WO2012160676A1 - 転動疲労寿命が一定の鋼材 - Google Patents

転動疲労寿命が一定の鋼材 Download PDF

Info

Publication number
WO2012160676A1
WO2012160676A1 PCT/JP2011/062001 JP2011062001W WO2012160676A1 WO 2012160676 A1 WO2012160676 A1 WO 2012160676A1 JP 2011062001 W JP2011062001 W JP 2011062001W WO 2012160676 A1 WO2012160676 A1 WO 2012160676A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel
cementite
nitrogen compound
polishing
Prior art date
Application number
PCT/JP2011/062001
Other languages
English (en)
French (fr)
Inventor
正樹 貝塚
亮廣 松ヶ迫
智一 増田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to PCT/JP2011/062001 priority Critical patent/WO2012160676A1/ja
Publication of WO2012160676A1 publication Critical patent/WO2012160676A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium

Definitions

  • the present invention relates to a steel material applied to bearing parts and machine structural parts used in automobiles and various industrial machines, and more particularly to a steel material having a certain long rolling fatigue life when used as the various members.
  • Parts such as bearings and crankshafts are important parts that support the rotating and sliding parts of machinery, but the contact surface pressure is quite high and the external force may fluctuate. Often severe. For this reason, excellent durability is required for the steel material.
  • high-carbon chromium bearing steels such as SUJ2 as defined in JIS G 4805 (1999) are conventionally used as bearing materials used in various fields such as automobiles and various industrial machines.
  • bearings are used in harsh environments such as inner and outer rings and rolling elements such as ball bearings and roller bearings with extremely high contact surface pressure, fatigue failure is likely to occur due to very fine defects (inclusions, etc.).
  • inclusions, etc. There is a problem.
  • Patent Document 1 the content of Ti and Al in the bearing material is specified, and the amount of fine Ti carbide, Ti carbonitride, Al nitride, etc. is determined by performing heat treatment after spheroidizing annealing. It has been proposed to improve the rolling fatigue life by controlling and thereby refining the prior austenite crystal grains (former ⁇ crystal grains).
  • the rolling fatigue life is improved, but the Ti content is as high as 0.26% or more, so that there is a problem that not only the cost is increased but also the workability is lowered.
  • coarse TiN is likely to be generated during casting, and the generation of this precipitate causes a variation in fatigue life, and it is actually desired to realize a steel material having a constant rolling fatigue life.
  • Patent Document 2 a technique as disclosed in Patent Document 2 has been proposed as a bearing steel having excellent abrasiveness.
  • the chemical composition of the steel material is specified, and TiN having a maximum diameter of 10 ⁇ m or less is dispersed in the steel, thereby improving both the polishing efficiency and the surface property.
  • this technique is based on the dispersion of TiN, TiN tends to become coarse, and as a result, the fatigue life tends to vary.
  • This invention is made
  • the objective is to provide the steel material which has the favorable abrasiveness at the time of processing into a product shape, and has a fixed long rolling fatigue life. is there.
  • the steel materials according to the present invention that have achieved the above-mentioned object are: C: 0.65 to 1.10% (meaning of mass%, the same shall apply hereinafter), Si: 0.05 to 1.0%, Mn: 0 0.1 to 2%, P: 0.05% or less (not including 0%), S: 0.05% or less (not including 0%), Cr: 0.15 to 2.0%, Al: 0 0.01 to 0.1%, N: 0.025% or less (not including 0%), Ti: 0.002% or less (not including 0%), and O: 0.0025% or less (including 0%) And the balance is composed of iron and inevitable impurities, the average equivalent circle diameter of the Al-based nitrogen compound dispersed in the steel is 60 nm or more, and the number density of the Al-based nitrogen compound having an equivalent circle diameter of 25 to 200 nm is and 1.1 units / [mu] m 2 or more, cementite dispersed in the steel is the area ratio is 12% or less, and, Rights Circle equivalent diameter has a
  • the “equivalent circle diameter” is a diameter of a circle having the same area with respect to the size of the Al-based nitrogen compound or cementite, and is an observation surface of a transmission electron microscope (TEM) or a scanning electron microscope (SEM). Calculated for Al-based nitrogen compounds and cementite found above.
  • the Al-based nitrogen compounds targeted in the present invention include not only AlN but also those containing elements such as Mn, Cr, S, Si in part (total content up to about 30%). Is intended.
  • the cementite is intended to include not only Fe3C but also those containing elements such as Mn and Cr partially (total content up to about 20%).
  • the product shape by appropriately adjusting the chemical component composition, appropriately dispersing an appropriately sized Al-based nitrogen compound in the steel material, and defining the area ratio and size of cementite, the product shape
  • the present inventors have studied from various angles with the aim of realizing a steel material that can improve the grindability when processed into a product shape and has excellent stability of rolling fatigue life. In addition, it was found that it is effective to satisfy the following requirements (A) to (E) in order to improve the abrasiveness and rolling fatigue life of the steel material.
  • (A) Disperse a large amount of a predetermined amount of an Al-based nitrogen compound, increase the strength of the parent phase (mainly martensite) through dispersion strengthening, and reduce the hardness difference from hard inclusions (cementite).
  • the surface properties can be made good (that is, good rolling fatigue life can be stably obtained)
  • (B) In order to strengthen dispersion by the Al-based nitrogen compound, it is necessary to define the amount (number density) and size of the Al-based nitrogen compound;
  • (C) In order to achieve the degree of dispersion (number density) in the Al-based nitrogen compound, it is important to strictly control the content of Al and N in the steel, and in the manufacturing process of the steel material, It is useful to increase the cooling rate after removing the temperature range of 850 to 650 ° C., which is the precipitation temperature range of the Al-based nitrogen compound, after hot rolling,
  • (D) In order to improve the abrasiveness of the steel material, it is effective to set the cementite area
  • the size of the Al-based nitrogen compound also affects the surface properties after polishing (surface roughness after polishing), (E) It is effective to appropriately control the spheroidizing heat treatment (spheroidizing annealing) before processing the part shape in order to make the area ratio and size (equivalent circle diameter) of cementite within a predetermined range.
  • the inventors of the present invention have further conducted intensive research in order to realize the abrasiveness of the steel material and the stability of the rolling fatigue life.
  • the Al and N contents in the steel material are strictly defined, the production conditions are controlled, and the average equivalent circle diameter dispersed in the steel after quenching and tempering is 60 nm or more. If the number density of the 200 nm Al-based nitrogen compound is 1.1 pieces / ⁇ m 2 or more, the area ratio of cementite is 12% or less, and the average equivalent circle diameter is 0.60 ⁇ m or less, The present inventors have found that the abrasiveness of the steel material and the stability of the rolling fatigue life can be remarkably improved.
  • the strength of the matrix (mainly martensite) is enhanced by the dispersion strengthening.
  • the surface property can be improved by reducing the difference in hardness from the hard inclusion (cementite).
  • cementite hard inclusion
  • the number density of the Al-based nitrogen compound as described above is less than 1.1 / ⁇ m 2 , the strength improvement effect due to dispersion strengthening cannot be effectively exhibited.
  • the number density of the Al-based nitrogen compound is preferably 1.3 pieces / ⁇ m 2 or more (more preferably 1.5 pieces / ⁇ m 2 or more).
  • the upper limit of the number density of the Al-based nitrogen compound is not particularly limited, but if it is too large, the crystal grains become coarse, an incompletely quenched phase (for example, fine pearlite or bainite phase) is generated, and rolling fatigue occurs. Life may become unstable.
  • the number density of the Al-based nitrogen compound is preferably 6.0 pieces / ⁇ m 2 or less, more preferably 5.0 pieces / ⁇ m 2 or less.
  • the average equivalent circle diameter of the Al-based nitrogen compound dispersed in the steel after quenching and tempering is determined. It is important that the thickness is 60 nm or more. That is, by setting the average equivalent circle diameter of the Al-based nitrogen compound to 60 nm or more, the effect of dispersion strengthening can be sufficiently exerted, so that the surface properties are improved (surface roughness is reduced).
  • the size of the Al-based nitrogen compound is preferably 70 nm or more (more preferably 80 nm or more).
  • the area ratio and size (equivalent circle diameter) of cementite be within a predetermined range. As the amount of cementite increases, the polishing efficiency decreases. From such a viewpoint, the area ratio of cementite needs to be 12% or less.
  • the area ratio of cementite is preferably 11% or less (more preferably 10% or less).
  • the lower limit of the cementite area ratio is not particularly limited, but if it becomes too small, the rolling fatigue life may deteriorate and become unstable. For this reason, it is preferable that the area ratio of cementite is 5% or more, More preferably, it is 6% or more.
  • the cementite when the cementite is small in size, it easily falls off during polishing, and the adverse effect on the polishing properties (polishing efficiency) is reduced. For these reasons, it is necessary that the cementite has an average equivalent circle diameter of 0.60 ⁇ m or less.
  • the size of cementite is preferably 0.50 ⁇ m or less (more preferably 0.40 ⁇ m or less) in terms of average equivalent circle diameter.
  • the lower limit of the cementite size is not particularly limited, but if it becomes too small, the rolling fatigue life may deteriorate and become unstable. For this reason, it is preferable that the average equivalent-circle diameter of cementite is 0.1 micrometer or more, More preferably, it is 0.15 micrometer or more.
  • the chemical component composition (C, Si, Mn, P, S, Cr, Al, N, Ti, O) including the above-described Al and N contents needs to be appropriately adjusted.
  • the reasons for limiting the ranges of these components are as follows.
  • C is an essential element for increasing the quenching hardness and maintaining the strength at room temperature and high temperature to impart wear resistance.
  • C In order to exert such an effect, C must be contained in an amount of 0.65% or more, preferably 0.8% or more (more preferably 0.95% or more).
  • the C content should be suppressed to 1.10% or less, preferably 1.05% or less (more preferably 1.0% or less).
  • Si 0.05 to 1.0%
  • Si is an element useful for improving the solid solution strengthening and hardenability of the matrix. In order to exert such effects, it is necessary to contain Si by 0.05% or more, preferably 0.1% or more (more preferably 0.15% or more). However, if the Si content is excessively increased, workability and machinability are significantly reduced. For this reason, Si content should be suppressed to 1.0% or less, preferably 0.9% or less (more preferably 0.8% or less).
  • Mn is an element useful for improving the solid solution strengthening and hardenability of the matrix. In order to exert such an effect, it is necessary to contain Mn in an amount of 0.1% or more, preferably 0.15% or more (more preferably 0.2% or more). However, if the Mn content is too large, the workability and machinability are significantly reduced. Therefore, the Mn content should be suppressed to 2% or less, preferably 1.6% or less (more preferably 1.2% or less).
  • P 0.05% or less (excluding 0%)
  • P is an element inevitably contained as an impurity, but it is desirable to reduce it as much as possible because it segregates at the grain boundary and lowers the workability, but extremely reducing causes an increase in steelmaking cost. .
  • the P content is set to 0.05% or less.
  • S 0.05% or less (excluding 0%)
  • S is an element that is inevitably contained as an impurity, but precipitates as MnS, and it is desirable to reduce it as much as possible in order to reduce the rolling fatigue life.
  • extreme reduction leads to an increase in steelmaking costs.
  • the S content is set to 0.05% or less.
  • Cr 0.15 to 2.0%
  • Cr is an element that combines with C to form carbides, imparts wear resistance, and contributes to improving hardenability.
  • the Cr content needs to be 0.15% or more.
  • it is 0.5% or more (more preferably 0.9% or more).
  • the Cr content is 2.0% or less.
  • it is 1.8% or less (more preferably 1.6% or less).
  • Al 0.01 to 0.1%
  • Al is an element that plays an important role in the steel material of the present invention, and when it is combined with N, it is finely dispersed in the steel as an Al-based nitrogen compound, and is important for reducing the strength difference of the matrix by dispersion strengthening. Element.
  • In order to produce a fine Al-based nitrogen compound it is necessary to contain at least 0.01% or more.
  • the preferable lower limit of the Al content is 0.013% (more preferably 0.015% or more), and the preferable upper limit is 0.08% (more preferably 0.05% or less).
  • N 0.025% or less (excluding 0%)
  • N is an element that plays an important role in the steel material of the present invention, and is an important element for reducing the strength difference of the matrix due to fine dispersion of the Al-based nitrogen compound.
  • the preferable lower limit of the N content is 0.005% (more preferably 0.006% or more), and the preferable upper limit is 0.02% (more preferably 0.015% or less).
  • Ti 0.002% or less (excluding 0%)
  • Ti is a harmful element that has a large adverse effect on the surface properties during polishing because Ti is likely to combine with N in the steel to produce coarse TiN, and it is desirable to reduce it as much as possible. This will increase the cost. For these reasons, the Ti content needs to be 0.002% or less. In addition, the upper limit with preferable Ti content is 0.0019%.
  • O has a great influence on the form of impurities in the steel and forms inclusions such as Al 2 O 3 and SiO 2 that adversely affect the rolling fatigue characteristics. Doing so will increase the steelmaking cost. For these reasons, the O content needs to be 0.0025% or less. In addition, the upper limit with preferable O content is 0.002% (more preferably 0.0015% or less).
  • the contained elements specified in the present invention are as described above, and the balance is iron and unavoidable impurities.
  • the unavoidable impurities mixing of elements brought in depending on the situation of raw materials, materials, manufacturing facilities, etc. can be allowed.
  • the following elements can be positively contained within a specified range.
  • Cu 0.25% or less (not including 0%), Ni: 0.25% or less (not including 0%), and Mo: 0.25% or less (not including 0%)
  • One or more types Cu, Ni, and Mo are all elements that act as a hardenability improving element of the parent phase and contribute to improving rolling fatigue characteristics by increasing hardness. All of these effects are effectively exhibited by containing 0.03% or more. However, if any content exceeds 0.25%, workability deteriorates.
  • Nb 0.5% or less (not including 0%), V: 0.5% or less (not including 0%) and B: 0.005% or less (not including 0%)
  • Nb, V, and B are all effective elements for bonding with N to form a nitrogen compound to adjust the grain size and improve the rolling fatigue life. If Nb and B are added at 0.0005% or more and V is added at 0.001% or more, rolling fatigue characteristics can be improved. However, if the amount added exceeds 0.5% for Nb and V and exceeds 0.005% for B, the crystal grains become finer and an incompletely quenched phase tends to be generated.
  • a more preferable upper limit is 0.3% (more preferably 0.1% or less) for Nb and V, and 0.003% (more preferably 0.001% or less) for B.
  • Ca 0.05% or less (not including 0%), REM: 0.05% or less (not including 0%), Mg: 0.02% or less (not including 0%), Li: 0.0. 02% or less (not including 0%) and Zr: one or more selected from the group consisting of 0.2% or less (not including 0%)]
  • Ca, REM (rare earth element), Mg, Li, and Zr are all elements that spheroidize oxide inclusions and contribute to improving the rolling fatigue life. These effects are effectively exhibited by containing 0.0005% or more in Ca and REM and 0.0001% or more in Mg, Li, and Zr.
  • More preferable upper limits are 0.03% (more preferably 0.01% or less) for Ca and REM, 0.01% (more preferably 0.005% or less) for Mg and Li, and 0.15 for Zr. % (More preferably 0.10% or less).
  • Pb selected from the group consisting of 0.5% or less (not including 0%), Bi: 0.5% or less (not including 0%), and Te: 0.1% or less (not including 0%)
  • Pb, Bi, and Te are all machinability improving elements. These effects are effectively exhibited by containing 0.01% or more of Pb and Bi and 0.0001% or more of Te. However, if the content of Pb or Bi exceeds 0.5% or the content of Te exceeds 0.1%, production problems such as generation of rolling flaws occur.
  • a more preferable upper limit is 0.3% (more preferably 0.2% or less) for Pb and Bi, and 0.075% (more preferably 0.05% or less) for Te.
  • the steel material of the present invention in order to disperse the fine Al-based nitrogen compound in the steel after quenching and tempering, a slab satisfying the above component composition is used in the steel material production process, and the cooling rate after rolling is controlled. This is very important.
  • the Al-based nitrogen compound that precipitates in the cooling process after rolling remains in the same state even after the subsequent spheroidizing annealing, parts processing, quenching / tempering process. For this reason, in the steel material of the present invention, it is necessary to disperse in advance an Al-based nitrogen compound having an equivalent circle diameter of 25 to 200 nm of 1.1 / ⁇ m 2 or more and 6.0 / ⁇ m 2 or less.
  • the average cooling rate in the precipitation temperature range of the Al-based nitrogen compound after rolling that is, the average cooling rate during the cooling of the steel material from 850 ° C. to 650 ° C. is 0.1 to 0.7 ° C./second.
  • the average cooling rate from 650 ° C. to room temperature (25 ° C.) is 1 ° C./second or more.
  • the primary cooling rate is less than 0.1 ° C./second
  • the Al-based nitrogen compound becomes coarse, and when it exceeds 0.7 ° C./second, the circle-equivalent diameter of the Al-based nitrogen compound is less than 25 nm.
  • the number density of the size is less than 1.1 pieces / ⁇ m 2 , and a desired size cannot be obtained.
  • the secondary cooling rate below 650 ° C. to 1 ° C./second or more, it is possible to suppress the coarsening of the Al-based nitrogen compound and to control the size thereof.
  • spheroidizing annealing is performed prior to forming into a predetermined part shape, but in order to control the area ratio of cementite and its size to an appropriate range. Further, it is necessary to appropriately control the spheroidizing annealing conditions (particularly the cooling rate after heating). In spheroidizing annealing, it is usually heated to 780 to 810 ° C. and held for a predetermined time (holding time: about 2 to 6 hours), and then cooled.
  • the cooling conditions at this time are as follows: (1) Average cooling rate from the heating and holding temperature to 750 ° C .: 25 to 35 ° C./hour, (2) Average cooling rate from 750 to 730 ° C .: 3 to 7 ° C./hour, And (3) By controlling the average cooling rate from 730 ° C. to 680 ° C .: 25 to 35 ° C./hour, the form of cementite can be controlled as described above.
  • the particle size (equivalent circle diameter) of cementite can be reduced. If the average cooling rate at this time is less than 25 ° C./hour, the cementite is coarsened and the particle size of the cementite is coarsened. On the other hand, when the average cooling rate is higher than 35 ° C./hour, regenerated pearlite is generated, quenching becomes uneven, and the life becomes unstable.
  • the average cooling rate from 750 ° C. to 730 ° C. at 3 to 7 ° C./hour, the area ratio of cementite can be suppressed to 12% or less, and the average equivalent circle diameter of cementite can be made 0.60 ⁇ m or less.
  • the average cooling rate at this time is less than 3 ° C./hour, the amount of cementite generated increases, and the area ratio of cementite exceeds 12%.
  • the average cooling rate is higher than 7 ° C./hour, regenerated pearlite is generated, quenching becomes uneven, and the life becomes unstable.
  • quenching and tempering performed after spheroidizing annealing conditions (temperature and time) that do not significantly affect the area ratio and size of cementite can be easily selected.
  • quenching and tempering may be performed under the conditions described in the examples described later.
  • the steel material of the present invention is subjected to the spheroidizing annealing as described above, and then processed into a predetermined part shape and subsequently quenched and tempered to be manufactured into a bearing part or the like. Both linear and bar shapes that can be applied are included, and their sizes are also appropriately determined according to the final product.
  • Steel materials (test Nos. 1 to 24) having various chemical compositions shown in Table 1 below were heated to 1100 to 1300 ° C. in a heating furnace or a soaking furnace, and then subjected to block rolling at 900 to 1200 ° C. Thereafter, after heating to 900 to 1100 ° C., rolling (including forging simulating rolling) was performed to produce a round bar with a diameter of 70 mm. After rolling, the material is cooled at various average cooling rates from 850 to 650 ° C. (Table 2 below), and from 650 ° C. to room temperature (25 ° C.) at an average cooling rate of 1 ° C./sec. Or the forging material was obtained.
  • the rolled material or forged material is heated to 795 ° C. and held for a predetermined time (holding time: 2 to 6 hours), and then (1) an average cooling rate up to 750 ° C. and (2) from 750 ° C. to 730 ° C.
  • an average cooling rate up to 750 ° C. and (2) from 750 ° C. to 730 ° C.
  • the skin was cut by cutting. Thereafter, a disk (test piece) having a diameter of 60 mm and a thickness of 5 mm was cut out, subjected to oil quenching after heating at 840 ° C. for 30 minutes, and tempered at 160 ° C. for 120 minutes.
  • the number, size, cementite area ratio, cementite size (equivalent circle diameter) of the Al-based nitrogen compound was measured under the following conditions, and when polished under the following conditions: The surface roughness (Rt) after polishing and polishing efficiency were measured, and the life inclination was further measured.
  • the area ratio was obtained, and the average value of the four fields of view was defined as the area ratio of cementite. Also, the equivalent circle diameter was calculated from the size of each cementite, and the average value of the four fields of view was obtained (adopted as “average equivalent circle diameter”).
  • the test surface was embedded in a bakelite resin, and using an automatic polishing machine (“Tegura Fall / Tegura Force”, trade name: manufactured by Marumoto Struers), load: 30 N, polishing speed: 3 m / second (both rough polishing and finish polishing) Polishing was performed under the conditions of Rough polishing was performed with # 180 water-resistant paper for 10 minutes, and final polishing was performed with diamond paste (diamond buff) for 1 hour. After rough polishing, an indentation of Vickers was applied, the dimensions were measured, and after final polishing, the dimensions of the indentation of Vickers were re-measured and converted into a polishing amount ( ⁇ m / hour) as an index of polishing efficiency. It can be determined that the polishing efficiency is good when the polishing amount is 0.40 ⁇ m / hour or more.
  • the surface roughness (maximum cross-sectional roughness Rt: JIS B0601) was calculated
  • the reference length 0.25 mm
  • the cut-off value ⁇ s 0.0025 mm. It can be judged that the surface properties are excellent when the roughness after polishing is 0.40 ⁇ m or less in Rt.
  • the number, size (average circle equivalent diameter), cementite area ratio, cementite size (average circle equivalent diameter) of Al-based nitrogen compounds in each steel material are shown in Table 3 below, and surface roughness Rt after polishing and polishing efficiency The life inclination is shown in Table 4 below.
  • test no. 3, 4, and 6 to 19 satisfy the requirements defined in the present invention (chemical component composition, size, number of Al-based nitrogen compounds, cementite area ratio, size), post-polishing roughness Rt, polishing It can be seen that the efficiency is also good (polishing efficiency judgment “ ⁇ ”) and the stability of the rolling fatigue life is good (life inclination judgment “ ⁇ ”) (overall judgment “ ⁇ ”).
  • test no. For 1, 2, 5, and 20 to 24, since any of the requirements defined in the present invention is not met, at least one of the roughness Rt after polishing, the polishing efficiency, and the life inclination is deteriorated (total) Judgment “ ⁇ ”).
  • test no Based on the results of 1 to 5, the relationship between the number density of the Al-based nitrogen compound and the steel surface roughness Rt is shown in FIG. 1, and the relationship between the size of the Al-based nitrogen compound (equivalent circle diameter) and the steel surface roughness Rt is shown in FIG. Each is shown in FIG. From these, it can be seen that good surface properties (0.40 ⁇ m or less in Rt) can be achieved by appropriately controlling the number density and size of the Al-based nitrogen compound.
  • FIG. 4 shows the relationship between cementite area ratio and polishing efficiency
  • FIG. 5 shows the relationship between cementite size (average circle equivalent diameter) and polishing efficiency. From this, it can be seen that good polishing efficiency is achieved by appropriately controlling the cementite area ratio and size.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 製品形状に加工する際の研磨性が良好であり、転動疲労寿命が長く一定である鋼材は、C:0.65~1.10%(質量%の意味、以下同じ)、Si:0.05~1.0%、Mn:0.1~2%、P:0.05%以下(0%を含まない)、S:0.05%以下(0%を含まない)、Cr:0.15~2.0%、Al:0.01~0.1%、N:0.025%以下(0%を含まない)、Ti:0.002%以下(0%を含まない)およびO:0.0025%以下(0%を含まない)を含み、残部が鉄および不可避不純物からなり、鋼中に分散するAl系窒素化合物は、平均円相当直径が60nm以上であり、円相当直径で25~200nmのAl系窒素化合物の個数密度は、1.1個/μm以上であり、鋼中に分散するセメンタイトは、面積率が12%以下であり、且つ、平均円相当直径が0.60μm以下である。

Description

転動疲労寿命が一定の鋼材
 本発明は、自動車や各種産業機械等に使用される軸受部品や機械構造用部品に適用される鋼材に関し、特に上記各種部材として用いたときに一定の長い転動疲労寿命を有する鋼材に関する。
 軸受やクランクシャフト等の部品は、機械類の回転部や摺動部を支持する重要な部品であるが、接触面圧が相当高く、また外力が変動することもあるため、使用される環境が過酷である場合が多い。このため、その素材である鋼材には、優れた耐久性が要求される。
 近年、こうした要求は、機械類の高性能化や軽量化が進められるに伴って、年々厳しいものとなっている。軸部品の耐久性向上には、潤滑性に関する技術の改善も重要であるが、鋼材が転動疲労特性に優れていることが特に重要な要件となる。
 軸受に用いられる鋼材としては、従来からJIS G 4805(1999)に規定されるSUJ2等の高炭素クロム軸受鋼が、自動車や各種産業機械等の種々の分野で用いられている軸受の材料として使用されている。しかし軸受は、接触面圧が非常に高い玉軸受やころ軸受等の内・外輪や転動体等、過酷な環境で用いられるため、非常に微細な欠陥(介在物等)から疲労破壊が生じ易いといった問題がある。この問題に対し、保守の回数を低減させるべく、転動疲労寿命そのものを長くするような軸受用鋼材の改善が試みられている。
 例えば特許文献1には、軸受材料において、TiおよびAlの含有量を規定すると共に、球状化焼鈍後に加熱処理を行なうことによって、微細なTi炭化物、Ti炭窒化物、Al窒化物などの量を制御し、それによって、旧オーステナイト結晶粒(旧γ結晶粒)を微細化することで、転動疲労寿命を向上させることが提案されている。
 上記の技術では、転動疲労寿命に関しては良好になるのであるが、Ti含有量が0.26%以上と非常に高いので、高コストとなるばかりか、加工性が低下するという問題がある。また、鋳造時に粗大なTiNが生成しやすく、この析出物の生成によって疲労寿命にバラツキが生じることになり、転動疲労寿命が一定である鋼材の実現が望まれているのが実情である。
 ところで、軸受としての最終製品にする場合には、所定の部品形状に加工された後、焼入れ・焼戻しされ、その表面を研磨加工されるのが一般的である。こうしたことから、軸受用鋼材には、「研磨性」にも優れている必要がある。この研磨性は、研磨加工の際に研磨のし易さ(即ち、研磨効率が良好なこと)と、研磨後の表面性状が良好(即ち、表面粗さが低いこと)であるという、相反する両特性から判断される。このうち表面性状を良好にすることは、転動疲労寿命の安定性にも影響を及ぼすことが知られている。
 研磨性に優れた軸受鋼としては、例えば特許文献2のような技術も提案されている。この技術では、鋼材の化学成分組成を規定すると共に、最大径が10μm以下であるようなTiNを鋼中に分散させることによって、研磨効率と表面性状の両特性を良好にする。しかしながら、この技術は、TiNを分散させることを基本とするが、このTiNは粗大になりやすく、その結果として疲労寿命にバラツキが生じやすい。
特許第3591236号公報 特開2006-118030号公報
 本発明はこのような事情に鑑みてなされたものであって、その目的は、製品形状に加工する際の研磨性が良好であり、一定の長い転動疲労寿命を有する鋼材を提供することにある。
 上記目的を達成することのできた本発明に係る鋼材とは、C:0.65~1.10%(質量%の意味、以下同じ)、Si:0.05~1.0%、Mn:0.1~2%、P:0.05%以下(0%を含まない)、S:0.05%以下(0%を含まない)、Cr:0.15~2.0%、Al:0.01~0.1%、N:0.025%以下(0%を含まない)、Ti:0.002%以下(0%を含まない)およびO:0.0025%以下(0%を含まない)を含み、残部が鉄および不可避不純物からなり、鋼中に分散するAl系窒素化合物の平均円相当直径が60nm以上であり、円相当直径が25~200nmのAl系窒素化合物の個数密度が1.1個/μm以上であり、鋼中に分散するセメンタイトは、面積率が12%以下であり、且つ、平均円相当直径が0.60μm以下である点に要旨を有する。
 尚、上記「円相当直径」とは、Al系窒素化合物やセメンタイトの大きさについて、その面積が等しい円の直径であり、透過型電子顕微鏡(TEM)や走査型電子顕微鏡(SEM)の観察面上で認められるAl系窒素化合物やセメンタイトについて算出される。また、本発明で対象とするAl系窒素化合物は、AlNは勿論のこと、Mn,Cr,S,Si等の元素を一部(合計含有量が30%程度まで)に含有するものも含むことが意図される。更に、上記セメンタイトは、Fe3Cばかりでなく、MnやCr等の元素を一部(合計含有量が20%程度まで)に含有するものも含むことが意図される。
 また、本発明の鋼材には、必要によって、更に他の元素として、(a)Cu:0.25%以下(0%を含まない)、Ni:0.25%以下(0%を含まない)およびMo:0.25%以下(0%を含まない)よりなる群から選択される1種以上、(b)Nb:0.5%以下(0%を含まない)、V:0.5%以下(0%を含まない)およびB:0.005%以下(0%を含まない)よりなる群から選択される1種以上、(c)Ca:0.05%以下(0%を含まない)、REM:0.05%以下(0%を含まない)、Mg:0.02%以下(0%を含まない)、Li:0.02%以下(0%を含まない)およびZr:0.2%以下(0%を含まない)よりなる群から選択される1種以上、(d)Pb:0.5%以下(0%を含まない)、Bi:0.5%以下(0%を含まない)およびTe:0.1%以下(0%を含まない)よりなる群から選択される1種以上、等を含有させることも有用であり、含有される成分に応じて鋼材の特性が更に改善される。
 本発明によれば、化学成分組成を適切に調整すると共に、適度な大きさのAl系窒素化合物を鋼材内に適切に分散させ、且つセメンタイトの面積率や大きさを規定することによって、製品形状に加工する際の研磨性を良好にできると共に、転動疲労寿命の一定性に優れた鋼材が実現できるので、こうした鋼材を軸受等に適用したときには、一定の転動疲労寿命を有する。
Al系窒素化合物の個数密度と鋼材表面粗さRtの関係を示すグラフである。 Al系窒素化合物の大きさ(円相当直径)と鋼材表面粗さRtの関係を示すグラフである。 鋼材表面粗さRtと寿命傾きとの関係を示すグラフである。 セメンタイト面積率と研磨効率との関係を示すグラフであるである。 セメンタイトの大きさ(円相当直径)と研磨効率との関係を示すグラフである。
 本発明者らは、製品形状に加工する際の研磨性を良好にできると共に、転動疲労寿命の安定性に優れた鋼材の実現を目指して、様々な角度から検討した。そして、鋼材の研磨性や転動疲労寿命を向上させる上では、下記(A)~(E)の要件を満足させることが有効であるとの知見が得られた。
 (A)所定の大きさのAl系窒素化合物を多量に分散させ、その分散強化によって母相(主にマルテンサイト)の強度を高めて、硬質介在物(セメンタイト)との硬度差を小さくすることによって、表面性状が良好にできること(即ち、良好な転動疲労寿命が安定して得られること)、
 (B)Al系窒素化合物による分散強化を図るためには、Al系窒素化合物の量(個数密度)と大きさを規定する必要があること、
 (C)Al系窒素化合物における分散度合い(個数密度)を達成するためには、鋼中のAlやNの含有量を厳密に制御することが重要であること、および鋼材の製造工程において、熱間圧延後にAl系窒素化合物の析出温度範囲である850~650℃の温度範囲を除冷した後、冷却速度を速めることが有用であること、
 (D)鋼材の研磨性を良好にするには、セメンタイトの面積率(鋼材断面積に占めるセメンタイト断面積の割合)や大きさ(円相当直径)を所定の範囲とすることが有効であること、また上記Al系窒素化合物の大きさも研磨後の表面性状(研磨後の表面粗さ)に影響を及ぼすこと、
 (E)セメンタイトの面積率や大きさ(円相当直径)を所定の範囲とするためには、部品形状加工前の球状化熱処理(球状化焼鈍)を適切に制御することが有効であること。
 本発明者らは、上記知見に基づき、鋼材の研磨性および転動疲労寿命の安定性を実現するべく、更に鋭意研究を重ねた。その結果、鋼材中のAlやN含有量を厳密に規定すると共に、その製造条件を制御し、焼入れ・焼戻し後に鋼中に分散する平均円相当直径が60nm以上であり、円相当直径で25~200nmのAl系窒素化合物の個数密度が1.1個/μm以上であり、セメンタイトの面積率が12%以下であり、且つ、平均円相当直径が0.60μm以下であるようにすれば、鋼材の研磨性および転動疲労寿命の一定性を著しく向上できることを見出し、本発明を完成した。
 本発明の鋼材では、平均粒径が25~200nmのAl系窒素化合物の個数密度を適切に制御することが重要な要件となるが、その分散強化によって、母相(主にマルテンサイト)の強度を高めることができ、それにより、硬質介在物(セメンタイト)との硬度差を小さくすることにより、表面性状を良好にできる。そのためには、対象とするAl系窒素化合物の大きさも適切に制御する必要がある。この大きさ(円相当直径)が25nmよりも小さくなったり、200nmよりも大きいと、分散強化の効果を発揮することができない。
 上記のようなAl系窒素化合物の個数密度が1.1個/μm未満では、分散強化による強度向上効果が有効に発揮されなくなる。Al系窒素化合物の個数密度は、好ましくは1.3個/μm以上(より好ましくは1.5個/μm以上)である。尚、Al系窒素化合物の個数密度の上限については、特に限定しないがあまり多くなり過ぎると、結晶粒が粗大化し、不完全焼入れ相(例えば、微細パーライトやベイナイト相)が生成し、転動疲労寿命が安定しなくなる恐れがある。このため、Al系窒素化合物の個数密度は、6.0個/μm以下であることが好ましく、より好ましくは5.0個/μm以下である。
 また、Al系窒素化合物の平均的な大きさも研磨後の表面性状(研磨後の表面粗さ)に影響を及ぼすので、焼入れ・焼戻し後に鋼中に分散するAl系窒素化合物の平均円相当直径を60nm以上とすることが重要である。即ち、Al系窒素化合物の平均円相当直径を60nm以上とすることによって、分散強化の効果が十分に発揮できるので、表面性状が良好になる(表面粗さが小さくなる)。このAl系窒素化合物の大きさは、好ましくは70nm以上(より好ましくは80nm以上)である。
 本発明の鋼材において、鋼材の研磨性を良好にするには、セメンタイトの面積率や大きさ(円相当直径)を所定の範囲とすることが必要である。セメンタイト量が多くなると、研磨効率が低下する。こうした観点から、セメンタイトの面積率は12%以下とする必要がある。セメンタイトの面積率は、好ましくは11%以下(より好ましくは10%以下)である。尚、セメンタイトの面積率の下限については、特に限定しないがあまり少なくなり過ぎると、転動疲労寿命が悪化し安定しない恐れがある。このため、セメンタイトの面積率は、5%以上であることが好ましく、より好ましくは6%以上である。
 またセメンタイトの大きさが小さいと研磨時に脱落が起こり易く、研磨性(研磨効率)への悪影響が小さくなる。こうしたことから、セメンタイトの大きさは、平均円相当直径で0.60μm以下であることが必要である。セメンタイトの大きさは、平均円相当直径で0.50μm以下であることが好ましい(より好ましくは0.40μm以下)。尚、セメンタイトの大きさの下限については、特に限定しないがあまり小さくなり過ぎると、転動疲労寿命が悪化し安定しない恐れがある。このため、セメンタイトの平均円相当直径は、0.1μm以上であることが好ましく、より好ましくは0.15μm以上である。
 本発明の鋼材は、上記したAlやNの含有量を含め、その化学成分組成(C、Si、Mn、P、S、Cr、Al、N、Ti、O)も適切に調整する必要があるが、これらの成分の範囲限定理由は下記の通りである。
 [C::0.65~1.10%]
 Cは、焼入硬さを増大させ、室温、高温における強度を維持して耐摩耗性を付与するために必須の元素である。こうした効果を発揮させるためには、Cは0.65%以上含有させなければならず、好ましくは0.8%以上(より好ましくは0.95%以上)含有させることが望ましい。しかしながら、C含有量が多くなり過ぎると巨大炭化物が生成し易くなり、研磨性および転動疲労特性に却って悪影響を及ぼすようになる。このため、C含有量は1.10%以下、好ましくは1.05%以下(より好ましくは1.0%以下)に抑えるべきである。
 [Si:0.05~1.0%]
 Siは、マトリックスの固溶強化および焼入れ性を向上させるために有用な元素である。こうした効果を発揮させるためには、Siは0.05%以上含有させる必要があり、好ましくは0.1%以上(より好ましくは0.15%以上)含有させることが望ましい。しかしながら、Si含有量が多くなり過ぎると加工性や被削性が著しく低下する。このため、Si含有量は1.0%以下、好ましくは0.9%以下(より好ましくは0.8%以下)に抑えるべきである。
 [Mn:0.1~2%]
 Mnは、マトリックスの固溶強化および焼入れ性を向上させるために有用な元素である。こうした効果を発揮させるためには、Mnは0.1%以上含有させる必要があり、好ましくは0.15%以上(より好ましくは0.2%以上)含有させることが望ましい。しかしながら、Mn含有量が多くなり過ぎると加工性や被削性が著しく低下する。このため、Mn含有量は2%以下、好ましくは1.6%以下(より好ましくは1.2%以下)に抑えるべきである。
 [P:0.05%以下(0%を含まない)]
 Pは、不可避的に不純物として含有する元素であるが、粒界に偏析し、加工性を低下さ
せるため極力低減することが望ましいが、極端に低減することは製鋼コストの増大を招く
ことになる。こうしたことから、P含有量は、0.05%以下とした。好ましくは0.0
4%以下(より好ましくは0.03%以下)に低減するのが良い。
 [S:0.05%以下(0%を含まない)]
 Sは、不可避的に不純物として含有する元素であるが、MnSとして析出し、転動疲労寿命を低下させるため極力低減することが望ましいが、極端に低減することは製鋼コストの増大を招くことになる。こうしたことから、S含有量は、0.05%以下とした。好ましくは0.04(より好ましくは0.03%以下)に低減するのが良い。
 [Cr:0.15~2.0%]
 Crは、Cと結びついて炭化物を形成し、耐摩耗性を付与すると共に、焼入性の向上に寄与する元素である。この様な効果を発揮させるには、Cr含有量は0.15%以上とする必要がある。好ましくは0.5%以上(より好ましくは0.9%以上)である。しかし、Cr含有量が過剰になると、粗大な炭化物が生成し、転動疲労寿命が却って低下する。従ってCr含有量は2.0%以下とする。好ましくは1.8%以下(より好ましくは1.6%以下)である。
 [Al:0.01~0.1%]
 Alは、本発明の鋼材において重要な役目を果たす元素であり、Nと結合することによって、Al系窒素化合物として鋼中に微細に分散し、分散強化によりマトリックスの強度差異を低減するのに重要な元素である。微細なAl系窒素化合物を生成させるためには、少なくとも0.01%以上含有させる必要がある。しかしながら、Al含有量が過剰になって0.1%を超えると、析出するAl系窒素化合物の大きさおよび個数が増加し、研磨時の表面性状を悪化させる。尚、Al含有量の好ましい下限は、0.013%(より好ましくは0.015%以上)であり、好ましい上限は0.08%(より好ましくは0.05%以下)である。
 [N:0.025%以下(0%を含まない)]
 Nは上記Alと同様に、本発明の鋼材において重要な役目を果たす元素であり、Al系窒素化合物の微細分散によりマトリックスの強度差異を低減するのに重要な元素である。しかしながら、N含有量が過剰になって0.025%を超えると、析出するAl系窒素化合物の大きさおよび個数密度が増加し、研磨時の表面性状を悪化させる。尚、N含有量の好ましい下限は、0.005%(より好ましくは0.006%以上)であり、好ましい上限は0.02%(より好ましくは0.015%以下)である。
 [Ti:0.002%以下(0%を含まない)]
 Tiは、鋼中のNと結合して粗大なTiNを生成し易いため、研磨時の表面性状への悪影響が大きい有害元素であり、極力低減することが望ましいが、極端に低減することは製鋼コストの増大を招くことになる。こうしたことから、Ti含有量は0.002%以下とする必要がある。尚、Ti含有量の好ましい上限は0.0019%である。
 [O:0.0025%以下(0%を含まない)]
 Oは、鋼中の不純物の形態に大きな影響を及ぼし、転動疲労特性に悪影響を及ぼすAlやSiO等の介在物を形成するため、極力低減することが好ましいが、極端に低減することは製鋼コストの増大を招くことになる。こうしたことから、O含有量は0.0025%以下とする必要がある。尚、O含有量の好ましい上限は0.002%(より好ましくは0.0015%以下)である。
 本発明で規定する含有元素は上記の通りであって、残部は鉄および不可避不純物であり、該不可避不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素の混入が許容され得る。尚、転動疲労寿命を高めるため、下記元素を規定範囲内で積極的に含有させることも可能である。
 [Cu:0.25%以下(0%を含まない)、Ni:0.25%以下(0%を含まない)およびMo:0.25%以下(0%を含まない)よりなる群から選択される1種以上]
 Cu、NiおよびMoは、いずれも母相の焼入性向上元素として作用し、硬さを高めて転動疲労特性の向上に寄与する元素である。これらの効果は、いずれも0.03%以上含有させることによって有効に発揮される。しかしながら、いずれの含有量も0.25%を超えると加工性が劣化する。
 [Nb:0.5%以下(0%を含まない)、V:0.5%以下(0%を含まない)およびB:0.005%以下(0%を含まない)よりなる群から選択される1種以上]
 Nb、VおよびBは、いずれもNと結合することで、窒素化合物を形成して、結晶粒の整粒化し、転動疲労寿命を向上させる上で有効な元素である。NbおよびBは、0.0005%以上、Vは、0.001%以上添加すれば、転動疲労特性を向上させられる。しかしながら、その添加量は、NbおよびVでは0.5%を超えると、Bでは0.005%を超えると、結晶粒が微細化し、不完全焼入れ相が生成しやすくなる。尚、より好ましい上限は、NbおよびVで0.3%(更に好ましくは0.1%以下)、Bで0.003%(更に好ましくは0.001%以下)である。
 [Ca:0.05%以下(0%を含まない)、REM:0.05%以下(0%を含まない)、Mg:0.02%以下(0%を含まない)、Li:0.02%以下(0%を含まない)およびZr:0.2%以下(0%を含まない)よりなる群から選択される1種以上]
 Ca、REM(希土類元素)、Mg、LiおよびZrは、いずれも酸化物系介在物を球状化させ、転動疲労寿命向上に寄与する元素である。これらの効果は、Ca、REMで0.0005%以上、Mg、Li、Zrで0.0001%以上含有させることによって有効に発揮される。しかしながら、過剰に含有させても効果が飽和し、含有量に見合う効果が期待できず不経済となるので、夫々上記範囲内とするべきである。尚、より好ましい上限は、CaおよびREMで0.03%(更に好ましくは0.01%以下)、Mg、Liで0.01%(更に好ましくは0.005%以下)、Zrで0.15%(更に好ましくは0.10%以下)である。
 [Pb:0.5%以下(0%を含まない)、Bi:0.5%以下(0%を含まない)およびTe:0.1%以下(0%を含まない)よりなる群から選択される1種以上]
 Pb、BiおよびTeは、いずれも被削性向上元素である。これらの効果は、Pb、Biで0.01%以上、Teで0.0001%以上含有させることによって有効に発揮される。しかし、Pb、Biの含有量が0.5%を超えるか、Teの含有量が0.1%を超えると、圧延傷の発生等、製造上の問題が生じる。尚、より好ましい上限はPbおよびBiで0.3%(更に好ましくは0.2%以下)、Teで0.075%(更に好ましくは0.05%以下)である。
 本発明の鋼材において、焼入れ・焼戻し後に鋼中に微細なAl系窒素化合物を分散させるためには、鋼材の製造工程において、上記成分組成を満たす鋳片を用い、圧延後の冷却速度を制御することが重要である。圧延後の冷却過程で析出するAl系窒素化合物は、その後の球状化焼鈍、部品加工、焼入れ・焼戻し過程を経ても同様の状態で残存したままである。そのため、本発明の鋼材では、予め、円相当直径で25~200nmのAl系窒素化合物を1.1個/μm以上、6.0個/μm以下分散させておくことが必要である。このため、圧延後の、Al系窒素化合物の析出温度範囲における平均冷却速度、つまり、鋼材を850℃から650℃まで冷却する間の平均冷却速度を、0.1~0.7℃/秒の範囲とし、650℃から室温(25℃)までの平均冷却速度を、1℃/秒以上とする。
 上記一次冷却速度が0.1℃/秒未満の冷却では、Al系窒素化合物が粗大化し、0.7℃/秒を超えると、Al系窒素化合物の円相当直径が25nm未満となったり、所定の大きさの個数密度が1.1個/μm未満となり、所望の大きさが得られなくなる。また650℃未満での二次冷却速度を1℃/秒以上とすることによって、Al系窒素化合物の
粗大化を抑制し、その大きさを制御できる。
 上記のような圧延処理を行なった後には、所定の部品形状に形成するに先立ち、球状化焼鈍が行なわれるのであるが、セメンタイトの面積率やその大きさを適切な範囲に制御するためには、球状化焼鈍条件(特に加熱後の冷却速度)も適切に制御する必要がある。球状化焼鈍では、通常780~810℃に加熱して所定時間保持(保持時間:2~6時間程度)された後、冷却される。このときの冷却条件を、(1)加熱保持温度から750℃までの平均冷却速度:25~35℃/時、(2)750℃から730℃までの平均冷却速度:3~7℃/時、および(3)730℃から680℃までの平均冷却速度:25~35℃/時に制御することによって、セメンタイトの形態を上記のように制御できる。
 加熱保持温度から750℃まで、および730℃から680℃までの平均冷却速度を25~35℃/時に制御することによって、セメンタイトの粒径(円相当直径)を小さくできる。このときの平均冷却速度が25℃/時未満になると、セメンタイトが粗大化してセメンタイトの粒径が粗大化する。また平均冷却速度が35℃/時よりも大きくなると、再生パーライトが生成し、焼入れが不均一となり、寿命が安定しなくなる。
 一方、750℃から730℃までの平均冷却速度を3~7℃/時に制御することによって、セメンタイトの面積率を12%以下に抑制し、セメンタイトの平均円相当直径を0.60μm以下にできる。このときの平均冷却速度が3℃/時未満になると、セメンタイトの生成量が多くなって、セメンタイトの面積率が12%を超える。また平均冷却速度が7℃/時よりも大きくなると、再生パーライトが生成し、焼入れが不均一となり、寿命が安定しなくなる。
 球状化焼鈍の後に行う焼入れ・焼戻しについては、セメンタイトの面積率や大きさに大きな影響を与えない条件(温度・時間)を容易に選択できる。例えば、後述の実施例において記載しているような条件で、焼入れ・焼戻しを行えばよい。
 本発明の鋼材は、上記のような球状化焼鈍を行なった後、所定の部品形状に加工され、引き続き焼入れ・焼戻しされて軸受部品等に製造されるが、鋼材段階の形状についてはこうした製造に適用できるような線状・棒状のいずれも含み、そのサイズも、最終製品に応じて適宜決められる。
 以下、実施例によって本発明をより具体的に説明するが、本発明は、下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することは勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 下記表1に示す各種化学成分組成の鋼材(試験No.1~24)を加熱炉またはソーキング炉で1100~1300℃に加熱した後、900~1200℃で分塊圧延を実施した。その後、900~1100℃に加熱した後、圧延(圧延を模した鍛造も含む)して直径:70mmの丸棒材を作製した。圧延終了後、850~650℃までを様々な平均冷却速度で冷却すると共に(下記表2)、650℃未満から室温(25℃)までを1℃/秒の平均冷却速度で冷却して圧延材または鍛造材を得た。
Figure JPOXMLDOC01-appb-T000001
 上記圧延材または鍛造材を、795℃に加熱して所定時間保持(保持時間:2~6時間)した後、(1)750℃までの平均冷却速度、(2)750℃から730℃までの平均冷却速度、および(3)730℃から680℃までの平均冷却速度を様々変化させて球状化焼鈍を行なった後(下記表2)、切削によって皮削りを行なった。その後、直径:60mm、厚さ:5mmの円盤(試験片)を切り出し、840℃で30分間加熱後の油焼入れを実施し、160℃で120分間焼戻しを実施した。
 最終的に仕上げ研磨を施して、表面粗さがRt(最大断面粗さ)で0.45μm以下となる試験片を作製した。
Figure JPOXMLDOC01-appb-T000002
 上記で得られた試験片を用い、下記の条件にてAl系窒素化合物の個数、大きさ、セメンタイト面積率、セメンタイト大きさ(円相当直径)を測定すると共に、下記の条件で研磨したときの研磨後の表面粗さ(Rt)、研磨効率を測定し、更には寿命傾きを測定した。
 [Al系窒素化合物の個数、大きさの測定]
 Al系窒素化合物の分散状況の確認方法としては、熱処理後の試験片を切断し、この断面を研磨した後、その面にカーボン蒸着を行い、FE-TEM(電界放出型透過型電子顕微鏡)によりレプリカ観察を実施した。この際、TEMのEDX(エネルギー分散型X線検出器)によりAl、Nを含むAl系窒素化合物の成分を特定し、30000倍の倍率にてその視野の観察を行なった。このとき、1視野を16.8μmとし、任意の3視野について観察し(合計50.4μm)、粒子解析ソフト[「粒子解析III for Windows. Version3.00 SUMITOMO METAL TECHNOLOGY製」(商品名)]を用い、その平均円相当直径および個数(個数はμm当りに換算)を求めた。
 [セメンタイトの面積率、大きさの測定]
 (a)試験片を長手方向に対して垂直に切断した。
 (b)その断面が観察できるように樹脂に埋め込み、エメリー紙による研磨、ダイヤモンドバフによる研磨および電解研磨を順次行なって、観察面を鏡面に仕上げた。
 (c)ナイタール(3%硝酸エタノール溶液)で腐食した。
 (d)試験片(円盤)のD/4(Dは直径)の位置をSEMの倍率:2000倍で観察し、4箇所撮影した。
 (e)上記粒子解析ソフト[「粒子解析III for Windows. Version3.00 SUMITOMO METAL TECHNOLOGY製」(商品名)]を用いて、フェライト相を白色、セメンタイトを黒色とし(即ち、2値化し)、セメンタイトの面積率を求め、4視野の平均値をセメンタイトの面積率とした。また各セメンタイトの大きさから円相当直径を算出し、4視野の平均値を求めた(「平均円相当直径」として採用)。
 [研磨後の表面粗さ、研磨効率]
 上記で得られた試験片(円盤)のD/4(Dは直径)の位置から、断面:4mm×4mmの角棒(長さ:5mm)を切り出し、横断面(4mm×5mmの面)を試験面にしてベークライト樹脂に埋め込み、自動研磨機(「テグラフォール・テグラフォース」商品名:丸本ストルアス社製)を用いて、荷重:30N、研磨速度:3m/秒(粗研磨、仕上げ研磨とも)の条件で研磨を行なった。粗研磨は♯180耐水ペーパーで10分、仕上げ研磨はダイヤモンドペースト(ダイヤモンドバフ)で1時間行なった。粗研磨後、ビッカースの圧痕を打ち、寸法を測定し、仕上げ研磨後に、ビッカースの圧痕の寸法を再測定して、研磨量(μm/時)に換算して研磨効率の指標とした。研磨量が0.40μm/時以上のときに、研磨効率が良好であると判断できる。
 また上記研磨後の試験片について、その表面粗さ(最大断面粗さRt:JIS B0601)を求めた。このとき、基準長さ:0.25mm、区間数:5箇所、輪郭曲線フィルターのカットオフ値λc:0.25mm、カットオフ値λs:0.0025mmとした。研磨後の粗さがRtで0.40μm以下のときに表面性状に優れると判断できる。
 [寿命傾きの測定]
 スラスト型転動疲労試験機にて、繰り返し速度:1500rpm、面圧:5.3GPa、中止回数:2×108回の条件にて、各鋼材(試験片)につき16個の試料を用いて転動疲労特性を実施した。疲労寿命の安定性の指標として、ワイブル係数mの値を用いた。この値は、試験結果をワイブル確率紙にプロットした際の近似曲線の傾き(寿命傾き)である。この傾きの値が、大きいほど疲労寿命の安定性に優れていることを示し、寿命傾きが0.6以上のときを寿命安定性に優れていると評価した。
 各鋼材におけるAl系窒素化合物の個数、大きさ(平均円相当直径)、セメンタイト面積率、セメンタイト大きさ(平均円相当直径)を下記表3に示すと共に、研磨後の表面粗さRt、研磨効率、および寿命傾きを下記表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 これらの結果から、次のように考察できる。即ち、試験No.3、4、6~19のものは、本発明で規定する要件(化学成分組成、Al系窒素化合物の大きさ、個数、セメンタイト面積率、大きさ)を満足し、研磨後粗さRt、研磨効率も良好であり(研磨効率判定「○」)、且つ、転動疲労寿命の安定性が良好(寿命傾き判定「○」)であることが分かる(総合判定「○」)。
 これに対し、試験No.1、2、5、20~24のものは、本発明で規定する要件のいずれかが外れているため、研磨後粗さRt、研磨効率、寿命傾きの少なくともいずれかが劣化している(総合判定「×」)。
 試験No.1、2のものは、圧延後の冷却速度条件が適切でないので、Al系窒素化合物の個数密度または大きさが適切でなく、いずれも研磨後粗さRtが粗い。
 試験No.5のものは、圧延後の一次冷却速度および球状化条件が適切でないので、Al系窒素化合物の個数密度および大きさが適切でなく、且つ、セメンタイトの面積率も大きいため、研磨後粗さRtが粗くなると共に、研磨効率の低い(研磨効率判定「×」)。
 試験No.20、22、23のものは、本発明で規定する化学成分組成を満足せず、セメンタイトの面積率が過剰であるので、いずれも研磨効率が低い(研磨効率判定「×」)。
 試験No.21のものは、Cの含有量が過剰であるので、セメンタイトの面積率、大きさが過剰であり、研磨効率が低い(研磨効率判定「×」)。
 試験No.24のものは、Tiの含有量が過剰であるので、その分Al系窒素化合物の個数密度が低く、また、セメンタイトの大きさも過大であるため、寿命傾きが劣化している(寿命傾き判定「×」)。
 上記で示したデータのうち、試験No.1~5の結果に基づいて、Al系窒素化合物の個数密度と鋼材表面粗さRtの関係を図1に、Al系窒素化合物の大きさ(円相当直径)と鋼材表面粗さRtの関係を図2に夫々示す。これらから、Al系窒素化合物の個数密度や大きさを適切に制御することによって、良好な表面性状(Rtで0.40μm以下)が達成されることが分かる。
 上記試験No.1~5の結果に基づいて、鋼材表面粗さRtと寿命傾きの関係を図3に示す。これからは、表面性状を良好にすることによって、寿命安定性(寿命傾きで0.6以上)が達成されることが分かる。
 同様にして、セメンタイト面積率と研磨効率との関係を図4、セメンタイトの大きさ(平均円相当直径)と研磨効率との関係を図5に夫々示す。これからは、セメンタイト面積率や大きさを適切に制御することによって、良好な研磨効率が達成されることが分かる。

Claims (5)

  1.  C:0.65~1.10%(質量%の意味、以下同じ)、Si:0.05~1.0%、Mn:0.1~2%、P:0.05%以下(0%を含まない)、S:0.05%以下(0%を含まない)、Cr:0.15~2.0%、Al:0.01~0.1%、N:0.025%以下(0%を含まない)、Ti:0.002%以下(0%を含まない)およびO:0.0025%以下(0%を含まない)を含み、残部が鉄および不可避不純物からなり、
     鋼中に分散するAl系窒素化合物は、平均円相当直径が60nm以上であり、円相当直径で25~200nmのAl系窒素化合物の個数密度は、1.1個/μm以上であり、
     鋼中に分散するセメンタイトは、面積率が12%以下であり、且つ、平均円相当直径が0.60μm以下であることを特徴とする鋼材。
  2.  更に他の元素として、Cu:0.25%以下(0%を含まない)、Ni:0.25%以下(0%を含まない)およびMo:0.25%以下(0%を含まない)よりなる群から選択される1種以上を含む請求項1に記載の鋼材。
  3.  更に他の元素として、Nb:0.5%以下(0%を含まない)、V:0.5%以下(0%を含まない)およびB:0.005%以下(0%を含まない)よりなる群から選択される1種以上を含む請求項1に記載の鋼材。
  4.  更に他の元素として、Ca:0.05%以下(0%を含まない)、REM:0.05%以下(0%を含まない)、Mg:0.02%以下(0%を含まない)、Li:0.02%以下(0%を含まない)およびZr:0.2%以下(0%を含まない)よりなる群から選択される1種以上を含む請求項1に記載の鋼材。
  5.  更に他の元素として、Pb:0.5%以下(0%を含まない)、Bi:0.5%以下(0%を含まない)およびTe:0.1%以下(0%を含まない)よりなる群から選択される1種以上を含む請求項1に記載の鋼材。
PCT/JP2011/062001 2011-05-25 2011-05-25 転動疲労寿命が一定の鋼材 WO2012160676A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/062001 WO2012160676A1 (ja) 2011-05-25 2011-05-25 転動疲労寿命が一定の鋼材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/062001 WO2012160676A1 (ja) 2011-05-25 2011-05-25 転動疲労寿命が一定の鋼材

Publications (1)

Publication Number Publication Date
WO2012160676A1 true WO2012160676A1 (ja) 2012-11-29

Family

ID=47216778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062001 WO2012160676A1 (ja) 2011-05-25 2011-05-25 転動疲労寿命が一定の鋼材

Country Status (1)

Country Link
WO (1) WO2012160676A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135615A (ja) * 1986-11-27 1988-06-08 Daido Steel Co Ltd 転動寿命のすぐれた軸受鋼
JPH1180897A (ja) * 1997-09-04 1999-03-26 Nippon Seiko Kk 転がり軸受
JPH11256233A (ja) * 1998-03-13 1999-09-21 Kawasaki Steel Corp 鋼線材の直接球状化焼なまし方法
JP2006118030A (ja) * 2004-10-25 2006-05-11 Jfe Steel Kk 研磨性に優れた軸受鋼
JP2007131907A (ja) * 2005-11-09 2007-05-31 Sanyo Special Steel Co Ltd 冷間加工性に優れる高周波焼入れ用鋼及びその製造方法
JP2011111668A (ja) * 2009-11-30 2011-06-09 Kobe Steel Ltd 転動疲労寿命の安定性に優れた鋼材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135615A (ja) * 1986-11-27 1988-06-08 Daido Steel Co Ltd 転動寿命のすぐれた軸受鋼
JPH1180897A (ja) * 1997-09-04 1999-03-26 Nippon Seiko Kk 転がり軸受
JPH11256233A (ja) * 1998-03-13 1999-09-21 Kawasaki Steel Corp 鋼線材の直接球状化焼なまし方法
JP2006118030A (ja) * 2004-10-25 2006-05-11 Jfe Steel Kk 研磨性に優れた軸受鋼
JP2007131907A (ja) * 2005-11-09 2007-05-31 Sanyo Special Steel Co Ltd 冷間加工性に優れる高周波焼入れ用鋼及びその製造方法
JP2011111668A (ja) * 2009-11-30 2011-06-09 Kobe Steel Ltd 転動疲労寿命の安定性に優れた鋼材

Similar Documents

Publication Publication Date Title
KR101408548B1 (ko) 베어링용 강
JP5400590B2 (ja) 転動疲労寿命の安定性に優れた鋼材
JP5927868B2 (ja) 冷間鍛造性に優れた浸炭用鋼およびその製造方法
KR101520208B1 (ko) 기소강 및 그의 제조 방법, 및 기소강을 이용한 기계 구조 부품
WO2012160675A1 (ja) 転動疲労特性に優れた鋼材
WO2012043074A1 (ja) 肌焼鋼およびその製造方法
JP5400591B2 (ja) 冷間加工性に優れた軸受用鋼
JP6073167B2 (ja) 面疲労強度と冷間鍛造性に優れた肌焼用鋼材
JP4923776B2 (ja) 転がり、摺動部品およびその製造方法
JP5406687B2 (ja) 転動疲労寿命に優れた鋼材
JP5652844B2 (ja) 高加工性浸炭用鋼板
JP5871085B2 (ja) 冷間鍛造性および結晶粒粗大化抑制能に優れた肌焼鋼
EP2834378B1 (en) Steel alloy
JP5649838B2 (ja) 肌焼鋼およびその製造方法
JP5990428B2 (ja) 転動疲労特性に優れた軸受用鋼材およびその製造方法
JP4569961B2 (ja) ボールネジまたはワンウェイクラッチ用部品の製造方法
JP2009242918A (ja) 転動疲労特性に優れた機械構造用部品およびその製造方法
WO2018212196A1 (ja) 鋼及び部品
WO2012160676A1 (ja) 転動疲労寿命が一定の鋼材
JP5439735B2 (ja) 転動疲労特性に優れた機械構造用部品およびその製造方法
JP4616148B2 (ja) 軸受鋼
JP4385921B2 (ja) 研磨性に優れた軸受鋼
JP4411096B2 (ja) 球状化後の冷間鍛造性に優れた肌焼用鋼線材・棒鋼
KR102502011B1 (ko) Qt열처리된 고탄소 열연강판, 고탄소 냉연강판, qt열처리된 고탄소 냉연강판 및 이들의 제조방법
WO2012160677A1 (ja) 冷間加工性に優れた軸受用鋼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP