WO2012160747A1 - 光源装置、分析装置、及び光生成方法 - Google Patents

光源装置、分析装置、及び光生成方法 Download PDF

Info

Publication number
WO2012160747A1
WO2012160747A1 PCT/JP2012/002435 JP2012002435W WO2012160747A1 WO 2012160747 A1 WO2012160747 A1 WO 2012160747A1 JP 2012002435 W JP2012002435 W JP 2012002435W WO 2012160747 A1 WO2012160747 A1 WO 2012160747A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
source device
laser light
wavelength conversion
laser
Prior art date
Application number
PCT/JP2012/002435
Other languages
English (en)
French (fr)
Inventor
大登 正敬
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to DE112012000164T priority Critical patent/DE112012000164T5/de
Priority to JP2013516176A priority patent/JP5689955B2/ja
Priority to CA2814389A priority patent/CA2814389A1/en
Publication of WO2012160747A1 publication Critical patent/WO2012160747A1/ja
Priority to US13/861,560 priority patent/US20130293895A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3532Arrangements of plural nonlinear devices for generating multi-colour light beams, e.g. arrangements of SHG, SFG, OPO devices for generating RGB light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • H01S3/2391Parallel arrangements emitting at different wavelengths

Definitions

  • the present invention relates to a light source device, an analyzer, and a light generation method.
  • the wavelength conversion element described in Patent Document 1 has the following configuration.
  • a plurality of waveguides and a combining portion are formed on a substrate made of a nonlinear optical crystal. Furthermore, a second harmonic generation unit is formed in each of the plurality of waveguides. The plurality of second harmonic generation units have mutually different phase matching wavelengths.
  • Patent Document 2 also describes that two fiber Bragg gradings are provided between a laser diode and a wavelength conversion element. These two fiber Bragg gradings constitute a laser resonator.
  • the laser resonator described in Patent Document 3 has the following configuration.
  • the semiconductor laser has a plurality of light emitting points.
  • the light emitted from each light emitting point enters the non-linear optical element through the Bragg reflection structure.
  • the Bragg reflection structure changes the reflection wavelength along the arrangement direction of the light emitting points.
  • the polarization inversion direction changes along the light propagation direction. According to this, it is described that the wavelength width of the laser light can be expanded to several nm.
  • the width of the gas absorption line is generally narrow. Therefore, when the sample is a gas such as the atmosphere and the substance to be detected is a gas, it is necessary to make the wavelength width of the laser light narrower than the width of the absorption line in order to perform the laser spectroscopy measurement with high accuracy. There is. Further, for laser spectroscopy, it is required to emit a plurality of wavelengths from the same optical axis, to be able to independently modulate each wavelength, and to be inexpensive.
  • the present invention has been made in view of the above-mentioned circumstances, and the object of the present invention is to be able to emit a plurality of wavelengths from the same optical axis, to be able to perform modulation independently for each wavelength, and further to An object of the present invention is to provide an inexpensive light source device, an analyzer, and a light generation method.
  • a light source device includes a plurality of laser light sources, a plurality of wavelength conversion elements, a multiplexer, and a first Bragg reflector.
  • the plurality of laser light sources output laser light.
  • the wavelength conversion element is provided for each of the plurality of laser light sources, and has wavelength conversion characteristics different from one another. Each wavelength conversion element converts the wavelength of the laser beam incident on the wavelength conversion element. The wavelengths of the laser light after wavelength conversion are mutually different.
  • the coupler combines a plurality of laser beams output from the plurality of wavelength conversion elements and outputs the combined light as coaxial light.
  • the first Bragg reflector is provided between each of the plurality of laser light sources and each of the plurality of wavelength conversion elements, and constitutes at least a part of a resonator of laser light.
  • a plurality of wavelengths can be emitted from the same optical axis. Further, by controlling each of the plurality of laser light sources, modulation can be performed independently for each wavelength. In addition, since the wavelength conversion elements are independent of each other, it is possible to suppress an increase in the manufacturing cost of the wavelength conversion elements.
  • An analyzer includes the light source device described above and an analyzer.
  • the analysis unit irradiates the sample with the light output from the light source device, and measures the amount of absorption of the light in the sample.
  • each of the plurality of laser light sources outputs laser light.
  • the plurality of laser beams are input to wavelength conversion elements different from each other.
  • the plurality of wavelength conversion elements have wavelength conversion characteristics different from each other, and convert the input laser light into wavelengths different from each other.
  • a laser light resonator is provided closer to the laser light source than the plurality of wavelength conversion elements. Then, by using the multiplexer, the plurality of laser beams output from the plurality of wavelength conversion elements are combined and output as coaxial light.
  • a plurality of wavelengths can be emitted from the same optical axis, modulation can be performed independently for each wavelength, and an inexpensive light source device, an analyzer, and a light generation method are provided. can do.
  • FIG. 1 is a view showing the configuration of a light source device 100 according to the first embodiment.
  • the light source device 100 includes a plurality of laser light sources 110, a plurality of wavelength conversion elements 130, a multiplexer 150, and a VBG (Volume Bragg Grating) 120 (first Bragg reflector).
  • the wavelength conversion element 130 is provided for each of the plurality of laser light sources 110 and has wavelength conversion characteristics different from one another. Each wavelength conversion element 130 converts the wavelength of the laser light incident on the wavelength conversion element. The wavelengths of the laser light after wavelength conversion are mutually different.
  • the coupler 150 combines the plurality of laser beams output from the plurality of wavelength conversion elements 130 and outputs the combined light as coaxial light.
  • the VBG 120 is provided between the plurality of laser light sources 110 and the plurality of wavelength conversion elements 130, and constitutes at least a part of a resonator of laser light. The details will be described below.
  • the plurality of laser light sources 110 are all semiconductor lasers.
  • the frequencies of the laser light (pump light) oscillated by the laser light source 110 may be the same as or different from each other.
  • the frequency at which the laser light source 110 is used depends on the application of the light source device.
  • the output of each of the plurality of laser light sources 110 is controlled by the control unit 160.
  • the control unit 160 directly controls the output of the laser light source 110 by controlling the current input to the laser light source 110.
  • the frequency of the laser light output from the laser light source 110 is, for example, in the near infrared region. In this case, the wavelength of light output from the multiplexer 150 is 490 nm or more and 630 nm or less.
  • a lens 172 is provided between the laser light source 110 and the VBG 120.
  • the surface facing the lens 172 is non-reflective coated, and the opposite surface is reflective coated.
  • the VBG 120 and the laser light source 110 form a resonator of the laser light oscillated by the laser light source 110.
  • the gain medium of this resonator is a semiconductor laser as the laser light source 110.
  • the VBG 120 is a bulk element internally containing a portion where the refractive index changes periodically.
  • the VBG 120 is formed of, for example, an inorganic material mainly composed of silica glass.
  • the raw material of VBG120 is not limited to this.
  • the periodic change of the refractive index in the VBG 120 is formed, for example, by performing ultraviolet irradiation and heat treatment.
  • One VBG 120 is provided for a plurality of laser light sources 110.
  • the reflection wavelength of the VBG 120 changes in a direction perpendicular to the traveling direction of the laser light.
  • the plurality of laser light sources 110 all have the same oscillation frequency.
  • the wavelength of the light output from the laser light source 110 has a certain width. Which wavelength of light is output from the VBG 120 depends on which position of the VBG 120 the laser light source 110 is made to face. That is, the plurality of laser light sources 110 are opposed to the position of the VBG 120 where the desired frequency is the reflection frequency.
  • the wavelength conversion element 130 is a quasi phase matching element, and is formed of, for example, a ferroelectric crystal such as LiNbO 3 or LiTaO 3 .
  • the laser beam output from the VBG 120 is incident on the wavelength conversion element 130 via the lens 174.
  • the wavelength conversion element 130 periodically has a polarization inversion region.
  • the polarization inversion periods of the plurality of wavelength conversion elements 130 are different from one another.
  • the wavelength conversion element 130 generates and emits high-order harmonics of the incident laser light, for example, second-order harmonics.
  • the period of polarization inversion of the wavelength conversion element 130 is determined by the wavelength of the laser light incident on the wavelength conversion element 130 and the wavelength of the light to be output by the wavelength conversion element 130.
  • the temperature of the wavelength conversion element 130 is controlled, for example, using a Peltier element.
  • the laser light output from the wavelength conversion element 130 enters the coupler 150 via the optical filter 140 and the lens 176.
  • the optical filter 140 cuts light having a wavelength of the oscillation frequency of the laser light source 110.
  • waveguides are formed at positions facing the wavelength conversion elements 130. These waveguides are integrated at the output side. For this reason, in the multiplexer 150, a plurality of laser beams output from the plurality of wavelength conversion elements 130 are output as coaxial light.
  • the control unit 160 controls the outputs of the laser light source 110 independently of each other. For this reason, when modulating the output of one of the laser light sources 110, the output of the other laser light sources 110 may not be affected.
  • wavelength conversion elements 130 are configured to be independent of each other, an increase in the manufacturing cost of the wavelength conversion elements 130 can be suppressed.
  • the resonator of the laser light source 110 is formed of the VBG 120 and a reflective coating formed on one surface of the laser light source 110.
  • the resonator has a fixed resonant frequency. For this reason, even if the output of the laser light source 110 is modulated, the wavelength of the laser light incident on the wavelength conversion element 130 does not change. Therefore, when the output of the laser light source 110 is modulated, it is possible to suppress that the light incident on the wavelength conversion element 130 is phase mismatched with the wavelength conversion element 130.
  • FIG. 2 is a view showing the configuration of the light source device 100 according to the second embodiment.
  • the light source device 100 according to the present embodiment has the same configuration as the light source device 100 according to the first embodiment except for the following points.
  • a plurality of optical fibers 180 are provided instead of the VBG 120.
  • An optical fiber 180 is provided for each of the laser light sources 110.
  • the laser light source 110 and the optical fiber 180 may be directly coupled or may be coupled via a lens.
  • the optical fiber 180 is provided with an FBG (Fiber Bragg Grating) 182.
  • the reflection frequency of the FBG 182 coincides with the oscillation frequency of the laser light source 110 corresponding to the optical fiber 180.
  • the resonator of the laser light source 110 is formed of the FBG 182 and a reflective coating provided on one end of the laser light source 110.
  • the multiplexer 150 is of the optical fiber type.
  • FIG. 3 is a view showing the configuration of a light source device 100 according to the third embodiment.
  • the light source device 100 according to the present embodiment has the same configuration as the light source device 100 according to the second embodiment except for the following points.
  • the optical fiber 180 is provided with an FBG 184 in addition to the FBG 182.
  • the FBG 184 is located closer to the laser light source 110 than the FBG 182.
  • the reflection frequency of the FBG 182 coincides with the oscillation frequency of the laser light source 110 corresponding to the optical fiber 180.
  • at least a part of the optical fiber 180 is a rare earth doped fiber 186.
  • the rare earth doped fiber 186 is located between the FBG 182 and the FBG 184. That is, in the present embodiment, the FBG 182 and the FBG 184 form a resonator of the laser light output from the laser light source 110.
  • the gain medium of this resonator is a rare earth doped fiber 186.
  • FIG. 4 is a view showing the configuration of a light source device 100 according to the fourth embodiment.
  • the VBG 120 is provided corresponding to a part of the laser light sources 110, and the other laser light sources 110 are provided except for the optical fiber 180 and the FBG 182.
  • the configuration is the same as that of the light source device 100 according to the first embodiment.
  • the configurations of the optical fiber 180 and the FBG 182 are as described in the second embodiment. Also according to this embodiment, the same effect as that of the first embodiment can be obtained.
  • FIG. 5 is a view showing the configuration of an analyzer according to the fifth embodiment.
  • the analyzer includes a light source device 100 and an analyzer 200.
  • the light source device 100 has the configuration shown in any of the first to fourth embodiments.
  • the analysis unit 200 irradiates the sample with the light output from the light source device 100, and measures the amount of absorption of the light in the sample.
  • the sample is, for example, a gas such as the atmosphere.
  • the analysis unit 200 detects the amount of absorption of light in the sample to detect the amount of a specific component (for example, a radical or a dilute gas such as carbon dioxide contained in the atmosphere) contained in the sample.
  • a specific component for example, a radical or a dilute gas such as carbon dioxide contained in the atmosphere
  • the light output from the light source device 100 is variable at 490 nm or more and 630 nm or less.
  • the laser light source 110 shown in FIGS. 1 to 4 of the light source device 100 outputs light in the near infrared region.
  • the light source device 100 can output laser light from the plurality of laser light sources 110 simultaneously, and can output high-order harmonics of these laser lights as coaxial light. Therefore, by simultaneously irradiating different laser beams to the sample, analysis of the sample by a plurality of wavelengths can be performed simultaneously. This makes it possible to analyze the sample at high speed. This effect is particularly noticeable when scanning a sample with light to perform two-dimensional or three-dimensional mapping.
  • the light source device 100 shown in FIG. 1 was manufactured using two laser light sources 110.
  • the laser light source 110 a semiconductor laser containing InP as a main component was used.
  • the first laser light source 110 was made to face the portion of the VBG 120 having a reflection frequency of 1080 nm, and the second laser light source 110 was made to face the portion of the VBG 120 having a reflection frequency of 1100 nm.
  • the wavelength conversion element 130 a quasi phase matching element made of Mg-doped LiNbO 3 was used.
  • a laser beam with a wavelength of 540 nm and a laser beam with a wavelength of 550 nm were output.
  • the optical axes of these two laser beams are coaxial.
  • the current input to the two laser light sources 110 was changed independently of each other using the control unit 160.
  • the intensities of the two laser beams output from the multiplexer 150 also change independently of each other.
  • the light source device 100 may be used as a light source for measurement in the measurement field such as medical and bio, or as a light source for plasma measurement.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 波長変換素子(130)は、複数のレーザ光源(110)それぞれに設けられ、互いに異なる波長変換特性を有している。各波長変換素子(130)は、その波長変換素子に入射されるレーザ光の波長を変換する。波長変換後のレーザ光の波長は、互いに異なる。合波器(150)は、複数の波長変換素子(130)から出力された複数のレーザ光を結合して同軸の光として出力する。そしてVBG(120)は、複数のレーザ光源(110)と複数の波長変換素子(130)の間に設けられ、レーザ光の共振器の少なくとも一部を構成している。

Description

光源装置、分析装置、及び光生成方法
 本発明は、光源装置、分析装置、及び光生成方法に関する。
 近年、レーザ光に関する技術が発達している。これにより、レーザ光の吸収強度を用いて試料中の特定の物質の量を検出するレーザ分光計測も、高精度化している。一方、可視光領域のうち、490nm~630nmの周波数帯では、実用可能なレーザダイオードがない。このため、近赤外光のレーザ光を、波長変換素子を用いて、490nm~630nmの周波数帯の光を得る技術が開発されている。波長変換素子に関係する技術としては、例えば特許文献1~3に記載の技術がある。
 特許文献1に記載の波長変換素子は、以下の構成を有している。非線形光学結晶からなる基板には、複数の導波路及び合波部を形成されている。さらに、複数の導波路それぞれには、第2高調波生成部が形成されている。これら複数の第2高調波生成部は、位相整合波長が互いに異なる。
 また特許文献2には、レーザダイオードと波長変換素子の間に2つのファイバーブラッググレーディングを設けることが記載されている。これら2つのファイバーブラッググレーディングは、レーザ共振器を構成している。
 また特許文献3に記載のレーザ共振器は、以下の構成を有している。半導体レーザは、複数の発光点を有している。各発光点から発光された光は、ブラッグ反射構造を介して非線形光学素子に入射する。ブラッグ反射構造は、発光点の配列方向に沿って反射波長が変化している。また非線形光学素子は、光の伝播方向に沿って分極反転方向が変化している。これにより、レーザ光の波長幅を数nmにまで拡大することができる、と記載されている。
特開2007-147688号公報 国際公開第2008/044673号パンフレット 特開2010-204197号公報
 ガスの吸収線の幅は一般に狭い。このため、試料が大気などの気体であり、検出対象の物質がガスである場合、レーザ分光計測を高精度に行うためには、レーザ光の波長幅を、吸収線の幅よりも狭くする必要がある。また、レーザ分光計測には、複数の波長を同一光軸から出射すること、波長ごとに独立して変調を行えること、及び、安価であること、が求められる。
 しかし、特許文献1に記載の技術では、一つの非線形光学結晶に、複数の第2高調波生成部を設ける必要がある。このため、一つの第2高調波発生部が不良になった場合、他の第2高調波生成部も不良品となる。従って、非線形光学結晶の製造コストが高くなる可能性がある。
 また、特許文献2に記載の技術では、複数の波長を同一光軸から出射することができない。さらに特許文献3に記載の技術は、非線形光学素子は、光の伝播方向に沿って分極反転方向が変化しているため、レーザ光の波長幅が広がってしまう。
 本発明は上記事情に鑑みてなされたものであり、その目的とするところは、複数の波長を同一光軸から出射することができ、波長ごとに独立して変調を行えることができ、さらには安価である光源装置、分析装置、及び光生成方法を提供することにある。
 本発明に係る光源装置は、複数のレーザ光源、複数の波長変換素子、合波器、及び第1ブラッグ反射部を有している。複数のレーザ光源はレーザ光を出力する。波長変換素子は、複数のレーザ光源それぞれに設けられ、互いに異なる波長変換特性を有している。各波長変換素子は、その波長変換素子に入射されるレーザ光の波長を変換する。波長変換後のレーザ光の波長は、互いに異なる。合波器は、複数の波長変換素子から出力された複数のレーザ光を結合して同軸の光として出力する。そして第1ブラッグ反射部は、複数のレーザ光源と複数の波長変換素子それぞれの間に設けられ、レーザ光の共振器の少なくとも一部を構成している。
 この光源装置によれば、複数の波長を同一光軸から出射することができる。また、複数のレーザ光源それぞれを制御することにより、波長ごとに独立して変調を行うことができる。また、波長変換素子は互いに独立した構成であるため、波長変換素子の製造コストが高くなることを抑制できる。
 本発明に係る分析装置は、上記した光源装置と、分析部を有している。分析部は、光源装置から出力された光を試料に照射し、試料における光の吸収量を測定する。
 本発明に係る光生成方法では、複数のレーザ光源それぞれがレーザ光を出力する。これら複数のレーザ光は、互いに異なる波長変換素子に入力される。これら複数の波長変換素子は、互いに異なる波長変換特性を有しており、入力されたレーザ光を互いに異なる波長に変換する。また、複数の波長変換素子よりもレーザ光源側には、レーザ光の共振器が設けられている。そして、合波器を用いることにより、複数の波長変換素子から出力された複数のレーザ光を結合して同軸の光として出力する。
 本発明によれば、複数の波長を同一光軸から出射することができ、波長ごとに独立して変調を行えることができ、さらには安価である光源装置、分析装置、及び光生成方法を提供することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
第1の実施形態に係る光源装置の構成を示す図である。 第2の実施形態に係る光源装置の構成を示す図である。 第3の実施形態に係る光源装置の構成を示す図である。 第4の実施形態に係る光源装置の構成を示す図である。 第5の実施形態に係る分析装置の構成を示す図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(第1の実施形態)
 図1は、第1の実施形態に係る光源装置100の構成を示す図である。光源装置100は、複数のレーザ光源110、複数の波長変換素子130、合波器150、及びVBG(Volume Bragg Grating)120(第1ブラッグ反射部)を備えている。波長変換素子130は、複数のレーザ光源110それぞれに設けられ、互いに異なる波長変換特性を有している。各波長変換素子130は、その波長変換素子に入射されるレーザ光の波長を変換する。波長変換後のレーザ光の波長は、互いに異なる。合波器150は、複数の波長変換素子130から出力された複数のレーザ光を結合して同軸の光として出力する。そしてVBG120は、複数のレーザ光源110と複数の波長変換素子130の間に設けられ、レーザ光の共振器の少なくとも一部を構成している。以下、詳細に説明する。
 複数のレーザ光源110は、いずれも半導体レーザである。レーザ光源110が発振するレーザ光(ポンプ光)の周波数は、互いに同一であっても良いし、異なっていてもよい。どの周波数を発振するレーザ光源110を用いるかは、光源装置の用途によって定まる。複数のレーザ光源110それぞれの出力は、制御部160によって制御されている。制御部160は、レーザ光源110に入力する電流を制御することにより、レーザ光源110の出力を、直接制御している。レーザ光源110が出力するレーザ光の周波数は、例えば近赤外域にある。この場合、合波器150から出力される光の波長は、490nm以上630nm以下である。
 レーザ光源110とVBG120の間には、レンズ172が設けられている。レーザ光源110は、レンズ172に対向する面が無反射コーティングされており、かつ逆側の面が反射コーティングされている。そしてVBG120と、レーザ光源110により、そのレーザ光源110が発振したレーザ光の共振器が形成されている。この共振器のゲイン媒体は、レーザ光源110としての半導体レーザである。
 VBG120は、屈折率が周期的に変化している部分を内在しているバルク素子である。VBG120は、例えばシリカ系ガラスを主原料とした無機材料により形成されている。ただし、VBG120の原料はこれに限定されない。VBG120における屈折率の周期的な変化は、例えば紫外線照射及び熱処理を行うことにより、形成されている。
 VBG120は、複数のレーザ光源110に対して一つ設けられている。そしてVBG120は、レーザ光の進行方向に対して垂直な方向に、反射波長が変化している。本実施形態において、複数のレーザ光源110は、いずれも同一の発振周波数を有している。ただし、レーザ光源110が出力する光の波長には、ある程度の幅がある。これらのうちどの波長の光がVBG120から出力されるかは、レーザ光源110をVBG120のどの位置に対向させるかによって定まる。すなわち複数のレーザ光源110は、VBG120のうち所望の周波数が反射周波数となっている位置に、対向している。
 波長変換素子130は擬似位相整合素子であり、例えばLiNbO又はLiTaOなどの強誘電体結晶により形成されている。波長変換素子130には、レンズ174を介して、VBG120から出力されたレーザ光が入射する。波長変換素子130は、分極反転領域を周期的に有している。複数の波長変換素子130の分極反転周期は、互いに異なる。波長変換素子130は、入射したレーザ光の高次高調波、例えば二次高調波を生成して出射する。波長変換素子130の分極反転の周期は、その波長変換素子130に入射するレーザ光の波長、及び、波長変換素子130が出力すべき光の波長によって定まる。また波長変換素子130の温度は、例えばペルチェ素子を用いて制御される。
 波長変換素子130から出力されたレーザ光は、光フィルタ140及びレンズ176を介して合波器150に入射する。光フィルタ140は、レーザ光源110の発振周波数の波長を有する光をカットする。合波器150には、各波長変換素子130に対向した位置に導波路が形成されている。これら導波路は、出力側で一つにまとまっている。このため、合波器150では、複数の波長変換素子130から出力された複数のレーザ光が、同軸の光として出力される。
 次に、本実施形態の作用及び効果について説明する。光源装置100によれば、制御部160は、レーザ光源110の出力を互いに独立して制御している。このため、いずれかのレーザ光源110の出力を変調するときに、他のレーザ光源110の出力に影響を与えないで済む。
 また、複数のレーザ光源110から同時にレーザ光を出力させ、これらレーザ光の高次高調波を、同軸の光として出力することができる。従って、試料に対して互いに異なるレーザ光を同時に照射することにより、複数の波長による試料の分析を同時に行うことができる。これにより、試料の分析を高速で行うことができる。この効果は、試料に対して光を走査して、2次元または3次元のマッピングを行う際に、特に顕著になる。
 また、波長変換素子130は互いに独立した構成であるため、波長変換素子130の製造コストが高くなることを抑制できる。
 また、レーザ光源110の共振器は、VBG120と、レーザ光源110の一面に形成された反射コーティングにより形成されている。この共振器は、共振周波数が固定されている。このため、レーザ光源110の出力が変調しても、波長変換素子130に入射するレーザ光の波長は変化しない。このため、レーザ光源110の出力が変調したときに、波長変換素子130に入射する光が波長変換素子130に対して位相不整合となることを抑制できる。
(第2の実施形態)
 図2は、第2の実施形態に係る光源装置100の構成を示す図である。本実施形態に係る光源装置100は、以下の点を除いて、第1の実施形態に係る光源装置100と同様の構成である。
 まず、VBG120の代わりに複数の光ファイバ180を備えている。光ファイバ180は、レーザ光源110のそれぞれに対して設けられている。レーザ光源110と光ファイバ180は、直接結合されていても良いし、レンズを介して結合されていても良い。光ファイバ180には、FBG(Fiber Bragg Grating)182が設けられている。FBG182の反射周波数は、その光ファイバ180に対応するレーザ光源110の発振周波数と一致している。レーザ光源110の共振器は、FBG182と、レーザ光源110の一端に設けられた反射コーティングにより形成されている。
 また合波器150は、光ファイバー型となっている。
 本実施形態によっても、第1の実施形態と同様の効果を得ることができる。
(第3の実施形態)
 図3は、第3の実施形態に係る光源装置100の構成を示す図である。本実施形態に係る光源装置100は、以下の点を除いて、第2の実施形態に係る光源装置100と同様の構成である。
 まず、光ファイバ180にはFBG182のほかにFBG184も設けられている。FBG184は、FBG182よりもレーザ光源110の近くに位置している。FBG182の反射周波数は、その光ファイバ180に対応するレーザ光源110の発振周波数と一致している。また、光ファイバ180は、少なくとも一部が希土類ドープファイバー186となっている。希土類ドープファイバー186は、FBG182とFBG184の間に位置している。すなわち本実施形態では、FBG182とFBG184により、レーザ光源110が出力するレーザ光の共振器が形成されている。この共振器のゲイン媒体は、希土類ドープファイバー186である。
 本実施形態によっても、第1の実施形態と同様の効果を得ることができる。
(第4の実施形態)
 図4は、第4の実施形態に係る光源装置100の構成を示す図である。本実施形態に係る光源装置100は、一部のレーザ光源110に対応してVBG120が設けられており、他のレーザ光源110に対しては光ファイバ180及びFBG182が設けられている点を除いて、第1の実施形態に係る光源装置100と同様の構成である。光ファイバ180及びFBG182の構成は、第2の実施形態で説明したとおりである。
 本実施形態によっても、第1の実施形態と同様の効果を得ることができる。
(第5の実施形態)
 図5は、第5の実施形態に係る分析装置の構成を示す図である。この分析装置は、光源装置100及び分析部200を有している。光源装置100は、第1~第4の実施形態のいずれかに示した構成を有している。分析部200は、光源装置100から出力された光を試料に照射し、この試料における光の吸収量を測定する。試料は、例えば大気などの気体である。そして分析部200は、試料における光の吸収量を測定することにより、試料に含まれる特定の成分(例えばラジカル、又は大気中に含まれる二酸化炭素などの希薄ガス)の量を検出する。検出対象の成分が二酸化炭素である場合、光源装置100が出力する光は、490nm以上630nm以下で可変である。この場合、光源装置100のレーザ光源110(図1~4に図示)は、近赤外域の光を出力する。
 上記したように、光源装置100は、複数のレーザ光源110から同時にレーザ光を出力させ、これらレーザ光の高次高調波を、同軸の光として出力することができる。従って、試料に対して互いに異なるレーザ光を同時に照射することにより、複数の波長による試料の分析を同時に行うことができる。これにより、試料の分析を高速で行うことができる。この効果は、試料に対して光を走査して、2次元または3次元のマッピングを行う際に、特に顕著になる。
(実施例)
 図1に示した光源装置100を、2つのレーザ光源110を用いて作製した。レーザ光源110には、InPを主成分とする半導体レーザを使用した。第1のレーザ光源110を、VBG120のうち反射周波数が1080nmになっている部分に対向させ、第2のレーザ光源110を、VBG120のうち反射周波数が1100nmになっている部分に対向させた。波長変換素子130には、MgをドープしたLiNbOからなる擬似位相整合素子を用いた。
 その結果、合波器150から、波長が540nmのレーザ光と、波長が550nmのレーザ光が出力された。これら2つのレーザ光の光軸は同軸になっていた。
 また、制御部160を用いて2つのレーザ光源110へ入力する電流を、互いに独立して変化させた。その結果、合波器150から出力される2つのレーザ光の強度も、互いに独立して変化することが確認された。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。例えば光源装置100は、医用、バイオなどの計測分野における計測用の光源や、プラズマ計測の光源として使用されても良い。
 この出願は、2011年5月26日に出願された日本出願特願2011-118054を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (11)

  1.  複数のレーザ光源と、
     前記複数のレーザ光源それぞれに設けられ、互いに異なる波長変換特性を有しており、レーザ光を互いに異なる波長に変換する複数の波長変換素子と、
     前記複数の波長変換素子から出力された複数の前記レーザ光を結合して同軸の光として出力する合波器と、
     前記複数のレーザ光源と前記複数の波長変換素子それぞれの間に設けられ、前記レーザ光の共振器の少なくとも一部を構成する第1ブラッグ反射部と、
    を備える光源装置。
  2.  請求項1に記載の光源装置において、
     前記複数のレーザ光源の少なくとも一つは、半導体レーザであり、
     前記半導体レーザは、前記第1ブラッグ反射部側の面が無反射コーティングされており、かつ逆側の面が反射コーティングされており、
     前記半導体レーザに対応する前記共振器は、前記第1ブラッグ反射部と、前記半導体レーザにより形成されている光源装置。
  3.  請求項2に記載の光源装置において、
     前記第1ブラッグ反射部は、VBG(Volume Bragg Grating)素子である光源装置。
  4.  請求項3に記載の光源装置において、
     前記複数のレーザ光源は、いずれも前記半導体レーザであり、
     前記VBGは、前記レーザ光の進行方向に対して垂直な方向に、反射波長が変化している光源装置。
  5.  請求項2に記載の光源装置において、
     前記半導体レーザと、当該レーザ光源に対応する前記波長変換素子の間には、光ファイバーが設けられており、
     前記第1ブラッグ反射部は、前記光ファイバーに設けられたFBG(Fiber Bragg Grating)である光源装置。
  6.  請求項1に記載の光源装置において、
     前記複数のレーザ光源の少なくとも一つと、当該レーザ光源に対応する前記波長変換素子の間には、光ファイバーが設けられており、
     前記光ファイバーは、前記第1ブラッグ反射部である第1FBGと、第2FBGとを有しており、
     前記光ファイバーが設けられている前記レーザ光源に対応する前記共振器は、前記第1FBG及び前記第2FBGを含んでいる光源装置。
  7.  請求項1~6のいずれか一項に記載の光源装置において、
     前記複数の波長変換素子は、分極反転周期が互いに異なる擬似位相整合素子である光源装置。
  8.  請求項1~7のいずれか一項に記載の光源装置において、
     前記複数のレーザ光源を互いに独立して制御する制御部を備える光源装置。
  9.  請求項1~8のいずれか一項に記載の光源装置において、
     前記レーザ光の波長は、近赤外域にあり、
     前記光源装置から出力される光の波長は、490nm以上630nm以下である光源装置。
  10.  光源装置と、
     前記光源装置から出力された光を試料に照射し、前記試料における前記光の吸収量を測定する分析部と、
    を備え、
     前記光源装置は、
      複数のレーザ光源と、
      前記複数のレーザ光源それぞれに設けられ、互いに異なる波長変換特性を有しており、レーザ光を互いに異なる波長に変換する複数の波長変換素子と、
      前記複数の波長変換素子から出力された複数の前記レーザ光を結合して同軸の光として出力する合波器と、
      前記複数のレーザ光源と前記複数の波長変換素子それぞれの間に設けられ、前記レーザ光の共振器の少なくとも一部を構成する第1ブラッグ反射部と、
    を備える分析装置。
  11.  互いに異なる波長のレーザ光を出力する複数のレーザ光源を準備し、
     前記複数のレーザ光源それぞれに、互いに異なる波長変換特性を有しており、前記レーザ光を互いに異なる波長に変換する複数の波長変換素子を設け、
     前記複数の波長変換素子よりも前記レーザ光源側に、前記レーザ光の共振器を設け、
     合波器を用いることにより、前記複数の波長変換素子から出力された複数の前記レーザ光を結合して同軸の光として出力する光生成方法。
PCT/JP2012/002435 2011-05-26 2012-04-06 光源装置、分析装置、及び光生成方法 WO2012160747A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112012000164T DE112012000164T5 (de) 2011-05-26 2012-04-06 Lichtquellenvorrichtung, Analysevorrichtung und Verfahren zur Lichterzeugung
JP2013516176A JP5689955B2 (ja) 2011-05-26 2012-04-06 光源装置、分析装置、及び光生成方法
CA2814389A CA2814389A1 (en) 2011-05-26 2012-04-06 Light source device, analysis device, and light generation method
US13/861,560 US20130293895A1 (en) 2011-05-26 2013-04-12 Light source device, analysis device, and light generation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011118054 2011-05-26
JP2011-118054 2011-05-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/861,560 Continuation US20130293895A1 (en) 2011-05-26 2013-04-12 Light source device, analysis device, and light generation method

Publications (1)

Publication Number Publication Date
WO2012160747A1 true WO2012160747A1 (ja) 2012-11-29

Family

ID=47216841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002435 WO2012160747A1 (ja) 2011-05-26 2012-04-06 光源装置、分析装置、及び光生成方法

Country Status (6)

Country Link
US (1) US20130293895A1 (ja)
JP (1) JP5689955B2 (ja)
CA (1) CA2814389A1 (ja)
DE (1) DE112012000164T5 (ja)
TW (1) TWI567471B (ja)
WO (1) WO2012160747A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062235A (zh) * 2014-07-16 2014-09-24 北京佰纯润宇生物科技有限公司 基于光纤的单流通池的多波长在线检测设备
KR20150086719A (ko) * 2014-01-20 2015-07-29 주식회사 이오테크닉스 레이저 빔 형성 방법 및 이를 적용하는 레이저 시스템
JP2015152698A (ja) * 2014-02-13 2015-08-24 スペクトロニクス株式会社 レーザ光源装置
JP2016219712A (ja) * 2015-05-25 2016-12-22 株式会社メガオプト 多波長レーザー発振装置および多波長レーザー発振方法
JP2018018946A (ja) * 2016-07-27 2018-02-01 富士ゼロックス株式会社 レーザ部品、レーザ光発生装置及び光干渉断層計

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3024633B1 (fr) * 2014-07-30 2016-07-29 Onera (Office Nat D'etudes Et De Rech Aerospatiales) Source laser, appareil et procede pour interagir simultanement avec plusieurs especes atomiques
CN110380326B (zh) * 2019-07-29 2020-10-23 武汉电信器件有限公司 一种光信号输出装置及方法、存储介质
CN112485272B (zh) * 2020-12-14 2021-11-09 紫创(南京)科技有限公司 半导体检测装置及检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332500A (ja) * 2005-05-30 2006-12-07 Noritsu Koki Co Ltd レーザー光源装置
JP2008276097A (ja) * 2007-05-07 2008-11-13 Seiko Epson Corp 波長変換素子ユニット、波長変換素子ユニットの製造方法、光源装置及びプロジェクタ
JP2009162805A (ja) * 2007-12-28 2009-07-23 Panasonic Corp レーザ光源装置
JP2009264814A (ja) * 2008-04-23 2009-11-12 Fuji Electric Systems Co Ltd 多成分用レーザ式ガス分析計
JP2010204197A (ja) * 2009-02-27 2010-09-16 Sony Corp レーザ装置、レーザディスプレイ装置、レーザ照射装置及び非線形光学素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454437A (ja) * 1990-06-22 1992-02-21 Hitachi Ltd 散乱性物体の光吸収測定方法およびその装置
US6041070A (en) * 1997-11-14 2000-03-21 Sdl, Inc. Resonant pumped short cavity fiber laser
US6996140B2 (en) * 2002-12-23 2006-02-07 Jds Uniphase Corporation Laser device for nonlinear conversion of light
JP2007147688A (ja) 2005-11-24 2007-06-14 Noritsu Koki Co Ltd 波長変換素子、レーザ装置及び写真処理装置
WO2008044673A1 (fr) 2006-10-10 2008-04-17 Panasonic Corporation Dispositif de conversion de longueur d'onde et dispositif d'affichage d'images
JP5544850B2 (ja) 2009-12-01 2014-07-09 富士ゼロックス株式会社 電子写真感光体、プロセスカートリッジ、画像形成装置、及び分散液

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332500A (ja) * 2005-05-30 2006-12-07 Noritsu Koki Co Ltd レーザー光源装置
JP2008276097A (ja) * 2007-05-07 2008-11-13 Seiko Epson Corp 波長変換素子ユニット、波長変換素子ユニットの製造方法、光源装置及びプロジェクタ
JP2009162805A (ja) * 2007-12-28 2009-07-23 Panasonic Corp レーザ光源装置
JP2009264814A (ja) * 2008-04-23 2009-11-12 Fuji Electric Systems Co Ltd 多成分用レーザ式ガス分析計
JP2010204197A (ja) * 2009-02-27 2010-09-16 Sony Corp レーザ装置、レーザディスプレイ装置、レーザ照射装置及び非線形光学素子

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150086719A (ko) * 2014-01-20 2015-07-29 주식회사 이오테크닉스 레이저 빔 형성 방법 및 이를 적용하는 레이저 시스템
KR101602780B1 (ko) * 2014-01-20 2016-03-11 주식회사 이오테크닉스 레이저 빔 형성 방법 및 이를 적용하는 레이저 시스템
JP2015152698A (ja) * 2014-02-13 2015-08-24 スペクトロニクス株式会社 レーザ光源装置
CN104062235A (zh) * 2014-07-16 2014-09-24 北京佰纯润宇生物科技有限公司 基于光纤的单流通池的多波长在线检测设备
JP2016219712A (ja) * 2015-05-25 2016-12-22 株式会社メガオプト 多波長レーザー発振装置および多波長レーザー発振方法
JP2018018946A (ja) * 2016-07-27 2018-02-01 富士ゼロックス株式会社 レーザ部品、レーザ光発生装置及び光干渉断層計

Also Published As

Publication number Publication date
CA2814389A1 (en) 2012-11-29
US20130293895A1 (en) 2013-11-07
DE112012000164T5 (de) 2013-07-18
JPWO2012160747A1 (ja) 2014-07-31
JP5689955B2 (ja) 2015-03-25
TWI567471B (zh) 2017-01-21
TW201303466A (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
WO2012160747A1 (ja) 光源装置、分析装置、及び光生成方法
JP6807897B2 (ja) レーザのスペクトル帯域幅の低減
CN100529937C (zh) 具有调制功能的光源装置及其驱动方法
EP1550905A1 (en) Wavelength conversion module
KR102090454B1 (ko) 레이저 장치, 그 레이저 장치를 구비한 노광 장치 및 검사 장치
KR101628485B1 (ko) 극초단파 광섬유 레이저 장치
US8654801B2 (en) Light source device, analysis device, and light generation method
JP4676279B2 (ja) 光生成装置および該装置を備えたテラヘルツ光生成装置
EP3176887A1 (en) Efficient frequency conversion of multimode lasers using coordinated resonators
JP6673774B2 (ja) 中赤外レーザ光源およびレーザ分光装置
JP4719198B2 (ja) 半導体レーザモジュールおよびレーザ光源
US20220263292A1 (en) Laser device and method for generating laser light
JP4960040B2 (ja) 光生成装置および該装置を備えたテラヘルツ光生成装置
JP2012222352A (ja) テラヘルツシステムで使用するためのビート信号生成装置、テラヘルツシステム、およびビート信号生成装置の使用方法
US20140269791A1 (en) Generation Of Multioctave Coherent Light Harmonics
JP4748511B2 (ja) 光デバイス
KR101786273B1 (ko) 광학 시스템
JP2015087729A (ja) 波長変換レーザ装置
Wang et al. Optically pumped distributed feedback thin film waveguide lasers with multiwavelength and polarized emissions
JP4553822B2 (ja) 波長変換モジュール
JP2011128368A (ja) 波長変換光源
JP2009229250A (ja) ガス測定装置、ガス測定方法、及びガス測定用光源
Koslowski et al. Monolithic wide tunable laser diodes for gas sensing at 2100 nm
JP5820101B2 (ja) 光源装置
dos Santos et al. A Simple Spectral Interrogation System for Optical Fiber Sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2814389

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1120120001648

Country of ref document: DE

Ref document number: 112012000164

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2013516176

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12789067

Country of ref document: EP

Kind code of ref document: A1