WO2012161305A1 - 非水電解液及びこれを用いたリチウムイオン二次電池 - Google Patents

非水電解液及びこれを用いたリチウムイオン二次電池 Download PDF

Info

Publication number
WO2012161305A1
WO2012161305A1 PCT/JP2012/063448 JP2012063448W WO2012161305A1 WO 2012161305 A1 WO2012161305 A1 WO 2012161305A1 JP 2012063448 W JP2012063448 W JP 2012063448W WO 2012161305 A1 WO2012161305 A1 WO 2012161305A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphate
nonaqueous
carbonate
ester
electrolytic solution
Prior art date
Application number
PCT/JP2012/063448
Other languages
English (en)
French (fr)
Inventor
小林 稔幸
西村 勝憲
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Publication of WO2012161305A1 publication Critical patent/WO2012161305A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte and a lithium ion secondary battery using the same.
  • non-aqueous electrolyte a solution obtained by dissolving a supporting salt (electrolyte) such as lithium hexafluorophosphate in a non-aqueous solvent such as ethylene carbonate is widely known.
  • a supporting salt electrolyte
  • a non-aqueous solvent such as ethylene carbonate
  • Patent Document 1 discloses a flame retardant electrolytic solution in which a specific neopentyl glycol phosphonate compound and a trialkyl phosphate compound are combined, and a non-aqueous electrolyte secondary battery containing the same.
  • Patent Document 2 discloses a nonaqueous electrolytic solution containing a phosphate ester and a bisphosphonate ester and / or a host acid ester, and a lithium secondary battery using the nonaqueous electrolyte solution.
  • an object of the present invention is to provide a nonaqueous electrolytic solution having flame retardancy and high electrical conductivity and excellent in high rate discharge characteristics, and a lithium ion secondary battery using the same.
  • the nonaqueous electrolytic solution of the present invention contains a nonaqueous solvent containing at least a cyclic carbonate and a chain carbonate and a supporting salt, and further contains a phosphate ester and a bisphosphonate ester.
  • a non-aqueous electrolyte excellent in flame retardancy and electrical conductivity can be obtained, thereby realizing a lithium ion secondary battery with good high rate discharge characteristics.
  • FIG. 6 is a partial cross-sectional view showing a lithium ion secondary battery of Example 5.
  • nonaqueous electrolytic solution according to an embodiment of the present invention and a lithium ion secondary battery using the nonaqueous electrolytic solution will be described.
  • the nonaqueous electrolytic solution contains a nonaqueous solvent containing at least a cyclic carbonate and a chain carbonate and a supporting salt, and further contains a phosphate ester and a bisphosphonate ester.
  • cyclic carbonate for example, a simple substance such as ethylene carbonate, propylene carbonate, butylene carbonate, or a mixture thereof can be used.
  • chain carbonate asymmetric chain carbonates such as ethyl methyl carbonate, methyl propyl carbonate, methyl butyl carbonate, and ethyl propyl carbonate, and symmetric chain carbonates such as dimethyl carbonate, diethyl carbonate, dipropyl carbonate, and dibutyl carbonate are used alone or These mixtures are mentioned.
  • ethylene carbonate and dimethyl carbonate are particularly preferably used as the cyclic carbonate and chain carbonate.
  • the mixing ratio of the cyclic carbonate such as ethylene carbonate and the chain carbonate such as dimethyl carbonate is not particularly limited, but the ratio of the chain carbonate to the total 100 vol% of the cyclic carbonate and the chain carbonate is not limited. 20 vol% or more and 65 vol% or less is preferable because the flash point of the non-aqueous electrolyte can be increased.
  • vinylene carbonate As a non-aqueous solvent, vinylene carbonate can be further contained. By using vinylene carbonate, it is estimated that a stable film is formed on the surface of the negative electrode during charging. This coating has the effect of suppressing the decomposition of the non-aqueous electrolyte on the negative electrode surface.
  • the content of vinylene carbonate in the non-aqueous electrolyte is preferably in the range of 0.5 to 5% by weight with respect to the total of cyclic carbonate and chain carbonate.
  • the content of vinylene carbonate is less than 0.5% by weight, the effect of improving the cycle characteristics is reduced, and when it exceeds 5% by weight, the vinylene carbonate is excessively decomposed to lower the charge / discharge efficiency. There is a fear.
  • a fluorinated cyclic carbonate can be contained as a non-aqueous solvent.
  • a fluorinated cyclic carbonate it is estimated that a stable film is formed on the surface of the electrode.
  • the fluorinated cyclic carbonate include fluoroethylene carbonate.
  • the content of the fluorinated cyclic carbonate in the nonaqueous electrolytic solution is preferably in the range of 0.5 to 15 vol% in the mixture of the nonaqueous solvent and the supporting salt.
  • non-aqueous solvent a simple substance or a mixture of cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone, tetrahydrofuran, 1,2-dimethoxyethane, dimethyl sulfoxide, sulfolane and the like can be appropriately contained.
  • the total content of these other solvents is preferably 30% by weight or less in the mixture of the non-aqueous solvent and the supporting salt.
  • the supporting salt used in the non-aqueous electrolyte solution for example, be used LiPF 6, LiBF 4, LiClO 4 , LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiN (SO 2 CF 3) alone or a mixture of such 2 it can. Among them, LiPF 6 or LiBF 4 is preferable, and LiPF 6 is particularly preferable.
  • the concentration of these supporting salts is not particularly limited, but is preferably in the range of 0.8 to 2.0 mol / l with respect to the total of cyclic carbonate and cyclic carbonate.
  • any of trimethyl phosphate, triethyl phosphate, tributyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate and the like can be used alone or in combination.
  • tris phosphate (2,2,2-trifluoroethyl) tris phosphate (2,2,3,3-tetrafluoropropyl), tris phosphate (2,2,3,3,4,4,4)
  • Any fluorine-containing phosphate ester such as 5,5-octafluoropentyl
  • this fluorine-containing phosphate ester is also included in the phosphate ester.
  • trimethyl phosphate is particularly preferably used.
  • the amount of the phosphate ester added is preferably 1 to 15% by weight, and more preferably 1 to 10% by weight, based on 100% by weight of the total amount of the nonaqueous solvent and the supporting salt.
  • any of tetraisopropyl methylene diphosphonate, tetraethyl methylene diphosphonate, tetraethyl ethylene diphosphonate, tetraethyl p-xylylene diphosphonate and the like can be used alone or in combination.
  • tetraisopropyl methylene diphosphonate or tetraethyl methylene diphosphonate is particularly preferably used.
  • the amount of the bisphosphonic acid ester added is preferably 0.5 to 10% by weight, more preferably 0.5 to 8% by weight, based on 100% by weight of the total amount of the nonaqueous solvent and the supporting salt.
  • the total amount of phosphate ester and bisphosphonate added is preferably 1.5 to 5% by weight based on 100% by weight of the total amount of the nonaqueous solvent and the supporting salt.
  • the addition amount is less than 1.5% by weight, it is difficult to obtain a fire extinguishing effect.
  • the combined use of phosphoric acid ester and bisphosphonic acid ester has good fire extinguishing properties and little adverse effect on battery characteristics. There is an effect of excellent characteristics.
  • phosphate ester is more digestible, so it is desirable that the addition amount of phosphate ester be greater than or equal to the addition amount of bisphosphonate ester.
  • the non-aqueous electrolyte includes bis (oxalato) borate, difluoro (oxalato) borate, tris (oxalato) phosphate, difluoro (bisoxalato) phosphate as necessary.
  • At least one salt selected from the group consisting of a salt and tetrafluoro (bisoxalato) phosphate may be added. By adding these salts, it is thought that a film is formed on the electrode, which leads to an improvement in battery performance.
  • the total content of these salts is preferably 5% by weight or less in the non-aqueous electrolyte.
  • additives may be added to the nonaqueous electrolytic solution at an arbitrary ratio.
  • Specific examples include compounds having an overcharge preventing effect and a positive electrode protecting effect such as cyclohexylbenzene, biphenyl, t-butylbenzene, propane sultone and the like.
  • the content of these other additives is not particularly limited, but is preferably 10% by weight or less in the non-aqueous electrolyte in total.
  • the lithium ion secondary battery uses the non-aqueous electrolyte.
  • a negative electrode, a positive electrode, a separator, a container, and the like that are used in a general lithium ion secondary battery can be used.
  • the negative electrode active material used for the negative electrode constituting the lithium ion battery is not particularly limited as long as the material can occlude and release lithium ions.
  • Examples thereof include artificial graphite, natural graphite, non-graphitizable carbons, metal oxides, metal nitrides, activated carbon and the like. Any of these may be used alone or in admixture of two or more.
  • the positive electrode active material used for the positive electrode constituting the lithium ion battery is not particularly limited as long as it is a material capable of occluding and releasing lithium ions.
  • lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide And lithium transition metal composite oxides Any of these may be used alone or in admixture of two or more.
  • the positive electrode mixture slurry and the negative electrode mixture slurry After preparing the positive electrode mixture slurry and the negative electrode mixture slurry by mixing the above-described positive electrode active material and negative electrode active material with a binder, a thickener, a conductive material, a solvent, and the like, respectively, as necessary. Each can be applied to a current collector and dried to cut out a desired shape.
  • a porous sheet or a nonwoven fabric made of a polyolefin such as polyethylene or polypropylene can be used.
  • lithium ion secondary batteries having various shapes such as a coin shape, a cylindrical shape, a square shape, and an aluminum laminate sheet shape can be assembled.
  • Example 1 In a mixed solution of ethylene carbonate (EC) and dimethyl carbonate (DMC) (volume ratio 2: 3), 0.8% by weight of vinylene carbonate (VC) and 1 mol / l of LiPF 6 as a supporting salt were dissolved.
  • the concentration of VC and supporting salt is the concentration with respect to the sum of EC and DMC (hereinafter the same).
  • a nonaqueous electrolytic solution was prepared by adding 2% by weight of trimethyl phosphate (TMP) as a phosphate ester and 2% by weight of tetraisopropyl methylene diphosphonate (TPMDP) as a bisphosphonate.
  • TMP trimethyl phosphate
  • TPMDP tetraisopropyl methylene diphosphonate
  • concentration of phosphate ester and bisphosphonic acid ester is a density
  • combustion test About the non-aqueous electrolyte obtained above, the following combustion test was implemented and the flame retardance was evaluated. First, 2 ml of non-aqueous electrolyte is immersed in glass fiber (width 20 mm x length 65 mm), exposed to the test flame for 10 seconds in the atmosphere, then the test flame is moved away, and the state of the flaming flame is visually observed. And the time to extinguish was measured. The case where the fire extinguishing time was less than 10 seconds was regarded as flame retardancy, and the case where the fire extinguishing time was 10 seconds or more was regarded as combustibility.
  • this solution was added to artificial graphite and kneaded (the proportion of artificial graphite in the kneaded product was 8.6% by weight), and N-methyl-2-pyrrolidone was further added to prepare a negative electrode mixture slurry.
  • This negative electrode mixture slurry was applied to one side of a copper foil as a current collector and dried to form a negative electrode mixture layer. Then, it was compression-molded with a roll press and cut into a predetermined size to produce a negative electrode for a lithium ion secondary battery.
  • FIG. 1 is a schematic exploded view of a test cell used for measurement.
  • a counter electrode 31, a negative electrode mixture layer 32, and a reference electrode 33 are stacked in a state where insulation is maintained by sandwiching a separator 35 therebetween, and the outside is pressed by a SUS jig 36. is there.
  • the negative electrode mixture layer 32 and the copper foil current collector 34 are separately shown, but these constitute a negative electrode as an integral member as described above.
  • the negative electrode mixture layer 32 has a disk shape with a diameter of 15 mm.
  • the counter electrode 31 and the reference electrode 33 are made of metallic lithium.
  • the separator 35 is a polyethylene porous film having a thickness of 30 ⁇ m.
  • said nonaqueous electrolyte was used, and the initial stage discharge capacity characteristic and cycle characteristic were evaluated with the following procedure.
  • the charging conditions for the measurement were constant current and constant voltage charging, the voltage value was 5 mV, the current value was 1 mA (initial) / 30 ⁇ A (end), and the rest time was 10 minutes.
  • the discharge conditions were a current value of 1 mA and a cut voltage of 1.5V.
  • the initial discharge capacity characteristics were evaluated by calculating the discharge capacity per unit weight of artificial graphite as the negative electrode active material after one cycle of charge and discharge under the above conditions. Further, as cycle characteristics, charging / discharging under the above conditions is repeated 20 cycles, and the ratio of the discharge capacity at the 20th cycle to the discharge capacity at the first cycle (initial discharge capacity) (discharge capacity at the 20th cycle / 1 cycle). The discharge capacity of the eye) was calculated and evaluated as a discharge capacity retention rate. Table 1 shows the results.
  • Example 2 A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that 4% by weight of trimethyl phosphate (TMP) and 1% by weight of tetraisopropyl methylene diphosphonate (TPMDP) were added, and a combustion test was performed. The electrical conductivity measurement and the charge / discharge test were carried out. The results are shown in Table 1.
  • TMP trimethyl phosphate
  • TPMDP tetraisopropyl methylene diphosphonate
  • Example 3 A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that 3% by weight of trimethyl phosphate (TMP) and 2% by weight of tetraisopropyl methylene diphosphonate (TPMDP) were added. Measurement of electrical conductivity and charge / discharge test were performed. The results are shown in Table 1.
  • TMP trimethyl phosphate
  • TPMDP tetraisopropyl methylene diphosphonate
  • Example 4 A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that 3% by weight of trimethyl phosphate (TMP) and 2% by weight of tetraethyl methylenediphosphonate (TEMDP) were added. Conductivity measurements and charge / discharge tests were performed. The results are shown in Table 1.
  • TMP trimethyl phosphate
  • TEMDP tetraethyl methylenediphosphonate
  • Example 1 A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that trimethyl phosphate (TMP) and tetraisopropyl methylene diphosphonate (TPMDP) were not added, and a combustion test, electrical conductivity measurement, and charge / discharge The test was conducted. The results are shown in Table 1.
  • TMP trimethyl phosphate
  • TPMDP tetraisopropyl methylene diphosphonate
  • Example 2 In a mixed solution (volume ratio 1: 2) of ethylene carbonate (EC) and ethyl methyl carbonate (EMC), 0.8% by weight of vinylene carbonate (VC) and 1 mol / l of LiPF 6 were dissolved, and phosphoric acid was dissolved in this solution.
  • a non-aqueous electrolyte was prepared in the same manner as in Example 1 except that trimethyl (TMP) was added to 5 wt% to prepare a non-aqueous electrolyte, and a combustion test, electrical conductivity measurement and charging were performed. A discharge test was performed. The results are shown in Table 1.
  • Comparative Example 3 A nonaqueous electrolytic solution was prepared in the same manner as in Comparative Example 1 except that trimethyl phosphate (TMP) was added to 20 wt%, and a combustion test, an electrical conductivity measurement, and a charge / discharge test were performed. The results are shown in Table 1.
  • TMP trimethyl phosphate
  • Comparative Example 4 A nonaqueous electrolytic solution was prepared in the same manner as in Comparative Example 1 except that trimethyl phosphate (TMP) was added so as to be 15% by weight, and a combustion test, an electrical conductivity measurement, and a charge / discharge test were performed. The results are shown in Table 1.
  • TMP trimethyl phosphate
  • FIG. 2 is a partial cross-sectional view of a lithium ion secondary battery.
  • the positive electrode 1 and the negative electrode 2 are wound in a cylindrical shape with a separator 3 interposed therebetween so that they do not directly contact each other, thereby forming an electrode group.
  • a positive electrode lead 7 is attached to the positive electrode 1, and a negative electrode lead 5 is attached to the negative electrode 2.
  • the electrode group is inserted into the battery can 4, and an insulating plate 9 is installed at the bottom and top of the battery can 4 so that the electrode group does not directly contact the battery can 4. Further, a non-aqueous electrolyte is injected into the battery can 4. Note that the battery can 4 is insulated from the lid 6 via a packing 8.
  • the positive electrode was produced by the following method. First, LiMn 2 O 4 as a positive electrode active material and graphite as a conductive material are mixed, and a binder (a solution in which polyvinylidene fluoride is dissolved in N-methyl-2-pyrrolidone) is added and kneaded. A mixture slurry was prepared. At this time, in the solid content of the positive electrode mixture slurry, the positive electrode active material was 88.5% by weight, the conductive material was 4.5% by weight, and the binder was 7% by weight.
  • a binder a solution in which polyvinylidene fluoride is dissolved in N-methyl-2-pyrrolidone
  • the positive electrode mixture slurry was applied to one surface (surface) of an aluminum foil as a current collector, and then dried at 100 ° C.
  • the positive electrode mixture slurry was applied to the other surface (back surface) of the aluminum foil and dried to form a positive electrode mixture layer. And after compression-molding with a roll press machine, it cut
  • the positive electrode and the negative electrode produced by the method of Example 1 were wound into a cylindrical shape with a separator interposed therebetween so that they were not in direct contact with each other, and then inserted into a 18650 type battery can. Subsequently, after the current collecting tab and the lid portion of the battery can were connected, the lid portion of the battery can and the battery can were welded by laser welding to seal the battery. Finally, a non-aqueous electrolyte was injected from the injection port provided in the battery can to obtain an 18650 type battery (lithium ion secondary battery).
  • the evaluation of the characteristics of the manufactured lithium ion secondary battery was performed according to the following procedure.
  • the lithium ion secondary battery was placed in a constant temperature bath at 25 ° C. and held for 1 hour. In the initial charge and discharge, the battery was charged at a constant current and a constant voltage up to 4.2 V at a current of 0.2 C, and then discharged to 2.7 V at a current of 0.5 C. Thereafter, charging at a constant current and a constant voltage up to 4.2 V at a current of 0.5 C and discharging to 2.7 V at a current of 0.5 C were repeated 3 cycles.
  • the charge / discharge rate of “1C” means that, when the battery is charged from a fully discharged state, 100% charge is completed in one hour, and the battery is discharged from a fully charged state. In some cases, 100% discharge is completed in one hour. That is, it means that the speed of charging or discharging is 100% per hour.
  • Example 6 A lithium ion battery was produced in the same manner as in Example 5 except that the non-aqueous electrolyte solution of Example 2 was used, and the battery performance was evaluated. As a result, the discharge capacity ratio was 95%.
  • Example 7 A lithium ion battery was produced in the same manner as in Example 5 except that the non-aqueous electrolyte solution of Example 3 was used, and the battery performance was evaluated. As a result, the discharge capacity ratio was 94%.
  • Example 8 A lithium ion battery was produced in the same manner as in Example 5 except that the nonaqueous electrolytic solution of Example 4 was used, and the battery performance was evaluated. As a result, the discharge capacity ratio was 94%.
  • a flame retardant non-aqueous electrolyte and a lithium ion secondary battery excellent in high rate discharge characteristics can be obtained.
  • Such a non-aqueous electrolyte and a lithium ion secondary battery using the non-aqueous electrolyte contribute to performance improvement of a power storage power source, an electric vehicle, and the like. Since the nonaqueous electrolytic solution of the present invention has flame retardancy and contributes to the safety of the battery, it is particularly desirable to be used for an industrial lithium ion secondary battery having a large battery capacity.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

 難燃性及び高い電気伝導度を有し、高率放電特性に優れた非水電解液及びこれを用いたリチウムイオン二次電池を提供することを目的とする。 非水電解液が、少なくとも環状カーボネート及び鎖状カーボネートを含む非水溶媒と支持塩とを含有し、さらに、リン酸トリメチル等のリン酸エステル及びビスホスホン酸エステルを含有することを特徴とする。非水溶媒として、ビニレンカーボネートをさらに含むことが好ましい。

Description

非水電解液及びこれを用いたリチウムイオン二次電池
 本発明は、非水電解液及びこれを用いたリチウムイオン二次電池に関する。
 近年、携帯電話、携帯用パソコン等の移動体通信用電源に関して、小型化又は高エネルギー密度化の要望がますます高まっている。また、深夜電力の貯蔵用電源、太陽電池や風力発電と組み合わせた電力貯蔵用電源等の開発も進んでいる。さらに、電気自動車や、電力を動力の一部に利用したハイブリッド車及びハイブリッド電車の実用化も進んでいる。
 ところで、非水電解液としては、六フッ化リン酸リチウム等の支持塩(電解質)をエチレンカーボネート等の非水溶媒に溶解させたものが広く知られている。これらの非水溶媒は一般に揮発しやすく、引火性を有する。
 特に、電力貯蔵用電源等の比較的大型のリチウムイオン二次電池用途では、電池容量が大きいために発熱の問題が大きくなり、それゆえ引火の恐れがない非水電解液の使用が望まれている。そこで、非水電解液に難燃化剤を配合し、難燃性を付与する研究が精力的に進められている。
 (特許文献1)には、特定のネオペンチルグリコール系ホスホネート化合物とトリアルキルホスフェート化合物とを組み合わせた難燃性電解液及びそれを含有する非水電解質二次電池が開示されている。
 また、(特許文献2)には、リン酸エステル並びにビスホスホン酸エステル及び/又はホストン酸エステルを含有する非水系電解液及びそれを用いたリチウム二次電池が開示されている。
特開2003-229173号公報 特開2002-280061号公報
 しかしながら、非水電解液に難燃剤を添加する場合においては、十分な難燃性を得るため難燃剤の添加量を増加させると、電池の初期容量が低くなる点で改善の余地があった。また、良好な高率放電特性を維持するためには、電気伝導度の高い電解液系が必要であった。
 そこで、本発明の目的は、難燃性及び高い電気伝導度を有し、高率放電特性に優れた非水電解液及びこれを用いたリチウムイオン二次電池を提供することにある。
 上記課題を解決するため、本発明の非水電解液は、少なくとも環状カーボネート及び鎖状カーボネートを含む非水溶媒と支持塩とを含有し、さらに、リン酸エステル及びビスホスホン酸エステルを含有することを特徴とする。
 本明細書は本願の優先権の基礎である日本国特許出願2011-116900号の明細書および/または図面に記載される内容を包含する。
 本発明によれば、難燃性及び電気伝導度に優れた非水電解液を得ることができ、それにより高率放電特性の良好なリチウムイオン二次電池を実現することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
充放電試験に用いたテストセルの概略分解図である。 実施例5のリチウムイオン二次電池を示す部分断面図である。
 以下、本発明の一実施形態に係る非水電解液及びこれを用いたリチウムイオン二次電池について説明する。
 非水電解液は、少なくとも環状カーボネート及び鎖状カーボネートを含む非水溶媒と支持塩とを含有し、さらに、リン酸エステル及びビスホスホン酸エステルを含有する。
 環状カーボネートとしては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の単体又はこれらの混合物を用いることができる。
 鎖状カーボネートとしては、エチルメチルカーボネート、メチルプロピルカーボネート、メチルブチルカーボネート、エチルプロピルカーボネート等の非対称鎖状カーボネート、及びジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、ジブチルカーボネート等の対称鎖状カーボネートの単体又はこれらの混合物が挙げられる。
 高率放電特性の点から、上記の環状カーボネート及び鎖状カーボネートとしては、特にエチレンカーボネート及びジメチルカーボネートが好ましく用いられる。また、エチレンカーボネート等の環状カーボネートとジメチルカーボネート等の鎖状カーボネートとの混合比率は、特に限定されるものではないが、環状カーボネート及び鎖状カーボネートの合計100vol%に対して鎖状カーボネートの比率を20vol%以上65vol%以下とすると非水電解液の引火点を高くできるため好ましい。
 非水溶媒として、さらにビニレンカーボネートを含有させることができる。ビニレンカーボネートを用いることにより、充電時に負極の表面に安定な被膜が形成されると推定される。この被膜は負極表面での非水電解液の分解を抑制する効果を有する。
 非水電解液におけるビニレンカーボネートの含有量は、環状カーボネート及び鎖状カーボネートの合計に対して、0.5~5重量%の範囲とすることが好ましい。ビニレンカーボネートの含有量が0.5重量%未満である場合、サイクル特性を向上させる効果が小さくなり、また5重量%を超える場合には、ビニレンカーボネートが過剰に分解されて充放電効率が低下する恐れがある。
 さらに、非水溶媒としてはフッ素化環状カーボネートを含有させることもできる。フッ素化環状カーボネートを用いることにより、電極の表面に安定な被膜が形成されると推定される。フッ素化環状カーボネートとしては、例えばフルオロエチレンカーボネート等が挙げられる。非水電解液におけるフッ素化環状カーボネートの含有量は、非水溶媒及び支持塩の混合物中0.5~15vol%の範囲とすることが好ましい。フッ素化環状カーボネートの含有量が0.5vol%未満である場合、サイクル特性を向上させる効果が小さくなり、フッ素化環状カーボネートの含有量が15vol%を超える場合、フッ素化環状カーボネートが過剰に分解されて充放電効率が低下する恐れがある。
 その他、非水溶媒として、γ-ブチロラクトン、γ-バレロラクトン等の環状エステル、テトラヒドロフラン、1、2-ジメトキシエタン、ジメチルスルホキシド、スルホラン等の単体又は混合物を適宜含有することができる。これらその他の溶媒の含有量は、合計して非水溶媒及び支持塩の混合物中30重量%以下とすることが好ましい。
 非水電解液に用いる支持塩としては、例えば、LiPF、LiBF、LiClO、LiAsF、LiSbF、LiCFSO、LiN(SOCF等の単体又は混合物を用いることができる。その中でも、LiPF又はLiBFが好ましく、LiPFが特に好ましい。また、これらの支持塩の濃度については、特に制限はないが、環状カーボネート及び環状カーボネートの合計に対して、0.8~2.0mol/lの範囲とすることが好ましい。
 リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸トリブチル、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート等のいずれかを単独で又は混合して用いることができる。さらに、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(2,2,3,3-テトラフルオロプロピル)、リン酸トリス(2,2,3,3,4,4,5,5-オクタフルオロペンチル)等のいずれかの含フッ素リン酸エステルを単独で又は混合して用いることもできる。なお、本発明では、概念上この含フッ素リン酸エステルもリン酸エステルに含めることとする。上記の中でも、リン酸トリメチルが特に好ましく用いられる。
 上記リン酸エステルの添加量は、非水溶媒及び支持塩の合計100重量%に対し1~15重量%であることが好ましく、1~10重量%であることがさらに好ましい。
 ビスホスホン酸エステルとしては、メチレンジホスホン酸テトライソプロピル、メチレンジホスホン酸テトラエチル、エチレンジホスホン酸テトラエチル、p-キシリレンジホスホン酸テトラエチル等のいずれかを単独で又は混合して用いることができる。その中でも、メチレンジホスホン酸テトライソプロピル又はメチレンジホスホン酸テトラエチルが特に好ましく用いられる。
 上記ビスホスホン酸エステルの添加量は、非水溶媒及び支持塩の合計100重量%に対し0.5~10重量%であることが好ましく、0.5~8重量%であることがさらに好ましい。
 特に、リン酸エステル及びビスホスホン酸エステルの添加量の合計が、非水溶媒及び支持塩の合計100重量%に対し1.5~5重量%であることが好ましい。添加量が1.5重量%より少ない場合には消火性の効果が得られにくい。また、5重量%添加と比較的少量の添加であってもリン酸エステルとビスホスホン酸エステルを併用することにより、消火性が良好であるとともに電池特性に及ぼす悪影響が小さいために、サイクル特性やレート特性に優れるという効果がある。さらに、リン酸エステルとビスホスホン酸エステルの消火性を比較すると、リン酸エステルの方が消化性は良好であるので、リン酸エステルの添加量をビスホスホン酸エステルの添加量以上とすることが望ましい。
 非水電解液には、上述の各成分に加えて、必要に応じて、ビス(オキサラト)ホウ酸塩、ジフルオロ(オキサラト)ホウ酸塩、トリス(オキサラト)リン酸塩、ジフルオロ(ビスオキサラト)リン酸塩及びテトラフルオロ(ビスオキサラト)リン酸塩からなる群から選択される少なくとも1種類の塩を添加しても良い。これらの塩を添加することにより、電極に被膜が形成され、電池性能の向上につながると考えられる。これらの塩の含有量は、合計して非水電解液中5重量%以下とすることが好ましい。
 また、本発明の要旨を損なわない限りにおいて、非水電解液には、一般に用いられている他の添加剤を任意の比率で添加してもよい。具体例としては、シクロヘキシルベンゼン、ビフェニル、t-ブチルベンゼン、プロパンサルトン等の過充電防止効果や正極保護効果を有する化合物が挙げられる。これらの他の添加剤の含有量は、特に限定されるものではないが、合計して非水電解液中10重量%以下とすることが好ましい。
 次に、リチウムイオン二次電池の構成について説明する。
 リチウムイオン二次電池は、前記非水電解液を用いる。その他の構成部材としては、一般のリチウムイオン二次電池に使用されている負極、正極、セパレータ、容器等を用いることができる。
 リチウムイオン電池を構成する負極に用いる負極活物質としては、リチウムイオンの吸蔵及び放出をすることができる材料であれば特に限定されない。例えば、人造黒鉛、天然黒鉛、難黒鉛化炭素類、金属酸化物、金属窒化物、活性炭等が挙げられる。これらはいずれかを単独で、もしくは2種以上を混合して用いることができる。
 リチウムイオン電池を構成する正極に用いる正極活物質としては、リチウムイオンの吸蔵及び放出をすることができる材料であれば特に限定されず、例えばリチウムマンガン酸化物、リチウムコバルト酸化物、リチウムニッケル酸化物等のリチウム遷移金属複合酸化物等を挙げることができる。これらはいずれかを単独で、もしくは2種以上を混合して用いることができる。
 負極及び正極は、上述の正極活物質及び負極活物質を、必要に応じて、それぞれバインダ、増粘剤、導電材、溶媒等と混合して正極合剤スラリー及び負極合剤スラリーを調製した後、各々を集電体に塗布して乾燥させ、所望の形状を切り出すこと等により作製することができる。
 リチウムイオン電池を構成するセパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シートや不織布等が使用可能である。
 以上の構成要素を用いて、コイン状、円筒状、角形状、アルミラミネートシート状等の種々の形状を有するリチウムイオン二次電池を組み立てることができる。
 以下、実施例及び比較例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
 エチレンカーボネート(EC)及びジメチルカーボネート(DMC)の混合溶液(容量比2:3)に、ビニレンカーボネート(VC)を0.8重量%、支持塩としてLiPFを1mol/l溶解させた。ここで、VC及び支持塩の濃度は、ECとDMCの合計に対する濃度である(以下、同様)。これに、リン酸エステルとしてリン酸トリメチル(TMP)を2重量%、ビスホスホン酸エステルとしてメチレンジホスホン酸テトライソプロピル(TPMDP)を2重量%となるように添加し、非水電解液を調製した。なお、リン酸エステル及びビスホスホン酸エステルの濃度は、非水溶媒(EC、DMC及びVC)と支持塩の合計を100重量%としたときの濃度である(以下、同様)。
(燃焼試験)
 上記で得られた非水電解液について、以下の燃焼試験を実施し、難燃性を評価した。まず、ガラス繊維(幅20mm×長さ65mm)に非水電解液を2ml浸み込ませ、大気中にて10秒間試験炎にさらした後、試験炎を遠ざけ、引火炎の様子を目視により観察し、消火するまでの時間を測定した。消火時間が10秒未満の場合を難燃性とし、10秒以上の場合を燃焼性とした。
(電気伝導度の測定)
 続いて、東亜電波工業製CM-30Vを用いて、25℃における非水電解液の電気伝導度を測定した。
(リチウムイオン二次電池用負極の充放電試験)
 次に、上記の非水電解液を用いて、黒鉛を負極活物質として試験用セルを作製し、充放電試験を実施した。負極活物質としては人造黒鉛を用い、バインダとしてはポリフッ化ビニリデンを用いた。まず、N-メチル-2-ピロリドンに5重量%の割合でバインダを溶解した溶液を作製した。続いて、この溶液を人造黒鉛に添加して混練し(混練物中、人造黒鉛の割合は8.6重量%)、N-メチル-2-ピロリドンをさらに加えて負極合剤スラリーを調製した。この負極合剤スラリーを集電体である銅箔の片面に塗布して乾燥させ、負極合剤層を形成した。その後、ロールプレス機により圧縮成形し、所定の大きさに切断してリチウムイオン二次電池用負極を作製した。
 次に、このリチウムイオン二次電池用負極を用いてテストセルを作製した。図1は、測定に用いたテストセルの概略分解図である。図1において、対極31、負極合剤層32及び参照極33は、それぞれの間にセパレータ35を挟み込むことによって絶縁を保持した状態で積層しており、SUS製の治具36で外側を押さえてある。なお、図1において、負極合剤層32と銅箔製の集電体34とが別々に示されているが、これらは、上述の通り、一体の部材として負極を構成している。また、負極合剤層32は、直径15mmの円板状としてある。対極31及び参照極33は、金属リチウムで形成されている。セパレータ35は、厚さ30μmのポリエチレン多孔質フィルムである。以上のように構成したテストセル30について、上記の非水電解液を使用し、次の手順によりその初期放電容量特性及びサイクル特性の評価を行った。
 測定のための充電条件は、定電流定電圧充電とし、電圧値を5mV、電流値を1mA(初期)・30μA(終止)、休止時間を10分とした。また、放電条件は、電流値を1mA、カット電圧を1.5Vとした。
 初期放電容量特性は、上記条件で充放電を1サイクル行った後に、負極活物質である人造黒鉛の単位重量当たりの放電容量を算出して評価した。また、サイクル特性としては、上記条件での充放電を20サイクル繰り返して行い、1サイクル目の放電容量(初期放電容量)に対する20サイクル目の放電容量の比率(20サイクル目の放電容量/1サイクル目の放電容量)を放電容量維持率として算出し評価した。表1にその結果を示す。
(実施例2)
 リン酸トリメチル(TMP)を4重量%、メチレンジホスホン酸テトライソプロピル(TPMDP)を1重量%となるように添加したこと以外は、実施例1と同様に非水電解液を調製し、燃焼試験、電気伝導度の測定及び充放電試験を実施した。その結果を表1に示す。
 (実施例3)
 リン酸トリメチル(TMP)を3重量%、メチレンジホスホン酸テトライソプロピル(TPMDP)2重量%となるように添加したこと以外は、実施例1と同様に非水電解液を調製し、燃焼試験、電気伝導度の測定及び充放電試験を実施した。その結果を表1に示す。
(実施例4)
 リン酸トリメチル(TMP)を3重量%、メチレンジホスホン酸テトラエチル(TEMDP)2重量%となるように添加したこと以外は、実施例1と同様に非水電解液を調製し、燃焼試験、電気伝導度の測定及び充放電試験を実施した。その結果を表1に示す。
(比較例1)
 リン酸トリメチル(TMP)及びメチレンジホスホン酸テトライソプロピル(TPMDP)を添加しなかったこと以外は、実施例1と同様に非水電解液を調製し、燃焼試験、電気伝導度の測定及び充放電試験を実施した。その結果を表1に示す。
(比較例2)
 エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の混合溶液(容量比1:2)に、ビニレンカーボネート(VC)を0.8重量%、LiPFを1mol/l溶解させ、この溶液にリン酸トリメチル(TMP)を5重量%となるように添加して非水電解液を調製したこと以外は、実施例1と同様に非水電解液を調製し、燃焼試験、電気伝導度の測定及び充放電試験を実施した。その結果を表1に示す。
(比較例3)
 リン酸トリメチル(TMP)を20重量%となるように添加したこと以外は、比較例1と同様に非水電解液を調製し、燃焼試験、電気伝導度の測定及び充放電試験を実施した。その結果を表1に示す。
(比較例4)
 リン酸トリメチル(TMP)を15重量%となるように添加したこと以外は、比較例1と同様に非水電解液を調製し、燃焼試験、電気伝導度の測定及び充放電試験を実施した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、上記の実施例1~4の非水電解液は、難燃性を有するとともに、電気伝導度が高く、初期放電容量が高い。さらに、サイクル試験後の容量維持率も高い値を示した。一方、上記の比較例1~4においては、難燃性、電気伝導度、初期放電容量及び容量維持率を兼ね備えたものとはなっていない。
(実施例5)
 実施例1の非水電解液及び負極を用いて18650(直径18mm×高さ65mm)型リチウムイオン二次電池を作製し、その評価を行った。図2は、リチウムイオン二次電池の部分断面図である。正極1及び負極2は、これらが直接接触しないようにセパレータ3を挟み込んだ状態で円筒状に捲回してあり、電極群を形成している。正極1には正極リード7が付設してあり、負極2には負極リード5が付設してある。電極群は、電池缶4に挿入し、また、電池缶4の底部及び上部には絶縁板9を設置し、電極群が電池缶4と直接接触しないようにしてある。さらに、電池缶4の内部には、非水電解液が注入してある。なお、電池缶4は、パッキン8を介して蓋部6と絶縁されている。
 本実施例において、正極は以下の方法で作製した。まず、正極活物質であるLiMnと導電材である黒鉛とを混合し、さらに、バインダ(ポリフッ化ビニリデンをN-メチル-2-ピロリドンに溶解させた溶液)を加えて混練し、正極合剤スラリーを作製した。このとき、正極合剤スラリーの固形分中、正極活物質が88.5重量%、導電材が4.5重量%、バインダが7重量%となるように調製した。
 この正極合剤スラリーを、集電体であるアルミ箔の片面(表面)に塗布した後、100℃で乾燥させた。同様の方法により、アルミ箔の他の片面(裏面)にも正極合剤スラリーを塗布し、乾燥させて正極合剤層を形成した。そして、ロールプレス機により圧縮成形した後、所定の大きさに切断し、電流を取り出すためのアルミニウム箔製の正極リードを溶接して正極を作製した。
 この正極と実施例1の方法で作製した負極とを、これらが直接接触しないようにセパレータを挟み込んだ状態で円筒状に捲回した後、18650型電池缶に挿入した。続いて、集電タブと電池缶の蓋部とを接続した後、電池缶の蓋部と電池缶とをレーザー溶接により溶接して電池を密封した。最後に、電池缶に設けた注液口から非水電解液を注入して18650型電池(リチウムイオン二次電池)を得た。
 作製したリチウムイオン二次電池の特性の評価は、以下の手順で行った。
 まず、リチウムイオン二次電池を25℃の恒温槽に入れ、1時間保持した。初期の充放電は、0.2Cの電流で4.2Vまで定電流定電圧で充電した後、0.5Cの電流で2.7Vまで放電した。その後、0.5Cの電流で4.2Vまで定電流定電圧で充電し、0.5Cの電流で2.7Vまで放電することを3サイクル繰り返した。次に、0.5Cの電流で4.2Vまで定電流定電圧で充電し、0.2Cの電流で2.7Vまで放電したときの放電容量を初期放電容量とし、0.5Cの電流で4.2Vまで定電流定電圧で充電し、1.0Cの電流で2.7Vまで放電したときの放電容量を高率放電容量とした。初期放電容量(0.2C)に対する高率放電容量(1.0C)の比率(高率放電容量/初期放電容量)を放電容量比として算出した。その結果、放電容量比は96%となった。
 なお、ここで「1C」の充放電レートとは、電池を放電し切った状態から充電する場合において、1時間で100%の充電を完了すること、及び電池を充電し切った状態から放電する場合において、1時間で100%の放電を完了することをいう。すなわち、充電又は放電の速さが1時間当たり100%であることをいう。
(実施例6)
 実施例2の非水電解液を用いたこと以外は、実施例5と同様の方法でリチウムイオン電池を作製し、その電池性能評価を実施した。その結果、放電容量比は95%となった。
(実施例7)
 実施例3の非水電解液を用いたこと以外は、実施例5と同様の方法でリチウムイオン電池を作製し、その電池性能評価を実施した。その結果、放電容量比は94%となった。
(実施例8)
 実施例4の非水電解液を用いたこと以外は、実施例5と同様の方法でリチウムイオン電池を作製し、その電池性能評価を実施した。その結果、放電容量比は94%となった。
 以上で説明したように、本発明によれば、難燃性の非水電解液と高率放電特性に優れるリチウムイオン二次電池を得ることができる。このような非水電解液及びこれを用いたリチウムイオン二次電池は、電力貯蔵用電源、電気自動車等の性能向上に寄与するものである。本発明の非水電解液は難燃性を有し、電池の安全性に寄与することから、特に、電池容量が大きい産業用のリチウムイオン二次電池に用いられることが望ましい。
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることが可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1 正極
2 負極
3 セパレータ
4 電池缶
5 負極リード
6 蓋部
7 正極リード
8 パッキン
9 絶縁板
30 テストセル
31 対極
32 負極合剤層
33 参照極
34 集電体
35 セパレータ
36 治具
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (11)

  1.  少なくとも環状カーボネート及び鎖状カーボネートを含む非水溶媒と支持塩とを含有する非水電解液であって、さらに、リン酸エステル及びビスホスホン酸エステルを含有する前記非水電解液。
  2.  リン酸エステルがリン酸トリメチルであり、ビスホスホン酸エステルがメチレンジホスホン酸テトライソプロピル又はメチレンジホスホン酸テトラエチルである請求項1に記載の非水電解液。
  3.  鎖状カーボネートがジメチルカーボネートである請求項1又は2に記載の非水電解液。
  4.  支持塩が、LiPF、LiBF、LiClO、LiAsF、LiSbF、LiCFSO及びLiN(SOCFからなる群から選択される少なくとも1種類のリチウム塩である請求項1~3のいずれかに記載の非水電解液。
  5.  非水溶媒としてビニレンカーボネートをさらに含む請求項1~4のいずれかに記載の非水電解液。
  6.  リン酸エステルの添加量が、非水溶媒及び支持塩の合計100重量%に対し1~15重量%である請求項1~5のいずれかに記載の非水電解液。
  7.  ビスホスホン酸エステルの添加量が、非水溶媒及び支持塩の合計100重量%に対し0.5~10重量%である請求項1~6のいずれかに記載の非水電解液。
  8.  リン酸エステル及びビスホスホン酸エステルの添加量の合計が、非水溶媒及び支持塩の合計100重量%に対し1.5~5重量%である請求項1~5のいずれかに記載の非水電解液。
  9.  リン酸エステルの添加量が、ビスホスホン酸エステルの添加量以上である請求項1~8のいずれかに記載の非水電解液。
  10.  さらに、ビス(オキサラト)ホウ酸塩、ジフルオロ(オキサラト)ホウ酸塩、トリス(オキサラト)リン酸塩、ジフルオロ(ビスオキサラト)リン酸塩及びテトラフルオロ(ビスオキサラト)リン酸塩からなる群から選択される少なくとも1種類の塩を含む請求項1~9のいずれかに記載の非水電解液。
  11.  請求項1~10のいずれかに記載の非水電解液を用いたリチウムイオン二次電池。
PCT/JP2012/063448 2011-05-25 2012-05-25 非水電解液及びこれを用いたリチウムイオン二次電池 WO2012161305A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011116900A JP5708244B2 (ja) 2011-05-25 2011-05-25 非水電解液及びこれを用いたリチウムイオン二次電池
JP2011-116900 2011-05-25

Publications (1)

Publication Number Publication Date
WO2012161305A1 true WO2012161305A1 (ja) 2012-11-29

Family

ID=47217370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063448 WO2012161305A1 (ja) 2011-05-25 2012-05-25 非水電解液及びこれを用いたリチウムイオン二次電池

Country Status (2)

Country Link
JP (1) JP5708244B2 (ja)
WO (1) WO2012161305A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140193706A1 (en) * 2011-08-31 2014-07-10 Central Glass Company, Limited Electrolytic solution for nonaqueous electrolytic solution cell, and nonaqueous electrolytic solution cell
US20180358647A1 (en) * 2017-06-12 2018-12-13 Samsung Electronics Co., Ltd. Lithium secondary battery including phosphate-based additive
JP2019114391A (ja) * 2017-12-22 2019-07-11 宇部興産株式会社 非水電解液およびそれを用いた蓄電デバイス
CN112310466A (zh) * 2019-07-31 2021-02-02 深圳新宙邦科技股份有限公司 锂离子电池非水电解液及包含该电解液的锂离子电池
CN114175344A (zh) * 2019-09-11 2022-03-11 株式会社Lg新能源 锂二次电池用非水性电解质溶液和包含其的锂二次电池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447849A (en) * 1987-08-11 1989-02-22 Sekisui Chemical Co Ltd Ceramic coating product and ceramic coating cutting tool
EP2907183B1 (en) * 2012-07-20 2016-12-21 Basf Se Electrochemical cells
WO2015111612A1 (ja) 2014-01-24 2015-07-30 三洋化成工業株式会社 二次電池用添加剤、それを用いた電極及び電解液、リチウムイオン電池並びにリチウムイオンキャパシタ
KR20210031158A (ko) 2019-09-11 2021-03-19 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR102633527B1 (ko) 2019-11-18 2024-02-06 주식회사 엘지에너지솔루션 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
JP7488167B2 (ja) 2020-09-25 2024-05-21 Muアイオニックソリューションズ株式会社 蓄電デバイス用非水電解液およびそれを用いた蓄電デバイス

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015156A (ja) * 1999-06-30 2001-01-19 Sony Corp 非水電解質電池
JP2002280061A (ja) * 2001-03-15 2002-09-27 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いたリチウム二次電池
JP2009301989A (ja) * 2008-06-17 2009-12-24 Toyota Central R&D Labs Inc 非水電解液及びそれを備えたリチウムイオン二次電池
JP2011034893A (ja) * 2009-08-05 2011-02-17 Sanyo Electric Co Ltd 非水電解質二次電池
JP2011124039A (ja) * 2009-12-09 2011-06-23 Denso Corp 電池用非水電解液及び該電解液を用いた非水電解液二次電池
JP2011238540A (ja) * 2010-05-13 2011-11-24 Hitachi Ltd 非水電解液及びこれを用いたリチウム二次電池
WO2012029420A1 (ja) * 2010-09-02 2012-03-08 日本電気株式会社 二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015156A (ja) * 1999-06-30 2001-01-19 Sony Corp 非水電解質電池
JP2002280061A (ja) * 2001-03-15 2002-09-27 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いたリチウム二次電池
JP2009301989A (ja) * 2008-06-17 2009-12-24 Toyota Central R&D Labs Inc 非水電解液及びそれを備えたリチウムイオン二次電池
JP2011034893A (ja) * 2009-08-05 2011-02-17 Sanyo Electric Co Ltd 非水電解質二次電池
JP2011124039A (ja) * 2009-12-09 2011-06-23 Denso Corp 電池用非水電解液及び該電解液を用いた非水電解液二次電池
JP2011238540A (ja) * 2010-05-13 2011-11-24 Hitachi Ltd 非水電解液及びこれを用いたリチウム二次電池
WO2012029420A1 (ja) * 2010-09-02 2012-03-08 日本電気株式会社 二次電池

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140193706A1 (en) * 2011-08-31 2014-07-10 Central Glass Company, Limited Electrolytic solution for nonaqueous electrolytic solution cell, and nonaqueous electrolytic solution cell
US10777847B2 (en) * 2011-08-31 2020-09-15 Central Glass Company, Limited Electrolytic solution for nonaqueous electrolytic solution cell, and nonaqueous electrolytic solution cell
US20180358647A1 (en) * 2017-06-12 2018-12-13 Samsung Electronics Co., Ltd. Lithium secondary battery including phosphate-based additive
JP2019114391A (ja) * 2017-12-22 2019-07-11 宇部興産株式会社 非水電解液およびそれを用いた蓄電デバイス
JP7051422B2 (ja) 2017-12-22 2022-04-11 Muアイオニックソリューションズ株式会社 非水電解液およびそれを用いた蓄電デバイス
CN112310466A (zh) * 2019-07-31 2021-02-02 深圳新宙邦科技股份有限公司 锂离子电池非水电解液及包含该电解液的锂离子电池
CN114175344A (zh) * 2019-09-11 2022-03-11 株式会社Lg新能源 锂二次电池用非水性电解质溶液和包含其的锂二次电池
EP3993128A4 (en) * 2019-09-11 2022-08-17 LG Energy Solution, Ltd. NON-AQUEOUS ELECTROLYTE FOR SECONDARY LITHIUM BATTERY AND SECONDARY LITHIUM BATTERY COMPRISING THEM
CN114175344B (zh) * 2019-09-11 2024-05-17 株式会社Lg新能源 锂二次电池用非水性电解质溶液和包含其的锂二次电池

Also Published As

Publication number Publication date
JP2012248311A (ja) 2012-12-13
JP5708244B2 (ja) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5145367B2 (ja) 非水電解液及びこれを用いたリチウム二次電池
JP5708244B2 (ja) 非水電解液及びこれを用いたリチウムイオン二次電池
JP6221365B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP4521525B2 (ja) 不燃性非水系電解液およびこれを用いたリチウムイオン電池
US11502335B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
JP5622424B2 (ja) 二次電池用電解液
KR101298868B1 (ko) 비수 전해액 및 이것을 이용한 리튬 2차 전지
JP6476611B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP5983370B2 (ja) リチウムイオン二次電池、それを用いた二次電池システム、およびリチウムイオン二次電池用非水電解液
JP5942892B2 (ja) 非水電解液、それを用いた非水電解液二次電池、および該非水電解液二次電池を用いた二次電池システム
JP2010205474A (ja) 非水電解液及びそれを備えたリチウムイオン二次電池
JP5903286B2 (ja) 非水電解液二次電池
JP5819653B2 (ja) 非引火性電解液
WO2020063885A1 (zh) 非水电解液、锂离子电池、电池模块、电池包及装置
JP5966896B2 (ja) リチウムイオンニ次電池、それを用いた二次電池システム、およびリチウムイオン二次電池用非水電解液
JP2015046233A (ja) リチウムイオン二次電池およびそれを用いた二次電池システム
CN110931860B (zh) 锂离子二次电池用非水电解液
KR20110080324A (ko) 리튬이온전지용 전해액 및 그를 포함하는 리튬이온전지
JP5704066B2 (ja) 非水電解液及びそれを用いたリチウムイオン二次電池
JP2013218843A (ja) リチウムイオン二次電池およびそれを用いた二次電池システム
JP5421803B2 (ja) リチウムイオン二次電池電解液用添加材
WO2020063884A1 (zh) 锂离子电池、电池模块、电池包及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789450

Country of ref document: EP

Kind code of ref document: A1