WO2012165679A1 - 강판 안정화 장치 - Google Patents

강판 안정화 장치 Download PDF

Info

Publication number
WO2012165679A1
WO2012165679A1 PCT/KR2011/004046 KR2011004046W WO2012165679A1 WO 2012165679 A1 WO2012165679 A1 WO 2012165679A1 KR 2011004046 W KR2011004046 W KR 2011004046W WO 2012165679 A1 WO2012165679 A1 WO 2012165679A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
magnetic field
field generating
pole
steel plate
Prior art date
Application number
PCT/KR2011/004046
Other languages
English (en)
French (fr)
Inventor
장태인
지창운
권용훈
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47259516&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012165679(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to PCT/KR2011/004046 priority Critical patent/WO2012165679A1/ko
Priority to US14/122,883 priority patent/US9487853B2/en
Priority to EP11867094.2A priority patent/EP2716786B1/en
Priority to JP2014513411A priority patent/JP5830604B2/ja
Priority to MX2013014116A priority patent/MX349478B/es
Priority to CN201180072330.6A priority patent/CN103649358B/zh
Publication of WO2012165679A1 publication Critical patent/WO2012165679A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C3/00Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H57/00Guides for filamentary materials; Supports therefor
    • B65H57/006Traversing guides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • C23C2/524Position of the substrate
    • C23C2/5245Position of the substrate for reducing vibrations of the substrate

Definitions

  • the present invention relates to a steel sheet stabilizing apparatus which enables non-contact type correction and vibration suppression of a steel sheet, in particular, a plated steel sheet to be transferred.
  • the present invention increases the (front) magnetic attraction force for the plated steel sheet that has passed through the plating bath, thereby effectively correcting the shape (bending) or vibration suppression (vibration) of the plated steel sheet to correct the shape of the steel sheet.
  • the present invention relates to a steel sheet stabilization device that further improves the resistance and vibration damping properties, thereby preventing plating variation of the plated steel sheet and ultimately improving the plating quality of the steel sheet.
  • the steel sheet (eg, cold rolled steel sheet) 100 released from a pay-off reel is heat treated through a welder and a looper, and then a snout and a zinc plating bath ( Molten zinc (Z) is attached to the surface of the steel sheet 100 while passing through 110, the zinc plating is performed.
  • a snout and a zinc plating bath Molten zinc (Z) is attached to the surface of the steel sheet 100 while passing through 110, the zinc plating is performed.
  • a gas (inert gas or air) is sprayed on the surface of the steel sheet so that the zinc adhesion amount of the steel sheet is appropriately cut. Adjust the galvanizing thickness.
  • the plated steel sheet is provided to the plating bath 110 through a sink roll 112 and a stabilizing roll 114 for adjusting the tension of the steel sheet and the like. It proceeds continuously while passing through the upper feed roll (130).
  • the temperature of the molten zinc (Z) filled in the galvanizing bath 110 is about 450 ⁇ 460 °C degree, in particular, the steel sheet 100 passing through the plating bath 110 is various Steel grade, width and thickness.
  • the load applied to the sink roll 112 (the roll shaft) is different depending on the steel sheet, a load of up to 500 kgf may be applied to both ends thereof, and thus, when a dynamic characteristic such as vibration occurs, the direction of rotation of the sink roll Up to 100 kgf loads can be applied.
  • the steel sheet stabilization device 140 also referred to as 'steel plate vibration damper' to correct the steel sheet shape or to suppress vibration More than one will be placed.
  • Such a steel plate stabilization device 140 is to suppress the vibration of the plated steel sheet, that is, to implement the vibration damping or control the bending shape of the steel sheet to be transferred to a flat state, thereby preventing the plating deviation of the steel sheet.
  • the conventional steel sheet stabilization device 140 performs vibration suppression or shape correction of a steel sheet by using a mechanical touch roll in contact with the steel sheet, or a steel sheet. In most cases, gas was injected into the steel sheet to correct the vibration and shape of the steel sheet.
  • the magnetic block that generates a magnetic field is simply adjacent to the steel plate, although the shape correction is implemented by suppressing the steel plate vibration in a non-contact manner or by magnetic attraction of the steel plate. Since the magnetic block is simple in shape and has a small unit area, it causes stress concentration of the steel sheet when the steel sheet is damped or corrected.
  • the steel sheet is crushed, causing another problem that causes surface defects of the steel sheet.
  • the present invention has been proposed in order to solve the above-mentioned conventional problems, one object aspect is to improve the shape correctability and vibration damping (vibration suppression) of the steel sheet, in particular, to prevent the plating deviation of the steel sheet as much as possible, Ultimately, it is to provide a steel sheet stabilization device to improve the plating quality of the steel sheet.
  • the present invention also provides a steel sheet stabilization device that further improves vibration damping properties and extends the service life of the device by maintaining a constant temperature of the electromagnetic pole.
  • another object of the present invention is to provide a steel sheet stabilization device to achieve a stable shape correction or vibration suppression of the steel sheet through the (front) magnetic field suction force by implementing the cooling of the device support or magnetic field generating poles .
  • an apparatus supporter disposed on at least one side of the steel sheet
  • a steel plate stabilization means comprising a magnetic field generating pole provided on the apparatus support toward a steel sheet and a pole extension provided to increase the steel sheet suction force at the steel sheet side end of the magnetic field generating pole;
  • It provides a steel sheet stabilization device configured to include.
  • the pole extension of the steel plate stabilization means is provided at least larger than the thickness of the magnetic field generating poles through the round portion formed at the tip of the magnetic field generating poles.
  • the device support is provided with at least one steel plate stabilization means, and the device support is one or more arranged in the width direction of the steel plate.
  • a plurality of magnetic field generating poles are provided on the device support, and the plurality of magnetic field generating poles are installed on the device support independently of each other in the advancing direction of the steel sheet or connected to each other via a connection part.
  • the steel plate stabilization means the coil-type steel sheet stabilization means consisting of a magnetic field generating pole is made of a magnetic member and a core coil wound around the core member;
  • Magnetic steel plate stabilizing means wherein the magnetic field generating pole is formed of a permanent magnet or an electromagnet;
  • It may be configured to implement the shape correction or vibration suppression of the steel sheet while being provided to any one.
  • the electromagnetic coil is wound around at least one of the plurality of magnetic field generating poles connected to each other through the connection unit.
  • the width of the pole extension provided in the magnetic field generating pole is 1.5 to 5 of the diameter of the electromagnetic coil wound around the core member of the coil-shaped steel sheet stabilizing means or the thickness of the magnetic field generating pole of the magnetic steel sheet stabilizing means. It is formed in the fold range.
  • the electromagnetic coil of the coiled steel sheet stabilization means is provided in parallel to the core member.
  • it may further include at least one of an eddy current sensor and a range finder sensor provided to measure the gap between the pole extension and the steel sheet.
  • it further comprises a cooling means provided in any one or both of the device support and the magnetic field generating poles mounted to the device support and the cooling medium is circulated.
  • the shape correctability of the steel sheet in particular, the plated steel sheet and / or steel sheet Increasing the integrity, thereby reducing the plating deviation of the steel sheet to improve the plating quality of the steel sheet.
  • the (electric) magnetic force is used, the occurrence of defects on the surface of the steel sheet by the existing mechanical contact method is prevented, and the wear due to the contact does not occur, thereby making the device semi-permanent.
  • the present invention can measure the gap (distance) between the device and the steel sheet on the basis of precise and fast response characteristics by using an eddy current sensor (or rangefinder sensor). It is possible to uniformly control or maintain the (electric) magnetic attraction force for the steel sheet, and to enable uniform shape correction or vibration damping of the steel sheet.
  • the present invention implements the cooling of the device support or the magnetic field generating pole to achieve a stable shape correction or vibration suppression of the steel sheet through the (pre) magnetic field attraction force.
  • 1 is a configuration diagram showing a plating process of a conventionally known steel sheet
  • FIG. 2 is a block diagram showing an example of a steel plate plating process including a steel plate stabilizing device according to the present invention
  • FIG. 3 is a perspective view showing a steel plate stabilization device according to the present invention of FIG.
  • 4A and 4B are side configuration diagrams showing various forms of the steel plate stabilizing device of the present invention.
  • FIG. 5 is a side configuration diagram showing a steel plate stabilizing device of the present invention of FIG.
  • 6a and 6b is a perspective view and a side configuration showing an embodiment of a magnetic field generating pole of the steel sheet stabilization device of the present invention
  • FIG. 7A and 7B are a perspective view and a side view showing another embodiment of the magnetic field generating pole of the steel sheet stabilizing device of the present invention.
  • 8A and 8B are a perspective view and a side view showing another embodiment of the magnetic field generating pole of the steel sheet stabilization device of the present invention
  • 9a and 9b is a circuit diagram and configuration showing the coil form of the magnetic field generating pole in the steel sheet stabilization device of the present invention
  • 10a to 10c is a configuration diagram showing the cooling means provided in the magnetic field generating pole or the device support in the steel sheet stabilizing device of the present invention
  • 11 and 12 are graphs showing the performance curve of the steel sheet stabilization device of the present invention.
  • FIG. 13 is a graph showing the sensitivity curve of the thickness of the steel sheet and the applied current of the steel sheet stabilizing device of the present invention
  • FIGS. 2 to 4 show a steel plate stabilizing device 1 according to the present invention.
  • the shape of the plated steel sheet 100 is galvanized through the plating bath 110 of the galvanizing equipment described in FIG.
  • 130 is denoted by the same reference numerals described in the prior art portion of FIG.
  • the shape correction of the steel sheet is a gas wiping device by correcting the shape of defects such that the steel sheet passing through the gas wiping device 120 in the width direction, that is, C-bending or L-bending of the steel sheet in FIG. By straightening the steel sheet passing through 120, the plating deviation of the steel sheet is prevented from occurring.
  • the vibration of the steel sheet is to block the plated thickness of the steel sheet from being normally controlled while passing through the gas wiping device due to the vibration while the steel sheet is being transferred.
  • the steel sheet stabilization device 1 of the present invention is described as being applied to a steel plate plating line, that is, a galvanized line of steel sheet.
  • a steel plate plating line that is, a galvanized line of steel sheet.
  • the steel sheet stabilization apparatus of the present invention can be applied to a steel sheet surface treatment process that affects steel sheet production or steel sheet quality due to shape defects or vibrations such as C-bending or L-bending of the steel sheet during steel sheet progression. to be.
  • the steel sheet stabilizing device 1 of the present invention is preferably symmetrically disposed on both sides of the steel sheet to be advanced, of course, it is preferable for the uniform and stable vibration suppression implementation of the steel sheet.
  • the steel sheet stabilizing device 1 of the present invention is preferably a predetermined interval S, for example, upstream of the gas wiping device 120 above the plating bath 110. It is preferable to arrange
  • the vibration of the steel sheet in the plating line generates a plating deviation when the plating thickness is adjusted by wiping the gas in the gas wiping device 120 to lower the (zinc) plating solution on the surface of the steel sheet. It is preferable to arrange so as to maintain the gap S above the wiping device 120 so that a shape defect or vibration of the steel sheet does not occur during gas wiping.
  • the distance (S) between the present invention device and the gas wiping device is less than 0.5m, the plating liquid scattering particles generated when the gas wiping is too close to the gas wiping device is out of the range It can be attached to the steel plate stabilization device 1 of the can affect the operation stability and precision of the device.
  • the steel plate cooling device 150 that is, the mist cooler for cooling the plated steel sheet is gas wiped to control the plating thickness And between the stabilizing roll for controlling the steel sheet traveling direction and the linear upper feed roll 130 (more).
  • the steel sheet stabilizing device 1 of the present invention is preferably at least one side of the plated steel sheet that proceeds through the advanced steel sheet 100, that is, the plating bath as an example of the configuration thereof.
  • the device support 10 is disposed symmetrically on both sides, the magnetic field generating pole 32 provided at least one of the magnetic field generating poles toward the steel sheet, and the steel plate side of the magnetic field generating pole 32 It can be configured to include a steel plate stabilization means 30 configured to include a pole extension 34 of the magnetic field generating pole provided at the end to increase the electromagnetic or magnetic attraction force of the steel sheet.
  • the steel sheet stabilizing apparatus 1 of the present invention is different from the conventional mechanical contact rolls, gas injections, or the shape correction of steel sheets using simple magnetic blocks, or the steel sheet is damped. Since the shape defects such as C-bending or L-bending of the steel sheet are corrected flat or the vibration is suppressed or at least minimized, the steel sheet surface defects according to the conventional contact method or the inefficient steel sheet shape correctability due to gas injection or Dust damping is removed.
  • the present invention relates to the extension of the pole 34, for example a steel sheet, to a magnetic field generating pole 32 that generates a (pre) magnetic force, i.e., a (pre) magnetic force that aspirates the steel plate to correct its shape or suppresses vibration.
  • a (pre) magnetic force i.e., a (pre) magnetic force that aspirates the steel plate to correct its shape or suppresses vibration.
  • the device support 10 as shown in Figure 3, may be in the form of a plate elongated in the advancing direction of the steel plate 100, preferably to prevent leakage of the magnetic field during (pre) magnetic force generation
  • Nonmagnetic material for example, is made of ceramic or stainless steel (SUS).
  • the apparatus support 10 of the present invention can be fixedly connected to the entire installation side frame (not shown) of the plating line.
  • the steel sheet support 10 of the present invention is appropriately sized according to the number of the steel plate stabilization means 30 is installed is installed, as well as at least (full) magnetic force greater than the steel plate width in the width direction of the steel sheet
  • a pair of steel sheet stabilizing means 30 is moved upward and downward in the steel sheet traveling direction to the unit device support 10 elongated in the steel sheet traveling direction.
  • the unit steel sheet stabilizing device 1 is arranged in multiple rows in the steel plate width direction.
  • the arrangement of the unit steel sheet stabilization device may be adjusted in consideration of the thickness, width, etc. of the steel sheet.
  • the electromagnetic pole 32 of the steel plate stabilizing means 30 that substantially generates the (pre) magnetic attraction force of the steel sheet is provided.
  • the pole extension part 34 which expands the range of (before) magnetic influence of is provided in parallel with a steel plate via the round part 36 formed integrally with the steel plate side front end of the magnetic field generating pole 32. .
  • the magnetic field generating pole extension 34 of the present invention is provided as an electromagnetic force emitting surface in parallel with the steel sheet to be advanced, and the area is expanded through the rounded portion 36 of the tip end portion of the magnetic field generating pole 32, The magnetic field generated in the magnetic field generating pole 32 will be emitted evenly toward the steel sheet throughout the extension, which will make the steel sheet suction force uniform throughout.
  • the pole extension portion 34 of the magnetic field generating pole 32 of the present invention is formed (processed) integrally with the magnetic field generating pole, or when the machining is difficult to generate a magnetic plate (plate) of the (steel) magnetic material It may be attached to the pole and assembled.
  • the steel sheet stabilizing means 30 which substantially realizes the shape correction or vibration damping of the steel sheet, may be provided in various forms, as shown in Figures 4a and 4b. .
  • the steel sheet stabilization means 30 of the present invention may be provided as a coiled steel sheet stabilization means 30a composed of 32b.
  • a magnetic field generating pole 32 is formed by winding an electromagnetic coil 32b for forming an electromagnetic force upon application of current to a core member 32a formed by stacking an SM45C series or a silicon steel sheet, and at this time, a magnetic field generating pole extension part. 34 may be formed vertically integrally with the core member.
  • the cover body 40 for example, a nonmagnetic material that does not affect the electromagnetic force, the outer side of the coil wound on the core member, It is preferable to enclose a cover body made of synthetic resin, stainless steel, or the like so that no plated particles or other foreign substances are trapped between the coils and accumulated.
  • the steel sheet stabilization means 30 of the present invention the magnetic field generating pole 32 may be provided as a magnetic sheet stabilization means 30b formed of a permanent magnet or an electromagnet.
  • the width (for example, the height of the steel plate traveling direction) D2 of the pole extension 34 provided in the magnetic field generating pole in the apparatus of the present invention In the case of the coiled steel plate stabilizing means 30a, the diameter D1 of the electromagnetic coil 32b wound around the core member, or in the case of the magnetic steel sheet stabilizing means 30b, is 1.5 to 5 times the thickness D1 of the magnetic field generating pole 32. It is preferable to form in a range, most preferably about 2 times.
  • the magnetic field generating pole extension when the width D2 of the pole extension is smaller than 1.5 times the diameter or the thickness D1 of the coil or the magnetic field generating pole, the magnetic field generating pole extension has a small (extended) magnetic field expansion width, and is a substantially conventional block type vibration damping mechanism.
  • the steel sheet suction force generated per unit area of the steel sheet by the magnetic field generating pole expansion portion is excessively increased and the stress concentration of the steel sheet is amplified. Problems arise.
  • the width D2 of the pole extension is greater than five times the diameter or the thickness D1 of the coil or the magnetic field generating pole, the area of the magnetic field generating pole extension 34 becomes excessively large and the steel sheet influence of the (before) magnetic field, that is, the steel sheet. The suction force will be reduced, making it difficult to correct the shape or vibration of a normal steel sheet.
  • the gap D3 between the pole extension portions 34 of the magnetic field generating poles of the upper and lower unit steel plate stabilization means 30 is also preferably about 20 to 40 mm. If, for example, the gap is smaller than 20 mm, the pole extension 34 is too close to interfere with the electromagnetic force emitted from each magnetic field generating pole extension, resulting in poor steel sheet suction force, and conversely, if it is 40 mm or more, This will take up space and increase the size of the entire device without the need.
  • the steel sheet stabilization device 1 of the present invention the gap between the steel sheet stabilizing means 30, that is, the steel sheet which is advanced in the magnetic field generating pole extension 34, that is, the plated steel sheet 100 It may include sensors for measuring (G).
  • the sensor mounting holes 52 are provided in the openings formed in the connecting portion 38 of the apparatus support 10 and the upper and lower magnetic field generating poles 32 described in detail below. It is possible to use known eddy current sensors 50 which are provided to measure the gap G with magnetic field strength.
  • the magnetic field generating pole extension 54 with the rangefinder sensor 60 for example, the laser rangefinder sensor, which is installed in association with the apparatus support 10 between the unit steel plate stabilization means 30, or is disposed independently of the eddy current sensor. ), The gap between the steel sheets G can be measured.
  • the rangefinder sensor 60 tends to easily generate a measurement (error) defect in an actual plating line environment, and thus detects an eddy current between the sensor and the steel sheet by detecting a magnetic field wavelength rather than the rangefinder sensor. It may be more desirable to use an eddy current sensor 50 that measures (G). Of course, the use of the odometer sensor is not impossible.
  • such an eddy current sensor changes the impedance of the coil in accordance with the magnetic field changes to interact with the change of the distance between the sensor and the steel sheet (actually the gap between the device pole extension 34 and the steel sheet (G)).
  • the eddy current sensor detects this and performs the gap G measurement.
  • the eddy current sensor used in the present invention preferably uses a probe type sensor rather than a through type through which an object is passed.
  • the plating process related to the present invention is a high temperature environment, and thus, the plating process is connected to the apparatus support 10, and the coolant or air is flowed inside to provide a cooling type.
  • the window 66 is disposed in front of the sensor, in particular the cooling water or cooling air is supplied (in ) And a passage 62a that is discharged out.
  • the clearance gap G between the front surface of the extension 34 of the magnetic field generating pole 32 and the steel sheet is preferably formed within a measurement threshold range that can be measured by the eddy current sensor or the rangefinder sensor.
  • the range of the gap G that can be measured by the eddy current sensor 50 is about 0.1 to 44 mm, and it is preferable that the range of the gap does not deviate from this range.
  • 6 to 8 illustrate various forms of the steel sheet stabilizing device of the present invention described above, in particular, various forms of the steel sheet stabilizing means 30.
  • FIG. 6A, 7A, and 8A show a magnetic sheet stabilizer 30b including a magnetic field generating pole 32 of a permanent magnet or an electromagnet as shown in FIG. 4B, and FIGS. 6B, 7B, and 8B.
  • FIG. 4A shows the coiled steel plate stabilizing means 30a of FIG. 4A of the magnetic field generating pole 32 which wound the electromagnetic coil 32b on the core member 32a.
  • the steel plate stabilizing means 30 of the present invention may have a 'c' shape in which upper and lower magnetic field generating poles 32 are connected to each other via the connection portion 38.
  • each of the wound coils may adjust a current applied through one pulse width modulation (PWM) driver and the control unit C connected thereto. That is, even if the current applied to each wound coil is different, the total magnetic force (magnetic field) emitted from the magnetic field generating pole is the same.
  • PWM pulse width modulation
  • a unit magnetic field generating pole in which the electromagnetic rolls 32 are installed on the upper and lower sides of the device support 10, which is a nonmagnetic material, is independent of each other and is provided in an 'I' shape.
  • the respective pulse width modulation (PWM) drivers controlled by the controller C are connected to the electromagnetic coils 32b respectively wound around the core member, and when the applied current is controlled differently, the upper and lower magnetic field generating poles The electromagnetic force emitted can be implemented differently.
  • a total of three magnetic field generating poles 32 are connected to one device support 10 via a double connection 38, for example when viewed from the front '
  • a double connection 38 for example when viewed from the front '
  • the same electromagnetic force is emitted from the entire magnetic field generating pole, as described in FIG. 6, even if the electromagnetic coil 32b is wound only on the central core member 32a, The electromagnetic force (magnetic field) formed in the magnetic field generating pole 32 is the same.
  • the various types of steel sheet stabilization means 30 shown in FIGS. 6 to 8 may be appropriately selected and used in accordance with the shape correction or vibration damping environment of the steel sheet caused by the shape defect or vibration of the steel sheet.
  • the shape provided with a plurality of magnetic field generating poles of FIG. 8 is selected.
  • the shape of FIG. 7 is selected.
  • Figure 6 will be in the basic form.
  • the plurality of magnetic field generating poles 32 are installed horizontally with the steel sheet, whether installed on the apparatus support 10 independently of each other in the advancing direction of the steel sheet or via the connecting portion 38. Arranged at equal intervals is necessary for the uniform formation of electromagnetic forces.
  • one electromagnetic coil 32b be wound as shown in FIG. 8 to simplify the device structure.
  • the electromagnetic coil 32b of the coil-shaped steel plate stabilizing means 30a is connected to the core member 32a by a magnetic field generating pole.
  • a plurality of electromagnetic coils 32b are provided in parallel.
  • the steel sheet stabilization device 1 of the present invention is advanced to suck the steel sheet, thereby reducing the shape defect of the steel sheet
  • calibrating or suppressing vibration that is, damping
  • the cooling means 70 provided in the steel sheet stabilizing device 1 of the present invention that is, the permanent support magnet mounted on the apparatus support 10 as shown in FIG. 10C or the apparatus support as shown in FIGS. 10A and 10B, It is preferable to further include a cooling medium flow type cooling means 70 provided on the magnetic field generating pole 32 including an electromagnet or a core member.
  • the temperature of the zinc melt is about 450 to 460 ° C., and thus the present invention is disposed above the gas wiping device. Since the steel sheet stabilization device 1 of the present invention can be actually exposed to a high temperature environment, the temperature of the magnetic field generating pole 32 is maintained at least 150 ° C. in order to form a smooth (pre) magnetic force without being affected by temperature. It is preferable.
  • the cooling of the apparatus support or the magnetic field generating pole such as nitrogen gas or cooling water is applied to the apparatus support or the magnetic field generating pole in order to at least reduce the efficiency of the magnetic field generating pole and to avoid the Curie temperature at which the (before) magnetic force becomes ineffective. It cools by making it flow in.
  • the cooling means 70 of the present invention as shown in Figure 10a and 10b, it is preferable that the cooling water or nitrogen gas flows to the rear end of the magnetic field generating pole 32 (that is, permanent magnet, electromagnet or core member)
  • the honeycomb-shaped cooling medium passage 72 is formed, and the cooling medium supply and discharge pipes (not shown) are connected at one end and the other end thereof.
  • the cooling medium is cooled to maintain the magnetic field generating pole at this temperature so that the magnetic field generating pole generates the optimum electromagnetic force.
  • the portion installed in the cooling means 70 of the magnetic field generating pole 32 is a flange structure to connect the body portion and the rear end portion of the magnetic field generating pole to facilitate the manufacture or assembly of the device.
  • the portion in which the cooling means is formed may be assembled in a flange form as a cylinder (integrated type).
  • the magnetic field generating pole does not form the cooling means 70 in the core member of the permanent magnet, the electromagnet or the magnet (magnetic material), and expands the thickness of the device support 10 ', which is a separate member,
  • a cooling medium passageway 72 (shown schematically in FIG. 10C, but may be in the form of FIGS. 10A and B) in the support 10 ′ is formed to circulate nitrogen gas or cooling water to cool the device support, and a magnetic field installed therein. It is also possible to cool the magnetic field generating poles by absorbing the heat of the generating poles.
  • the cooling means is provided in the magnetic field generating pole, the installation thereof is somewhat difficult, but the cooling efficiency is high.
  • the cooling means is installed in the apparatus support 10 as shown in FIG. 10C, the cooling means is easy to install, but the cooling efficiency is low. What is necessary is just to select suitably as needed, or it is also possible to provide both the magnetic field generating poles of FIG. 10A and FIG. 10C, and the cooling means by the apparatus support body side.
  • Figure 11 and Figure 12 shows the performance curve of the steel sheet stabilizing device of the present invention
  • the X axis is the gap between the pole extension 34 and the steel sheet (G in Figure 5) of the device of the present invention
  • Y-axis is the steel sheet attraction force determined by the (former) magnetic force.
  • the applied current is 1.8A and the steel plate thickness is 2 mm, 1 mm and 0.5 mm, respectively, as shown in Fig. 11, the gap between 5 and 40 mm, the steel sheet suction force is increased in all the gap gaps compared with the prior art. It can be seen.
  • the present invention can be seen that the steel sheet suction force is further increased in all the gaps.
  • the (pre) magnetic force for determining the steel sheet suction force includes the number of installations of the magnetic field generating poles, the shape (width) of the pole extension portion, the number of windings of the core member of the electromagnetic coil, It can be adjusted by the application (deflection) current applied to the electromagnetic coil, the control frequency at the time of application of the current, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

강판 특히, 도금강판의 형상 교정이나 진동 억제를 비접촉식으로 가능하게 하는 강판 안정화 장치가 제공된다. 상기 강판 안정화 장치는 그 구성 일예로서, 진행 강판의 적어도 일측에 배치되는 장치 지지체; 및, 상기 장치 지지체에 강판을 향하여 하나 이상 제공되는 자기장 발생 폴과, 상기 자기장 발생 폴의 강판측 단부에 강판 흡인력을 증대토록 제공되는 폴 확장부로 이루어 지는 강판 안정화 수단을 포함하여 강판의 형상 교정이나 진동 억제를 가능토록 구성될 수 있다. 이와 같은 본 발명에 의하면, 도금조를 통과한 도금 강판에 대한 (전) 자기적 흡인력을 증대시킴으로써, 도금 강판의 형상(반곡) 교정이나 진동 억제(제진)를 효과적으로 이루어 지게 하여, 강판의 도금 편차를 방지시키고, 결과적으로 강판의 도금 품질을 향상시키도록 하는 개선된 효과를 얻을 수 있다.

Description

강판 안정화 장치
본 발명은 강판 특히, 이송되는 도금강판의 형상 교정이나 진동 억제를 비접촉식으로 가능하게 한 강판 안정화 장치에 관한 것이다.
더욱 상세하게는, 본 발명은 도금조를 통과한 도금 강판에 대한 (전) 자기적 흡인력을 증대시킴으로써, 도금 강판의 형상(반곡) 교정이나 진동 억제(제진)를 효과적으로 이루어 지게 하여 강판의 형상 교정성이나 제진성을 더욱 향상시키고, 이를 통하여 도금 강판의 도금 편차를 방지시키어, 궁극적으로 강판의 도금 품질을 향상시키도록 한 강판 안정화 장치에 관한 것이다.
근래 강판의 내식성 등을 향상시키고, 외관을 미려하게 함은 물론, 특히 전자 제품이나 자동차용 강판으로 사용되는 (아연) 도금 강판의 수요가 증가하고 있다.
한편, 도 1에서는 이와 같은 강판의 도금 공정 특히, 아연 도금 공정을 도시하고 있다.
예컨대, 도 1에서 도시한 바와 같이, 페이 오프 릴(Pay-Off Reel)에서 풀린 강판(예를 들어, 냉연강판)(100)은 용접기와 루퍼를 거쳐 열처리된 후, 스나우트와 아연 도금조(110)를 통과하면서 용융아연(Z)이 강판(100)의 표면에 부착되어, 아연 도금이 이루어 진다.
이때, 도금조 직상부에 제공된 가스 와이핑 장치(예를 들어, 에어 나이프)(120)에서는 강판 표면에 가스(불활성 가스 또는 에어)를 분사하여 강판의 아연 부착량을 적절하게 깍아지도록 함으로써, 강판의 아연 도금 두께를 조절한다.
그리고, 도금강판은 도금조(110)에 제공되어 강판을 통판시키고 강판의 텐션 등을 조정하는 싱크롤(sink roll)(112)과 스테빌라이징 롤(안정화 롤)(stabilizing roll)(114)을 거쳐 상부 이송롤(130)을 통과하면서 연속적으로 진행된다.
한편, 도 1에서 도시한 바와 같이, 아연 도금조(110)에 충진된 용융아연(Z)의 온도는 대략 450 ~ 460 ℃ 정도이고, 특히 도금조(110)를 통과하는 강판(100)은 다양한 강종, 폭 및 두께를 갖는다.
그런데, 통상 싱크롤(112)(의 롤축)에 걸리는 하중은 강판에 따라 다르기는 하지만, 그 양단에 각각 최대 500kgf의 하중이 걸릴 수 있고, 따라서 진동과 같은 동적특성이 발생되면 싱크롤의 회전 방향으로는 최대 100 kgf의 하중이 작용될 수 있다.
따라서, 싱크롤(112)과 스테빌라이징 롤(114)을 거친 도금 강판(100)이 상부 이송롤(130)을 통과하는 도중에는 강판의 강종,폭 또는 두께에 따라 차이는 있으나, 강판의 진동이 발생되고, 이와 같은 강판의 진동은 가스 와이핑 장치(120)에서의 도금 편차를 발생시키어 강판의 도금불량으로 이어진다.
또는, 강판의 형상이 평탄하지 않은 반곡(예를 들어, 강판 폭방향으로 중앙 부분이 오목하게 되거나 꺽이는 C형 반곡 또는 L형 반곡)현상이 발생되는 경우에도 강판 폭 방향으로 도금 편차를 발생시키어 강판의 도금 불량으로 이어진다.
따라서, 도 1에서 도시한 바와 같이, 가스 와이핑 장치(120)와 상부 이송롤(130)사이에는 강판 형상을 교정하거나 진동을 억제하는 강판 안정화 장치(140)('강판 제진장치'라고도 함)가 하나 이상 배치되게 된다.
이와 같은 강판 안정화 장치(140)는, 도금 강판의 진동을 억제 즉, 제진을 구현하거나 강판의 반곡 형상을 제어하여 평탄한 상태로 이송되도록 함으로써, 강판의 도금 편차를 방지시키도록 하는 것이다.
한편, 도 1에서는 개락적으로 도시하였지만, 종래에 알려진 강판 안정화 장치(140)는, 강판과 접촉하는 기계식 접촉식 롤(Touch Roll)을 사용하여 강판의 진동 억제나 형상 교정을 수행하거나, 또는 강판에 가스를 분사하여 강판 진동이나 형상을 교정하는 것이 대부분이었다.
그러나, 이와 같은 종래의 기계 접촉식 롤을 이용하는 경우, 가스 와이핑 장치를 통과하여 용융아연이 강판의 표면에 완전하게 부착(건조)되지 않은 상태에서 롤이 이송되는 도금강판의 표면에 접촉되기 때문에, 도금 강판의 표면에 롤 마크를 형성시키기 쉽고, 특히 접촉식 롤을 매개로 (기타) 이물질이 강판 표면에 부착되면서 도금강판의 제품 결함을 발생시키는 문제가 있었다.
예를 들어, 자동차용 강판은 대부분 자동차 차체로 사용되므로, 이와 같은 강판의 표면 결함은 상당한 제품 품질에 문제를 초래하는 것이다. 그리고, 접촉식 롤은 롤의 마모 등으로 진동과 소음을 발생시키고, 불 안전한 회전으로 오히려 이송되는 도금강판의 진동을 증폭시키는 다른 문제를 초래하는 것이다.
한편, 강판에 가스를 분사하여 강판의 진동을 억제하거나 형상을 교정하는 종래의 다른 방식은, 강판 제진성이나 형상 교정성이 효율적으로 이루어 지지 않은 문제가 발생되고, 특히 도금액이 완전하게 건조되어 강판 표면에 부착되지 않은 상태에서 강판 표면을 향한 가스 분사는 강판의 도금 두께에도 영향을 줄 수 있는 것이다.
이에 따라서, 기계적인 접촉이나 가스 분사 대신에, 강판 비접촉 방식을 통한 강판의 형상 교정이나 진동 억재(제진)를 가능하게 하는 기술이 요구되었고, 이를 위하여 자력을 이용하는 방식이 종래의 다른 방식으로 제안된 바 있다.
그러나, 종래의 자력을 이용하는 경우, 비접촉식으로 강판 진동을 억제하거나 강판의 자기적 흡인을 통하여 형상 교정을 구현하기는 하기만, 강판에 인접하여 단순하게 자기장(자력)을 발생시키는 자석 블록을 배치하는 단순한 형태이고, 이와 같은 자석 블록은 그 단위 면적이 작기 때문에, 강판 제진이나 형상 교정시 오히려 강판의 응력 집중을 초래한다.
예를 들어, 두께가 0.6t 정도의 두께가 얇은 박판인 경우 강판이 찌그러지면서 강판의 표면 결함을 유발시키는 다른 문제가 있었다.
더욱이, 근래 자동차용 강판으로 사용되는 도금강판의 급속한 수요 증대로 인하여, 도금설비의 대형화나 강판의 고속 도금이 필요하게 되면서, 단순한 자석 블록 형태인 종래의 강판 안정화 장치는 그 사용에 한계가 있는 것이었다.
본 발명은 상기와 같은 종래 문제를 해소하기 위하여 제안된 것으로서 그 일 목적 측면은, 강판 특히, 도금 강판의 형상 교정성이나 제진성(진동 억제)을 향상시킴으로써, 강판의 도금 편차를 최대한 방지시키어, 궁극적으로 강판의 도금 품질을 향상시키도록 한 강판 안정화 장치를 제공하는 데에 있다.
더하여, 본 발명의 다른 목적 측면은, 장치와 강판 간 간극(거리)을 비접촉식 와전류센서를 이용하여 측정함으로써, 빠른 응답특성을 기반으로 장치와 강판사이의 정밀한 거리 유지를 구현시키어, 강판 형상 교정성이나 제진성을 더욱 향상시키는 한편, 전자기 폴의 일정 온도 유지를 통하여 장치의 사용 수명도 연장시킨 강판 안정화 장치를 제공하는 데에 있다.
또한, 본 발명의 또 다른 목적 측면은, 장치 지지체 또는 자기장 발생 폴의 냉각을 구현하여 (전) 자기장 흡인력을 통한 강판의 안정적인 형상 교정 또는 진동 억제가 이루어 지도록 한 강판 안정화 장치를 제공하는 데에 있다.
상기와 같은 목적을 달성하기 위한 기술적인 일측면으로서 본 발명은, 진행 강판의 적어도 일측에 배치되는 장치 지지체; 및,
상기 장치 지지체에 강판을 향하여 제공되는 자기장 발생 폴과, 상기 자기장 발생 폴의 강판측 단부에 강판 흡인력을 증대토록 제공되는 폴 확장부로 이루어 진 강판 안정화 수단;
을 포함하여 구성된 강판 안정화 장치를 제공한다.
바람직하게는, 상기 강판 안정화 수단의 폴 확장부는, 자기장 발생 폴의 선단부에 형성되는 라운드부를 매개로 적어도 상기 자기장 발생 폴의 두께 보다는 크게 제공되는 것이다.
더 바람직하게는, 상기 장치 지지체에는 하나 이상의 강판 안정화 수단이 제공되고, 상기 장치 지지체는, 강판의 폭 방향으로 하나 이상 배열되는 것이다.
더 바람직하게는, 상기 자기장 발생 폴은 장치 지지체에 복수개가 제공되고, 상기 복수의 자기장 발생 폴들은, 장치 지지체에 강판의 진행방향으로 서로 독립적 설치되거나 연결부를 매개로 연결 설치되는 것이다.
이때, 상기 강판 안정화 수단은, 자기장 발생 폴이 자성체로 된 코어부재와 코어부재에 권선되는 전자기코일로 구성되는 코일형 강판 안정화 수단; 및,
상기 자기장 발생 폴이 영구자석 또는 전자석으로 형성된 자석형 강판 안정화 수단;
중 어느 하나로 제공되면서 강판의 형상 교정 또는 진동 억제를 구현토록 구성될 수 있다.
바람직하게는, 상기 연결부를 매개로 서로 연결되는 복수의 자기장 발생 폴 들 중 적어도 하나에 전자기 코일이 권선되는 것이다.
더 바람직하게는, 상기 자기장 발생 폴에 구비되는 폴 확장부의 폭은, 코일형 강판 안정화 수단의 코어부재에 권선되는 전자기 코일의 직경 또는, 자석형 강판 안정화 수단의 자기장 발생 폴의 두께의 1.5 ∼ 5 배 범위로 형성되는 것이다.
더 바람직하게는, 상기 코일형 강판 안정화 수단의 전자기 코일은 코어부재에 병렬로 제공되는 것이다.
더 바람직하게는, 상기 폴 확장부와 강판 간 간극을 측정토록 제공되는 와전류센서와 거리계 센서 중 적어도 하나를 더 포함할 수 있다.
더 바람직하게는, 상기 장치 지지체와 장치 지지체에 장착된 자기장 발생 폴 중 어느 하나 또는 이들 모두에 제공되고 냉각매체가 유통되는 냉각수단을 더 포함하는 것이다.
이와 같은 본 발명에 의하면, 강판의 (전)자기적 흡인력을 증대시키는 한편, 다양한 형태의 자기장 발생 폴을 제공하면서 인가되는 전류 제어를 통하여, 강판 특히, 도금강판의 형상 교정성 및/또는 강판 제진성을 향상시키고, 이를 통하여 강판의 도금 편차를 줄여서 강판의 도금 품질을 향상시키는 것이다.
또한, (전) 자기력을 이용하기 때문에, 기존 기계 접촉방식에 의한 강판 표면의 결함 발생이 방지되고, 접촉에 의한 마모 등이 발생되지 않아 장치를 반영구적으로 사용 가능하게 하는 것이다.
더하여, 본 발명은 장치와 강판 간 간극(거리)을 와전류센서(또는 거리계 센서)를 이용하여 정밀하면서 빠른 응답특성을 기초로 측정할 수 있어, 강판과 장치간 간격을 제어함으로써, 결과적으로 강판에 대한 (전)자기 흡인력의 균일한 제어나 유지를 가능하게 하여, 강판의 균일한 형상 교정 또는 제진을 가능하게 하는 것이다.
마지막으로, 본 발명은 장치 지지체 또는 자기장 발생 폴의 냉각을 구현하여 (전) 자기장 흡인력을 통한 강판의 안정적인 형상 교정 또는 진동 억제가 이루어 지도록 하는 것이다.
도 1은 종래 알려진 강판의 도금 공정을 도시한 구성도
도 2는 본 발명에 따른 강판 안정화 장치를 포함하는 강판 도금 공정의 일예를 도시한 구성도
도 3은 도 2의 본 발명에 따른 강판 안정화 장치를 도시한 사시도
도 4a 및 도 4b는 본 발명의 강판 안정화 장치의 여러 형태를 도시한 측면 구성도
도 5는 도 3의 본 발명의 강판 안정화 장치를 도시한 측면 구성도
도 6a 및 도 6b는 본 발명의 강판 안정화 장치의 자기장 발생 폴의 일 실시예를 도시한 사시도 및 측면 구성도
도 7a 및 도 7b는 본 발명의 강판 안정화 장치의 자기장 발생 폴의 다른 실시예를 도시한 사시도 및 측면 구성도
도 8a 및 도 8b는 본 발명의 강판 안정화 장치의 자기장 발생 폴의 또 다른 실시예를 도시한 사시도 및 측면 구성도
도 9a 및 도 9b는 본 발명의 강판 안정화 장치에서 자기장 발생 폴의 코일 형태를 도시한 회로도 및 구성도
도 10a 내지 도 10c는 본 발명의 강판 안정화 장치에서, 자기장 발생 폴이나 장치 지지체에 구비되는 냉각수단을 도시한 구성도
도 11 및 도 12는 본 발명 강판 안정화 장치의 성능곡선을 도시한 그래프
도 13은 본 발명 강판 안정화 장치의 강판의 두께와 인가 전류의 민감곡선을 도시한 그래프
이하, 첨부된 도면에 따라 본 발명을 상세하게 설명한다.
먼저, 도 2 내지 도 4에서는 본 발명에 따른 강판 안정화 장치(1)를 도시하고 있다.
다만, 본 실시예에서는 도 2에서 도시한 바와 같이, 본 발명의 강판 안정화 장치(1)가 도 1에서 설명한 아연도금설비의 도금조(110)를 통과하여 아연 도금되는 도금강판(100)의 형상 교정 또는/및 강판 제진을 수행하는 것으로 설명하고, 도금라인에 관련된 싱크롤(112)과 스테빌라이징 롤(114)을 포함하는 도금조(110), 가스 와이핑 장치(120) 및 상부 이송롤(130)은 도 1의 종래 기술부분에서 설명한 동일한 도면부호로 설명한다.
이때, 강판의 형상 교정은 도 2에서 가스 와이핑 장치(120)를 통과하는 강판이 폭 방향으로 휘어지는 불량 형상 즉, 강판의 C-반곡 또는 L-반곡 등의 형상 불량을 교정하여 가스 와이핑 장치(120)를 통과하는 강판을 평탄하게 교정함으로써, 강판의 도금 편차가 발생되지 않도록 하는 것이다.
그리고, 강판의 제진 즉, 진동 억제는 강판이 이송되면서 떨림으로 인하여 가스 와이핑 장치를 통과하면서 강판의 도금 두께가 정상적으로 제어되지 않은 것을 차단하기 위한 것이다.
한편, 본 실시예에서는 본 발명의 강판 안정화 장치(1)를 강판 도금라인 즉, 강판의 아연도금라인에 적용한 것으로 설명하지만, 기타 강판 제조시 강판의 연속 이송이 이루어 지는 연속 생산라인에 적용 가능함은 물론이다.
예를 들어, 강판 진행시 강판의 C-반곡 또는 L-반곡 등의 형상 불량이나 진동이 발생되어 강판 생산이나 강판 품질에 영향을 주는 강판 표면 처리 공정에서도 본 발명의 강판 안정화 장치를 적용 가능함은 물론이다.
또한, 본 발명의 강판 안정화 장치(1)는, 바람직하게는 진행되는 강판의 양측에 대칭적으로 배치되는 것이 강판의 균일하고 안정적인 제진 구현을 위한 바람직함은 물론이다.
물론, 반드시 이에 한정되는 것은 아니고, 강판 일측에만 제공되는 것도 가능한데, 다만 (전) 자기력의 제어를 적정하게 구현하면 될 것이다.
한편, 도 2에서 도시한 바와 같이, 본 발명의 강판 안정화 장치(1)는, 바람직하게는 도금조(110) 상부의 가스 와이핑 장치(120)의 상류측으로 소정 간격(S) 예를 들어, 0.5 ∼ 2 m 정도의 간격(S)을 두고 하나 이상 배치하는 것이 바람직하다.
예를 들어, 도금라인에서 강판의 진동은 가스 와이핑 장치(120)에서 가스를 와이핑하여 강판 표면의 (아연) 도금액을 깍아 내리는 도금두께의 조절시 도금편차를 발생하므로, 강판 안정화 장치는 가스 와이핑 장치(120)의 상측으로 상기 간격(S)을 유지하도록 배치하여 가스 와이핑시, 강판의 형상 불량이나 진동이 발생되지 않도록 하는 것이 바람직한 것이다.
이때, 상기 범위를 벗어나면 예컨대, 본 발명 장치와 가스 와이핑 장치와의 간격(S)이 0.5m 보다 작으면, 가스 와이핑 장치에 너무 근접되어 가스 와이핑시 발생되는 도금액 비산입자가 본 발명의 강판 안정화 장치(1)에 부착되어 장치의 가동 안정성이나 정밀성에 영향을 줄 수 있다.
반대로, 본 발명 장치와 가스 와이핑 장치간 간격(S)이 2m 보다 크면 가스 와이핑 장치와 너무 떨어지게 되어 가스 와이핑 영역에서의 강판의 형상 교정이나 진동 억제의 실효성(영향력)이 충분하지 않게 되는 문제가 발생될 것이다.
또한, 도 2에서 도시한 바와 같이, 본 발명의 강판 안정화 장치(1)는, 가스 와이핑되어 도금두께가 조절되는 도금강판의 냉각을 위한 강판 냉각장치(150) 즉, 미스트 쿨러(mist cooler)와 강판 진행방향을 제어하는 스테빌라이징 롤과 직선상의 상부 이송롤(130) 사이에 (더) 배치되는 것도 가능하다.
다음, 도 2 내지 도 4에서 도시한 바와 같이, 본 발명의 강판 안정화 장치(1)는, 바람직하게는 그 구성 일예로서 진행 강판(100) 즉, 도금조를 통과하여 진행되는 도금강판의 적어도 일측, 바람직하게는 양측에 대칭적으로 배치된 장치 지지체(10) 및, 상기 장치 지지체에 강판을 향하여 하나 이상 제공되는 자기장 발생 폴(pole)(32)과, 상기 자기장 발생 폴(32)의 강판측 단부에 강판의 전자기 또는 자기적 흡인력을 증대토록 제공되는 자기장 발생 폴의 폴 확장부(34)를 포함하여 구성된 강판 안정화 수단(30)을 포함하여 구성될 수 있다.
따라서, 본 발명의 강판 안정화 장치(1)는, 기존의 기계적인 접촉식 롤이나 가스 분사 또는 단순한 자석 블록을 이용한 강판의 형상 교정이나 강판 제진과는 다르게, (전)자기력을 이용하여 비접촉식으로, 강판의 C-반곡 또는 L-반곡 등의 형상불량을 평탄하게 교정하거나, 진동 발생을 억제하거나 적어도 최소화하기 때문에, 종래 접촉식에 따른 강판 표면 결함 발생이나 가스 분사에 의한 비효율적인 강판 형상 교정성이나 제진성이 제거된다.
특히, 본 발명은 (전) 자기력 즉, 강판을 흡인하여 형상을 교정하거나 진동을 억제하는 (전) 자기력을 발생하는 자기장 발생 폴(32)에 폴 확장부(34), 예를 들어 강판의 진행방향으로 수평한 확장면을 갖는 일명 폴 슈즈(pole shoes) 형태로 폴 확장부가 제공되므로, 기존에 단순한 자석블록을 통한 강판 제진에 비하여, 강판이 박판인 경우에도 매우 안정적으로 강판의 형상 교정이나 제진을 구현 가능하게 한다.
한편, 상기 장치 지지체(10)는, 도 3에서 도시한 바와 같이, 강판(100)의 진행방향으로 길게 신장되는 플레이트 형태일 수 있고, 바람직하게는 (전) 자기력 발생시 자기장이 누설되는 것을 방지토록, 비자성체 예를 들어, 세라믹이나 스테인레스(SUS) 등으로 제작되는 것이다.
물론, 도면에서는 개략적으로 도시하였지만, 본 발명의 상기 장치 지지체(10)는, 도금라인의 전체 설비측 프레임(미도시)에 고정되어 연결 설치될 수 있다.
한편, 이와 같은 본 발명의 강판 지지체(10)는 상기 강판 안정화 수단(30)이 설치되는 수에 따라 적정하게 크기가 조절되어 설치됨은 물론, 강판의 폭방향으로 적어도 강판 폭보다는 크게 (전) 자기력의 강판 흡인력을 발생토록, 도 3에서 도시한 바와 같이, 강판의 폭 방향으로 하나 이상 배치되는 것이 바람직하다.
가장 바람직하게는, 도 3과 같이, 발명의 강판 안정화 장치(1)에서, 강판 진행방향으로 길게 신장된 단위 장치 지지체(10)에 한쌍의 강판 안정화 수단(30)을 강판 진행방향으로 상,하측에 배열하고, 이와 같은 단위 강판 안정화 장치(1)를 강판 폭방향으로 다열로 배치되는 것이다.
물론, 이와 같은 단위 강판 안정화 장치들의 배열은 강판의 두께, 폭 등을 고려하여 조정하면 될 것이다.
한편, 도 3에서 도시한 바와 같이, 본 발명의 강판 안정화 장치(1)에서, 실질적으로 강판의 (전) 자기적 흡인력을 발생시키는 강판 안정화 수단(30)의 전자기 폴(32)에 구비되어 강판의 (전) 자기적 영향의 범위를 확대시키는 폴 확장부(34)는, 자기장 발생 폴(32)의 강판 측 선단부에 일체로 형성되는 라운드부(36)를 매개로 강판과 평행하게 제공되는 것이다.
즉, 본 발명의 자기장 발생 폴 확장부(34)는, 진행되는 강판에 평행하게 전자기력 방출면으로 제공되고, 자기장 발생 폴(32)의 선단부의 라운드부(36)를 통하여 면적이 확장되기 때문에, 자기장 발생 폴(32)에 발생되는 자기장이 확장부 전체에서 고르게 강판을 향하여 방출되게 되고, 이는 강판 흡인력을 전체적으로 균일하게 할 것이다.
이때, 이와 같은 본 발명의 자기장 발생 폴(32)의 폴 확장부(34)는 자기장 발생 폴과 일체로 형성(가공)되거나, 가공이 어려운 경우에는 (강) 자성체인 철판(판재)을 자기장 발생 폴에 부착 조립할 수도 있을 것이다.
다음, 본 발명의 강판 안정화 장치(1)에서, 실질적으로 강판의 형상 교정이나 제진을 구현하는 강판 안정화 수단(30)은, 도 4a 및 도 4b에서 도시한 바와 같이, 여러 형태로 제공될 수 있다.
즉, 도 4a에서 도시한 바와 같이, 본 발명의 강판 안정화 수단(30)은, 도 2 및 도 3의 자기장 발생 폴(32)이 자성체로 된 코어부재(32a)와 코어부재에 권선되는 전자기코일(32b)로 구성된 코일형 강판 안정화 수단(30a)으로 제공될 수 있다.
예를 들어, SM45C계열 이나 규소강판을 적층하여 구성한 코어부재(32a)에 전류 인가시 전자기력을 형성시키는 전자기 코일(32b)을 권선하여 자기장 발생 폴 (32)을 구성하고, 이때 자기장 발생 폴 확장부(34)의 형태는 상기 코어부재에서 일체로 수직하게 형성될 수 있다.
한편, 코일형 강판 안정화 수단(30a)은, 도 4a에서 도시한 바와 같이, 코어부재에 권선된 코일의 외측으로 커버체(40) 예를 들어, 전자기력에 영향을 주지 않는 비자성체 예를 들어, 합성수지나 스테인레스 등으로 된 커버체로 포위 처리하여, 혹 도금입자나 기타 이물질이 코일사이에 끼이면서 누적되지 않게 하는 것이 바람직하다.
또는, 도 4b에서 도시한 바와 같이, 본 발명의 강판 안정화 수단(30)은, 자기장 발생 폴(32)이 영구자석 또는 전자석으로 형성된 자석형 강판 안정화 수단(30b)으로 제공될 수 있다.
이때, 바람직하게는, 도 4a 및 도 4b에서 도시한 바와 같이, 본 발명의 장치에서 자기장 발생 폴에 구비되는 폴 확장부(34)의 폭(예를 들어, 강판 진행방향의 높이) D2는, 코일형 강판 안정화 수단(30a)인 경우 코어부재에 권선된 전자기코일(32b)의 직경 D1 또는, 자석형 강판 안정화 수단(30b)의 경우 자기장 발생 폴(32)의 두께 D1의 1.5 ∼ 5 배의 범위로 형성시키는 것이 바람직한데, 가장 바람직하게는 2배 정도이다.
예를 들어, 상기 폴 확장부의 폭 D2가 코일이나 자기장 발생 폴의 직경이나 두께 D1의 1.5 배 보다 작으면, 자기장 발생 폴 확장부의 (전)자기장 증대폭이 적고, 거의 종래의 블록 형태의 제진 기구에 같아지면서, 자기장 발생 폴 확장부에 의한 강판 단위 면적당 발생되는 강판 흡인력이 과도하게 높아져, 오히려 강판의 응력집중이 증폭되기 때문에, 예컨대 강판 특히, 두께가 0.6t 정도의 박판인 경우 찌그러지는 등의 문제가 발생되는 것이다.
반대로, 상기 폴 확장부의 폭 D2가 코일이나 자기장 발생 폴의 직경이나 두께 D1 의 5배 보다 크면, 상기 자기장 발생 폴 확장부(34)의 면적이 과다하게 커지면서 (전) 자기장의 강판 영향력 즉, 강판 흡인력이 감소되어 정상적인 강판의 형상 교정이나 제진 구현을 어렵게 할 것이다.
한편, 도 4a 및 도 4b에서 도시한 바와 같이, 상,하측의 단위 강판 안정화 수단(30)의 자기장 발생 폴의 폴 확장부(34)사이의 간극 D3도 바람직하게는 20 - 40 mm 정도가 바람직한데, 예를 들어 상기 간격이 20mm 보다 작으면, 폴 확장부(34)가 너무 근접되어 각각의 자기장 발생 폴 확장부에서 방출되는 전자기력이 간섭되어 강판 흡인력을 불량하게 하고, 반대로 40mm 이상이면, 필요 이상으로 공간을 차지하여 장치 전체의 크기가 필요없이 증대될 것이다.
다음, 도 5에서 도시한 바와 같이, 본 발명의 강판 안정화 장치(1)는, 강판 안정화 수단(30) 즉, 자기장 발생 폴 확장부(34)에서 진행되는 강판 즉, 도금강판(100)간의 간극(G)을 측정하는 센서들을 포함할 수 있다.
예를 들어, 도 5에서 도시한 바와 같이, 장치 지지체(10)와 다음에 상세하게 설명하는 상,하측 자기장 발생 폴(32)의 연결부(38)에 형성된 개구부분에 센서 장착구(52)에 제공되어 자기장 세기로 간극(G)을 측정하는 알려진 와전류센서(50)를 이용할 수 있다.
또는, 단위의 강판 안정화 수단(30)사이로 장치 지지체(10)에 연계되어 설치되는 거리계 센서(60) 예컨대, 레이져 거리계 센서가 상기 와젼류 센서와 같이 또는 독립적으로 배치되면서 자기장 발생 폴 확장부(54)에서 강판간 간극(G)이 측정될 수 있다.
그러나, 바람직하게는 거리계 센서(60)는 실제 도금라인 환경에서 측정 (오차) 불량이 쉽게 발생되는 경향이 있기 때문에, 이와 같은 거리계 센서 보다는 자기장 파장을 감지하여 센서와 강판간 와전류를 감지하여 상기 간극(G)을 측정하는 와전류센서(50)를 사용하는 것이 더 바람직할 수 있다. 물론, 거리계 센서의 사용이 불가능한 것은 아님은 물론이다.
한편, 이와 같은 와전류센서는, 예를 들어 센서와 강판 간 거리(실제로는 장치 폴 확장부(34)와 강판 간 간극(G))의 변화에 따라 상호 작용하는 자기장 변화에 따라 코일의 임피던스를 변화시키게 되면서 이를 와전류 센서가 감지하여 간극(G) 측정을 수행하는 것이고, 본 발명에서 사용되는 와전류 센서는 측정 대상물이 내부를 통과하는 관통형 보다는 프로브(probe) 형 센서를 사용하는 것이 바람직하다.
이때, 거리계 센서(60)를 사용하는 경우 본 발명과 관련된 도금공정이 고온 환경이므로, 장치 지지체(10)에 연결되고, 냉각수나 에어가 내부에 유동되어 냉각형으로 제공되는 것이 바람직한데, 예를 들어 도 5에서 도시한 바와 같이, 지지체(10)에 연결되는 연결대(64)의 하우징(62)의 내부에 설치되고, 센서 앞에는 창(66)이 배치되고, 특히 냉각수나 냉각에어가 공급(in) 및 배출(out)되는 통로(62a)가 구비되는 형태일 수 있다.
그리고, 상기 자기장 발생 폴(32)의 확장부(34)의 전면과 강판간 간극(G)은 바람직하게는 상기 와전류센서 또는 거리계센서가 측정할 수 있는 측정 임계범위내로 형성하는 것이 바람직하다.
예를 들어, 상기 와전류센서(50)를 통하여 측정할 수 있는 상기 간극(G)의 범위는 0.1 ∼ 44 ㎜ 정도로서, 상기 간극의 범위는 이 범위를 벗어나지 않도록 하는 것이 바람직하다.
물론, 최적의 강판 제진을 구현하기 위하여는 미리 알고 있는 강판의 크기, 두께 또는 그 진행 속도 등에 따라서, 상기 간극을 적정하게 조정하는 것이 바람직함은 물론이다.
다음, 도 6 내지 도 8에서는 지금까지 설명한 본 발명 강판 안정화 장치의 여러 형태 특히, 강판 안정화 수단(30)의 여러 형태들을 도시하고 있다.
이때, 도 6a, 도 7a 및 도 8a는, 도 4b와 같은 영구자석이나 전자석의 자기장 발생 폴(32)을 포함하는 자석형 강판 안정화 수단(30b)을 도시하고, 도 6b,도 7b 및 도 8b에서는 코어부재(32a)에 전자기 코일(32b)을 권선한 자기장 발생 폴(32)의 도 4a의 코일형 강판 안정화 수단(30a)을 도시하고 있다.
즉, 도 6a 및 도 6b와 같이, 본 발명의 강판 안정화 수단(30)은, 연결부(38)를 매개로 상,하측의 자기장 발생 폴(32)이 연결되는 'ㄷ'자 형태일 수 있다.
이 경우, 각각의 자기장 발생 폴에 전자기 코일이 권선되어도 자기장 발생 폴에서 방출되는 전자기력은 연결부에 의하여 동일하다. 따라서, 각각의 권선된 코일은 하나의 PWM(Pulse Width Modulation) 드라이버와 이에 연계된 제어부(C)를 통하여 인가되는 전류가 조절될 수 있다. 즉, 각각의 권선된 코일에 인가되는 전류를 다르게 하여도 자기장 발생 폴에서 방출되는 전 자기력(자기장)은 같다.
그러나, 도 7a 및 도 7b에서 도시한 바와 같이, 하나의 비자성체인 장치 지지체(10)에 서로 독립되어 전자기 롤(32)을 상,하측에 설치하는 단위 자기장 발생 폴을 'I'자형으로 제공하는 경우, 코어부재에 각각 권선된 전자기 코일(32b)에는 제어부(C)로 제어되는 각각의 PWM(Pulse Width Modulation) 드라이버가 연결되어 인가되는 전류가 각각 다르게 제어되면, 상,하측 자기장 발생 폴에서 방출되는 전자기력은 다르게 구현할 수 있다.
다음, 도 8a 및 도 8b에서 도시한 바와 같이, 하나의 장치 지지체(10)에 이중의 연결부(38)를 매개로 총 3개의 자기장 발생 폴(32)이 연결되는, 예를 들어 정면에서 볼때 'E'자형으로 제공하는 것이 가능한데, 이 경우, 도 6에서 설명한 바와 같이, 전체 자기장 발생 폴에서는 같은 전자기력이 방출되기 때문에, 중앙의 코어부재(32a)에만 전자기 코일(32b)을 권선하여도 3개의 자기장 발생 폴(32)에서 형성되는 전자기력(자기장)은 같다.
따라서, 도 6 내지 도 8에서 도시한 여러 형태의 강판 안정화 수단(30)들을 강판의 형상 불량 발생이나 진동 발생에 따른 강판의 형상 교정 또는 제진 환경에 맞추어 적정하게 선택하여 사용하면 되는데, 강판 두께나, 폭 또는 라인에 따라 강판 진동이 많이 발생되는 환경에는 도 8의 자기장 발생 폴이 다수개 제공된 형태를 선택하고, 자기장 발생 폴에서 서로 다른 자기력을 형성시키는 것이 필요한 경우에는 도 7의 형태를 선택하고, 도 6은 기본 형태로 하면 될 것이다.
다만, 어떠한 형태이든. 도 6 내지 도 8에서 도시한 바와 같이, 복수의 자기장 발생 폴(32)들은, 장치 지지체(10)에 강판의 진행방향으로 서로 독립적 설치되거나 연결부(38)를 매개로 설치되든, 강판과 수평하게 등간격으로 배열되는 것이 전자기력의 균일한 형성을 위하여 필요하다.
그리고, 연결부(36)를 매개로 서로 연결되는 복수의 자기장 발생 폴(32)의 경우에는, 도 8과 같이 하나의 전자기 코일(32b)이 권선되는 것이 장치 구조 간소화를 위하여 바람직할 것이다.
다음, 도 9a 및 도 9b에서 도시한 바와 같이, 도 4a와 같이 코어부재(32a)에 상기 코일형 강판 안정화 수단(30a)의 전자기 코일(32b)은, 연결부(38)를 매개로 자기장 발생 폴(32)의 코어부재(32a)가 연결되는 경우, 다수의 전자기 코일(32b)을 병렬로 제공하는 것이다.
즉, 도 9a 및 도 9b와 같이, 전자기 코일이 병렬로 코어부재에 제공되면, 인가되는 전류는 동일하게 인가되고, 따라서 자기장 발생 폴에서 형성되는 전자기력은 전체적으로 균일하게 되어 강판 제진력이 일정하게 유지되게 된다.
한편, 바람직하게는, 도 2 에서 도시한 바와 같이, 본 발명 강판 안정화 장치(1)가 진행되는 도금강판(100)의 양측에서 (전) 자기력을 형성하여 강판을 흡인함으로써, 강판의 형상 불량을 교정하거나 또는 진동 억제 즉, 제진을 수행하는 경우 전자기력을 실시간으로 제어하는 것이다.
다음, 도 10에서는 본 발명 강판 안정화 장치(1)에 구비되는, 냉각수단(70) 즉, 도 10c에서와 같이 장치 지지체(10) 또는, 도 10a,b와 같이 장치 지지체에 장착되는 영구자석, 전자석 또는 코어부재를 포함하는 자기장 발생 폴(32)에 제공되는 냉각매체 유동형의 냉각수단(70)을 더 포함하는 것이 바람직하다.
예를 들어, 도 2에서 아연 도금조(110)를 통과하는 아연 도금강판(100)의 경우, 아연 용융액의 온도는 대략 450 ∼ 460 ℃ 정도이고, 따라서 가스 와이핑 장치의 상측에 배치되는 본 발명의 강판 안정화 장치(1)는 실제로는 고온 환경에 노출될 수 있기 때문에, 온도에 영향을 받지 않고 원활한 (전) 자기력을 형성시키기 위하여, 자기장 발생 폴(32)의 온도는 적어도 150℃로 유지되는 것이 바람직하다.
즉, 이와 같은 장치 지지체 또는 자기장 발생 폴의 냉각은, 적어도 자기장 발생 폴의 효율 저감을 차단하고, (전) 자기력이 무력해지는 큐리에 온도를 피하기 위해, 질소가스 또는 냉각수를 장치 지지체 또는 자기장 발생 폴에 흐르도록 하여, 냉각시키는 것이다.
한편, 이와 같은 본 발명의 냉각수단(70)은, 도 10a 및 도 10b와 같이, 자기장 발생 폴(32)(즉, 영구자석, 전자석 또는 코어부재)의 후단부에 냉각수나 질소가스가 흐르는 바람직하게는 벌집형태의 냉각매체 통로(72)를 형성시키고, 그 일단 및 타단에 냉각매체 공급 및 배출관(미부호)(in,out)을 연결하는 것이다.
따라서, 냉각매체를 자기장 발생 폴을 냉각시키어 상기 온도로 유지시키어 자기장 발생 폴 이 최적의 전자기력을 발생시키도록 한다.
이때, 상기 자기장 발생 폴(32)의 냉각수단(70)에 설치되는 부분은 플랜지 구조로 자기장 발생 폴의 본체 부분과 후단부 부분을 연결하여 장치 제작이나 조립을 용이하게 하는 것이 바람직하다.
즉, 냉각수단(70)이 제공된 자기장 발생 폴(32)의 후방부분은 냉각매체 통로를 가공하기 때문에, 별도 조립부재로 하는 것이 바람직한 것이다.
예를 들어, 코어부재가 자성체 소재로 된 판재를 적층하여 제작하는 경우, 상기 냉각수단이 형성되는 부분은 통자(일체형)로 하여 플랜지 형태로 조립하는 것이 가능할 것이다.
또한, 본 발명 장치에서 자기장 발생 폴 은 영구자석, 전자석 또는 자석(자성체)의 코어부재에 냉각수단(70)을 형성하지 않고, 별도 부재인 장치 지지체(10')의 두께를 확장시키고, 이와 같은 지지체(10')에 냉각매체 통로(72)(도 10c에서는 개략적으로 도시하였지만, 도 10a,b의 형태일 수 있다)를 형성시키어 질소가스 또는 냉각수를 유통시키어 장치 지지체를 냉각하고, 이에 설치된 자기장 발생 폴 의 열을 흡수하여 자기장 발생 폴 을 냉각시키는 것도 가능하다.
즉, 자기장 발생 폴 에 냉각수단을 제공하는 경우, 그 설치는 다소 어렵지만 냉각효율은 높고, 반대로 도 10c와 같이 장치 지지체(10)에 냉각수단을 설치하는 경우, 설치는 용이하지만 냉각효율은 낮기 때문에, 필요에 따라 적정하게 선택하면 되고, 또는 도 10a 및 도 10c의 자기장 발생 폴 및 장치 지지체측의 냉각수단을 모두 설치하는 것도 가능하다.
다음, 도 11 및 도 12에서는 본 발명 강판 안정화 장치의 성능곡선을 도시하고 있는데, 도 11,12의 경우 X축은 본 발명 장치의 폴 확장부(34)와 강판 간 간극(도 5의 G)이고, Y축은 (전) 자기력에 의하여 결정되는 강판 흡인력이다.
따라서, 도 11과 같이 간극이 5 ∼ 40 ㎜ 사이에서, 인가 전류가 1.8A이고, 강판 두께가 각각 2 mm,1 mm, 0.5 mm 인 경우, 본 발명이 종래에 비하여 간극 전구간에서 강판 흡인력이 증가함을 알 수 있다.
또는, 도 12와 같이, 간극이 5 ∼ 40 ㎜ 이고 강판 두께가 1mm 이며, 인가 전류가 2A, 1A인 경우, 본 발명이 종래에 비하여 강판 흡인력이 간극 전구간에서 더 증대됨을 알 수 있다.
다음, 도 13에서는 0.1 ∼ 1.8A의 전류가 인가되고, 앞에서 설명한 장치와 강판 간 간극(도 5의 G)이 20 mm 인 경우, 본 발명 강판 안정화 장치의 강판의 두께(0 ∼ 2 mm)와 인가전류(0 ∼ 2A)인 경우의 민감곡선을 도시하고 있다.
예를들어, 도 13에서 강판 두께가 1.5mm 이고, 인가 전류가 1A인 경우, 45 kgf의 강판 흡인력을 형성하는 것을 알 수 있고, 최대 강판 흡인력은 인가 전류가 최대인 2A인 경우 55 kgf 임을 알 수 있다.
한편, 지금까지 설명한 본 발명의 강판 안정화 장치(1)에서, 강판 흡인력을 결정하는 (전) 자기력은, 자기장 발생 폴의 설치수, 폴 확장부의 형상(폭), 전자기 코일의 코어부재 권선수, 전자기 코일에 인가되는 인가(편향)전류, 전류 인가시의 제어 주파수 등에 의하여 조정될 수 있다.
즉, 강판 두께나 폭 또는 강판 진행속도 등을 고려하여 상기 (전) 자기력의 동특성들을 조절하여 최적의 강판 제진을 구현 할 수 있다.
이에 따라서, 지금까지 설명한 본 발명의 강판 안정화 장치 특히, 도금강판의 형상 불량을 교정하거나 또는/및 강판 진동을 (전)자기장을 이용하여 비접촉식으로 억제하는 것을 가능하게 하되, 특히 강판에 대한 (전)자기적 흡인력을 증대시키어 도금 편차를 유발하는 형상 교정성 및 제진성을 더욱 향상시키고, 이를 통하여 강판의 도금 편차를 방지시키어 궁극적으로 강판의 도금 품질을 향상시키도록 하는 것이다.
본 발명은 지금까지 특정한 실시 예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 마련되는 본 발명의 기술적 특징이나 분야를 벗어나지 않는 한 도내에서 본 발명이 다양하게 개조 및 변화될 수 있다는 것을 당 업계에서 통상의 지식을 가진 자는 용이하게 알 수 있음을 밝혀두고자 한다.

Claims (10)

  1. 진행 강판의 적어도 일측에 배치되는 장치 지지체; 및,
    상기 장치 지지체에 강판을 향하여 제공되는 자기장 발생 폴과, 상기 자기장 발생 폴의 강판측 단부에 강판 흡인력을 증대토록 제공되는 폴 확장부로 이루어 진 강판 안정화 수단;
    을 포함하여 구성된 강판 안정화 장치.
  2. 제1항에 있어서,
    상기 강판 안정화 수단의 폴 확장부는, 자기장 발생 폴의 선단부에 형성되는 라운드부를 매개로 적어도 상기 자기장 발생 폴의 두께 보다는 크게 제공되는 것을 특징으로 하는 강판 안정화 장치.
  3. 제1항에 있어서,
    상기 장치 지지체에는 하나 이상의 강판 안정화 수단이 제공되고,
    상기 장치 지지체는 강판의 폭 방향으로 하나 이상 배열된 것을 특징으로 하는 강판 안정화 장치.
  4. 제1항에 있어서,
    상기 자기장 발생 폴은 장치 지지체에 복수개가 제공되고, 상기 복수의 자기장 발생 폴들은, 상기 장치 지지체에 강판의 진행방향으로 서로 독립적 설치되거나 연결부를 매개로 연결 설치되는 것을 특징으로 하는 강판 안정화 장치.
  5. 제1항 내지 제4항 중 어느 하나의 항에 있어서,
    상기 강판 안정화 수단은, 자기장 발생 폴이 자성체로 된 코어부재와 코어부재에 권선되는 전자기코일로 구성되는 코일형 강판 안정화 수단; 및,
    상기 자기장 발생 폴이 영구자석 또는 전자석으로 형성된 자석형 강판 안정화 수단;
    중 어느 하나로 제공되면서 강판의 형상 교정 또는 진동 억제를 구현토록 구성된 것을 특징으로 하는 강판 안정화 장치.
  6. 제5항에 있어서,
    상기 연결부를 매개로 서로 연결되는 복수의 자기장 발생 폴 들 중 적어도 하나에 전자기 코일이 권선되는 것을 특징으로 하는 강판 안정화 장치.
  7. 제5항에 있어서,
    상기 자기장 발생 폴에 구비되는 폴 확장부의 폭은, 코일형 강판 안정화 수단의 코어부재에 권선되는 전자기 코일의 직경 또는, 자석형 강판 안정화 수단의 자기장 발생 폴의 두께의 1.5 ∼ 5 배 범위로 형성되는 것을 특징으로 하는 강판 안정화 장치.
  8. 제5항에 있어서,
    상기 코일형 강판 안정화 수단의 전자기 코일은 코어부재에 병렬로 제공되는 것을 특징으로 하는 강판 안정화 장치.
  9. 제1항 내지 제4항 중 어느 하나의 항에 있어서,
    상기 폴 확장부와 강판 간 간극을 측정토록 제공되는 와전류센서와 거리계 센서 중 적어도 하나를 더 포함하는 것을 특징으로 하는 강판 안정화 장치.
  10. 제1항 내지 제4항 중 어느 하나의 항에 있어서,
    상기 장치 지지체와 장치 지지체에 장착된 자기장 발생 폴 중 어느 하나 또는 이들 모두에 제공되는 냉각수단;
    을 더 포함하는 것을 특징으로 하는 강판 안정화 장치.
PCT/KR2011/004046 2011-06-02 2011-06-02 강판 안정화 장치 WO2012165679A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/KR2011/004046 WO2012165679A1 (ko) 2011-06-02 2011-06-02 강판 안정화 장치
US14/122,883 US9487853B2 (en) 2011-06-02 2011-06-02 Steel strip stabilization device
EP11867094.2A EP2716786B1 (en) 2011-06-02 2011-06-02 Steel strip stabilisation device
JP2014513411A JP5830604B2 (ja) 2011-06-02 2011-06-02 鋼板安定化装置
MX2013014116A MX349478B (es) 2011-06-02 2011-06-02 Aparato de estabilizacion de tira de acero.
CN201180072330.6A CN103649358B (zh) 2011-06-02 2011-06-02 钢板稳定化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/004046 WO2012165679A1 (ko) 2011-06-02 2011-06-02 강판 안정화 장치

Publications (1)

Publication Number Publication Date
WO2012165679A1 true WO2012165679A1 (ko) 2012-12-06

Family

ID=47259516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004046 WO2012165679A1 (ko) 2011-06-02 2011-06-02 강판 안정화 장치

Country Status (6)

Country Link
US (1) US9487853B2 (ko)
EP (1) EP2716786B1 (ko)
JP (1) JP5830604B2 (ko)
CN (1) CN103649358B (ko)
MX (1) MX349478B (ko)
WO (1) WO2012165679A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6187577B2 (ja) * 2015-12-25 2017-08-30 Jfeスチール株式会社 金属帯の安定装置および溶融めっき金属帯の製造方法
DE102017109559B3 (de) * 2017-05-04 2018-07-26 Fontaine Engineering Und Maschinen Gmbh Vorrichtung zum Behandeln eines Metallbandes
CN116692551A (zh) * 2022-02-28 2023-09-05 宁德时代新能源科技股份有限公司 料带转向机构、烘干装置和极片制造设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000053295A (ja) * 1998-08-12 2000-02-22 Nkk Corp 帯状鋼板の振動低減装置
JP2001062509A (ja) * 1999-08-27 2001-03-13 Shinko Electric Co Ltd 鋼板の制振装置
JP2002128346A (ja) * 2000-10-20 2002-05-09 Shinko Electric Co Ltd 非磁性体材の搬送装置
JP2002317259A (ja) * 2001-04-17 2002-10-31 Mitsubishi Heavy Ind Ltd ストリップの形状矯正・制振装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168410A (ja) 1989-11-22 1991-07-22 Nippon Seiko Kk 磁気軸受装置
JP4719995B2 (ja) 2001-03-30 2011-07-06 シンフォニアテクノロジー株式会社 鋼板の振動抑制装置
JP3840912B2 (ja) 2001-04-16 2006-11-01 Jfeスチール株式会社 強磁性体の制御装置及び強磁性体の製造方法
SE527507C2 (sv) * 2004-07-13 2006-03-28 Abb Ab En anordning och ett förfarande för stabilisering av ett metalliskt föremål samt en användning av anordningen
JP4867453B2 (ja) 2006-04-20 2012-02-01 Jfeスチール株式会社 連続溶融金属めっきの付着量制御装置
KR101568422B1 (ko) * 2009-05-06 2015-11-12 주식회사 포스코 롤축을 지지하는 마그네틱 베어링 장치
CN101698927B (zh) * 2009-11-03 2011-06-08 武汉福星科技发展有限公司 非接触磁力平衡式带钢夹持稳定装置
KR101322066B1 (ko) * 2010-12-10 2013-10-28 주식회사 포스코 강판 제진장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000053295A (ja) * 1998-08-12 2000-02-22 Nkk Corp 帯状鋼板の振動低減装置
JP2001062509A (ja) * 1999-08-27 2001-03-13 Shinko Electric Co Ltd 鋼板の制振装置
JP2002128346A (ja) * 2000-10-20 2002-05-09 Shinko Electric Co Ltd 非磁性体材の搬送装置
JP2002317259A (ja) * 2001-04-17 2002-10-31 Mitsubishi Heavy Ind Ltd ストリップの形状矯正・制振装置

Also Published As

Publication number Publication date
US9487853B2 (en) 2016-11-08
MX2013014116A (es) 2014-01-23
MX349478B (es) 2017-07-31
EP2716786A4 (en) 2014-11-05
EP2716786A1 (en) 2014-04-09
CN103649358B (zh) 2015-10-14
JP2014515437A (ja) 2014-06-30
EP2716786B1 (en) 2017-08-09
US20140144967A1 (en) 2014-05-29
CN103649358A (zh) 2014-03-19
JP5830604B2 (ja) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2012077947A2 (ko) 강판 안정화 장치
EP1784520B2 (en) A device and a method for stabilizing a metallic object
WO2012165679A1 (ko) 강판 안정화 장치
KR101553129B1 (ko) 강자성체로 만들어진 스트립의 변형을 안정화 및 감소시키기 위한 전자기 장치 및 관련 공정
KR20130077479A (ko) 비정질 파이버 제조설비의 노즐과 냉각휠의 갭 제어장치
KR101421981B1 (ko) 금속 스트립 코팅 장치 및 그 방법
US20190300997A1 (en) Method of producing hot-dip metal coated steel strip and continuous hot-dip metal coating apparatus
WO2018110946A1 (ko) 압연설비 및 압연방법
JP2010144213A (ja) 金属帯の制御方法及び溶融めっき金属帯の製造方法
JP2008546908A (ja) 連続処理機器における金属ストリップを案内するための装置および方法
KR101153678B1 (ko) 강판 제진장치
KR102502047B1 (ko) 자기 냉각 롤
JP2012001795A (ja) 溶融金属めっき設備の電磁石制振装置
JP3840912B2 (ja) 強磁性体の制御装置及び強磁性体の製造方法
KR100941623B1 (ko) 금속 빌렛의 용융 도금 코팅 장치
WO2020040360A1 (ko) Mg이 포함된 용융아연도금강판의 제조방법 및 제조장치
JPH1190600A (ja) 連続鋳造における湯面変動検知方法及び制御方法
JP2001226006A (ja) 薄鋼板の非接触制御装置
JPH10195617A (ja) 溶融金属めっき装置および溶融金属めっき方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867094

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14122883

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014513411

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/014116

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011867094

Country of ref document: EP