이즈를 억제하는 전자기 밴드갭 구조
WO2013018257A1 (ja) 配線基板
Wu et al. Systematic design of bandstop power distribution network using resonant vias

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796742

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013519352

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14124664

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12796742

Country of ref document: EP

Kind code of ref document: A1