WO2012165455A1 - 気体分離膜 - Google Patents

気体分離膜 Download PDF

Info

Publication number
WO2012165455A1
WO2012165455A1 PCT/JP2012/063861 JP2012063861W WO2012165455A1 WO 2012165455 A1 WO2012165455 A1 WO 2012165455A1 JP 2012063861 W JP2012063861 W JP 2012063861W WO 2012165455 A1 WO2012165455 A1 WO 2012165455A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
gas separation
separation membrane
formula
organic group
Prior art date
Application number
PCT/JP2012/063861
Other languages
English (en)
French (fr)
Inventor
山中 一広
毅 小川
健資 須田
大樹 魚山
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to CA2834670A priority Critical patent/CA2834670C/en
Priority to EP12792044.5A priority patent/EP2716351B1/en
Priority to RU2013151295/05A priority patent/RU2567610C2/ru
Priority to US13/880,334 priority patent/US9061253B2/en
Priority to KR1020137034784A priority patent/KR101559854B1/ko
Priority to CN201280026569.4A priority patent/CN103561852B/zh
Publication of WO2012165455A1 publication Critical patent/WO2012165455A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking

Definitions

  • the present invention relates to a gas separation membrane.
  • Gas separation by a gas separation membrane has long been attracting attention as a simple technique that can continuously separate a mixed gas in a gaseous state and does not involve phase change.
  • Gas separation is a technique for selectively separating gas by using the presence or absence of permeation and the difference in permeation speed depending on the type of gas (hereinafter sometimes referred to as gas) that permeates the gas separation membrane.
  • polymers such as cellulose acetate, polysulfone or polyimide are known.
  • polyimide is known as a material that has strength suitable for use as a gas separation membrane, is not easily damaged, has excellent heat resistance, and can be used at high temperatures.
  • a polyimide-based gas separation membrane containing a hexafluoroisopropylidene group (—C (CF 3 ) 2 —) in a repeating structure is composed of helium (hereinafter sometimes referred to as He), carbon dioxide (hereinafter referred to as CO 2 ). High permeability of these gases (hereinafter sometimes referred to as O 2 ) and methane (hereinafter sometimes referred to as CH 4 ). It is known.
  • Non-Patent Document 1 a hexafluoroisopropylidene group (—C (CF 3 ) 2 —) into the repeating unit in the polyimide in the gas separation membrane, the intermolecular interaction is weakened while improving the rigidity of the molecular chain, A difference in permeation of the gas separation membrane depending on the type of gas is caused, and both high membrane permeability and high selectivity can be achieved.
  • a hexafluoroisopropylidene group —C (CF 3 ) 2 —
  • Non-patent document 3 describes the separation performance of a mixed gas composed of He, CO 2 , O 2 and CH 4 of a polyimide membrane containing a hexafluoroisopropylidene group.
  • Patent Documents 1 to 3 2-hydroxy-1,1,1,3,3,3-fluoroisopropyl group (—C (CF 3 ) 2 OH), (hereinafter, referred to as “polymerization of fluorine-containing polyimide”).
  • polymerization of fluorine-containing polyimide A fluorine-containing polymerizable monomer that is a diamine having a HFIP group) and a method for producing the same are disclosed.
  • a method for producing a gas separation membrane made of polyimide or the like includes a method in which a polyimide solution is wet-coated and then a solvent is simply evaporated to obtain a homogeneous membrane, and a heterogeneous asymmetric membrane consisting of a dense layer and a porous layer. There is a way to get it.
  • a method of obtaining an asymmetric membrane is a method in which a polymer solution is discharged from a discharge port, a solvent existing in the vicinity of the surface is evaporated in the air to form a dense layer, and then a solvent that is compatible with the solvent of the polymer solution but does not dissolve the polymer.
  • Patent Document 4 discloses a method for producing a composite reverse osmosis membrane by this method.
  • the diamine and carboxylic dianhydride for polymerizing a polyimide containing a hexafluoroisopropylidene group are limited as described above, and the chemical structure is limited when forming a polyimide film.
  • a gas separation membrane When a gas separation membrane is used, there is a problem that it is difficult to design a chemical structure considering workability, strength, and separation performance.
  • An object of the present invention is to solve such problems, and to provide a gas separation membrane that dissolves in an organic solvent, has excellent moldability, and has excellent gas separation performance when used as a gas separation membrane.
  • the present inventors can be soluble in an organic solvent, particularly a polar solvent, and improve the gas separation performance. It came to solve the said subject.
  • the gas separation membrane of the present invention is a fluorine-containing polyimide gas separation membrane having an HFIP group.
  • the present invention includes the following inventions 1 to 19.
  • R 1 is represented by the general formula (2): (In formula (2), R 3 is a single bond, oxygen atom, sulfur atom, SO 2 , CH 2 , CO, C (CH 3 ) 2 , C (CH 3 ) (CH 2 CH 3 ), C (CF 3 ) 2 or a divalent organic group formed by removing two hydrogen atoms from an alicyclic hydrocarbon compound having 3 to 12 carbon atoms or an aromatic hydrocarbon compound having 6 to 25 carbon atoms, and m and p are Each independently represents an integer of 0 to 2, and 1 ⁇ m + p ⁇ 4.)
  • the gas separation membrane of Claim 1 which is a bivalent organic group represented by these.
  • the divalent organic group represented by the general formula (2) is Formula (3):
  • the gas separation membrane of the invention 2 which is a bivalent organic group represented by these.
  • the divalent organic group represented by the general formula (2) is Formula (4):
  • the gas separation membrane of the invention 2 which is a bivalent organic group represented by these.
  • the divalent organic group represented by the general formula (2) is Formula (5):
  • the gas separation membrane of the invention 2 which is a bivalent organic group represented by these.
  • the divalent organic group represented by the general formula (2) is General formula (6): (In formula (6), each R 4 independently represents an alkyl group having 1 to 10 carbon atoms, an alkoxyl group, a carboxyl group, an ester group, a hydroxyl group, a nitro group, a cyano group, a chloro group, a bromo group, or a fluoroalkyl group. It is at least one monovalent organic group selected from the group consisting of groups)
  • the gas separation membrane of the invention 2 which is a bivalent organic group represented by these.
  • the divalent organic group represented by the general formula (2) is Formula (7): (In formula (7), Me represents a methyl group.)
  • the gas separation membrane of the invention 6 which is a bivalent organic group represented by these.
  • each R 5 is independently selected from the group consisting of a hydrogen atom, a methyl group, an ethyl group, an isopropyl group, a chloro group, a fluoro group, a trifluoromethyl group, a phenyl group, a methoxy group, and a nitro group.
  • each R 6 independently represents a hydrogen atom, or a phenyl group, a naphthyl group, a biphenyl group, a sulfo group, an ethynylene structure-containing group, a bromo group, a chloro group, a fluoro group.
  • at least one monovalent organic group selected from the group consisting of a group and an iodo group, g and h are each independently an integer of 0, 1, or 2, and g + h is 1 or more and 4 or less ).
  • the gas separation membrane of the invention 2 which is a bivalent organic group represented by these.
  • the divalent organic group represented by the general formula (8) is Formula (9):
  • the gas separation membrane of the invention 8 which is a bivalent organic group represented by these.
  • R 1 is the general formula (10): (In the formula (10), a and b are each independently an integer of 0 to 2 and a + b ⁇ 1. C is an integer of 0 or more and 3 or less. D and e are each independently 0 to 2. 1 ⁇ d + e ⁇ 4
  • formula (10) the following formula: As for the site
  • the gas separation membrane of the invention 1 which is the bivalent organic group represented by these.
  • the divalent organic group represented by the general formula (10) is Formula (11):
  • the gas separation membrane of the invention 10 which is a bivalent organic group represented by these.
  • the divalent organic group represented by R 1 is represented by the general formula (12): (In formula (12), f is an integer of 1 or 2.)
  • the gas separation membrane of the invention 1 which is the bivalent organic group represented by these.
  • the tetravalent organic group represented by R 2 is Formula (15):
  • invention 16 The gas according to any one of inventions 1 to 15, wherein the hydrogen atom of the OH group of 2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl group contained in R 1 is substituted with a glycidyl group Separation membrane.
  • invention 18 The gas separation membrane according to any one of inventions 1 to 16, which is obtained by further mixing with an epoxy compound and heating.
  • the epoxy compound has the general formula (16):
  • R 7 is a monovalent organic group in which one hydrogen atom is removed from the alkane, aromatic ring and alicyclic ring, and may contain an oxygen atom, a sulfur atom or a nitrogen atom in the structure.
  • a part of hydrogen atoms may be substituted with a fluorine atom, a chlorine atom, an alkyl group or a fluoroalkyl group, i is an integer of 1 to 4.
  • the gas separation membrane of the invention 18 represented by these.
  • the polyimide gas separation membrane containing the HFIP group of the present invention has a good separation performance by the HFIP group.
  • Gas separation membranes containing hexafluoroisopropylidene groups in addition to HFIP groups exhibit even better gas separation performance.
  • the HFIP group has a hydroxyl group, it is soluble in a specific organic solvent, particularly a polar solvent, and it is easy to prepare a polyimide solution, which can be formed into a desired film shape.
  • polyimide gas separation membrane containing HFIP groups of the present invention since aromatic diamine as a raw material can contain HFIP groups (see Patent Documents 1 to 3), conventional fluorine-containing polyimides Compared to a gas separation membrane, in addition to gas separation performance, it is possible to design a structure for improving membrane physical properties such as membrane strength or resistance to swelling in a solvent.
  • the monomer compound used as the raw material for the polyimide containing an HFIP group for producing the gas separation membrane of the present invention includes a diamine containing an HFIP group and tetracarboxylic dianhydride. It is preferable to use an aromatic diamine for the strength of the gas separation membrane. In addition to the aromatic diamine containing an HFIP group, other diamines are added to adjust the strength and separation performance of the membrane. May be. Similarly, in addition to tetracarboxylic dianhydride, other dicarboxylic acids and derivatives thereof may be added in order to adjust the strength and separation performance of the membrane.
  • Aromatic diamine containing HFIP group An aromatic diamine containing an HFIP group as a monomer compound for synthesizing a polyimide containing an HFIP group for producing the gas separation membrane of the present invention is represented by the following general formula (2A). ) To (14A).
  • R 3 is a single bond, oxygen atom, sulfur atom, SO 2 , CH 2 , CO, C (CH 3 ) 2 , C (CH 3 ) (CH 2 CH 3 ), C (CF 3 ) 2 is a divalent organic group formed by removing two hydrogen atoms from an alicyclic hydrocarbon compound having 3 to 12 carbon atoms or an aromatic hydrocarbon compound having 6 to 25 carbon atoms, and m and p are Each independently represents an integer of 0 to 2, and 1 ⁇ m + p ⁇ 4.
  • the gas separation membrane of Claim 1 which is a bivalent organic group represented by these.
  • the divalent organic group formed by removing two hydrogen atoms from an alicyclic hydrocarbon compound having 3 to 12 carbon atoms is a divalent group formed by removing two hydrogen atoms of cyclohexane, bicyclohexane, adamantane or norbornane.
  • As the divalent organic group formed by removing two hydrogen atoms of an aromatic hydrocarbon compound having 6 to 25 carbon atoms two hydrogen atoms of benzene, biphenyl, naphthalene or fluorene are separated. And a divalent organic group.
  • each R 4 independently represents an alkyl group having 1 to 10 carbon atoms, an alkoxyl group, a carboxyl group, an ester group, a hydroxyl group, a nitro group, a cyano group, a chloro group, a bromo group, or a fluoro group. It is at least one monovalent organic group selected from the group consisting of alkyl groups.
  • each R 5 is independently a hydrogen atom or a methyl group, an ethyl group, an isopropyl group, a chloro group, a fluoro group, a trifluoromethyl group, a phenyl group, a methoxy group, and a nitro group.
  • each R 6 is independently a hydrogen atom, a phenyl group, a naphthyl group, a biphenyl group, a sulfo group, an ethynylene structure-containing group, a bromo group, or a chloro group.
  • At least one monovalent organic group selected from the group consisting of a fluoro group and an iodo group, g and h are each independently an integer of 0, 1, or 2, and g + h is 1 or more and 4 Below).
  • the aromatic diamine containing the HFIP group represented by the general formula (2A) gives a repeating unit including the structural unit represented by the general formula (2).
  • the diamines represented by the formulas (3A) to (14A) give repeating units including the structural units represented by the formulas (3) to (14), respectively.
  • the diamine represented by the formula (11A), the formula (13A) or the formula (14A) is a raw material that is easy to synthesize and is easy to use in the polyimide gas separation membrane containing the HFIP group of the present invention.
  • Two or more aromatic diamines containing these HFIP groups may be used in combination, and their production methods are described in Patent Documents 1 to 3.
  • diamines in the gas separation membrane of the present invention, in order to adjust the membrane properties such as gas separation performance and membrane strength when used as a gas separation membrane, in the synthesis of polyimide containing HFIP groups, aromatic diamines containing HFIP groups In addition, other diamines such as dihydroxyamine may be used.
  • the amount used is 10 mol% to 80 mol%, preferably 30 mol% to 60 mol%, based on the tetracarboxylic dianhydride.
  • performances such as gas separation performance, solubility in polar solvents, and membrane strength can be adjusted.
  • diamine examples include 3,5-diaminobenzotrifluoride, 2,5-diaminobenzotrifluoride, 3,3′-bistrifluoromethyl-4,4′-diaminobiphenyl, 3,3′-bistrifluoromethyl-5, 5′-diaminobiphenyl, bis (trifluoromethyl) -4,4′-diaminodiphenyl, bis (fluorinated alkyl) -4,4′-diaminodiphenyl, dichloro-4,4′-diaminodiphenyl, dibromo-4, 4′-diaminodiphenyl, bis (fluorinated alkoxy) -4,4′-diaminodiphenyl, diphenyl-4,4′-diaminodiphenyl, 4,4′-bis (4-aminotetrafluorophenoxy) tetrafluorobenzene, 4 , 4'-bis (4-aminotetrafluor
  • Tetracarboxylic dianhydride In order to synthesize the polyimide containing the HFIP group for producing the gas separation membrane of the present invention, the tetracarboxylic dianhydride is represented by the general formula (17).
  • R 2 is an organic group, preferably a tetravalent organic group in which four hydrogen atoms are substituted from an alkane, alicyclic ring or aromatic ring, and a fluorine atom, a chlorine atom, An oxygen atom, a sulfur atom or a nitrogen atom may be contained, and a part of hydrogen atoms may be substituted with an alkyl group, a fluoroalkyl group, a carboxyl group, a hydroxy group or a cyano group.
  • tetracarboxylic dianhydrides examples include benzenetetracarboxylic dianhydride (pyromellitic dianhydride) (hereinafter abbreviated as PMDA), trifluoromethylbenzenetetracarboxylic dianhydride, and bistrifluoromethyl.
  • PMDA benzenetetracarboxylic dianhydride
  • PMDA trifluoromethylbenzenetetracarboxylic dianhydride
  • bistrifluoromethyl bistrifluoromethyl
  • Benzenetetracarboxylic dianhydride difluorobenzenetetracarboxylic dianhydride, naphthalenetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride (hereinafter abbreviated as BPDA), terphenyltetracarboxylic dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ketonic acid dianhydride (hereinafter abbreviated as BTDA), oxydiphthalic acid dianhydride, bicyclo (2,2,2) oct-7-ene-2, 3,5,6-tetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) hexafluoro Propanoic acid dianhydride (hereinafter abbreviated as 6FDA), 2,3,4,5-thiophenetetracarboxylic dianhydride, 2,5,6,2 ′, 5 ′, 6′- he
  • PMDA, BPDA, BTDA, and 6FDA are preferable from the viewpoint of easy availability, and 6FDA having good gas separation performance (permeability and selectivity) is particularly preferable.
  • 6FDA is a compound represented by the following structural formula.
  • polyimide is formed by adding a hexafluoroisopropylidene group (—C (CF 3 ) 2 —) to the structure, the gas is separated into the gas separation membrane.
  • the repeating unit containing the structural unit represented by the formula (15) giving high membrane permeability and high selectivity is provided.
  • These tetracarboxylic dianhydrides may be used alone or in combination of two or more.
  • Dicarboxylic acid derivative In addition to the tetracarboxylic dianhydride, dicarboxylic acid derivatives represented by the general formulas (9) and (10) for adjusting the membrane properties such as separation performance and strength when used as a gas separation membrane May be used.
  • the amount used is 10 mol% or more and 80 mol% or less, preferably 30 mol% or more and 60 mol%, relative to the tetracarboxylic dianhydride. Within the range of this molar ratio, gas separation performance, solubility in polar solvents, and membrane strength can be adjusted.
  • R 8 is an organic group, preferably a divalent organic group in which two hydrogen atoms are removed from an alkane, alicyclic ring or aromatic ring, and contains an oxygen atom and a sulfur atom in the structure.
  • a part of the hydrogen atoms may be substituted with an alkyl group, fluorine, chlorine, fluoroalkyl group, carboxyl group, hydroxy group or cyano group, and A is independently a hydrogen atom, having 1 to 10 carbon atoms. Or an benzyl group.
  • R 9 is an organic group, preferably an alkylene group, or a divalent organic group in which one hydrogen atom is removed from an alicyclic ring or aromatic ring, and an oxygen atom, sulfur atom or A nitrogen atom may be contained, and a part of the hydrogen atom may be substituted with an alkyl group, fluorine, chlorine, fluoroalkyl group, carboxyl group, hydroxy group or cyano group, and each X is independently a chlorine atom. , Fluorine atom, bromine atom or iodine atom.
  • dicarboxylic acid derivative represented by the general formulas (18) and (19) for synthesizing the fluorine-containing polyimide used for the gas separation membrane of the present invention is exemplified in the form of a raw dicarboxylic acid, an aliphatic dicarboxylic acid Oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid or sebacic acid, aromatic carboxylic acid phthalic acid, isophthalic acid, terephthalic acid, 3,3′- Dicarboxyl diphenyl ether, 3,4'-dicarboxyl diphenyl ether, 4,4'-dicarboxyl diphenyl ether, 3,3'-dicarboxyl diphenyl methane, 3,4'-dicarboxyl diphenyl methane, 4,4'-dicarboxyl diphenyl methane, 3 , 3′-dicarboxyl
  • the above-mentioned aromatic diamine containing a HFIP group and tetracarboxylic dianhydride are essential, and if necessary, other diamines and dicarboxylic acids.
  • examples thereof include a method in which the derivatives are added and then melted at 150 ° C. or higher and reacted without solvent, and a method in which a condensation reaction is performed in an organic solvent at a reaction temperature of ⁇ 20 to 80 ° C.
  • the diamine and carboxylic dianhydride or dicarboxylic acid are reacted in a one-to-one ratio in a molar ratio, so that aromatic diamines containing HFIP groups and other diamines, tetracarboxylic dianhydrides.
  • the organic solvent that can be used for the condensation reaction may be an aromatic diamine containing a HFIP group as a raw material compound, tetracarboxylic dianhydride, other diamine, and a dicarboxylic acid derivative.
  • -Dimethylformamide, N, N-dimethylacetamide, hexamethylphosphoric triamide or N-methyl-2-pyrrolidone aromatic solvents benzene, anisole, diphenyl ether, nitrobenzene or benzonitrile, halogenated solvents chloroform, dichloromethane 1,2-dichloroethane or 1,1,2,2-tetrachloroethane, lactones ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone or ⁇ -methyl- ⁇ - Butyrolactone And the like.
  • the polycondensation reaction may be carried out in the presence of these organic solvents and
  • the polyamic acid containing the HFIP group obtained by the polymerization reaction is further imidized by cyclization by dehydration ring-closing reaction, and converted into a polyimide containing the target HFIP group. it can.
  • the dehydration ring closure reaction is performed under conditions that promote cyclization, such as heating and use of an acid catalyst.
  • the polyamic acid solution containing HFIP groups immediately after the polymerization reaction can be imidized at a high temperature of 150 ° C. or more and 250 ° C. or less to prepare a polyimide solution containing HFIP groups.
  • pyridine, triethylamine, acetic anhydride or the like may be added.
  • the concentration of the polyimide containing HFIP groups in the solution is preferably 5% by mass or more and 50% by mass or less. If it is less than 5% by mass, it is too thin to be industrially practical. If it exceeds 50% by mass, it is difficult to dissolve. Furthermore, it is preferably 10% by mass or more and 40% by mass or less.
  • polyimide solution containing HFIP group Preparation of polyimide solution containing HFIP group
  • the polyimide solution containing HFIP group thus obtained can be used as it is for gas separation membrane production.
  • a polyimide solution containing HFIP groups is added to a poor solvent such as water or alcohol, and polyimide containing HFIP groups is added. After being precipitated and isolated and purified, it may be adjusted by dissolving it again in an organic solvent to the above concentration.
  • the organic solvent that can be used is that the polyimide containing the HFIP group is dissolved, and amide solvents N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylformamide, hexamethylphosphoric triamide, N -Halogen solvents such as methyl-2-pyrrolidone, aromatic solvents benzene, anisole, diphenyl ether, nitrobenzene, benzonitrile, chloroform, dichloromethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, Lactones ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone or ⁇ -methyl- ⁇ -butyrolactone, phenols phenol, cresol, xylenol, catechol or chlorfeno Le, or it may be used to select from a mixed solvent thereof.
  • the gas separation membrane containing polyimide containing HFIP groups of the present invention is a uniform membrane obtained by a wet film-forming method in which a solvent is evaporated from a polyimide solution containing HFIP groups. Or an asymmetric membrane having a dense layer and a porous layer obtained by other methods.
  • a homogeneous film is obtained by wet-coating a polyimide solution containing the above-mentioned HFIP group on a substrate such as a glass substrate using a spin coater, applicator, etc., and then heating in a dry gas such as air, nitrogen or argon. It is obtained by evaporating the solvent and then removing it from the glass substrate.
  • a homogeneous film can be obtained by coating a substrate with a polyamic acid solution containing an HFIP group instead of the polyimide solution containing an HFIP group, followed by imidization by heating.
  • the thickness of the homogeneous membrane is preferably 5 ⁇ m or more and 1 mm or less. A film thinner than 5 ⁇ m is difficult to manufacture and easily broken. A film thicker than 1 mm is difficult for gas to permeate. More preferably, it is 10 ⁇ m to 200 ⁇ m.
  • An asymmetric film having a dense layer and a porous layer can be formed by the method described above. Moreover, after forming an asymmetric film using a polyamic acid solution instead of a polyimide solution, the asymmetric film can also be obtained by thermal imidization.
  • the dense layer has different permeation speeds depending on the gas type, and has a gas separation function to be selected for the mixed gas.
  • the porous layer has a role as a support for maintaining the membrane shape.
  • the asymmetric membrane containing polyimide containing an HFIP group used for the gas separation membrane of the present invention may be either a flat membrane shape or a hollow fiber shape.
  • the thickness of the dense layer is preferably 10 nm or more and 10 ⁇ m or less. If it is thinner than 10 nm, it is difficult to form a film and it is not practical. If it is thicker than 10 ⁇ m, it is difficult for gas to permeate. Preferably they are 30 nm or more and 1 micrometer or less.
  • the thickness of the porous layer is preferably 5 ⁇ m or more and 2 mm or less for a flat film. If it is thinner than 5 ⁇ m, it is difficult to form a film and it is not practical. If it is thicker than 2 mm, it is difficult for gas to permeate. More preferably, they are 10 micrometers or more and 500 micrometers or less.
  • the inner diameter is 10 ⁇ m or more and 4 mm or less, preferably 20 ⁇ m or more and 1 mm or less, and the outer diameter is 30 ⁇ m or more and 8 mm or less, preferably 50 ⁇ m or more and 1.5 mm or less.
  • the coagulation liquid for producing the asymmetric membrane water or a mixed solvent of water and an organic solvent is preferably used.
  • the mixed solvent contains 40% by mass or more, preferably 50% by mass or more of water, and examples of the organic solvent include alcohols such as methanol, ethanol or isopropanol, and ketones such as acetone, methyl ethyl ketone, and diethyl ketone.
  • alcohols such as methanol, ethanol or isopropanol
  • ketones such as acetone, methyl ethyl ketone, and diethyl ketone.
  • the polyimide containing an HFIP group used for the gas separation membrane of the present invention has an amide solvent N, N-dimethylacetamide, N, N-dimethylformamide or N-methyl due to the effect of containing the polar HFIP group.
  • -2-Pyrrolidone, lactones such as ⁇ -butyrolactone and ⁇ -valerolactone are particularly easy to dissolve, and it is easy to produce a homogeneous film with a desired film thickness. It is also easy to do.
  • both dry air, aqueous coagulation liquid, etc. are discharged inside the discharge port.
  • a desired dense layer can be formed.
  • a porous layer having a desired pore size, pore size distribution, and thickness can be formed by changing the organic solvent species of the coagulation bath.
  • the film treated with the coagulation liquid is preferably used after being dried by heat treatment.
  • the heat treatment temperature is preferably not higher than the glass transition temperature of polyimide so as not to melt.
  • a silicone resin may be coated on the surface of the separation membrane.
  • a coating method a known coating method such as spin coating, coating with an applicator, or dip coating can be used.
  • Silicone resins include general dimethyl silicone, phenyl group-containing silicone, vinyl group-containing silicone, Si-H group-containing silicone, trifluoropropyl group-containing silicone, silanol group-containing silicone, amino group-containing silicone, epoxy group-containing silicone, A methacryl group containing silicone, an acryl group containing silicone, etc. are mentioned. These are commercially available, such as DMS series, PDV series, VDT series, FMV series, HMS series, DMS series, HPM series, FMS series, SQO series, AMS series, MCR series, ECMS series, RMS series manufactured by Gelest. Is mentioned.
  • the polymer compound containing the repeating unit represented by the general formula (1) is in combination with an epoxy compound as in the gas separation membranes of the invention 17 and the invention 18. It can be mixed and cured by heating or light irradiation to form a cured film. The cured film can also be applied to the homogeneous film and the asymmetric film.
  • Epoxy compounds include phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin modified phenol resin, dicyclopentadiene modified phenol resin, phenol aralkyl resin, cresol aralkyl resin, naphthol aralkyl resin, biphenyl modified phenol aralkyl resin, phenol triol.
  • R 7 is an alkyl group or a monovalent organic group in which one hydrogen atom is removed from an aromatic ring or an alicyclic ring, and the structure contains an oxygen atom, a sulfur atom or a nitrogen atom. And a part of hydrogen atoms may be substituted with a fluorine atom, a chlorine atom, an alkyl group or a fluoroalkyl group, i is an integer of 1 to 4.
  • Examples of the alcohol include 1,4-cyclohexanediol, 1,3-adamantanediol, catechol, 1,3-benzenediol, 2,2′-dihydroxybiphenyl, 4,4′-dihydroxybiphenyl, and 2,2′-methylene.
  • these epoxy compounds and epoxy resin curing agents may be used in combination.
  • the curing agent include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, mercaptan compounds, imidazole compounds, polysulfide resin compounds, and phosphorus compounds.
  • thermosetting agents diaminodiphenylmethane, diaminodiphenylsulfone, diethylenetriamine, triethylenetetramine, polyalkylene glycol polyamine, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride , Methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, 2-methylimidazole, triphenylphosphine, 2-ethyl-4-methylimidazole, BF3-amine complex or guanidine derivative And diphenyliodonium hexafluorophosphate and triphenylsulfonium hexafluorophosphate which are ultraviolet curing agents.
  • the mixing ratio of the epoxy compound and the curing agent for the epoxy resin is 70:30 to 99.5: 0.5, preferably 90:10 to 99: 1, expressed as a mass ratio.
  • the gas separation membrane In the intermediate process of manufacturing the gas separation membrane, for example, it is applied to a glass or silicon substrate and then cured by heating or ultraviolet irradiation with an ultraviolet (UV) lamp or the like to form a crosslinked and cured gas separation membrane.
  • an ultraviolet (UV) lamp or the like to form a crosslinked and cured gas separation membrane.
  • the organic solvent that can be used there is no particular limitation as long as the polyimide is substituted with the HFIP group having the repeating unit represented by the general formula (1) and the composition mainly composed of the epoxy compound is dissolved. Can be used.
  • the resulting reaction solution was heated to 200 ° C., further stirred for 6 hours, and then cooled to room temperature to obtain a uniform N-methylpyrrolidone solution.
  • the N-methylpyrrolidone solution was applied onto a glass substrate and spin-coated using a spin coater under the application conditions of a rotation speed of 1000 rpm and a holding time of 30 sec.
  • the obtained glass substrate was heat-treated at 200 ° C. for 1 hour in a nitrogen atmosphere, and then peeled off from the glass substrate to obtain a film made of polyimide 1, that is, an imide film containing HFIP groups (polyimide 1). When the film thickness was measured, it was 18 ⁇ m.
  • Epoxy resin 1 bisphenol A type epoxy resin (JER828 manufactured by Mitsubishi Chemical Corporation)
  • Epoxy resin 2 Cresol novolac type epoxy resin (manufactured by Aldrich, catalog No. 408042)
  • the gas permeation coefficient was determined by placing a gas separation membrane with a membrane area of 7 cm 2 in a stainless steel cell, and the differential pressure method described in Part 1 of JIS K7126-1: 2006 “Plastics—Film and Sheet—Gas Permeability Test Method”. Measured according to
  • helium (He), carbon dioxide gas (CO 2 ), oxygen gas (O 2 ), nitrogen gas (N 2 ) and methane gas (CH 4 ) are used as test gases under the condition of a temperature of 23 ° C.
  • helium (He) carbon dioxide gas (CO 2 ), oxygen gas (O 2 ), nitrogen gas (N 2 ) and methane gas (CH 4 ) are used as test gases under the condition of a temperature of 23 ° C.
  • the permeability coefficient and separation performance of each gas were measured.
  • the permeation coefficient differs depending on the type of gas, and the ratio of the permeation coefficient between He and CH 4 is 155, which indicates sufficient performance as a gas separation membrane.
  • the gas separation performance of the polyimide membrane (polyimide 1) containing HFIP groups of Example 2 for use in the gas separation membrane of the present invention, and hexafluoro not containing HFIP groups of Comparative Example 1 not within the scope of the present invention The gas separation performance of polyimide membranes containing isopropylidene groups was compared. The performance indicates the data described in Non-Patent Document 2.
  • Table 4 shows the gas permeation coefficients of He, CO 2 , O 2, and CH 4 of the film made of the fluorine-containing polyimide of Comparative Example 1.
  • the permeation performance of He and CO 2 of the gas separation membrane made of polyimide 1 of Example 1, which is a polyimide membrane containing the HFIP group of the present invention is a comparative example that is not in the category of the present invention.
  • the separation performance was superior to that of the gas separation membrane of Comparative Example 1.
  • polyimide 3, polyimide 4, polyimide 7, polyimide 21, and polyimide 22 of the present invention have higher transmission coefficients than Upilex and Kapton, which are conventional resins. I understood it.
  • the polyimide 3, polyimide 4, polyimide 7, polyimide 21, and polyimide 22 of the present invention are more separated than conventional resins, Upilex and Kapton. Was found to be expensive.
  • polyimide 3, polyimide 4, polyimide 7, polyimide 21, and polyimide 22 have higher permeability coefficient and separation performance than conventional resins, Upilex and Kapton, and were excellent as separation membranes.
  • the CO 2 and transmission coefficient of polyimide 2, polyimide 5, polyimide 6, polyimide 8-20, and polyimide 23-27 were 4 to 82 Barrer. Since the CO 2 permeability coefficients of the Kapton and Uplex membranes were 0.67 Barrer and 0.16 Barrer, respectively, the CO 2 of the polyimide 2, polyimide 5, polyimide 6, polyimides 8 to 20, and polyimides 23 to 27 of the present invention. It was found that the permeability coefficient of imide membrane was high in CO 2 permeability coefficient.
  • the separation performance of CO 2 / CH 4 for polyimide 2, polyimide 5, polyimide 6, polyimide 8 to 20, and polyimide 23 to 27 was 18 to 62. Since the CO 2 / CH 4 separation performance of the Kapton and Uplex membranes was 5.6, 4 , the CO of polyimide 2, polyimide 5, polyimide 6, polyimides 8-20 and polyimides 23-27 of the present invention towards the separation performance of the 2 transmission coefficient and CO 2 / CH 4 it was found to be high.
  • polyimide 2 polyimide 5, polyimide 6, polyimides 8 to 20, and polyimides 23 to 27 have higher CO 2 permeability coefficient and CO 2 / CH 4 separation performance than conventional resins, Upilex and Kapton. It was excellent as a separation membrane.
  • the gas separation membrane comprising a fluorine-containing polyimide membrane containing an HFIP group of the present invention has a large difference in permeation rate (gas permeability coefficient) depending on the type of gas, and is excellent in gas separation performance. Therefore, it is suitably used for application to technology for separation / fixation of carbon dioxide from liquefied natural gas or the like, and for a water-ethanol separation membrane for the purpose of recovering ethanol for fuel.

Abstract

【課題】 ヘキサフルオロイソプロピリデン基を含むポリイミドを重合するためのジアミンおよびカルボン酸二無水物は、ポリイミド膜とする際に化学構造に制約があるために、気体分離膜とした際に、強度および分離性能を考慮した化学構造を設計することが難しいという問題があった。有機溶剤に溶解しやすく、成形性に優れ気体分離膜として用い易く、ガス分離性能に優れた気体分離膜を得る。 【解決手段】 一般式(1):(式(1)中、R1は2価の有機基およびR2は4価の有機基であり、R1が2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル基:(-C(CF32OH)を含む。)で表される繰り返し単位を含むポリイミドを含有する気体分離膜。

Description

気体分離膜
 本発明は、気体分離膜に関する。
 気体分離膜による気体の分離は、連続的に混合気体を気体状態のままで分離でき、相変化を伴わない簡便な技術として、古くから注目されている。気体の分離は、気体分離膜を透過させる気体(以下、ガスと呼ぶことがある)の種類による透過の有無、透過速度の差異を利用し選択的にガスを分離する技術である。
 このような気体分離膜用の材料として、酢酸セルロース、ポリスルホンまたはポリイミド等のポリマーが知られている。中でも、ポリイミドは、気体分離膜として使用するに適した強度があり破損し難く、耐熱性に優れ高温での使用が可能な材料として知られている。
 ポリイミドを用いた気体分離膜に関する報告は多く、目的とするガスを分離するための膜に対する透過性、および目的とするガスの高い選択性等の気体の分離性能に対するモノマーの構造の影響について、詳細に研究されている。
 例えば、繰り返し構造中にヘキサフルオロイソプロピリデン基(―C(CF32-)を含むポリイミド系気体分離膜は、ヘリウム(以下、Heと呼ぶことがある)、二酸化炭素(以下、CO2の記載することがある)の高い透過性を有し、これらガスの酸素(以下、O2と記載することがある)、メタン(以下、CH4と呼ぶことがある)との高い選択性を有することが知られている。
 また、気体分離膜において、ヘキサフルオロイソプロピリデン基(―C(CF32-)をポリイミド中の繰り返し単位に導入することで、分子鎖の剛直性を高めながら、分子間相互作用を弱め、ガスの種類による気体分離膜透過の差異を生じさせ、高い膜透過性および高い選択性を両立できるとされる。(非特許文献1および非特許文献2参照)。
 しかしながら、ヘキサフルオロイソプロピリデン基を含むポリイミドを合成材料としては、以下のジアミンおよびカルボン酸二水物しかなく、ポリイミド膜とする際に化学構造に制約があるために、気体分離膜とした際に、強度および分離性能を考慮した化学構造を設計することが難しいという問題があった。また、溶解する有機溶剤が限られるという問題があった。尚、ヘキサフルオロイソプロピリデン基を含むポリイミド膜のHe、CO2、O2およびCH4からなる混合ガスの分離性能は非特許文献3に記載される。
Figure JPOXMLDOC01-appb-C000018
 特許文献1~3には、含フッ素ポリイミドを重合するための、2-ヒドロキシ-1,1,1,3,3,3-フルオロイソプロピル基(-C(CF32OH)、(以下、HFIP基と呼ぶことがある)を有するジアミンである含フッ素重合性単量体およびその製造方法が開示されている。
 また、ポリイミド等からなる気体分離膜の製造方法には、ポリイミドの溶液を湿式塗布した後、溶剤を単に蒸発させ均質な膜を得る方法、緻密層と多孔質層からなる不均質な非対称膜を得る方法がある。非対称膜を得る方法は、ポリマー溶液を吐出口から吐出し、表面近傍に存在する溶媒を空気中に蒸発させ緻密層を形成した後、ポリマー溶液の溶媒と相溶するがポリマーは溶解しない溶媒である凝固液を満たした凝固浴に浸漬し、凝固層内で微細な多孔質層を形成させる方法がある。特許文献4には、当該方法による複合逆浸透膜の製造方法が開示されている。
 前述したように、ヘキサフルオロイソプロピリデン基を含むポリイミドを重合するためのジアミンおよびカルボン酸二無水物は、前述のように限られており、ポリイミド膜とする際に化学構造に制約があるために、気体分離膜とした際に、加工性、強度および分離性能を考慮した化学構造を設計することが難しいという問題があった。
特開2007-119503号公報 特開2007-119504号公報 特開2008-150534号公報 米国特許3133132号
岡本健一ら、高分子加工、41巻、1号、pp16、1992 S.A.Stern,Journal of Membrane Science,vol.94,pp1,1994
 本発明は係る問題を解決し、有機溶剤に溶解し、成形性に優れ、気体分離膜として用いた際に気体の分離性能に優れた気体分離膜を提供することを目的とする。
 本発明者らは、OH基を含む極性基である、HFIP基を含むポリイミドを有する気体分離膜を使用することで、有機溶剤、特に極性溶剤に可溶とし、気体の分離性能を向上させて、前記課題を解決するに至った。
 本発明の気体分離膜は、HFIP基を有する含フッ素ポリイミド系気体分離膜である。
 即ち、本発明は以下の発明1~19を含む。
[発明1]
一般式(1):
Figure JPOXMLDOC01-appb-C000019
(式(1)中、R1は2価の有機基およびR2は4価の有機基であり、R1が2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル基を含む。)
で表される繰り返し単位を含むポリイミドを有する、気体分離膜。
[発明2]
1が一般式(2):
Figure JPOXMLDOC01-appb-C000020
(式(2)中、R3は単結合、酸素原子、硫黄原子、SO2、CH2、CO、C(CH32、C(CH3)(CH2CH3)、C(CF32、または炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の水素原子が2個離脱してなる2価の有機基であり、mとpはそれぞれ独立に0~2の整数であり、1≦m+p≦4である。)
で表される2価の有機基である、請求項1に記載の気体分離膜。
[発明3]
一般式(2)で表される2価の有機基が、
式(3):
Figure JPOXMLDOC01-appb-C000021
で表される2価の有機基である、発明2の気体分離膜。
[発明4]
一般式(2)で表される2価の有機基が、
式(4): 
Figure JPOXMLDOC01-appb-C000022
で表される2価の有機基である、発明2の気体分離膜。
[発明5]
一般式(2)で表される2価の有機基が、
式(5):
Figure JPOXMLDOC01-appb-C000023
で表される2価の有機基である、発明2に記載の気体分離膜。
[発明6]
一般式(2)で表される2価の有機基が、
一般式(6):
Figure JPOXMLDOC01-appb-C000024
(式(6)中、R4は、それぞれ独立に、炭素数1~10のアルキル基、アルコキシル基、カルボキシル基、エステル基、ヒドロキシル基、ニトロ基、シアノ基、クロル基、ブロモ基およびフルオロアルキル基からなる群から選ばれる少なくとも1種の1価の有機基である)
で表される2価の有機基である、発明2に記載の気体分離膜。
[発明7]
一般式(2)で表される2価の有機基が、
式(7):
Figure JPOXMLDOC01-appb-C000025
(式(7)中、Meはメチル基を表す。)
で表される2価の有機基である、発明6の気体分離膜。
[発明8]
一般式(2)で表される2価の有機基が、
一般式(8):
Figure JPOXMLDOC01-appb-C000026
(式(8)中、R5は、それぞれ独立に、水素原子、メチル基、エチル基、イソプロピル基、クロル基、フルオロ基、トリフルオロメチル基、フェニル基、メトキシ基およびニトロ基からなる群から選ばれる少なくとも1種の1価の有機基であり、R6は、それぞれ独立に、水素原子、またはフェニル基、ナフチル基、ビフェニル基、スルホ基、エチニレン構造含有基、ブロモ基、クロル基、フルオロ基およびヨード基からなる群から選ばれる少なくとも1種の1価の有機基であり、gおよびhはそれぞれ独立に0、1、2のいずれかの整数であり、g+hは1以上4以下である)。
で表される2価の有機基である、発明2の気体分離膜。
[発明9]
一般式(8)で表される2価の有機基が、
式(9):
Figure JPOXMLDOC01-appb-C000027
で表される2価の有機基である、発明8の気体分離膜。
[発明10]
1が一般式(10): 
Figure JPOXMLDOC01-appb-C000028
(式(10)中、a、bはそれぞれ独立に0~2の整数であり、a+b≧1である。cは0以上、3以下の整数である。dとeはそれぞれ独立に0~2の整数であり、1≦d+e≦4である。また、式(10)中、次式:
Figure JPOXMLDOC01-appb-C000029
で表される部位は、炭素原子がヘテロ原子(窒素原子、酸素原子または硫黄原子)で置換してもよく、水素原子は置換基で置換してもよく、この置換基は窒素原子、酸素原子または硫黄原子を含んでいてもよい。)
で表される2価の有機基である、発明1の気体分離膜。
[発明11]
一般式(10)で表される2価の有機基が、
式(11): 
Figure JPOXMLDOC01-appb-C000030
で表される2価の有機基である、発明10の気体分離膜。
[発明12]
1で表される2価の有機基が
一般式(12):
Figure JPOXMLDOC01-appb-C000031
(式(12)中、fは1または2の整数である。)
で表される2価の有機基である、発明1の気体分離膜。
[発明13]
一般式(12)で表される2価の有機基が、
式(13):
Figure JPOXMLDOC01-appb-C000032
で表される2価の有機基である、発明12の気体分離膜。
[発明14]
一般式(12)で表される2価の有機基が、
式(14):
Figure JPOXMLDOC01-appb-C000033
で表される2価の有機基である、発明12の気体分離膜。
[発明15]
2で表される4価の有機基が、
式(15):
Figure JPOXMLDOC01-appb-C000034
で表される4価の有機基である、発明1から4のいずれかの気体分離膜。
[発明16]
1に含まれる2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル基が有するOH基の水素原子がグリシジル基で置換されてなる、発明1~15のいずれかの気体分離膜。
[発明17]
グリシジル基の環状エーテル部位が開環し架橋してなる発明16の気体分離膜。
[発明18]
さらにエポキシ化合物と混合し加熱して得られる、発明1~16のいずれかの気体分離膜。
[発明19]
エポキシ化合物が一般式(16):
Figure JPOXMLDOC01-appb-C000035
(式(16)中、R7は、アルカン、芳香環および脂環から水素原子が一個離脱した1価の有機基であり、構造中に酸素原子、硫黄原子または窒素原子を含んでいてもよく、水素原子の一部がフッ素原子、塩素原子、アルキル基またはフルオロアルキル基で置換されていてもよい。iは1~4の整数である。)
で表される、発明18の気体分離膜。
 本発明のHFIP基を含むポリイミド系気体分離膜は、HFIP基による良好な分離性能を有する。HFIP基に加え、ヘキサフルオロイソプロピリデン基を含む気体分離膜は、さらに良好な気体分離性能を示す。また、HFIP基は水酸基を有するため、特定の有機溶剤、特に極性溶剤に可溶であり、ポリイミド溶液を調製することも容易であり、所望の膜形状に成形可能である。
 さらに、本発明のHFIP基を含むポリイミド系気体分離膜において、原料としての芳香族ジアミンにHFIP基を含有させることが可能であることから(前記特許文献1~3参照)、従来の含フッ素ポリイミド系気体分離膜に比較して、気体分離性能に加え、膜強度または溶剤への耐膨潤性等の膜物性を優れたものとするための構造設計が可能となる。
 本発明の気体分離膜を作製するためのHFIP基を含むポリイミドの原料となる単量体化合物には、HFIP基を含むジアミンと、テトラカルボン酸二無水物が挙げられる。気体分離膜とした強度のために芳香族ジアミンを採用することが好ましく、HFIP基を含む芳香族ジアミンに加えて、膜とした際の強度、分離性能の調整のために、その他のジアミンを加えてもよい。また、同様に、膜とした際の強度、分離性能の調整のために、テトラカルボン酸二無水物に加え、その他のジカルボン酸およびその誘導体を加えてもよい。
1.HFIP基を含む芳香族ジアミン
 本発明の気体分離膜を作製するためのHFIP基を含むポリイミドを合成するための単量体化合物としての、HFIP基を含む芳香族ジアミンを、以下の一般式(2A)~(14A)に示す。
[一般式(2A)で表されるジアミン]
Figure JPOXMLDOC01-appb-C000036
(式(2A)中、R3は単結合、酸素原子、硫黄原子、SO2、CH2、CO、C(CH32、C(CH3)(CH2CH3)、C(CF32、炭素数3~12の脂環式炭化水素化合物、または炭素数6~25の芳香族炭化水素化合物の水素原子が2個離脱してなる2価の有機基であり、mとpはそれぞれ独立に0~2の整数であり、1≦m+p≦4である。)
で表される2価の有機基である、請求項1に記載の気体分離膜。
 炭素数3~12の脂環式炭化水素化合物の水素原子が2個離脱してなる2価の有機基としては、シクロヘキサン、ビシクロヘキサン、アダマンタンまたはノルボルナンの水素原子が2個離脱してなる2価の有機基が好ましく、炭素数6~25の芳香族炭化水素化合物の水素原子が2個離脱してなる2価の有機基としては、ベンゼン、ビフェニル、ナフタレンまたはフルオレンの水素原子が2個離脱してなる2価の有機基が挙げられる。
[式(3A)で表されるジアミン]
Figure JPOXMLDOC01-appb-C000037
[式(4A)で表されるジアミン]
Figure JPOXMLDOC01-appb-C000038
[式(5A)で表されるジアミン]
Figure JPOXMLDOC01-appb-C000039
[一般式(6A)で表されるジアミン]
Figure JPOXMLDOC01-appb-C000040
(一般式(6A)中、R4は、それぞれ独立に、炭素数1~10のアルキル基、アルコキシル基、カルボキシル基、エステル基、ヒドロキシル基、ニトロ基、シアノ基、クロル基、ブロモ基およびフルオロアルキル基からなる群から選ばれた少なくとも1種の1価の有機基である。)
[式(7A)で表されるジアミン]
Figure JPOXMLDOC01-appb-C000041
(式中、Meはメチル基を表す。)
[一般式(8A)で表されるジアミン]
Figure JPOXMLDOC01-appb-C000042
(一般式(8A)中、R5は、それぞれ独立に、水素原子、またはメチル基、エチル基、イソプロピル基、クロル基、フルオロ基、トリフルオロメチル基、フェニル基、メトキシ基およびニトロ基からなる群から選ばれる少なくとも1種の1価の有機基であり、R6は、それぞれ独立に、水素原子、またはフェニル基、ナフチル基、ビフェニル基、スルホ基、エチニレン構造含有基、ブロモ基、クロル基、フルオロ基およびヨード基からなる群から選ばれる少なくとも1種の1価の有機基であり、gおよびhは、それぞれ独立に0、1、2のいずれかの整数であり、g+hは1以上4以下である)。
[式(9A)で表されるジアミン]
Figure JPOXMLDOC01-appb-C000043
[式(10A)で表されるジアミン]
Figure JPOXMLDOC01-appb-C000044
(式(10A)中、a、bはそれぞれ独立に0~2の整数であり、a+b≧1である。cは0以上の整数である。dとeはそれぞれ独立に0~2の整数であり、1≦d+e≦4である。また、式(10A)中、次式:
Figure JPOXMLDOC01-appb-C000045
で表される部位は、炭素原子がヘテロ原子(窒素原子、酸素原子または硫黄原子)で置換して、水素原子は置換基で置換してもよく、この置換基は窒素原子、酸素原子または硫黄原子を含んでいてもよい。)
[式(11A)で表されるジアミン]
Figure JPOXMLDOC01-appb-C000046
[一般式(12A)で表されるジアミン]
Figure JPOXMLDOC01-appb-C000047
(一般式(12A)中、fは1もしくは2の整数である。)
[式(13A)で表されるジアミン]
Figure JPOXMLDOC01-appb-C000048
[式(14A)で表されるジアミン]
Figure JPOXMLDOC01-appb-C000049
 尚、HFIP基を含有したポリイミドにおいて、一般式(2A)で表されるHFIP基を含む芳香族ジアミンは、一般式(2)で表される構造単位を含む繰り返し単位を与える。同様に、式(3A)~式(14A)で表されるジアミンは、それぞれ、式(3)~式(14)で表される構造単位を含む繰り返し単位を与える。
 これらの式(2A)~式(14A)で表されるHFIP基を含む芳香族ジアミンの中でも、式(3A)、式(4A)、式(5A)、式(6A)、式(7A)、式(11A)、式(13A)または式(14A)に示すジアミンが、合成しやすく、本発明のHFIP基を含むポリイミド系気体分離膜において、使用しやすい原料である。これらHFIP基を含む芳香族ジアミンは2種以上併用してもよく、およびその製造方法については特許文献1~3に記載されている。
2.その他ジアミン
 本発明の気体分離膜において、気体分離膜とした際の気体分離性能および膜強度などの膜物性の調整のために、HFIP基を含むポリイミドの合成において、HFIP基を含む芳香族ジアミンに加え、他のジアミン、例えば、ジヒドロキシアミンを用いてもよい。使用量は、前記テトラカルボン酸二無水物に対し10モル%から80モル%であり、好ましくは30モル%から60モル%である。ガス分離性能、極性溶剤への溶解性、膜強度等の諸性能の調節を行なうことが可能となる。
 ジアミンとしては、3,5-ジアミノベンゾトリフルオリド、2,5-ジアミノベンゾトリフルオリド、3,3’-ビストリフルオロメチル-4,4’-ジアミノビフェニル、3,3’-ビストリフルオロメチル-5,5’-ジアミノビフェニル、ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル、ビス(フッ素化アルキル)-4,4’-ジアミノジフェニル、ジクロロ-4,4’-ジアミノジフェニル、ジブロモ-4,4’-ジアミノジフェニル、ビス(フッ素化アルコキシ)-4,4’-ジアミノジフェニル、ジフェニル-4,4’-ジアミノジフェニル、4,4’-ビス(4-アミノテトラフルオロフェノキシ)テトラフルオロベンゼン、4,4’-ビス(4-アミノテトラフルオロフェノキシ)オクタフルオロビフェニル、4,4’-ビナフチルアミン、o-、m-、p-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、2,4-ジアミノキシレン、2,4-ジアミノジュレン、1,4-キシリレンジアミン、ジメチル-4,4’-ジアミノジフェニル、ジアルキル-4,4’-ジアミノジフェニル、ジメトキシ-4,4’-ジアミノジフェニル、ジエトキシ-4,4’-ジアミノジフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジメチルージアミノジフェニルメタン、3,3’-ジエチルージアミノジフェニルメタン、9、9-ビス(4-アミノフェニル)フルオレン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフォン、3,3’-ジアミノジフェニルスルフォン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス(4-(3-アミノフェノキシ)フェニル)スルフォン、ビス(4-(4-アミノフェノキシ)フェニル)スルフォン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-(3-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(3-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-(4-アミノ-2-トリフルオロメチルフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-(3-アミノ-5-トリフルオロメチルフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、4,4’-ビス(4-アミノフェノキシ)オクタフルオロビフェニルまたは4,4’-ジアミノベンズアニリドが挙げられる。これらを2種以上併用することもでき、ポリベンズオキサゾールで変性された共重合組成となる。
 また、ヘキサフルオロイソプロピリデン基を含む下記構造式で表されるジアミンを加えてもよい。
Figure JPOXMLDOC01-appb-C000050
3.テトラカルボン酸二無水物
 本発明の気体分離膜を作製するためのHFIP基を含むポリイミドを合成するためテトラカルボン酸二無水物を一般式(17)に示す。
[一般式(17)で表されるテトラカルボン酸二無水物]
Figure JPOXMLDOC01-appb-C000051
(式(17)中、R2は有機基であり、好ましくは、アルカン、脂環または芳香環から水素原子が4個置換した4価の有機基であり、構造中にフッ素原子、塩素原子、酸素原子、硫黄原子または窒素原子を含んでもよく、水素原子の一部がアルキル基、フルオロアルキル基、カルボキシル基、ヒドロキシ基またはシアノ基で置換されていてもよい。)。
 このようなテトラカルボン酸二無水物としては、ベンゼンテトラカルボン酸二無水物(ピロメリット酸ニ無水物)(以下、PMDAと略する)、トリフルオロメチルベンゼンテトラカルボン酸二無水物、ビストリフルオロメチルベンゼンテトラカルボン酸二無水物、ジフルオロベンゼンテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水化物、ビフェニルテトラカルボン酸二無水物(以下、BPDAと略する)、ターフェニルテトラカルボン酸二無水物、1,1-ビス(3,4-ジカルボキシフェニル)ケトン酸二無水物(以下、BTDAと略する)、オキシジフタル酸ニ無水物、ビシクロ(2,2,2)オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン酸二無水物(以下、6FDAと略する)、2,3,4,5-チオフェンテトラカルボン酸二無水化物、2,5,6,2',5',6'- ヘキサフルオロ-3,3’,4,4’-ビフェニルテトラカルボン酸二無水化物、ビス(3,4-ジカルボキシフェニル)スルホン酸二無水化物または3,4,9,10-ペリレンテトラカルボン酸二無水化物を挙げることができ、これらを2種以上併用することもでき、特に限定されるものではない。
 この中でも、入手の容易性からPMDA、BPDA、BTDA,および6FDAがよく、ガス分離性能(透過性と選択性)で良好な6FDAは特に好ましい。
[6FDA]
 6FDAは下記構造式で表される化合物であり、構造中にヘキサフルオロイソプロピリデン基(―C(CF32-)を加えることで、ポリイミドとした際に、気体分離膜に、分離するガスの高い膜透過性および高い選択性を与える前記式(15)で表される構造単位を含む繰り返し単位を与える。
Figure JPOXMLDOC01-appb-C000052
これらのテトラカルボン酸二無水物は単独で用いてもよいし、2種以上混合して用いてもよい。
4.ジカルボン酸誘導体
 気体分離膜とした際の分離性能および強度等の膜物性の調整のために、前記テトラカルボン酸二無水物に加え、一般式(9)、(10)で表されるジカルボン酸誘導体を使用してもよい。使用量は、前記テトラカルボン酸二無水物に対し10モル%以上、80モル%以下であり、好ましくは30モル%以上、60モル%である。本モル比の範囲内で、ガス分離性能、極性溶剤への溶解性、膜強度の調整を行うことができる。
 一般式(18):
Figure JPOXMLDOC01-appb-C000053
(式(18)中、R8は有機基、好ましくは、アルカン、脂環、または芳香環から水素原子が2個離脱した2価の有機基であり、構造中に酸素原子、硫黄原子含有してもよく、水素原子の一部がアルキル基、フッ素、塩素、フルオロアルキル基、カルボキシル基、ヒドロキシ基またはシアノ基で置換されていてもよい。Aはそれぞれ独立に水素原子、炭素数1~10のアルキル基、またはベンジル基である。
 一般式(19):
Figure JPOXMLDOC01-appb-C000054
(式(19)中、R9は有機基、好ましくは、アルキレン基、または脂環もしくは芳香環から水素原子が1個離脱した2価の有機基であり、構造中に酸素原子、硫黄原子または窒素原子を含有してもよく、水素原子の一部がアルキル基、フッ素、塩素、フルオロアルキル基、カルボキシル基、ヒドロキシ基またはシアノ基で置換されていてもよい。Xはそれぞれ独立に、塩素原子、フッ素原子、臭素原子またはヨウ素原子である。
 尚、縮合反応後は一般式(20)に記載のヘテロ環構造を共重合成分として含有した構造単位となる。
Figure JPOXMLDOC01-appb-C000055
 本発明の気体分離膜に使用する含フッ素ポリイミドを合成するための、一般式(18)、(19)で表されるジカルボン酸誘導体を、原料のジカルボン酸の形で例示すると、脂肪族ジカルボン酸である、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸またはセバシン酸、芳香族カルボン酸であるフタル酸、イソフタル酸、テレフタル酸、3,3’-ジカルボキシルジフェニルエーテル、3,4’-ジカルボキシルジフェニルエーテル、4,4’-ジカルボキシルジフェニルエーテル、3,3’-ジカルボキシルジフェニルメタン、3,4’-ジカルボキシルジフェニルメタン、4,4’-ジカルボキシルジフェニルメタン、3,3’-ジカルボキシルジフェニルジフルオロメタン、3,4’-ジカルボキシルジフェニルジフルオロメタン、4,4’-ジカルボキシルジフェニルジフルオロメタン、3,3’-ジカルボキシルジフェニルスルホン、3,4’-ジカルボキシルジフェニルスルホン、4,4’-ジカルボキシルジフェニルスルホン、3,3’-ジカルボキシルジフェニルスルフィド、3,4’-ジカルボキシルジフェニルスルフィド、4,4’-ジカルボキシルジフェニルスルフィド、3,3’-ジカルボキシルジフェニルケトン、3,4’-ジカルボキシルジフェニルケトン、4,4’-ジカルボキシルジフェニルケトン、2,2-ビス(3-カルボキシフェニル)プロパン、2,2-ビス(3,4’-ジカルボキシフェニル)プロパン、2,2-ビス(4-カルボキシフェニル)プロパン、2,2-ビス(3-カルボキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3,4’-ジカルボキシフェニル)ヘキサフルオロプロパン、2,2-ビス(4-カルボキシフェニル)ヘキサフルオロプロパン、1,3-ビス(3-カルボキシフェノキシ)ベンゼン、1,4-ビス(3-カルボキシフェノキシ)ベンゼン、1,4-ビス(4-カルボキシフェノキシ)ベンゼン、3,3’-(1,4-フェニレンビス(1-メチルエチリデン))ビス安息香酸、3,4’-(1,4-フェニレンビス(1-メチルエチリデン))ビス安息香酸、4,4’-(1,4-フェニレンビス(1-メチルエチリデン))ビス安息香酸、2,2-ビス(4-(3-カルボキシフェノキシ)フェニル)プロパン、2,2-ビス(4-(4-カルボキシフェノキシ)フェニル)プロパン、2,2-ビス(4-(3-カルボキシフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-(4-カルボキシフェノキシ)フェニル)ヘキサフルオロプロパン、ビス(4-(3-カルボキシフェノキシ)フェニル)スルフィド、ビス(4-(4-カルボキシフェノキシ)フェニル)スルフィド、ビス(4-(3-カルボキシフェノキシ)フェニル)スルホンまたはビス(4-(4-カルボキシフェノキシ)フェニル)スルホン、パーフルオロノネニルオキシ基含有のジカルボン酸である5-(パーフルオロノネニルオキシ)イソフタル酸、4-(パーフルオロノネニルオキシ)フタル酸、2-(パーフルオロノネニルオキシ)テレフタル酸または4-メトキシ-5-(パーフルオロノネニルオキシ)イソフタル酸、パーフルオロヘキセニルオキシ基含有のジカルボン酸である、5-(パーフルオロヘキセニルオキシ)イソフタル酸、4-(パーフルオロヘキセニルオキシ)フタル酸、2-(パーフルオロヘキセニルオキシ)テレフタル酸または4-メトキシ-5-(パーフルオロヘキセニルオキシ)イソフタル酸が挙げられる。また、これらを2種以上併用してもよい。
5.HFIP基を含むポリイミドの合成
 本発明の気体分離膜に使用するHFIP基を含むポリイミドを合成する際の、縮重合反応について説明する。
 本発明の気体分離膜に使用するHFIP基を含むポリイミドを合成するには、前述のHFIP基を含む芳香族ジアミンとテトラカルボン酸二無水物を必須とし、必要であれば、その他ジアミンおよびジカルボン酸誘導体を加えた後、150℃以上で相互に溶融せて無溶媒で反応させる方法、反応温度-20~80℃下にて、有機溶媒中で縮合反応させる方法を挙げることができる。重縮合反応においては、ジアミンと、無水カルボン酸二無水物またはジカルボン酸とがモル比で表して1対1で反応することより、HFIP基を含む芳香族ジアミンおよびその他ジアミン、テトラカルボン酸二無水物およびジカルボン酸誘導体の存在比は、モル比で表して、芳香族ジアミンおよびその他ジアミン:テトラカルボン酸二無水物およびジカルボン酸誘導体=1:1であることが好ましい。
 前記縮合反応に使用できる有機溶媒は、原料化合物であるHFIP基を含む芳香族ジアミンとテトラカルボン酸二無水物、その他ジアミン、およびジカルボン酸誘導体が溶解すればよく、アミド系溶媒であるN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ヘキサメチルリン酸トリアミドまたはN-メチル-2-ピロリドン、芳香族系溶媒であるベンゼン、アニソール、ジフェニルエーテル、ニトロベンゼンまたはベンゾニトリル、ハロゲン系溶媒であるクロロホルム、ジクロロメタン、1,2-ジクロロエタンまたは1,1,2,2-テトラクロロエタン、ラクトン類であるγ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトンまたはα-メチル-γ-ブチロラクトンが挙げられる。また、これら有機溶媒と、酸受容体、例えば、ピリジン、トリエチルアミンを共存させて重縮号反応を行ってもよい。
 重縮合反応においては、先ず、重合反応で得られたHFIP基を含むポリアミド酸を、さらに脱水閉環反応させ環化することでイミド化して、目的物であるHFIP基を含むポリイミドに転化することができる。
 脱水閉環反応は、加熱、酸触媒の使用等の反応条件を環化が促進する条件により行う。一般的には、重合反応直後のHFIP基を含むポリアミド酸溶液を150℃以上、250℃以下の高温でイミド化し、HFIP基を含むポリイミド溶液に調製することができる。その際、ピリジン、トリエチルアミン、無水酢酸等を加えてもよい。溶液中のHFIP基を含むポリイミドの濃度は、5質量%以上、50質量%以下が好ましい。5質量%より少ないと、薄すぎて工業的に実用的ではない。50質量%を超えると溶解し難い。さらに、好ましくは10質量%以上、40質量%以下である。
6.HFIP基を含むポリイミド溶液の調製
 このようにして得られたHFIP基を含むポリイミドの溶液は、気体分離膜製造にそのまま用いることもできる。また、HFIP基を含むポリイミドの溶液中に含まれる残存モノマー、低分子量体を除去する目的で、水またはアルコール等の貧溶媒中に、HFIP基を含むポリイミドの溶液を加え、HFIP基を含むポリイミドを沈殿させて単離精製した後、改めて有機溶媒に前記濃度になるように溶解させて調整してもよい。
 使用できる有機溶媒は、HFIP基を含むポリイミドが溶解すればよく、アミド系溶媒であるN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ヘキサメチルリン酸トリアミド、N-メチル-2-ピロリドン、芳香族系溶媒であるベンゼン、アニソール、ジフェニルエーテル、ニトロベンゼン、ベンゾニトリル等の、ハロゲン系溶媒クロロホルム、ジクロロメタン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン、ラクトン類であるγ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトンまたはα-メチル-γ-ブチロラクトン、フェノール類であるフェノール、クレゾール、キシレノール、カテコールまたはクロルフェノール、あるいはそれらの混合溶媒から選んで使用すればよい。
7.気体分離膜の製造
 本発明のHFIP基を含むポリイミドを含む気体分離膜は、HFIP基を含むポリイミド溶液から溶媒が蒸発することを利用して薄膜を作製する湿式成膜法で得られる均一な膜、または他の方法で得られる緻密層と多孔質層とを有する非対称膜のいずれであってもよい。
 均質な膜は、例えば、前述のHFIP基を含むポリイミドの溶液を、ガラス基板等の基体にスピンコーター、アプリケーター等を用いて湿式被覆した後、空気、窒素またはアルゴン等の乾燥気体中で加熱し、溶剤を蒸発させた後、ガラス基材から剥離させることで得られる。HFIP基を含むポリイミド溶液の代わりに、HFIP基を含むポリアミド酸溶液を用いて、上記手順で基体に被覆させた後、加熱してイミド化させることでも均質な膜を得ることができる。気体分離膜に使用するためには、均質膜の厚さとしては5μm以上、1mm以下が好ましい。5μmより薄い膜は、作製が困難な上に破れ易い。1mmより厚い膜は、ガスが透過しにくい。さらに好ましくは、10μmから200μmである。
 緻密層と多孔質層とを有する非対称な膜は、前述の方法で成膜することができる。また、ポリイミド溶液の代わりに、ポリアミド酸溶液を用いて非対称膜を形成した後、熱イミド化させることでも、非対称膜を得ることができる。
 非対称膜において、緻密層はガス種によって透過速度が異なり、混合ガスに対しての選択する気体分離機能を有する。一方で、多孔質層は、膜形状を保持する為の支持体としての役割を有する。
 本発明の気体分離膜に使用する、HFIP基を含むポリイミドを含む非対称膜は、平らな膜状、中空糸状のいずれの形状であってもよい。
 緻密層の厚さは10nm以上、10μm以下が好ましい。10nmより薄いと成膜し難く実用的でない。10μmより厚いと、ガスが透過しにくい。好ましくは30nm以上、1μm以下である。
 多孔質層の厚さは、平らな膜状では、5μm以上、2mm以下が好ましい。5μmより薄いと成膜し難く実用的でない。2mmより厚いと、ガスが透過し難い。さらに好ましくは10μm以上、500μm以下である。中空糸状では、内径が10μm以上、4mm以下、好ましくは20μm以上、1mm以下であり、外径は30μm以上、8mm以下、好ましくは50μm以上、1.5mm以下である。中空糸状とする場合は、外側に緻密層を有することが好ましい。内径が10μmより小さい、外径が30μmより小さい中空糸は製造しがたい。内径が1mm、外径が8mmより大きい中空糸は気体分離膜として実用的でない
 非対称膜を製造する際の凝固液としては、水、または水と有機溶剤の混合溶媒が好適に使用される。混合溶媒は、40質量%以上、好ましくは50質量%以上の水を含有し、有機溶媒としては、アルコールであるメタノール、エタノールまたはイソプロパノール、ケトンであるアセトン、メチルエチルケトン、ジエチルケトンが挙げられる。凝固液に水またはその混合溶媒を用いると、製造設備を防爆仕様とすることの必要性がなく、コスト削減になる。
 本発明の気体分離膜に使用する、HFIP基を含むポリイミドは、極性基であるHFIP基の含有効果により、アミド系溶媒であるN,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドまたはN-メチル-2-ピロリドン、ラクトンであるγ-ブチロラクトン、γ-バレロラクトンに特に溶解し易く、所望の膜厚を有する均質膜を作製することも容易であるし、水系凝固液を使用した非対称膜を作製することも容易である。
 特に、非対称膜作製にあたっては、吐出口から凝固浴までの距離を変更することで、また、中空糸状に吐出する場合は、吐出口の内側に乾燥空気、水系凝固液などを共に吐出することで、所望の緻密層を形成できる。凝固浴の有機溶媒種を変更することで、所望の孔径、孔径分布、厚さを有する多孔質層を形成できる。
 凝固液で処理した膜は、加熱処理で乾燥させた後、用いることが好ましい。加熱処理温度は、溶融させないためにポリイミドのガラス転移温度以下が好ましい。
 作製した気体分離膜の表面欠陥を修復することを目的として、シリコーン樹脂を分離膜表面にコーティングしてもよい。コーティング方法としては、スピンコーティング、アプリケーターによるコーティング、浸漬コーティングなど、公知のコーティング法を使用することができる。
 シリコーン樹脂としては、一般的なジメチルシリコーン、フェニル基含有シリコーン、ビニル基含有シリコーン、Si-H基含有シリコーン、トリフルオロプロピル基含有シリコーン、シラノール基含有シリコーン、アミノ基含有シリコーン、エポキシ基含有シリコーン、メタクリル基含有シリコーン、アクリル基含有シリコーンなどが挙げられる。これらは市販されており、Gelest社製のDMSシリーズ、PDVシリーズ、VDTシリーズ、FMVシリーズ、HMSシリーズ、DMSシリーズ、HPMシリーズ、FMSシリーズ、SQOシリーズ、AMSシリーズ、MCRシリーズ、ECMSシリーズ、RMSシリーズなどが挙げられる。
8.エポキシ化合物の併用
 前記一般式(1)で表される繰り返し単位を含む高分子化合物は、機械強度または耐可塑性を向上させる目的で、発明17および発明18の気体分離膜のように、エポキシ化合物と混合し、加熱または光照射等により硬化させて硬化膜とすることができる。当該硬化膜は、前記の均質膜、および非対称膜にも適用可能である。
 エポキシ化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル変性フェノールアラルキル樹脂、フェノールトリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂またはアミノトリアジン変性フェノール樹脂化合物を、エピクロロヒドリンと接触させることによりエポキシ変性させたエポキシ化合物が挙げられる。
 これらは、市販されており、ビスフェノールA型の大日本インキ工業株式会社製、商品名、エピクロン840、ビスフェノールF型の旭電化工業株式会社製、商品名、アデカレジンEP-4901、クレゾールノボラック型の大日本インキ工業株式会社製、商品名、エピクロンN-600シリーズ、ジシクロペンタジエン型の大日本インキ工業株式会社製、商品名、エピクロンHP-7200シリーズ、トリアジン型の日産化学工業株式会社製、商品名、TEPICシリーズ等を挙げられる。
 尚、式(16):
Figure JPOXMLDOC01-appb-C000056
(式(16)中、R7はアルキル基、または芳香環もしくは脂環から水素原子が1個離脱した1価の有機基であり、構造中に酸素原子、硫黄原子または窒素原子を含んでいてもよく、水素原子の一部がフッ素原子、塩素原子、アルキル基またはフルオロアルキル基で置換されていてもよい。iは1~4の整数である。)
で表されるエポキシ化合物は、これに対応するアルコールとエピクロロヒドリンから合成される。
 当該アルコールとしては、1,4-シクロヘキサンジオール、1,3-アダマンタンジオール、カテコール、1,3-ベンゼンジオール、2,2’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニル、2,2’-メチレンジフェノール、4,4’-メチレンジフェノール、エチレングリコール、プロピレングリコール、2,2-ビス(4-ヒドロキシフェニル)-プロパン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルプロパン、2,2-ビス(4-ヒドロキシフェニル)-ブタン、3,3-ビス(4-ヒドロキシフェニル)-ペンタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、3,3-ビス(4-ヒドロキシフェニル)-ヘキサン、2,2-ビス(3-クロロ-4-ヒドロキシフェニル)-プロパン、2,2-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)-プロパン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)-プロパン、2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)-プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)-プロパン、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,6-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、2,3-ジヒドロキシピリジン、2,4-ジヒドロキシピリジン、4,4´-ジヒドロキシジフェニルエーテル、4,4´-ジヒドロキシジフェニルスルフィド、4,4´-ジヒドロキシジフェニルスルホキシド、4,4´-ジヒドロキシジフェニルスルホン、4,4´-ジヒドロキシベンゾフェノン、1,4-ジヒドロキシヘキサン、2,2-ビス(4-ヒドロキシシクロヘキシル)-プロパン、1,1´-メチレンジ-2-ナフトール、4,4´、4´-トリヒドロキシトリフェニルメタン、1,1,1-トリス(4-ヒドロキシフェニル)エタンまたはα,α,α´-トリス(4-ヒドロキシフェニル)-1-エチルー4-イソプロピルベンゼンが挙げられる。
 当該アルコールとして、式(1)で表される繰り返し単位に含まれるHFIP基中のアルコールを用いる事も可能である。
 発明17~19の気体分離膜を得る際、これらエポキシ化合物と、エポキシ樹脂用硬化剤を併用してもよい。当該硬化剤を例示するならば、アミン系化合物、酸無水物系化合物、アミド系化合物、フェノ-ル系化合物、メルカプタン系化合物、イミダゾール系化合物、ポリスルフィド樹脂系化合物またはリン系化合物が挙げられる。具体的には、熱硬化剤であるジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジエチレントリアミン、トリエチレンテトラミン、ポリアルキレングリコールポリアミン、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、2-メチルイミダゾ-ル、トリフェニルホスフィン、2-エチルー4-メチルイミダゾール、BF3-アミン錯体またはグアニジン誘導体、紫外線硬化剤であるジフェニルヨードニウムヘキサフロロフォスフェート、トリフェニルスルホニウムヘキサフロロホスフェートが挙げられる。
 一般式(1)で表される繰り返し単位を含む高分子化合物とエポキシ化合物の混合割合は、質量比で表して高分子化合物:エポキシ化合物=10:90~98:2であり、好ましくは50:50~95:5である。
 エポキシ化合物と、エポキシ樹脂用硬化剤との混合比は、質量比で表して、70:30~99.5:0.5であり、好ましくは90:10~99:1である。
 前記気体分離膜を製造する途中工程にて、例えば、ガラスまたはシリコン基板に塗布し、その後、加熱または、紫外線(UV)ランプ等による紫外線照射により硬化させて、架橋硬化した気体分離膜とすることができる。使用できる有機溶媒としては、一般式(1)で表される繰り返し単位を有するHFIP基が置換したポリイミド、および前記エポキシ化合物を主成分とする組成物が溶解するものであれば特に限定刷ること無く使用することができる。具体的に例示するならば、アミド系溶媒であるN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルホルムアミド、ヘキサメチルリン酸トリアミドまたはN-メチル-2-ピロリドン、他、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテートまたはγ―ブチロラクトンが挙げられる。
 以下に、実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
[ポリイミド膜の調整]
 気体分離膜用のHFIP基を含むポリイミド膜の調製について説明する。
 窒素導入管および還流冷却器を備えた200mL三口フラスコに、下記HFA-MDA、2.00g(3.78 mmol)、6FDA、1.68 g(3.78mmol)、N-メチルピロリドン14gを加え、窒素雰囲気下、室温で3時間攪拌し、以下に示す反応を行った。
Figure JPOXMLDOC01-appb-C000057
 得られた反応液を200℃に昇温し、さらに6時間攪拌後、室温に冷却し、均一なN-メチルピロリドン溶液を得た。
 前記のN-メチルピロリドン溶液をガラス基板上に塗布し、スピンコーターを用いて、回転速度、1000rpm 保持時間30secの塗布条件でスピンコートした。得られたガラス基板を、窒素雰囲気下、200℃、1時間加熱処理した後、ガラス基板から剥がすことでポリイミド 1からなる膜、即ち、HFIP基を含むイミド膜(ポリイミド1)を得た。膜厚を測定したところ、18μmであった。
 次に、下記に示した、HFIP基を含有した一連のジアミン化合物(HFA-ODA、HFA-MeMDA、HFA-PPD、HFA-MPD、HFA-FL、HFA-NAP、HFA-AF)、
Figure JPOXMLDOC01-appb-C000058
 および、下記のテトラカルボン酸二無水物(PMDA,BPDA,BTDA、NPDA)、
Figure JPOXMLDOC01-appb-C000059
を反応させて、前記と同様の手法にて、ポリイミド2~20を反応させてなるイミド膜を得た。原料化合物および膜厚を表1に記載した。
Figure JPOXMLDOC01-appb-T000060
 次に、HFIP基を含有した一連のジアミン化合物(HFA-ODA、HFA-MeMDA、HFA-PPD、HFA-MPD、HFA-FL、HFA-NAP、HFA-AF)と一連のテトラカルボン酸二無水物(PMDA,BPDA,BTDA、NPDA)を組み合わせて、重合反応後得られたNMP溶液に、所定量の下記エポキシ樹脂1またはエポキシ樹脂2、硬化剤としてトリフェニルホスフィン(エポキシ樹脂に対して1質量%)を加えて得られたポリイミド21~27からなる膜を得た結果を表2に記載した。
エポキシ樹脂1:ビスフェノールA型エポキシ樹脂(三菱化学株式会社製JER828)
エポキシ樹脂2:クレゾールノボラック型エポキシ樹脂(アルドリッチ社製、カタログNo.408042)
Figure JPOXMLDOC01-appb-T000061
[ポリイミド1の評価]
 ポリイミド1に対し、ガス透過係数の測定および分離性能の評価を行った。以下に気体分離膜のガス透過性能の測定方法を示す。
 気体透過係数は、ステンレス製のセルに膜面積7cm2の気体分離膜を配置し、JIS K7126-1:2006「プラスチック―フィルム及びシート―ガス透過度試験方法」の第1部に記載の差圧法に準拠して測定した。
 具体的には、温度23℃の条件で、試験気体として、ヘリウム(He)、炭酸ガス(CO2)、酸素ガス(O2)、窒素ガス(N2)およびメタンガス(CH4)を用い、JIS K7126-1:2006に準拠し、各ガスの透過係数および分離性能(各ガスの透過係数の比)を測定した。
 前述のJIS K7126-1:2006に準拠し、ポリイミド1からなる膜のガス透過係数の測定結果を表3に、分離性能の評価結果を表4に示した。
 ガスの種類によって透過係数が異なり、HeとCH4の透過係数の比は155であり、気体分離膜として十分な性能を示した。
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
[ポリイミド1と従来樹脂との比較] 比較例1
 次いで、前記のHFIP基を含むポリイミド膜(ポリイミド1)のガス分離性能と、従来の本発明の範疇にない以下構造式のHFIP基を含まない含フッ素ポリイミド膜(比較例1)のガス分離性能を比較した。
Figure JPOXMLDOC01-appb-C000064
 本発明の気体分離膜に使用するための、実施例2のHFIP基を含むポリイミド膜(ポリイミド 1)のガス分離性能と、本発明の範疇にない比較例1のHFIP基を含有せずヘキサフルオロイソプロピリデン基を含むポリイミド膜の気体分離性能を比較した。尚、当該性能は非特許文献2に記載されるデータを示す。表4が比較例1の含フッ素ポリイミドからなる膜のHe、CO2、O2およびCH4のガス透過係数である。
 表1および表3を比較すると、本発明のHFIP基を含むポリイミド膜である、実施例1のポリイミド 1からなる気体分離膜のHeおよびCO2の透過性能は、本発明の範疇にない比較例1に記載の従来の含フッ素ポリイミド膜のHeおよびCO2分離性能よりも大きい値を示し、表5に示すように、本発明のHFIP基を含むポリイミドからなる実施例2の気体分離膜の方が、比較例1の気体分離膜より分離性能に優れていた。
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
[ポリイミド3、ポリイミド4、ポリイミド7、ポリイミド21およびポリイミド22の評価]
 ポリイミド1と同様の評価方法を用い、ポリイミド3、ポリイミド4、ポリイミド7、ポリイミド21およびポリイミド22について、透過係数測定および分離性能評価行った。透過係数の測定結果を表7に、分離性能の評価結果を表8に示す。
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
[ポリイミド3、ポリイミド4、ポリイミド7、ポリイミド21およびポリイミド22と従来樹脂の分離膜としての性能比較]
 次いで、従来樹脂としてユーピレックス(宇部興産株式会社製)、カプトン(東レ・デュポン株式会社製)を選択し、前記のポリイミド3、ポリイミド4、ポリイミド7、ポリイミド21およびポリイミド22と、透過係数および分離性能を比較した。透過係数の測定結果を表9に、分離性能の評価結果を表10に示す。なお、ユーピレックスとカプトンの透過係数と分離性能は、ポリイミド1と同様の方法で測定した。
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
 表7および表9に示した透過係数の測定結果を比較すると、本発明のポリイミド3、ポリイミド4、ポリイミド7、ポリイミド21、およびポリイミド22は、従来樹脂であるユーピレックスおよびカプトンよりも透過係数が高いことがわかった。
 さらに、表8および表10に示した透過係数の測定結果の比較から、本発明のポリイミド3、ポリイミド4、ポリイミド7、ポリイミド21、およびポリイミド22は、従来樹脂であるユーピレックスおよびカプトンよりも分離性能が高いことがわかった。
 このように、ポリイミド3、ポリイミド4、ポリイミド7、ポリイミド21、およびポリイミド22は、従来樹脂であるユーピレックスおよびカプトンよりも、透過係数と分離性能が高く、分離膜として優れていた。
[ポリイミド2、ポリイミド5、ポリイミド6、ポリイミド8~20およびポリイミド23~27と従来樹脂との分離膜としての性能比較]
 次いで、従来樹脂としてユーピレックスおよびカプトンを選択し、本発明のポリイミド2、ポリイミド5、ポリイミド6、ポリイミド8~20、ポリイミド23~27のCO2の透過係数とCO2/CH4の分離性能を比較した。
 ポリイミド2、ポリイミド5、ポリイミド6、ポリイミド8~20およびポリイミド23~27のCO2および透過係数は、4~82Barrerであった。カプトンおよびユープレックス膜のCO2の透過係数は、各々0.67Barrer、0.16Barrerであったことから、本発明のポリイミド2、ポリイミド5、ポリイミド6、ポリイミド8~20、ポリイミド23~27のCO2透過係数のイミド膜のCO2の透過係数が高いことがわかった。
 ポリイミド2、ポリイミド5、ポリイミド6、ポリイミド8~20、ポリイミド23~27のCO2/CH4の分離性能は、18~62であった。カプトンおよびユープレックス膜のCO2/CH4の分離性能は、5.6、4であったことから、本発明のポリイミド2、ポリイミド5、ポリイミド6、ポリイミド8~20およびポリイミド23~27のCO2の透過係数およびCO2/CH4の分離性能の方が高いことがわかった。
 このように、ポリイミド2、ポリイミド5、ポリイミド6、ポリイミド8~20およびポリイミド23~27は、従来樹脂であるユーピレックスおよびカプトンよりも、CO2の透過係数およびCO2/CH4の分離性能が高く、分離膜として優れていた。
 本発明のHFIP基を含む含フッ素ポリイミド膜からなる気体分離膜は、ガスの種類による透過速度(気体透過係数)の違いが大きく、気体分離性能に優れる。よって、液化天然ガス等からの二酸化炭素の分離・固定化技術への応用、燃料用エタノール回収を目的とした水―エタノール分離膜等に好適に使用される。

Claims (19)

  1. 一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R1は2価の有機基およびR2は4価の有機基であり、R1が2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル基を含む。)
    で表される繰り返し単位を含むポリイミドを有する、気体分離膜。
  2. 1が一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R3は単結合、酸素原子、硫黄原子、SO2、CH2、CO、C(CH32、C(CH3)(CH2CH3)、C(CF32、または炭素数3~12の脂環式炭化水素化合物、炭素数6~25の芳香族炭化水素化合物の水素原子が2個離脱してなる2価の有機基であり、mとpはそれぞれ独立に0~2の整数であり、1≦m+p≦4である。)
    で表される2価の有機基である、請求項1に記載の気体分離膜。
  3. 一般式(2)で表される2価の有機基が、
    式(3):
    Figure JPOXMLDOC01-appb-C000003
    で表される2価の有機基である、請求項2に記載の気体分離膜。
  4. 一般式(2)で表される2価の有機基が、
    式(4): 
    Figure JPOXMLDOC01-appb-C000004
    で表される2価の有機基である、請求項2に記載の気体分離膜。
  5. 一般式(2)で表される2価の有機基が、
    式(5):
    Figure JPOXMLDOC01-appb-C000005
    で表される2価の有機基である、請求項2に記載の気体分離膜。
  6. 一般式(2)で表される2価の有機基が、
    一般式(6):
    Figure JPOXMLDOC01-appb-C000006
    (式(6)中、R4は、それぞれ独立に、炭素数1~10のアルキル基、アルコキシル基、カルボキシル基、エステル基、ヒドロキシル基、ニトロ基、シアノ基、クロル基、ブロモ基およびフルオロアルキル基からなる群から選ばれる少なくとも1種の1価の有機基を表す)
    で表される2価の有機基である、請求項2に記載の気体分離膜。
  7. 一般式(2)で表される2価の有機基が、
    式(7):
    Figure JPOXMLDOC01-appb-C000007
    (式中、Meはメチル基を表す。)
    で表される2価の有機基である、請求項6に記載の気体分離膜。
  8. 一般式(2)で表される2価の有機基が、
    一般式(8):
    Figure JPOXMLDOC01-appb-C000008
    (式(8)中、R5は、それぞれ独立に、水素原子、メチル基、エチル基、イソプロピル基、クロル基、フルオロ基、トリフルオロメチル基、フェニル基、メトキシ基およびニトロ基からなる群から選ばれる少なくとも1種の1価の有機基であり、R6は、それぞれ独立に、水素原子、フェニル基、ナフチル基、ビフェニル基、スルホ基、エチニレン構造含有基、ブロモ基、クロル基、フルオロ基およびヨード基からなる群から選ばれる少なくとも1種の1価の有機基であり、gおよびhはそれぞれ独立に0、1、2のいずれかの整数であり、g+hは1以上4以下である)。
    で表される2価の有機基である、請求項2に記載の気体分離膜。
  9. 一般式(8)で表される2価の有機基が、
    式(9):
    Figure JPOXMLDOC01-appb-C000009
    で表される2価の有機基である、請求項8に記載の気体分離膜。
  10. 1が一般式(10): 
    Figure JPOXMLDOC01-appb-C000010
    (式(10)中、a、bはそれぞれ独立に0~2の整数であり、a+b≧1である。cは0以上、3以下の整数である。dとeはそれぞれ独立に0~2の整数であり、1≦d+e≦4である。また、式(10)中、次式:
    Figure JPOXMLDOC01-appb-C000011
    で表される部位は、炭素原子がヘテロ原子(窒素原子、酸素原子または硫黄原子)で置換してもよく、水素原子は置換基で置換してもよく、この置換基は窒素原子、酸素原子または硫黄原子を含んでいてもよい。)
    で表される2価の有機基である、請求項1に記載の気体分離膜。
  11. 一般式(10)で表される2価の有機基が、
    式(11): 
    Figure JPOXMLDOC01-appb-C000012
    で表される2価の有機基である、請求項10に記載の気体分離膜。
  12. 1で表される2価の有機基が
    一般式(12):
    Figure JPOXMLDOC01-appb-C000013
    (式(8)中、fは1または2の整数である。)
    で表される2価の有機基である、請求項1に記載の気体分離膜。
  13. 一般式(12)で表される2価の有機基が、
    式(13):
    Figure JPOXMLDOC01-appb-C000014
    で表される2価の有機基である、請求項12に記載の気体分離膜。
  14. 一般式(12)で表される2価の有機基が、
    式(14):
    Figure JPOXMLDOC01-appb-C000015
    で表される2価の有機基である、請求項12に記載の気体分離膜。
  15. 2で表される4価の有機基が、
    式(15):
    Figure JPOXMLDOC01-appb-C000016
    で表される4価の有機基である、請求項1乃至請求項14のいずれか1項に記載の気体分離膜。
  16. 1に含まれる2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル基が有するOH基の水素原子がグリシジル基で置換されてなる、請求項1乃至請求項15のいずれか1項に記載の気体分離膜。
  17. グリシジル基の環状エーテル部位が開環し架橋してなる、請求項16に記載の気体分離膜。
  18. さらにエポキシ化合物と混合し加熱して得られる、請求項1乃至請求項16のいずれか1項に記載の気体分離膜。
  19. エポキシ化合物が一般式(16):
    Figure JPOXMLDOC01-appb-C000017
    (式(16)中、R7は、アルカン、芳香環および脂環から水素原子が一個離脱した1価の有機基であり、構造中に酸素原子、硫黄原子または窒素原子を含んでいてもよく、水素原子の一部がフッ素原子、塩素原子、アルキル基またはフルオロアルキル基で置換されていてもよい。iは1~4の整数である。)
    で表される、請求項18に記載の気体分離膜。
PCT/JP2012/063861 2011-05-30 2012-05-30 気体分離膜 WO2012165455A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2834670A CA2834670C (en) 2011-05-30 2012-05-30 Gas separation membrane comprising fluorinated polyimide
EP12792044.5A EP2716351B1 (en) 2011-05-30 2012-05-30 Gas separation membrane
RU2013151295/05A RU2567610C2 (ru) 2011-05-30 2012-05-30 Газоразделительная мембрана
US13/880,334 US9061253B2 (en) 2011-05-30 2012-05-30 Gas separation membrane
KR1020137034784A KR101559854B1 (ko) 2011-05-30 2012-05-30 기체 분리막
CN201280026569.4A CN103561852B (zh) 2011-05-30 2012-05-30 气体分离膜

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011121028 2011-05-30
JP2011-121028 2011-05-30
JP2012118431A JP5915376B2 (ja) 2011-05-30 2012-05-24 気体分離膜
JP2012-118431 2012-05-24

Publications (1)

Publication Number Publication Date
WO2012165455A1 true WO2012165455A1 (ja) 2012-12-06

Family

ID=47259308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063861 WO2012165455A1 (ja) 2011-05-30 2012-05-30 気体分離膜

Country Status (8)

Country Link
US (1) US9061253B2 (ja)
EP (1) EP2716351B1 (ja)
JP (1) JP5915376B2 (ja)
KR (1) KR101559854B1 (ja)
CN (1) CN103561852B (ja)
CA (1) CA2834670C (ja)
RU (1) RU2567610C2 (ja)
WO (1) WO2012165455A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140148548A1 (en) * 2012-11-28 2014-05-29 Central Glass Company, Limited Fluorine-Containing Polymerizable Monomer And Polymer Compound Using Same
WO2014084186A1 (ja) * 2012-11-28 2014-06-05 セントラル硝子株式会社 気体分離膜
WO2014084185A1 (ja) * 2012-11-28 2014-06-05 セントラル硝子株式会社 ヘキサフルオロイソプロパノール基を含むジアミン、それを用いたポリイミドおよびポリアミド、その環化物、並びにその製造方法
WO2014084187A1 (ja) * 2012-11-28 2014-06-05 セントラル硝子株式会社 気体分離膜
WO2014084188A1 (ja) * 2012-11-28 2014-06-05 セントラル硝子株式会社 含フッ素重合性単量体およびそれを用いた高分子化合物
WO2015049497A1 (en) * 2013-10-03 2015-04-09 Fujifilm Manufacturing Europe Bv Spiral wound gas filtration modules with specific adhesive material
WO2015049505A1 (en) * 2013-10-03 2015-04-09 Fujifilm Manufacturing Europe Bv Spiral wound gas filtration module with specific adhesive
US9050566B2 (en) 2012-11-28 2015-06-09 Central Glass Company, Limited Gas separation membrane
US9056285B2 (en) 2012-11-28 2015-06-16 Central Glass Company, Limited Gas separation membrane
WO2016052312A1 (ja) * 2014-10-02 2016-04-07 セントラル硝子株式会社 有機エレクトロルミネッセンス用基板およびそれを用いた有機エレクトロルミネッセンスディスプレイ
JP2016076480A (ja) * 2014-10-02 2016-05-12 セントラル硝子株式会社 有機エレクトロルミネッセンス用基板およびそれを用いた有機エレクトロルミネッセンスディスプレイ
US9793483B2 (en) 2012-11-28 2017-10-17 Central Glass Company, Limited Hexafluoroisopropanol group-containing diamine, polyimide and polyamide using same, cyclized product thereof, and method for producing same
JP2019196459A (ja) * 2018-05-11 2019-11-14 セントラル硝子株式会社 電子部品用ポリイミド基板

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201317525D0 (en) 2013-10-03 2013-11-20 Fujifilm Mfg Europe Bv Membranes
JP2016137484A (ja) * 2015-01-26 2016-08-04 セントラル硝子株式会社 気体分離膜
CN104829853B (zh) * 2015-05-15 2017-12-12 中国科学院化学研究所 一种聚酰亚胺气体分离膜及其制备方法与应用
ES2824451T3 (es) * 2015-07-30 2021-05-12 Evonik Fibres Gmbh Cartuchos con membrana adaptables de manera flexible para la separación de fluidos
CN105289337B (zh) * 2015-11-04 2017-07-28 中国科学院山西煤炭化学研究所 一种可交联聚酰亚胺气体分离膜及制备方法
WO2017130604A1 (ja) * 2016-01-29 2017-08-03 富士フイルム株式会社 ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
JPWO2017145728A1 (ja) * 2016-02-26 2018-11-22 富士フイルム株式会社 ガス分離膜、ガス分離モジュール、ガス分離装置、ガス分離方法及びポリイミド化合物
KR101979690B1 (ko) * 2016-07-19 2019-05-17 한양대학교 산학협력단 불소화 가교구조의 열전환 고분자 기체분리막 및 그 제조방법
US10913036B2 (en) 2017-05-31 2021-02-09 Saudi Arabian Oil Company Cardo-type co-polyimide membranes for sour gas feed separations from natural gas
JP7125598B2 (ja) * 2017-07-13 2022-08-25 セントラル硝子株式会社 ポリイミド粉体の製造方法
WO2019013182A1 (ja) * 2017-07-13 2019-01-17 セントラル硝子株式会社 ポリイミド粉体の製造方法
WO2020084996A1 (ja) * 2018-10-22 2020-04-30 日東電工株式会社 分離膜及び膜分離方法
WO2020175671A1 (ja) 2019-02-28 2020-09-03 富士フイルム株式会社 ポリマー及びその製造方法、このポリマーを用いたガス分離膜、ガス分離モジュール、及びガス分離装置、並びにm-フェニレンジアミン化合物
JP6999611B2 (ja) * 2019-02-28 2022-01-18 富士フイルム株式会社 ポリマー及びその製造方法、このポリマーを用いたガス分離膜、ガス分離モジュール、及びガス分離装置、並びにm-フェニレンジアミン化合物
CN112028924A (zh) * 2020-08-21 2020-12-04 齐齐哈尔大学 N-丙烯-n-二乙氧基甲基硅丙基均苯酰亚胺及制备方法
CN115232026A (zh) * 2022-07-19 2022-10-25 东华大学 含氰基二胺、氰基功能化的聚酰亚胺混合基质膜及其制备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119504A (ja) * 2004-10-20 2007-05-17 Central Glass Co Ltd 含フッ素重合性単量体及びそれを用いた高分子化合物
JP2007119503A (ja) * 2004-10-13 2007-05-17 Central Glass Co Ltd 含フッ素重合性単量体及びそれを用いた高分子化合物
JP2008150534A (ja) * 2006-12-19 2008-07-03 Central Glass Co Ltd 含フッ素ジアミンおよびそれを用いた高分子化合物
WO2010038810A1 (ja) * 2008-09-30 2010-04-08 宇部興産株式会社 非対称ガス分離膜、及びガス分離方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL271831A (ja) 1960-11-29
US5391219A (en) * 1991-04-15 1995-02-21 Nitto Denko Corporation Method for the separation and concentration of gas using a composite or asymmetric fluorine-containing polyimide membrane
US5320650A (en) * 1993-05-04 1994-06-14 E. I. Du Pont De Nemours And Company Fluorinated aromatic polyimide, polyamide and polyamide-imide gas separation membranes
US5647894A (en) * 1994-06-08 1997-07-15 Nitto Denko Corporation Gas separating composite membrane and process for producing the same
JP2001040089A (ja) * 1999-07-27 2001-02-13 Nitto Denko Corp ポリイミド樹脂、その製造法及びこれからなる気体分離膜
EP1783158B1 (en) * 2004-10-13 2013-12-11 Central Glass Company, Limited Fluorine-containing polymerizable monomer and polymer compound using same
ATE411274T1 (de) 2004-10-20 2008-10-15 Central Glass Co Ltd Polymerisierbares fluor enthaltendes monomer und polymerverbindung die dieses verwendet
US20100216967A1 (en) * 2009-02-20 2010-08-26 International Business Machines Corporation Interfacial polymerization methods for making fluoroalcohol-containing polyamides

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119503A (ja) * 2004-10-13 2007-05-17 Central Glass Co Ltd 含フッ素重合性単量体及びそれを用いた高分子化合物
JP2007119504A (ja) * 2004-10-20 2007-05-17 Central Glass Co Ltd 含フッ素重合性単量体及びそれを用いた高分子化合物
JP2008150534A (ja) * 2006-12-19 2008-07-03 Central Glass Co Ltd 含フッ素ジアミンおよびそれを用いた高分子化合物
WO2010038810A1 (ja) * 2008-09-30 2010-04-08 宇部興産株式会社 非対称ガス分離膜、及びガス分離方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2716351A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9056285B2 (en) 2012-11-28 2015-06-16 Central Glass Company, Limited Gas separation membrane
WO2014084186A1 (ja) * 2012-11-28 2014-06-05 セントラル硝子株式会社 気体分離膜
WO2014084185A1 (ja) * 2012-11-28 2014-06-05 セントラル硝子株式会社 ヘキサフルオロイソプロパノール基を含むジアミン、それを用いたポリイミドおよびポリアミド、その環化物、並びにその製造方法
WO2014084187A1 (ja) * 2012-11-28 2014-06-05 セントラル硝子株式会社 気体分離膜
WO2014084188A1 (ja) * 2012-11-28 2014-06-05 セントラル硝子株式会社 含フッ素重合性単量体およびそれを用いた高分子化合物
JP2014128787A (ja) * 2012-11-28 2014-07-10 Central Glass Co Ltd 気体分離膜
JP2014128788A (ja) * 2012-11-28 2014-07-10 Central Glass Co Ltd 気体分離膜
US9793483B2 (en) 2012-11-28 2017-10-17 Central Glass Company, Limited Hexafluoroisopropanol group-containing diamine, polyimide and polyamide using same, cyclized product thereof, and method for producing same
US20140148548A1 (en) * 2012-11-28 2014-05-29 Central Glass Company, Limited Fluorine-Containing Polymerizable Monomer And Polymer Compound Using Same
US9050566B2 (en) 2012-11-28 2015-06-09 Central Glass Company, Limited Gas separation membrane
WO2015049505A1 (en) * 2013-10-03 2015-04-09 Fujifilm Manufacturing Europe Bv Spiral wound gas filtration module with specific adhesive
WO2015049497A1 (en) * 2013-10-03 2015-04-09 Fujifilm Manufacturing Europe Bv Spiral wound gas filtration modules with specific adhesive material
US9931597B2 (en) 2013-10-03 2018-04-03 Fujifilm Manufacturing Europe B.V. Spiral wound gas filtration module with specific adhesive
US9968889B2 (en) 2013-10-03 2018-05-15 Fujifilm Manufacturing Europe B.V. Spiral wound gas filtration modules and components thereof
WO2016052312A1 (ja) * 2014-10-02 2016-04-07 セントラル硝子株式会社 有機エレクトロルミネッセンス用基板およびそれを用いた有機エレクトロルミネッセンスディスプレイ
JP2016076480A (ja) * 2014-10-02 2016-05-12 セントラル硝子株式会社 有機エレクトロルミネッセンス用基板およびそれを用いた有機エレクトロルミネッセンスディスプレイ
CN106797683A (zh) * 2014-10-02 2017-05-31 中央硝子株式会社 有机电致发光用基板及使用其的有机电致发光显示器
JP2019196459A (ja) * 2018-05-11 2019-11-14 セントラル硝子株式会社 電子部品用ポリイミド基板
JP7265113B2 (ja) 2018-05-11 2023-04-26 セントラル硝子株式会社 電子部品用ポリイミド基板

Also Published As

Publication number Publication date
CN103561852A (zh) 2014-02-05
US20140174293A1 (en) 2014-06-26
KR20140016399A (ko) 2014-02-07
RU2013151295A (ru) 2015-07-10
CA2834670A1 (en) 2012-12-06
US9061253B2 (en) 2015-06-23
JP5915376B2 (ja) 2016-05-11
CA2834670C (en) 2016-12-06
JP2013010096A (ja) 2013-01-17
KR101559854B1 (ko) 2015-10-13
EP2716351A1 (en) 2014-04-09
CN103561852B (zh) 2016-03-30
EP2716351B1 (en) 2016-06-29
RU2567610C2 (ru) 2015-11-10
EP2716351A4 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5915376B2 (ja) 気体分離膜
JP6194773B2 (ja) 気体分離膜
US9050566B2 (en) Gas separation membrane
JP6194774B2 (ja) 気体分離膜
Park et al. Novel semi-alicyclic polyimide membranes: Synthesis, characterization, and gas separation properties
WO2012133744A1 (ja) 複合中空糸膜
KR102422752B1 (ko) 신규 테트라카르복시산 이무수물, 및 산이무수물로부터 얻어지는 폴리이미드 및 폴리이미드 공중합체
WO2012133743A1 (ja) ポリイミド系非対称中空糸膜
US9056285B2 (en) Gas separation membrane
CN110382097B (zh) 非对称膜
KR101420165B1 (ko) 폴리아믹산 및 이를 이용하여 제조된 투명 고내열 폴리이미드
KR101523263B1 (ko) 이산화탄소 분리용 폴리이미드-폴리에틸렌글리콜 공중합체 분리막 및 그의 제조방법
JP5136667B2 (ja) 非対称中空糸ガス分離膜、及びガス分離方法
JP6547503B2 (ja) 気体分離膜
JP2018001118A (ja) 気体分離膜
JP2019076882A (ja) ガス分離膜
JP2019119829A (ja) ポリイミドフィルムおよびそれを用いた光学部材
JP4857588B2 (ja) 非対称中空糸ガス分離膜、及びガス分離方法
JP2018015709A (ja) ガス分離膜
WO2013089084A1 (ja) へキサフルオロイソプロパノール基を含むポリスルホンおよびその合成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280026569.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792044

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13880334

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2834670

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137034784

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012792044

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013151295

Country of ref document: RU

Kind code of ref document: A