WO2012160769A1 - 樹脂成形品の製造方法 - Google Patents

樹脂成形品の製造方法 Download PDF

Info

Publication number
WO2012160769A1
WO2012160769A1 PCT/JP2012/003086 JP2012003086W WO2012160769A1 WO 2012160769 A1 WO2012160769 A1 WO 2012160769A1 JP 2012003086 W JP2012003086 W JP 2012003086W WO 2012160769 A1 WO2012160769 A1 WO 2012160769A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
light
photocurable resin
molded product
resin material
Prior art date
Application number
PCT/JP2012/003086
Other languages
English (en)
French (fr)
Inventor
藤井 雄一
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Publication of WO2012160769A1 publication Critical patent/WO2012160769A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/68Release sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/24Feeding the material into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/26Moulds or cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/42Casting under special conditions, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0888Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Definitions

  • the present invention relates to a method for producing a molded product of a photocurable resin.
  • a technique for manufacturing an optical lens having high heat resistance by forming a lens portion made of a curable resin on the surface of a glass substrate is known.
  • a method of manufacturing an optical lens to which this technology is applied a method of manufacturing a so-called “wafer lens” in which a plurality of lens portions made of a photocurable resin are formed on the surface of a glass substrate has been proposed (for example, Patent Document 1). reference).
  • the glass substrate of the wafer lens is cut and divided for each lens portion, whereby a large number of optical lenses can be obtained at one time.
  • Patent Document 1 describes a method of manufacturing a wafer lens using two types of resin molds (a sub master mold and a sub sub master mold) in addition to a master mold (mold).
  • a sub-master molding die made of a photocurable resin is manufactured using a master molding die subjected to a mold release process.
  • a sub-sub master mold made of a photocurable resin is produced using the sub-master mold.
  • the wafer lens is repeatedly manufactured using the sub-sub master mold.
  • the lens part is not molded using the master mold (mold), but the lens part is molded using another resin mold (for example, a sub-sub master mold).
  • the number of uses can be reduced.
  • the expensive master mold can be prevented from being deteriorated, and the manufacturing cost can be reduced.
  • An object of the present invention is to provide a method for producing a molded product of a photocurable resin capable of efficiently producing a molded product of a photocurable resin by suppressing problems in a release process associated with deterioration of the release film. Is to provide.
  • the method for producing a resin molded product of the present invention includes a first step of supplying a photocurable resin material into a cavity formed by combining a first mold and a second mold or a base material; A second step of irradiating the photocurable resin material supplied into the cavity with light to cure the photocurable resin material; and a molded product of the photocurable resin formed in the cavity.
  • a mold release film including a carbon-carbon single bond is formed on the cavity surface of the first mold and the second mold, and the photocuring is performed.
  • the photosensitive resin material is a photopolymerization initiator that initiates a reaction when irradiated with light having a wavelength exceeding 342 nm, or a photoamplifier that promotes the reaction when irradiated with light having a wavelength exceeding 342 nm.
  • a photopolymerization initiator that initiates a reaction when irradiated with light having a wavelength exceeding 342 nm
  • a photoamplifier that promotes the reaction when irradiated with light having a wavelength exceeding 342 nm.
  • FIG. 1A and 1B are schematic views showing a state in which a release film containing a silane coupling agent having a fluoroalkyl group is formed. It is a schematic diagram which shows an example of the process of supplying a photocurable resin material in a cavity, irradiating light, hardening a photocurable resin material, and releasing the photocurable resin after hardening. It is a schematic diagram which shows another example of the process of supplying a photocurable resin material in a cavity, irradiating light, hardening a photocurable resin material, and releasing the photocurable resin after hardening.
  • FIG. 5A and 5B are schematic views showing a state where a resin molded product is manufactured using a Roll to Roll type (RTR type) imprint apparatus. It is a schematic diagram which shows another example of the process of supplying a photocurable resin material in a cavity, irradiating light, hardening a photocurable resin material, and releasing the photocurable resin after hardening.
  • RTR type Roll to Roll type
  • a method for producing a resin molded product includes: 1) supplying a photocurable resin material to a cavity formed by combining a first mold and a second mold or a substrate; 1), 2) a second step of irradiating the photocurable resin material with light to cure the photocurable resin material, and 3) a third step of releasing the molded product of the photocurable resin. And have. Hereinafter, each step will be described.
  • a photocurable resin material is supplied into a cavity formed by combining the first mold and the second mold or base material.
  • the space (cavity) to which the photocurable resin material is supplied is, for example, the recesses of the first mold and the second mold. It is formed by the concave portion or the convex portion, or by the convex portion of the first mold and the concave portion of the second mold.
  • the first mold is a cavity plate
  • the second mold is a core plate.
  • the space (cavity) to which the photocurable resin material is supplied includes the concave or convex portions of the first mold and the surface of the base material. It is formed by.
  • the molded product of the photocurable resin is manufactured in a state of being bonded to the surface of the base material.
  • a resin mold having a plurality of recesses corresponding to the shape of the lens portion is used as the first mold, and a glass substrate of a wafer size such as a 6-inch diameter, an 8-inch diameter, or a 12-inch diameter is used as the base material.
  • a “wafer lens” in which a plurality of lens portions are bonded to the surface of the substrate can be manufactured.
  • the lens portion may have a shape required according to the application, such as a convex shape, a concave shape, or an aspherical shape.
  • the lens unit surface may be provided with a fine shape such as a diffraction groove or a step shape, if necessary.
  • the shape, size, and material of the first mold and the second mold are not particularly limited, and can be appropriately selected according to the resin molded product to be manufactured.
  • materials for these molds include metals, metallic glasses, glasses, and resins.
  • at least the transfer surface of the first mold and the second mold is formed of resin.
  • these molds are made of a material that transmits light, light can be irradiated from the mold side in the second step.
  • the base material is a member to which a molded product of a photocurable resin is bonded.
  • the shape, size, and material of the substrate are not particularly limited, and can be appropriately selected depending on the resin molded product to be manufactured.
  • Examples of the base material include a glass substrate, a resin substrate, a resin film, a metal substrate, a silicon substrate, and a quartz substrate.
  • the substrate is made of a material that transmits light, light can be irradiated from the substrate side in the second step.
  • any one of the first mold, the second mold, and the substrate needs to be capable of transmitting light. is there.
  • a carbon-carbon single bond formed by applying a release agent containing a carbon-carbon single bond (CC bond) to the cavity surfaces of the first mold and the second mold.
  • a release film including a bond is provided.
  • the “cavity surface” refers to a surface forming a cavity (cavity portion) formed by combining the first mold and the second mold or the base material.
  • the release agent various conventionally known materials that exhibit releasability after forming the release film can be used, but without impairing the cavity shape of the mold, and excellent in ease of application and durability, and It must be easy to obtain.
  • a mold release agent generally contains a carbon-carbon single bond. As described later, when a mold release film is formed, deterioration of the mold release film due to irradiation with ultraviolet rays becomes a problem.
  • Examples of the releasing agent containing a carbon-carbon single bond include a silane coupling agent having a fluoroalkyl group and a silane coupling agent having a fluoroalkyl ether group.
  • a release film formed using a silane coupling agent having a fluoroalkyl group or a fluoroalkyl ether group has a small surface free energy and an excellent release property.
  • silane coupling agents having a fluoroalkyl group examples include CF 3 (CH 2 ) 2 SiCl 3 , CF 3 (CH 2 ) 5 SiCl 3 , CF 3 (CF 2 ) 5 (CH 2 ) 2 SiCl 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 , CF 3 (CF 2 ) 7 CH 2 CH 2 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) Cl 2 , CF 3 (CH 2 ) 2 Si (OCH 3 ) 3 , CF 3 (CH 2 ) 2 Si (CH 3 ) (OHCH 3 ) 2 , CF 3 (CF 2 ) 3 (CH 2 ) 2 Si (OCH 3 ) ) 3 , CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3 .
  • silane coupling agents having a fluoroalkyl ether group examples include CF 3 (CF 2 O) n (CF 2 CF 2 O) m (CF 2 CF 2 CF 2 O) 1 (CF (CF 3 ) CF 2 O ) R Si (OCH 3 ) 3 (where n, m, l and r are integers from 0 to 100 and are not 0 at the same time).
  • examples of these commercially available products include OPTOOL DSX (Daikin Industries Co., Ltd.), Novec EGC (Sumitomo 3M Co., Ltd.), and amorphous fluorine cytop (Asahi Glass Co., Ltd.).
  • the method for applying the release agent is not particularly limited, and can be appropriately selected depending on the type of the release agent.
  • a silane coupling agent having a fluoroalkyl group is diluted in a fluorine-based organic solvent and applied by a dip method or a spin coat method. Thereafter, by drying the coating film, a thin film (release film 30) of a silane coupling agent having a fluoroalkyl group 20 is formed on the mold surface 10 as shown in FIG. 1A. After drying, the silane coupling agent can be hydrolyzed to generate silanol groups (Si—OH) by heating at a constant humidity.
  • the chloro group (—Cl), methoxy group (—OCH 3 ) and the like of the silane coupling agent become a hydroxy group (—OH).
  • the produced silanol group undergoes dehydration condensation with the hydroxy group (—OH) of the mold surface 10.
  • the release film 30 is firmly bonded to the mold surface 10.
  • the cavity surfaces of the first mold and the second mold may be pretreated before applying the release agent.
  • the pretreatment include UV ozone cleaning, oxygen plasma ashing, and SiO 2 film formation.
  • the photocurable resin material is a composition containing a resin component (monomer, oligomer or prepolymer) and a photopolymerization initiator or a combination of a photopolymerization initiator and a photosensitizer.
  • the type of the resin component is not particularly limited as long as it is a resin component that is cured by light irradiation and becomes a transparent cured product.
  • the resin component one that forms a transparent resin cured product by polymerization such as radical polymerization or cationic polymerization can be used.
  • the resin component include an acrylic resin monomer, a vinyl resin monomer, an epoxy resin monomer, and an oxetane compound.
  • the monomer of the acrylic resin and the monomer of the vinyl resin can be polymerized by radical polymerization.
  • the monomer of the epoxy resin and the oxetane compound can be polymerized by cationic polymerization.
  • the kind of monomer of the acrylic resin is not particularly limited, and may be appropriately selected from known (meth) acrylates.
  • (meth) acrylates that can be used as monomers include ester (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, ether (meth) acrylate, alkyl (meth) acrylate, alkylene (meth) acrylate, (Meth) acrylate having an aromatic ring and (meth) acrylate having an alicyclic structure are included.
  • These (meth) acrylates may be used alone or in combination of two or more.
  • the monomer of the vinyl resin has a vinyl group (CH 2 ⁇ CH—) that contributes to the crosslinking reaction and is represented by the general formula CH 2 ⁇ CH—R.
  • the monomer of the vinyl resin is a vinyl compound having an aromatic ring in R.
  • vinyl compounds that can be used as the monomer include vinyl chloride and styrene.
  • the number of vinyl groups in one molecule may be one or two or more.
  • the monomer of the vinyl resin is a divinyl compound. These vinyl compounds may be used alone or in combination of two or more.
  • the type of the epoxy resin monomer is not particularly limited as long as it has an epoxy group and is cured by cationic polymerization.
  • Examples of the epoxy resin monomer include aliphatic epoxy compounds and alicyclic epoxy compounds.
  • Examples of the aliphatic epoxy compound that can be used as the monomer include aliphatic polyhydric alcohols or polyglycidyl ethers of alkylene oxide adducts thereof.
  • Examples of such aliphatic epoxy compounds include bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, 2,2′-bis (4-glycidyloxycyclohexyl) propane, 3,4-epoxycyclohexylmethyl-3,4.
  • cycloaliphatic epoxy compounds that can be used as monomers include vinylcyclohexene monooxide, 1,2-epoxy-4-vinylcyclohexane, 1,2: 8,9 diepoxy limonene, 3,4-epoxy cyclohexenyl methyl. -3, '4'-epoxycyclohexene carboxylate.
  • alicyclic epoxy compound which can be used as a monomer CEL2000, CEL3000, CEL2021P (all are Daicel Chemical Industries Ltd.) is mentioned, for example.
  • the oxetane compound is a compound having an oxetane ring (4-membered ring ether).
  • oxetane compounds that can be used as monomers include 3-ethyl-3-hydroxymethyloxetane, 1,4-bis [ ⁇ (3-ethyl-3-oxetanyl) methoxy ⁇ methyl] benzene, 3-ethyl-3- (Phenoxymethyl) oxetane, bis (3-ethyl-3-oxetanylmethyl) ether, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane), 3-ethyl-[ ⁇ (3-triethoxysilylpropoxy) Methyl) oxetane, oxetanylsilsesquioxane, phenol novolac oxetane.
  • oxetanyl silsesquioxane means a silane compound having an oxetanyl group.
  • oxetanylsilsesquioxane is a network-like polysiloxane having a plurality of oxetanyl groups obtained by hydrolytic condensation of the aforementioned 3-ethyl-3-[ ⁇ (3-triethoxysilyl) propoxy ⁇ methyl] oxetane. A compound.
  • 3-ethyl-3-hydroxymethyloxetane, bis (3-ethyl-3-oxetanylmethyl) ether, and 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane are preferable.
  • Examples of commercially available oxetane compounds that can be used as monomers include OXT-101, OXT-211, OXT-221, and OXT-212 (all of which are Toagosei Co., Ltd.).
  • the photocurable resin material includes a photopolymerization initiator or a combination of a photopolymerization initiator and a photosensitizer.
  • a photopolymerization initiator that starts a reaction when irradiated with light having a wavelength exceeding 342 nm, or a photosensitization that accelerates the reaction when irradiated with light having a wavelength exceeding 342 nm.
  • a photopolymerization initiator that starts a reaction when irradiated with light having a wavelength exceeding 342 nm
  • a photosensitization that accelerates the reaction when irradiated with light having a wavelength exceeding 342 nm.
  • light having a wavelength exceeding 342 nm is irradiated to cure the photocurable resin material.
  • photo radical polymerization initiation that generates radicals when irradiated with light having a wavelength exceeding 342 nm as a photo polymerization initiator Use the agent.
  • photo radical polymerization initiator include acyl phosphine oxide.
  • Acylphosphine oxide is preferable as a photopolymerization initiator used in the production method according to the present embodiment because the absorption maximum on the longest wavelength side exceeds 342 nm and photobleaching occurs.
  • a photopolymerization initiator that undergoes photobleaching is used, light can reach the inside of the photocurable resin material, and internal curing can be promoted.
  • radical photopolymerization initiators examples include MARO (monoacylphosphine oxide) DAROCUR TPO, BAPO (bisacylphosphine oxide) IRGACURE 819, IRGACURE® 784, which is a titanocene compound (all of which are Ciba® Specialty® Chemicals).
  • MARO monoacylphosphine oxide
  • BAPO bisacylphosphine oxide
  • IRGACURE 819 which is a titanocene compound (all of which are Ciba® Specialty® Chemicals).
  • DAROCUR TPO and IRGACURE 819 are particularly preferable from the viewpoint of obtaining a transparent resin cured product.
  • a photo cationic polymerization initiator that generates a cation when irradiated with light having a wavelength exceeding 342 nm is used as a photo polymerization initiator.
  • a photo polymerization initiator include sulfonium salts and iodonium salts.
  • sulfonium salt-based photocationic polymerization initiators include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis (pentafluorophenyl) borate, 4,4′-bis [diphenylsulfonio Diphenyl sulfide bishexafluorophosphate, 4,4′-bis [di ( ⁇ -hydroxyethoxy) phenylsulfonio] diphenyl sulfide bishexafluoroantimonate, 4,4′-bis [di ( ⁇ -hydroxyethoxy) phenyl sulfone Nio] diphenyl sulfide bishexafluorophosphate, 7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone he
  • iodonium salt-based photocationic polymerization initiators include diphenyliodonium tetrakis (pentafluorophenyl) borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di (4-nonylphenyl) iodonium hexafluorophosphate It is.
  • examples of commercially available photocationic polymerization initiators include PI-2074 (Rhodia), UVI-6992 (Dow Chemical), and IRGACURE 250 (CGI-552; Ciba Specialty Chemicals).
  • the photosensitizer is used to assist and accelerate the polymerization reaction by the photopolymerization initiator.
  • a photosensitizer is used in combination.
  • the type of the photopolymerization initiator is not particularly limited, and is appropriately selected from known photoradical polymerization initiators or photocationic polymerization initiators depending on the type of the resin component. Can be done.
  • photopolymerization initiators may be used alone or in combination of two or more.
  • the addition amount of the photopolymerization initiator is preferably in the range of 0.001 to 5 parts by mass, more preferably in the range of 0.01 to 3 parts by mass, with respect to 100 parts by mass of the resin component, and 0.05 to 1 Particularly preferred is in the range of parts by mass.
  • the photocurable resin material When the photopolymerization initiator cannot absorb light having a wavelength exceeding 342 nm, the photocurable resin material preferably contains a photosensitizer that accelerates the polymerization reaction when irradiated with light having a wavelength exceeding 342 nm. Even when the photopolymerization initiator can absorb light having a wavelength exceeding 342 nm, the photocurable resin material may contain a photosensitizer.
  • the type of photosensitizer is not particularly limited, and examples thereof include carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo compounds, diazo compounds, halogen compounds, and photoreductive dyes.
  • photosensitizers include benzoin derivatives such as benzoin methyl ether, benzoin isopropyl ether, ⁇ , ⁇ -dimethoxy- ⁇ -phenylacetophenone; benzophenone, 2,4-dichlorobenzophenone, methyl o-benzoylbenzoate, 4, Benzophenone derivatives such as 4'-bis (diethylamino) benzophenone; thioxanthone derivatives such as 2-chlorothioxanthone and 2-isopropylthioxanthone; anthraquinone derivatives such as 2-chloroanthraquinone and 2-methylanthraquinone; N-methylacridone and N-butyl Examples include acridone derivatives such as acridone; ⁇ , ⁇ -diethoxyacetophenone, benzyl, fluorenone, xanthone, uranyl compound, halogen compound, and photoreductive
  • Examples of commercially available photosensitizers include Kayacure DETX-S (Nippon Kayaku Co., Ltd.), Anthracure® UVS-1331 (Kawasaki Kasei Kogyo Co., Ltd.), and the like.
  • photosensitizers may be used alone or in combination of two or more.
  • the addition amount of the photosensitizer is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the resin component.
  • the method for supplying the photocurable resin material to the cavity is not particularly limited.
  • the photocurable resin material may be filled in the cavity after combining the first mold and the second mold.
  • molding die or a base material you may match
  • Step (a) in FIG. 2 is a schematic diagram showing an example in which the first mold 110 and the substrate 120 are overlapped after the photocurable resin material 130 is dropped onto the first mold 110.
  • a photocurable resin material is filled in a cavity formed between the first mold and the second mold or the substrate.
  • Second Step In the second step, the photocurable resin material supplied into the cavity is irradiated with light to cure the photocurable resin material.
  • One feature of the manufacturing method according to the present embodiment is to irradiate the photocurable resin material with light that does not substantially contain light having a wavelength of 342 nm or less.
  • light that does not include light having a wavelength of 342 nm or less or light that includes 342 nm light only to an extent that does not affect the deterioration of the release film as described later is irradiated.
  • the bond dissociation energy of the carbon-carbon single bond is 83 kcal / mol. This corresponds to the photon energy of light having a wavelength of 342 nm. Therefore, when a release film containing a carbon-carbon single bond (C—C bond) is formed on the cavity surface of the mold, the release film deteriorates when irradiated with light containing light having a wavelength of 342 nm or less. . Therefore, in the manufacturing method according to the present embodiment, the photocurable resin material is irradiated with light that does not substantially contain light having a wavelength of 342 nm or less in order to prevent deterioration of the release film.
  • the upper limit of the wavelength of light applied to the photocurable resin material is not particularly limited as long as the photocurable resin material can be cured. Usually, the wavelength of light applied to the photocurable resin material is 450 nm or less.
  • the type of the light source is not particularly limited as long as it includes light having a wavelength exceeding 342 nm and can cure the photocurable resin material.
  • the light source may be a point light source or a linear light source. Examples of the light source include a high-pressure mercury lamp, a metal halide lamp, a xenon lamp, a halogen lamp, a fluorescent lamp, and a black light. When these light sources are used, light having a wavelength of 342 nm or less may be cut using a wavelength cut filter.
  • an LED light source having a peak wavelength exceeding 342 nm or a laser light source having a peak wavelength exceeding 342 nm can be used. Since these light sources have a single wavelength, they can efficiently excite the photopolymerization initiator or sensitizer. Further, since these light sources have a single wavelength, it is not necessary to use a wavelength cut filter if they do not contain light having a wavelength of 342 nm or less.
  • the method of irradiating the photocurable resin material in the cavity with light is not particularly limited as long as the photocurable resin material can be sufficiently cured.
  • a light source disposed on the first mold side is lit and light is irradiated from the first mold side.
  • the second mold or the substrate can transmit light
  • the light source disposed on the second mold or the substrate side is turned on, and light is irradiated from the second mold or the substrate side. May be.
  • both the first mold and the second mold (or base material) can transmit light
  • the light sources arranged on the first mold side and the second mold (or base material) side May be turned on simultaneously and light may be irradiated from both sides.
  • the number of light sources is not particularly limited.
  • a plurality of light sources may be arranged to simultaneously irradiate light to the entire photocurable resin material in the cavity.
  • the light source that irradiates light in a dotted or linear manner may be moved relatively to irradiate the entire photocurable resin material in the cavity.
  • the light irradiation conditions are not particularly limited as long as the photocurable resin material can be sufficiently cured, and may be appropriately set according to the type of the light source and the composition of the photocurable resin material.
  • Step (b) in FIG. 2 is a schematic diagram showing an example of irradiating light 140 to the photocurable resin material 130 in the cavity.
  • a state where a wafer lens is manufactured using a glass substrate as a base material is shown.
  • the light 140 is irradiated from the substrate 120 side to the photocurable resin material 130 in the cavity formed by combining the first mold 110 and the substrate (glass substrate) 120.
  • the photocurable resin material 130 can be cured.
  • post-cure After irradiating the photocurable resin material with light, heat treatment (post-cure) may be performed as necessary. By performing the post cure, the photocurable resin material can be completely cured.
  • Step (c) in FIG. 2 is a schematic diagram showing an example in which the molded product 150 of the cured photocurable resin is released from the first mold 110.
  • the release film formed on the cavity surface of the mold is not deteriorated, it is easy to separate the first mold and the second mold or the base material.
  • the resin molded product can be released from the mold.
  • a molded product of a photocurable resin can be manufactured by the above procedure. And many resin molded products can be manufactured by supplying a new resin material to at least one of the mold after mold release or the base material, and repeating the process of molding and mold release. In the example shown in FIG. 2, after step (c), the process returns to step (a), and a new resin material is dropped on the mold after release, and steps (b) and (c) are repeated. Thus, the second and subsequent moldings can be performed.
  • the manufacturing method according to the present embodiment In the manufacturing method according to the present embodiment, light that does not substantially contain light having a wavelength of 342 nm or less is irradiated, so that the photocurable resin material can be cured while preventing deterioration of the release film. Therefore, in the manufacturing method according to the present embodiment, it is possible to reduce the frequency of mold maintenance such as cleaning and re-molding processing and the frequency of disposal of the mold, and efficiently manufacture a molded product of a photocurable resin. .
  • the type of the resin molded product manufactured by the manufacturing method according to the present embodiment is not particularly limited.
  • the manufacturing method according to the present embodiment can be applied to the manufacture of wafer lenses.
  • the resin molded product (lens part) may be formed on both surfaces of the base material.
  • the lens part after forming the lens part on one surface of the base material, the lens part may be formed on the other surface of the base material, or the lens parts may be simultaneously formed on both surfaces of the base material.
  • the resin is filled between one surface of the substrate and the first mold, and the resin is filled between the other surface of the substrate and the second mold.
  • the lens portions may be formed on both sides of the substrate by irradiating light from both sides.
  • the above-described release film may be formed on either of the two molds, and the curing may be promoted by exposure with light that does not contain a component of 342 nm or less.
  • a photocurable resin material 130 is disposed between two molds (first mold 110 and second mold 160), and the lens portion and the connection portion are made of the same resin.
  • the wafer lens-shaped molded body (resin molded product 150) may be obtained by performing the molding integrally.
  • one or both of the two molds (the first mold 110 and the second mold 160) are formed of a material that transmits light for curing the photocurable resin material 130.
  • a base material 120 having a plurality of holes formed at positions corresponding to the lens portion (resin molded product 150) and two molds (first mold 110 and second mold).
  • Mold 160 and filling the space (cavity) formed by the two molds and the holes of the base material 120 with the photo-curable resin material 130, and molding the wafer lens-shaped molded body. May be obtained.
  • the base material 120 may be transparent or opaque.
  • One or both of the two molds (the first mold 110 and the second mold 160) are made of a material that transmits light for curing the photocurable resin material 130.
  • the above-described release film is formed on each of the two molds, and curing can be performed by exposure with light containing no component of 342 nm or less. That's fine.
  • the manufacturing method according to the present embodiment can also be applied to the manufacture of resin molded products by the Roll to Roll (RTR) type imprint technology.
  • RTR Roll to Roll
  • FIG. 5 is a schematic view showing a state in which a resin molded product is manufactured on a substrate using an RTR type imprint apparatus.
  • FIG. 5A is a side view of the RTR type imprint apparatus
  • FIG. 5B is a plan view.
  • the coater 220 applies a photocurable resin material 230 onto the substrate 210.
  • the roll-shaped mold 240 (first mold) that has been subjected to the mold release process is pressed against the surface of the substrate 210 on which the photocurable resin material 230 is applied.
  • the UV light source 250 cures the photocurable resin material 230 by irradiating the region where the roll-shaped mold 240 of the substrate 210 is pressed with ultraviolet rays in which light having a wavelength of 342 nm or less is cut. Let Through the above steps, the resin molded product 260 is continuously formed on the substrate 210.
  • the first to third steps are repeated or continuously performed on the same base material.
  • a molded product of a photocurable resin can be repeatedly or continuously molded on the same substrate.
  • the resin molded product is not limited to the wafer lens described above, and may be a resin mold for manufacturing the wafer lens.
  • a photocurable resin material 130 is interposed between a mother mold (first mold 110) and a transparent substrate (base material 120), and the transparent substrate (base material 120) is attached.
  • the photo-curing resin material 130 is cured by exposing through the light.
  • a resin layer (resin molded product 150) having a transfer surface to which the negative shape of the transfer surface of the mother mold (first mold 110) is transferred is bonded onto the substrate.
  • a mold can be obtained.
  • the above-described release film may be formed on the surface of the matrix, and the curing may be advanced by exposure with light that does not contain a component of 342 nm or less.
  • a master die (first master die) and a glass substrate (base material) were used to produce a wafer lens manufacturing die (submaster die).
  • UV irradiation test The mold on which the release film was formed was irradiated with ultraviolet light to examine whether or not the release film deteriorated. Specifically, using a super high pressure mercury lamp (SP-7; Ushio Electric Co., Ltd.), a mold having a release film was irradiated with ultraviolet rays having a peak wavelength of 365 nm at an illuminance of 200 mW / cm 2 for 12 hours, Changes in the water repellency angle on the mold surface before and after irradiation were examined. In the first experiment, ultraviolet rays were irradiated without passing through the optical filter.
  • SP-7 super high pressure mercury lamp
  • ultraviolet rays were irradiated through a wavelength cut filter that blocks light having a wavelength of 320 nm or less.
  • ultraviolet rays were irradiated through a wavelength cut filter that blocks light having a wavelength of 342 nm or less.
  • the water repellent angle was measured according to JIS R3257.
  • a mold (master mold) on which a release film was formed was set in a molding apparatus, and a photocurable resin material was dropped onto a surface having a concave portion of the mold.
  • the photocurable resin material is composed of 100 parts by mass of an epoxy resin monomer (alicyclic epoxy compound CEL2021P; Daicel Chemical Industries, Ltd.), a photopolymerization initiator (UVI-6992; Dow Chemical, or CGI-552; Ciba Specialty Chemicals). 5 parts by mass, and 1 part by mass of a photosensitizer (Anthracure UVS-1331; Kawasaki Chemical Industry Co., Ltd.).
  • the method for producing a resin molded product of the present invention can repeatedly or continuously produce a molded product of a photocurable resin while preventing the release film from being deteriorated.
  • the product can be manufactured efficiently. Therefore, the method for producing a resin molded product of the present invention is useful when repeatedly or continuously producing a photocurable resin molded product.
  • the method for producing a resin molded product of the present invention is useful for producing a wafer lens or a mold for producing a wafer lens.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

 第1の成形型と、第2の成形型または基材とを合わせて形成されるキャビティ内に光硬化性樹脂材料を供給する。第1の成形型および第2の成形型のキャビティ面には、炭素-炭素単結合を含む離型膜が形成されている。光硬化性樹脂材料は、342nmを超える波長の光を照射されたときに反応を開始する光重合開始剤、または光重合開始剤と342nmを超える波長の光を照射されたときに反応を促進する光増感剤との組み合わせを含む。次いで、キャビティ内に供給された光硬化性樹脂材料に、342nm以下の波長の光を実質的に含まない光を照射して、光硬化性樹脂材料を硬化させる。最後に、キャビティ内に形成された光硬化性樹脂の成形品を離型する。

Description

樹脂成形品の製造方法
 本発明は、光硬化性樹脂の成形品の製造方法に関する。
 光学レンズの製造分野においては、ガラス基板の表面に硬化性樹脂からなるレンズ部を形成することで、耐熱性の高い光学レンズを製造する技術が知られている。この技術を適用した光学レンズの製造方法として、ガラス基板の表面に光硬化性樹脂からなるレンズ部を複数形成した、いわゆる「ウエハレンズ」を製造する方法が提案されている(例えば、特許文献1参照)。ウエハレンズを製造した後、ウエハレンズのガラス基板を切断してレンズ部ごとに分割することで、多数の光学レンズを一度に得ることができる。
 特許文献1には、マスター成形型(金型)に加えて、さらに2種類の樹脂成形型(サブマスター成形型およびサブサブマスター成形型)を用いてウエハレンズを製造する方法が記載されている。特許文献1に記載の製造方法では、まず、離型処理をしたマスター成形型を用いて光硬化性樹脂からなるサブマスター成形型を作製する。次いで、サブマスター成形型を用いて光硬化性樹脂からなるサブサブマスター成形型を作製する。最後に、サブサブマスター成形型を用いてウエハレンズを繰り返し製造する。
 このようにマスター成形型(金型)を用いてレンズ部を成形するのではなく、別の樹脂成形型(例えば、サブサブマスター成形型)を用いてレンズ部を成形することで、マスター成形型の使用回数を低減することができる。その結果、高価なマスター成形型の劣化を防ぐことができ、製造コストを低減することができる。
特開2009-226638号公報
 従来の光硬化性樹脂の成形品の製造方法では、特許文献1に記載されているように、少なくともマスター成形型に離型処理を施しており、また、サブマスター成形型やサブサブマスター成形型に対しても必要な場合は離型処理を施していた。このような離型処理をした成形型を用いていても、光硬化性樹脂の成形品を繰り返し製造するうちに離型性が低下して所期の成形品形状が得られなくなり、最終的に得られるレンズなどの光学部品の光学性能に悪影響を生じる。このため、マスター成形型の場合は、離型工程で問題が生じる前に、成形型を洗浄し再度離型処理を行う必要があり、また、中間成形型の場合は、離型工程での問題発生以前に中間成形型を廃棄する必要があった。本発明者の検討によれば、離型工程での上記問題は、単に離型膜が機械的なダメージを受けることだけで生じるのではなく、光硬化性樹脂材料の硬化のための紫外線照射により、離型膜の劣化が進行することが関係していることが判明した。
 本発明の目的は、離型膜の劣化に伴う離型工程での問題を抑制し、光硬化性樹脂の成形品を効率的に製造することができる、光硬化性樹脂の成形品の製造方法を提供することである。
 本発明の樹脂成形品の製造方法は、第1の成形型と、第2の成形型または基材とを合わせて形成されるキャビティ内に光硬化性樹脂材料を供給する第1の工程と、前記キャビティ内に供給された前記光硬化性樹脂材料に光を照射して、前記光硬化性樹脂材料を硬化させる第2の工程と、前記キャビティ内に形成された光硬化性樹脂の成形品を離型する第3の工程とを有し、前記第1の成形型および前記第2の成形型のキャビティ面には、炭素-炭素単結合を含む離型膜が形成されており、前記光硬化性樹脂材料は、342nmを超える波長の光を照射されたときに反応を開始する光重合開始剤、または光重合開始剤と342nmを超える波長の光を照射されたときに反応を促進する光増感剤との組み合わせを含み、前記光は、波長が342nm以下の光を実質的に含まないことを特徴とする。
 本発明によれば、離型膜の劣化を防止しつつ、光硬化性樹脂の成形品を繰り返しまたは連続して製造することができ、延いては、光硬化性樹脂の成形品を効率的に製造することができる。
図1A,Bは、フルオロアルキル基を有するシランカップリング剤を含む離型膜を形成する様子を示す模式図である。 キャビティ内に光硬化性樹脂材料を供給し、光を照射して光硬化性樹脂材料を硬化させ、硬化後の光硬化性樹脂を離型する工程の一例を示す模式図である。 キャビティ内に光硬化性樹脂材料を供給し、光を照射して光硬化性樹脂材料を硬化させ、硬化後の光硬化性樹脂を離型する工程の別の一例を示す模式図である。 キャビティ内に光硬化性樹脂材料を供給し、光を照射して光硬化性樹脂材料を硬化させ、硬化後の光硬化性樹脂を離型する工程のさらに別の一例を示す模式図である。 図5A,Bは、Roll to Roll式(RTR式)インプリント装置を用いて樹脂成形品を製造する様子を示す模式図である。 キャビティ内に光硬化性樹脂材料を供給し、光を照射して光硬化性樹脂材料を硬化させ、硬化後の光硬化性樹脂を離型する工程のさらに別の一例を示す模式図である。
 本発明の実施形態に係る樹脂成形品の製造方法は、1)第1の成形型と、第2の成形型または基材とを合わせて形成されるキャビティに光硬化性樹脂材料を供給する第1の工程と、2)光硬化性樹脂材料に光を照射して、光硬化性樹脂材料を硬化させる第2の工程と、3)光硬化性樹脂の成形品を離型する第3の工程とを有する。以下、各工程について説明する。
 1)第1の工程
 第1の工程では、第1の成形型と、第2の成形型または基材とを合わせて形成されるキャビティ内に光硬化性樹脂材料を供給する。
 [成形型および基材]
 第1の成形型と第2の成形型とを組み合わせて使用する場合、光硬化性樹脂材料を供給される空間(キャビティ)は、例えば、第1の成形型の凹部と第2の成形型の凹部または凸部とにより、あるいは、第1の成形型の凸部と第2の成形型の凹部とにより形成される。たとえば、第1の成形型は、キャビティプレートであり、第2の成形型は、コアプレートである。
 一方、第1の成形型と基材とを組み合わせて使用する場合、光硬化性樹脂材料を供給される空間(キャビティ)は、第1の成形型の凹部または凸部と、基材の表面とにより形成される。この場合、光硬化性樹脂の成形品は、基材の表面に接合された状態で製造される。たとえば、第1の成形型としてレンズ部の形状に対応する複数の凹部を有する樹脂成形型を使用し、基材として、6インチ径、8インチ径、12インチ径などのウエハサイズのガラス基板などの透光性基板を使用することで、基板の表面に複数のレンズ部が接合された「ウエハレンズ」を製造することができる。レンズ部は、凸形状、凹形状、非球面形状など用途に応じて必要とされる形状を備えたものとすることができる。レンズ部表面には、必要に応じて、回折溝や段差形状などの微細形状が設けられていてもよい。
 第1の成形型および第2の成形型の形状、大きさおよび材料は、特に限定されず、製造する樹脂成形品に応じて適宜選択されうる。これらの成形型の材料の例には、金属、金属ガラス、ガラス、樹脂が含まれる。たとえば、第1の成形型および第2の成形型は、少なくとも転写面が樹脂で形成されている。これらの成形型が光を透過させる材料からなる場合、第2の工程において成形型側から光を照射することができる。
 基材は、光硬化性樹脂の成形品が接合される部材である。基材の形状、大きさおよび材料は、特に限定されず、製造する樹脂成形品に応じて適宜選択されうる。基材の例には、ガラス基板、樹脂基板、樹脂フィルム、金属基板、シリコン基板、石英基板が含まれる。基材が光を透過させる材料からなる場合、第2の工程において基材側から光を照射することができる。
 第2の工程においてキャビティ内の光硬化性樹脂材料に光を照射することから、第1の成形型、第2の成形型および基材のいずれかは、光を透過させうるものである必要がある。
 [離型膜]
 第1の成形型および第2の成形型のキャビティ面には、炭素-炭素単結合(C-C結合)を含む離型剤を塗布して形成された、炭素-炭素単結合(C-C結合)を含む離型膜が設けられている。ここで「キャビティ面」とは、第1の成形型と、第2の成形型または基材とを合わせて形成されるキャビティ(空洞部)を形成する面をいう。キャビティ面の上に離型膜を形成することで、第3の工程において樹脂成形品を容易に離型することができる。
 離型剤としては、離型膜形成後に離型性を発現する従来公知の種々の材料を使用することができるが、成形型のキャビティ形状を損なわず、塗布容易性および耐久性に優れ、かつ、入手しやすいものであることが求められる。このような離型剤は、一般的に炭素-炭素単結合を含んでおり、後述するように、離型膜を形成した場合に、紫外線の照射による離型膜の劣化が問題となる。
 炭素-炭素単結合を含む離型剤の例には、フルオロアルキル基を有するシランカップリング剤、フルオロアルキルエーテル基を有するシランカップリング剤が含まれる。フルオロアルキル基またはフルオロアルキルエーテル基を有するシランカップリング剤を用いて形成された離型膜は、表面自由エネルギーが小さく、離型性に優れている。フルオロアルキル基を有するシランカップリング剤の例には、CF(CHSiCl、CF(CHSiCl、CF(CF(CHSiCl、CF(CF(CHSiCl、CF(CFCHCHSi(OCH、CF(CF(CHSi(CH)Cl、CF(CHSi(OCH、CF(CHSi(CH)(OHCH、CF(CF(CHSi(OCH、CF(CF(CHSi(OCHが含まれる。フルオロアルキルエーテル基を有するシランカップリング剤の例には、CF(CFO)(CFCFO)(CFCFCFO)(CF(CF)CFO)Si(OCH(ただし、n、m、l、rは0~100の整数であり、同時に0でない)が含まれる。これらの市販品としては、例えば、オプツールDSX(ダイキン工業株式会社)、ノベックEGC(住友スリーエム株式会社)、アモルファスフッ素サイトップ(旭硝子株式会社)が挙げられる。
 離型剤の塗布方法は、特に限定されず、離型剤の種類に応じて適宜選択されうる。たとえば、フルオロアルキル基を有するシランカップリング剤は、フッ素系の有機溶媒に希釈され、ディップ法やスピンコート法などで塗布される。この後、塗膜を乾燥することで、図1Aに示されるように、成形型表面10の上に、フルオロアルキル基20を有するシランカップリング剤の薄膜(離型膜30)が形成される。乾燥後、一定の湿度下において加温することで、シランカップリング剤を加水分解してシラノール基(Si-OH)を生じさせることができる。この加水分解により、シランカップリング剤のクロロ基(-Cl)やメトキシ基(-OCH)などはヒドロキシ基(-OH)となる。生成したシラノール基は、成形型表面10のヒドロキシ基(-OH)と脱水縮合する。その結果、図1Bに示されるように、離型膜30は、成形型表面10に強固に結合する。
 第1の成形型および第2の成形型のキャビティ面には、離型剤を塗布する前に前処理を施してもよい。前処理の例には、UVオゾン洗浄、酸素プラズマアッシング、SiO膜の形成が含まれる。これらの前処理を行うことで、キャビティ面に多数のヒドロキシ基を導入することができ、離型膜の密着性を向上させることができる。
 [光硬化性樹脂材料]
 光硬化性樹脂材料は、樹脂成分(モノマー、オリゴマーまたはプレポリマー)と、光重合開始剤または光重合開始剤と光増感剤との組み合わせとを含む組成物である。
 A)樹脂成分
 樹脂成分の種類は、光照射によって硬化して透明な硬化物となる樹脂成分であれば特に限定されない。たとえば、樹脂成分としては、ラジカル重合やカチオン重合などの重合により、透明な樹脂硬化物を形成するものを用いることができる。樹脂成分の例には、アクリル系樹脂のモノマー、ビニル系樹脂のモノマー、エポキシ系樹脂のモノマーおよびオキセタン化合物が含まれる。アクリル系樹脂のモノマーおよびビニル系樹脂のモノマーは、ラジカル重合により重合することができる。一方、エポキシ系樹脂のモノマーおよびオキセタン化合物は、カチオン重合により重合することができる。
 アクリル系樹脂のモノマーの種類は、特に限定されず、公知の(メタ)アクリレートから適宜選択されうる。モノマーとして使用しうる(メタ)アクリレートの例には、エステル(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、エーテル(メタ)アクリレート、アルキル(メタ)アクリレート、アルキレン(メタ)アクリレート、芳香環を有する(メタ)アクリレート、脂環式構造を有する(メタ)アクリレートが含まれる。これらの(メタ)アクリレートは、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 ビニル系樹脂のモノマーは、架橋反応に寄与するビニル基(CH=CH-)を有し、一般式CH=CH-Rで表される。好ましくは、ビニル系樹脂のモノマーは、R内に芳香環を有するビニル化合物である。モノマーとして使用しうるビニル化合物の例には、塩化ビニル、スチレンが含まれる。1分子中のビニル基の数は、1つでもよいし、2つ以上であってもよい。好ましくは、ビニル系樹脂のモノマーは、ジビニル化合物である。これらのビニル化合物は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 エポキシ系樹脂のモノマーの種類は、エポキシ基を有し、かつカチオン重合により硬化するものであれば特に限定されない。エポキシ系樹脂のモノマーとしては、脂肪族エポキシ化合物や脂環式エポキシ化合物などが挙げられる。
 モノマーとして使用しうる脂肪族エポキシ化合物としては、脂肪族多価アルコールまたはそのアルキレンオキサイド付加物のポリグリシジルエーテルが挙げられる。そのような脂肪族エポキシ化合物の例には、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、2,2’-ビス(4-グリシジルオキシシクロヘキシル)プロパン、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカーボキシレート、ビニルシクロヘキセンジオキシド、2-(3,4-エポキシシクロヘキシル)-5,5-スピロ-(3,4-エポキシシクロヘキサン)-1,3-ジオキサン、ビス(3,4-エポキシシクロヘキシル)アジペート、1,2-シクロプロパンジカルボン酸ビスグリシジルエステル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリメチロールプロパンジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテルが含まれる。モノマーとして使用しうる脂肪族エポキシ化合物の市販品としては、例えば、エポライト100MF(共栄社化学株式会社)、EX-321L(ナガセケムテックス株式会社)が挙げられる。
 モノマーとして使用しうる脂環式エポキシ化合物の例には、ビニルシクロヘキセンモノオキサイド、1,2-エポキシ-4-ビニルシクロヘキサン、1,2:8,9ジエポキシリモネン、3、4-エポキシシクロヘキセニルメチル-3、’4’-エポキシシクロヘキセンカルボキシレートが含まれる。モノマーとして使用しうる脂環式エポキシ化合物の市販品としては、例えば、CEL2000、CEL3000、CEL2021P(いずれもダイセル化学工業株式会社)が挙げられる。
 オキセタン化合物は、オキセタン環(4員環エーテル)を有する化合物である。モノマーとして使用しうるオキセタン化合物の例には、3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス〔{(3-エチル-3-オキセタニル)メトキシ}メチル〕ベンゼン、3-エチル-3-(フェノキシメチル)オキセタン、ビス(3-エチル-3-オキセタニルメチル)エーテル、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン)、3-エチル-〔{(3-トリエトキシシリルプロポキシ)メチル)オキセタン、オキセタニルシルセスキオキサン、フェノールノボラックオキセタンが含まれる。ここで「オキセタニルシルセスキオキサン」とは、オキセタニル基を有するシラン化合物を意味する。たとえば、オキセタニルシルセスキオキサンは、前述の3-エチル-3-〔{(3-トリエトキシシリル)プロポキシ}メチル〕オキセタンを加水分解縮合させることにより得られる、オキセタニル基を複数有するネットワーク状ポリシロキサン化合物である。これらのオキセタン化合物の中でも、3-エチル-3-ヒドロキシメチルオキセタン、ビス(3-エチル-3-オキセタニルメチル)エーテル、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタンが好ましい。モノマーとして使用しうるオキセタン化合物の市販品としては、例えば、OXT-101、OXT-211、OXT-221、OXT-212(いずれも東亞合成株式会社)が挙げられる。
 B)光重合開始剤および光増感剤
 前述の通り、光硬化性樹脂材料は、光重合開始剤、または光重合開始剤と光増感剤との組み合わせとを含む。本実施形態に係る製造方法では、342nmを超える波長の光を照射されたときに反応を開始する光重合開始剤、または342nmを超える波長の光を照射されたときに反応を促進する光増感剤を使用する。後述するように、第2の工程において、342nmを超える波長の光を照射して、光硬化性樹脂材料を硬化させるためである。
 樹脂成分としてラジカル重合性モノマー(例えば、(メタ)アクリレートやビニル化合物など)を使用する場合、光重合開始剤として、342nmを超える波長の光を照射されたときにラジカルを発生させる光ラジカル重合開始剤を使用する。そのような光ラジカル重合開始剤の例には、アシルフォスフィンオキサイドが含まれる。アシルフォスフィンオキサイドは、最も長波長側の吸収極大が342nmを超えており、かつ光退色(フォトブリーチング)するため、本実施形態に係る製造方法で使用する光重合開始剤として好ましい。光退色する光重合開始剤を使用した場合、光硬化性樹脂材料の内部まで光が到達することができるようになり、内部硬化を促進することができる。
 本実施形態に係る製造方法で使用しうる光ラジカル重合開始剤の市販品としては、例えば、MAPO(モノアシルフォスフィンオキサイド)であるDAROCUR TPO、BAPO(ビスアシルフォスフィンオキサイド)であるIRGACURE 819、チタノセン化合物であるIRGACURE 784(いずれもCiba Specialty Chemicals社)が挙げられる。透明な樹脂硬化物を得る観点からは、これらの中でもDAROCUR TPOおよびIRGACURE 819が特に好ましい。
 樹脂成分としてカチオン重合性モノマー(例えば、エポキシ化合物やオキセタン化合物など)を使用する場合、光重合開始剤として、波長が342nmを超える光を照射されたときにカチオンを発生させる光カチオン重合開始剤を使用する。そのような光カチオン重合開始剤の例には、スルホニウム塩、ヨードニウム塩が含まれる。
 スルホニウム塩系の光カチオン重合開始剤の例には、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、4,4’-ビス〔ジフェニルスルホニオ〕ジフェニルスルフィドビスヘキサフルオロホスフェート、4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィドビスヘキサフルオロアンチモネート、4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィドビスヘキサフルオロホスフェート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントンヘキサフルオロアンチモネート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントンテトラキス(ペンタフルオロフェニル)ボレート、4-フェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィドヘキサフルオロホスフェート、4-(p-tert-ブチルフェニルカルボニル)-4’-ジフェニルスルホニオ-ジフェニルスルフィドヘキサフルオロアンチモネート、4-(p-tert-ブチルフェニルカルボニル)-4’-ジ(p-トルイル)スルホニオ-ジフェニルスルフィド テトラキス(ペンタフルオロフェニル)ボレートが含まれる。ヨードニウム塩系の光カチオン重合開始剤の例には、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジ(4-ノニルフェニル)ヨードニウムヘキサフルオロホスフェートが含まれる。光カチオン重合開始剤の市販品としては、例えば、PI-2074(Rhodia社)、UVI-6992(Dow Chemical社)、IRGACURE 250(CGI-552;Ciba Specialty Chemicals社)が挙げられる。
 光増感剤は、光重合開始剤による重合反応を補助、促進するために用いられる。たとえば、一般的なヨードニウム塩からなる光重合開始剤の感光波長は342nmよりも短いため、光増感剤が併用される。光硬化性樹脂材料が光増感剤を含む場合、光重合開始剤の種類は、特に限定されず、樹脂成分の種類に応じて公知の光ラジカル重合開始剤または光カチオン重合開始剤から適宜選択されうる。
 これらの光重合開始剤は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。光重合開始剤の添加量は、樹脂成分100質量部に対して、0.001~5質量部の範囲内が好ましく、0.01~3質量部の範囲内がより好ましく、0.05~1質量部の範囲内が特に好ましい。
 光重合開始剤が342nmを超える波長の光を吸収できない場合、光硬化性樹脂材料は、342nmを超える波長の光を照射されたときに重合反応を促進する光増感剤を含むことが好ましい。光重合開始剤が342nmを超える波長の光を吸収できる場合も、光硬化性樹脂材料は、光増感剤を含んでいてもよい。光増感剤の種類は、特に限定されないが、例えば、カルボニル化合物、有機硫黄化合物、過硫化物、レドックス系化合物、アゾ化合物、ジアゾ化合物、ハロゲン化合物、光還元性色素である。
 光増感剤の例には、ベンゾインメチルエーテルやベンゾインイソプロピルエーテル、α,α-ジメトキシ-α-フェニルアセトフェノンなどのベンゾイン誘導体;ベンゾフェノンや2,4-ジクロロベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4’-ビス(ジエチルアミノ)ベンゾフェノンなどのベンゾフェノン誘導体;2-クロロチオキサントンや2-イソプロピルチオキサントンなどのチオキサントン誘導体;2-クロロアントラキノンや2-メチルアントラキノンなどのアントラキノン誘導体;N-メチルアクリドンやN-ブチルアクリドンなどのアクリドン誘導体;α,α-ジエトキシアセトフェノン、ベンジル、フルオレノン、キサントン、ウラニル化合物、ハロゲン化合物、光還元性色素が含まれる。光増感剤の市販品としては、例えば、カヤキュアDETX-S(日本化薬株式会社)、Anthracure UVS-1331(川崎化成工業株式会社)などが挙げられる。
 これらの光増感剤は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。光増感剤の添加量は、樹脂成分100質量部に対して、0.01~5質量部の範囲内が好ましい。
 光硬化性樹脂材料をキャビティに供給する方法は、特に限定されない。たとえば、第1の成形型と第2の成形型とを合わせた後に、キャビティ内に光硬化性樹脂材料を充填してもよい。また、第1の成形型または基材の上に光硬化性樹脂材料を塗布または滴下した後に、第1の成形型と基材とを合わせてもよい。図2の工程(a)は、第1の成形型110に光硬化性樹脂材料130を滴下した後に、第1の成形型110と基材120とを重ね合わせる例を示す模式図である。いずれの方法でも、第1の成形型と第2の成形型または基材との間に形成されるキャビティ内に光硬化性樹脂材料が充填される。
 2)第2の工程
 第2の工程では、キャビティ内に供給された光硬化性樹脂材料に光を照射して、光硬化性樹脂材料を硬化させる。
 本実施形態に係る製造方法は、342nm以下の波長の光を実質的に含まない光を光硬化性樹脂材料に照射することを一つの特徴とする。つまり、342nm以下の波長の光を含まないか、あるいは、342nmの光を後述するように離型膜の劣化に影響を与えない程度にしか含んでいない光を照射する。
 表1に示されるように、炭素-炭素単結合の結合解離エネルギーは、83kcal/molである。これは、波長が342nmの光の光子エネルギーに相当する。したがって、成形型のキャビティ面に炭素-炭素単結合(C-C結合)を含む離型膜を形成した場合、342nm以下の波長の光を含む光を照射すると、離型膜が劣化してしまう。そこで、本実施形態に係る製造方法では、離型膜の劣化を防止するために、342nm以下の波長の光を実質的に含まない光を光硬化性樹脂材料に照射する。
Figure JPOXMLDOC01-appb-T000001
 光硬化性樹脂材料に照射する光の波長の上限は、光硬化性樹脂材料を硬化させることができれば特に限定されない。通常、光硬化性樹脂材料に照射する光の波長は、450nm以下である。
 光源の種類は、342nmを超える波長の光を含み、光硬化性樹脂材料を硬化させることができれば特に限定されない。光源は、点状光源であってもよいし、線状光源であってもよい。光源の例には、高圧水銀ランプ、メタルハライドランプ、キセノンランプ、ハロゲンランプ、蛍光灯、ブラックライトが含まれる。これらの光源を使用する場合、波長カットフィルタを使用して342nm以下の波長の光をカットすればよい。
 また、光源としては、ピーク波長が342nmを超えるLED光源、またはピーク波長が342nmを超えるレーザ光源を使用することもできる。これらの光源は、単波長であるため、効率よく光重合開始剤または増感剤を励起することができる。また、これらの光源は単波長であるため、342nm以下の波長の光を含んでいない場合は、波長カットフィルタを使用する必要がない。
 キャビティ内の光硬化性樹脂材料に光を照射する方法は、光硬化性樹脂材料を十分に硬化させることができれば特に限定されない。たとえば、第1の成形型が光を透過させうる場合、第1の成形型側に配置した光源を点灯して、第1の成形型側から光を照射すればよい。また、第2の成形型または基材が光を透過させうる場合、第2の成形型または基材側に配置した光源を点灯して、第2の成形型または基材側から光を照射してもよい。また、第1の成形型および第2の成形型(または基材)の両方が光を透過させうる場合、第1の成形型側および第2の成形型(または基材)側に配置した光源を同時に点灯して、両側から光を照射してもよい。
 光源の数は、特に限定されない。たとえば、複数の光源を配置して、キャビティ内の光硬化性樹脂材料の全体に同時に光を照射してもよい。一方、点状または線状に光を照射する光源を相対的に移動させて、キャビティ内の光硬化性樹脂材料の全体に光を照射してもよい。光の照射条件は、光硬化性樹脂材料を十分に硬化させることができれば特に限定されず、光源の種類および光硬化性樹脂材料の組成に応じて適宜設定すればよい。
 図2の工程(b)は、キャビティ内の光硬化性樹脂材料130に光140を照射する一例を示す模式図である。この例では、基材としてガラス基板を用いてウエハレンズを製造する様子を示す。この図に示されるように、第1の成形型110と基材(ガラス基板)120とを合わせて形成されるキャビティ内の光硬化性樹脂材料130に基材120側から光140を照射することで、光硬化性樹脂材料130を硬化させることができる。
 光硬化性樹脂材料に光を照射した後、必要に応じて加熱処理(ポストキュア)を行ってもよい。ポストキュアを行うことで、光硬化性樹脂材料を完全に硬化させることができる。
 3)第3の工程
 第3の工程では、キャビティ内に形成された光硬化性樹脂の成形品を成形型から離型する。図2の工程(c)は、硬化後の光硬化性樹脂の成形品150を第1の成形型110から離型する例を示す模式図である。本実施形態に係る製造方法では、成形型のキャビティ面に形成されている離型膜が劣化していないため、第1の成形型と第2の成形型または基材とを離すことで、容易に樹脂成形品を成形型から離型することができる。
 以上の手順により、光硬化性樹脂の成形品を製造することができる。そして、離型後の成形型または基材の少なくとも一方に新たな樹脂材料を供給し、成形および離型する工程を繰り返すことにより、多数の樹脂成型品を製造することができる。図2に示される例では、工程(c)の次に、工程(a)に戻って、離型後の成形型に新たな樹脂材料を滴下し、工程(b)、工程(c)を繰り返すことで、2回目以降の成形を行うことができる。
 本実施形態に係る製造方法では、342nm以下の波長の光を実質的に含まない光を照射するため、離型膜の劣化を防ぎつつ、光硬化性樹脂材料を硬化させることができる。したがって、本実施形態に係る製造方法では、洗浄および再離型処理などの成形型のメンテナンスや成形型の廃棄の頻度を低減し、光硬化性樹脂の成形品を効率的に製造することができる。
 本実施形態に係る製造方法により製造される樹脂成形品の種類は、特に限定されない。たとえば、本実施形態に係る製造方法は、ウエハレンズの製造に適用することができる。なお、基材の両面に樹脂成形品(レンズ部)が形成されていてもよい。この場合、基材の一方の面にレンズ部を形成した後に基材の他方の面にレンズ部を形成してもよいし、基材の両面にレンズ部を同時に形成してもよい。後者の場合、基材の一方の面と第1の成形型との間に樹脂を満たすとともに、基材の他方の面と第2の成形型との間に樹脂を満たした上で、基材の両面から光を照射して基材の両面にレンズ部を形成すればよい。いずれの場合においても、2つの成形型のいずれにも上述した離型膜を形成し、342nm以下の成分を含まない光で露光して硬化を進めればよい。
 また、図3に示されるように、2つの成形型(第1の成形型110および第2の成形型160)の間に光硬化性樹脂材料130を配置し、レンズ部および接続部を同じ樹脂で一体的に成形を行うことで、ウエハレンズ状の成形体(樹脂成形品150)を得てもよい。この場合、2つの成形型(第1の成形型110および第2の成形型160)の一方または両方は、光硬化性樹脂材料130を硬化させるための光を透過する材料で形成されている。また、図4に示されるように、レンズ部(樹脂成形品150)に対応する位置に複数の孔が形成された基材120と2つの成形型(第1の成形型110および第2の成形型160)とを用いて、2つの成形型と基材120の孔とにより構成される空間(キャビティ)に光硬化性樹脂材料130を満たして成形を行うことで、ウエハレンズ状の成形体を得てもよい。この場合、基材120は、透明であってもよいし、不透明であってもよい。2つの成形型(第1の成形型110および第2の成形型160)の一方または両方は、光硬化性樹脂材料130を硬化させるための光を透過する材料で形成されている。図3および図4に示した実施態様のいずれの場合においても、2つの成形型のいずれにも上述した離型膜を形成し、342nm以下の成分を含まない光で露光して硬化を進めればよい。
 また、本実施形態に係る製造方法は、Roll to Roll(RTR)式インプリント技術による樹脂成形品の製造にも適用することができる。
 図5は、RTR式インプリント装置を用いて基材の上に樹脂成形品を製造する様子を示す模式図である。図5Aは、RTR式インプリント装置の側面図であり、図5Bは、平面図である。図5に示されるように、RTR式インプリント装置200では、コーター220が基材210の上に光硬化性樹脂材料230を塗布する。次いで、基材210の光硬化性樹脂材料230が塗布された面に、離型処理がなされたロール状成形型240(第1の成形型)が押し当てられる。同時に、UV光源250は、基材210のロール状成形型240が押し当てられている領域に、342nm以下の波長の光がカットされている紫外線を照射して、光硬化性樹脂材料230を硬化させる。以上の工程により、基材210の上に樹脂成形品260が連続して形成される。
 このように、第1の成形型および基材を用いて光硬化性樹脂の成形品を形成する場合、同一の基材に対して上記第1~第3の工程を繰り返しまたは連続して行うことで、同一の基材の上に光硬化性樹脂の成形品を繰り返しまたは連続して成形することができる。
 なお、樹脂成形品は、上述したウエハレンズに限らず、ウエハレンズを作製するための樹脂成形型であってもよい。たとえば、図6に示されるように、母型(第1の成形型110)と透明基板(基材120)との間に光硬化性樹脂材料130を介在させ、透明基板(基材120)を介して露光することにより、光硬化性樹脂材料130を硬化させる。この後、離型することにより、母型(第1の成形型110)の転写面のネガ形状が転写された転写面を持つ樹脂層(樹脂成形品150)が基板上に接合された樹脂成形型を得ることができる。この場合、母型表面に上述した離型膜を形成し、342nm以下の成分を含まない光で露光して硬化を進めればよい。
 以下、本発明の具体的な実施例を説明するが、本発明はこれらの実施例により限定されない。
 本実施例では、マスター成形型(第1の成形型)およびガラス基板(基材)を使用して、ウエハレンズ製造用の成形型(サブマスター成形型)を作製した。
 1.離型膜の形成
 レンズ部に対応する複数の凹部(直径3mm、深さ0.3mm)が形成された金型(マスター成形型)の表面(キャビティ面を含む)に、膜厚40nmのSiO膜(下地膜)を蒸着により形成した。このSiO膜の表面にフルオロアルキル基を有するシランカップリング剤(オプツールDSX;ダイキン工業株式会社)を塗布して、膜厚約5nmのシランカップリング剤膜(離型膜)を形成した。得られた金型を一定の湿度下において加温して、SiO膜表面のヒドロキシ基とシランカップリング剤のヒドロキシ基(アルコキシル基が加水分解して生じたもの)とを共有結合により結合させた。
 2.紫外線照射試験
 離型膜を形成した金型に紫外線を照射して、離型膜が劣化するか否かを調べた。具体的には、超高圧水銀ランプ(SP-7;ウシオ電機株式会社)を使用して、離型膜を形成した金型にピーク波長365nmの紫外線を照度200mW/cmで12時間照射し、照射前後の金型表面の撥水角の変化を調べた。第1の実験では、光学フィルタを通さずに紫外線を照射した。第2の実験では、320nm以下の波長の光を阻止する波長カットフィルタを通して紫外線を照射した。第3の実験では、342nm以下の波長の光を阻止する波長カットフィルタを通して紫外線を照射した。撥水角は、JIS R3257に準拠して測定した。
 実験の結果、光学フィルタを通さずに紫外線を照射した場合(第1の実験)、および320nm以下の波長の光を阻止する波長カットフィルタを通して紫外線を照射した場合(第2の実験)は、撥水角が108°から30°に変化した。一方、342nm以下の波長の光を阻止する波長カットフィルタを通して紫外線を照射した場合(第3の実験)は、紫外線を照射した後も撥水角は108°のままであった。以上のことから、342nm以下の波長の光を含まない光を照射すれば、離型膜を劣化させることなく、光硬化性樹脂材料を硬化させうることが示唆される。
 3.樹脂成形型(サブマスター成形型)の作製
 1)離型膜を形成した金型(マスター成形型)を成形装置にセットし、金型の凹部を有する面に光硬化性樹脂材料を滴下した。光硬化性樹脂材料は、エポキシ樹脂モノマー(脂環式エポキシ化合物CEL2021P;ダイセル化学工業株式会社)を100質量部、光重合開始剤(UVI-6992;Dow Chemical社、またはCGI-552;Ciba Specialty Chemicals社)を5質量部、および光増感剤(Anthracure UVS-1331;川崎化成工業株式会社)を1質量部含む。次いで、2)ガラス基板を金型に押し当てて、金型の凹部(キャビティ)に光硬化性樹脂材料を充填した。次いで、3)342nm以下の波長の光を阻止する波長カットフィルタを挿入した超高圧水銀ランプ(ピーク波長365nm)を使用して、キャビティ内の光硬化性樹脂材料に紫外線を60秒間照射することで(照度:200mW/cm)、光硬化性樹脂材料を硬化させた。最後に、4)ガラス基板に接合された光硬化性樹脂の成形品を金型から離型した。以上の1)~4)の工程をガラス基板の位置を変えながら複数回繰り返し、ウエハレンズ製造用の樹脂成形型(サブマスター成形型)を作製した。
 比較のため、波長カットフィルタを挿入せずに樹脂成形型を作製したところ、成形回数が約40回を超えたときに、樹脂の一部が金型に付着してしまい、金型をメンテナンスしなければならなかった。一方、波長カットフィルタを挿入して樹脂成形型を作製した場合は、成形回数が150回を超えても、樹脂材料が金型に付着することはなかった。
 本出願は、2011年5月24日出願の特願2011-115891に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
 本発明の樹脂成形品の製造方法は、離型膜の劣化を防止しつつ、光硬化性樹脂の成形品を繰り返しまたは連続的に製造することができ、延いては、光硬化性樹脂の成形品を効率的に製造することができる。したがって、本発明の樹脂成形品の製造方法は、光硬化性樹脂の成形品を繰り返しまたは連続して製造する際に有用である。たとえば、本発明の樹脂成形品の製造方法は、ウエハレンズまたはウエハレンズ製造用の成形型の製造に有用である。
 10 成形型表面
 20 フルオロアルキル基
 30 離型膜
 110 第1の成形型
 120,210 基材
 130,230 光硬化性樹脂材料
 140 光
 150,260 樹脂成形品
 160 第2の成形型
 200 RTR式インプリント装置
 220 コーター
 240 ロール状成形型
 250 UV光源

Claims (6)

  1.  第1の成形型と、第2の成形型または基材とを合わせて形成されるキャビティ内に光硬化性樹脂材料を供給する第1の工程と、
     前記キャビティ内に供給された前記光硬化性樹脂材料に光を照射して、前記光硬化性樹脂材料を硬化させる第2の工程と、
     前記キャビティ内に形成された光硬化性樹脂の成形品を離型する第3の工程と、を有し、
     前記第1の成形型および前記第2の成形型のキャビティ面には、炭素-炭素単結合を含む離型膜が形成されており、
     前記光硬化性樹脂材料は、342nmを超える波長の光を照射されたときに反応を開始する光重合開始剤、または光重合開始剤と342nmを超える波長の光を照射されたときに反応を促進する光増感剤との組み合わせを含み、
     前記光は、342nm以下の波長の光を実質的に含まない、
     樹脂成形品の製造方法。
  2.  前記光の光源は、ピーク波長が342nmを超えるLED光源である、請求項1に記載の樹脂成形品の製造方法。
  3.  前記光の光源は、ピーク波長が342nmを超えるレーザ光源である、請求項1に記載の樹脂成形品の製造方法。
  4.  前記離型膜は、フルオロアルキル基を有するシランカップリング剤を含む、請求項1~3のいずれか一項に記載の樹脂成形品の製造方法。
  5.  前記第1の工程、前記第2の工程および前記第3の工程を繰り返し行うことで、前記第1の成形型を使用して前記基材上に前記光硬化性樹脂の成形品を繰り返しまたは連続して成形する、請求項1~4のいずれか一項に記載の樹脂成形品の製造方法。
  6.  前記第1の成形型および前記第2の成形型は、少なくとも転写面が樹脂で形成されている、請求項1~4のいずれか一項に記載の樹脂成形品の製造方法。
PCT/JP2012/003086 2011-05-24 2012-05-11 樹脂成形品の製造方法 WO2012160769A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-115891 2011-05-24
JP2011115891 2011-05-24

Publications (1)

Publication Number Publication Date
WO2012160769A1 true WO2012160769A1 (ja) 2012-11-29

Family

ID=47216863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003086 WO2012160769A1 (ja) 2011-05-24 2012-05-11 樹脂成形品の製造方法

Country Status (1)

Country Link
WO (1) WO2012160769A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160091333A (ko) * 2013-11-29 2016-08-02 에베 그룹 에. 탈너 게엠베하 구조물을 엠보싱하기 위한 방법 및 장치
CN106166824A (zh) * 2016-08-29 2016-11-30 湖州越球电机有限公司 一种废料少的电机用热塑装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516882A (ja) * 1999-12-15 2003-05-20 ナノゲン・インコーポレイテッド 微小反応システムおよび成型方法
JP2003277452A (ja) * 2002-03-26 2003-10-02 Dainippon Ink & Chem Inc 注型重合用活性エネルギー線硬化型樹脂組成物
JP2005084294A (ja) * 2003-09-08 2005-03-31 Ricoh Co Ltd 定着用弾性回転体及びその製造方法並びにそれを有する画像形成装置
JP2010519573A (ja) * 2007-02-13 2010-06-03 スリーエム イノベイティブ プロパティズ カンパニー 成形光学物品及びその作製方法
JP2011067950A (ja) * 2008-01-25 2011-04-07 Kyowa Hakko Chemical Co Ltd 金属膜のパターン形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516882A (ja) * 1999-12-15 2003-05-20 ナノゲン・インコーポレイテッド 微小反応システムおよび成型方法
JP2003277452A (ja) * 2002-03-26 2003-10-02 Dainippon Ink & Chem Inc 注型重合用活性エネルギー線硬化型樹脂組成物
JP2005084294A (ja) * 2003-09-08 2005-03-31 Ricoh Co Ltd 定着用弾性回転体及びその製造方法並びにそれを有する画像形成装置
JP2010519573A (ja) * 2007-02-13 2010-06-03 スリーエム イノベイティブ プロパティズ カンパニー 成形光学物品及びその作製方法
JP2011067950A (ja) * 2008-01-25 2011-04-07 Kyowa Hakko Chemical Co Ltd 金属膜のパターン形成方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160091333A (ko) * 2013-11-29 2016-08-02 에베 그룹 에. 탈너 게엠베하 구조물을 엠보싱하기 위한 방법 및 장치
JP2017500738A (ja) * 2013-11-29 2017-01-05 エーファウ・グループ・エー・タルナー・ゲーエムベーハー 構造体を型押しする方法および装置
TWI705884B (zh) * 2013-11-29 2020-10-01 奧地利商Ev集團E塔那有限公司 使用壓印模壓印具有至少一個微結構或奈米結構之方法
KR102250979B1 (ko) 2013-11-29 2021-05-12 에베 그룹 에. 탈너 게엠베하 구조물을 엠보싱하기 위한 방법 및 장치
KR20210054597A (ko) * 2013-11-29 2021-05-13 에베 그룹 에. 탈너 게엠베하 구조물을 엠보싱하기 위한 방법 및 장치
KR102361175B1 (ko) 2013-11-29 2022-02-10 에베 그룹 에. 탈너 게엠베하 구조물을 엠보싱하기 위한 방법 및 장치
CN106166824A (zh) * 2016-08-29 2016-11-30 湖州越球电机有限公司 一种废料少的电机用热塑装置

Similar Documents

Publication Publication Date Title
JP5429159B2 (ja) ウエハレンズの製造方法
KR101568892B1 (ko) 나노임프린트용 경화성 수지 조성물
JP5617636B2 (ja) ウエハレンズの製造方法
JP5329299B2 (ja) 光学レンズ
JP5440492B2 (ja) ウエハレンズの製造方法
TWI249555B (en) Resin composition for hybrid lens, method for producing hybrid lens, hybrid lens and lens system
US20150298365A1 (en) Method for producing microstructure and photocurable composition for nanoimprinting
US10048582B2 (en) Photo-imprinting resin composition, photo-imprinting resin film and patterning process
US20190329457A1 (en) Resin composition for forming replica mold, replica mold and pattern forming method using said replica mold
JP5678958B2 (ja) ウェハレンズの製造方法
WO2009116447A1 (ja) ウエハレンズの製造方法
TWI843727B (zh) 光學單元、光照射裝置、影像顯示裝置
WO2012160769A1 (ja) 樹脂成形品の製造方法
JP2003291159A (ja) 樹脂硬化方法及び樹脂成型品等の製造方法、並びにそれらに用いる器具及び得られる製品
JP2009226638A (ja) ウエハレンズの製造方法
JP2010105357A (ja) 成形装置、成形型部材、ウエハレンズ及びウエハレンズ用成形型の製造方法
JP2013125059A (ja) レンズユニット、その製造方法、レンズユニット複合体およびその製造方法
WO2012169120A1 (ja) 複合体の製造方法および複合体
JP5315737B2 (ja) ウエハレンズの製造方法
JP2012163713A (ja) ミラー部品及びミラー部品付き光導波路
JP2016102188A (ja) 光硬化性樹脂組成物及び高屈折性樹脂硬化体
KR101808757B1 (ko) 임프린트 리소그래피용 광경화형 수지 조성물
JP5130977B2 (ja) サブマスター成形型の製造方法
JP5551087B2 (ja) 造形方法
JP2009226637A (ja) マスター成形型の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12790057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12790057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP