WO2012160675A1 - 転動疲労特性に優れた鋼材 - Google Patents

転動疲労特性に優れた鋼材 Download PDF

Info

Publication number
WO2012160675A1
WO2012160675A1 PCT/JP2011/062000 JP2011062000W WO2012160675A1 WO 2012160675 A1 WO2012160675 A1 WO 2012160675A1 JP 2011062000 W JP2011062000 W JP 2011062000W WO 2012160675 A1 WO2012160675 A1 WO 2012160675A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel material
based nitrogen
rolling fatigue
nitrogen compound
Prior art date
Application number
PCT/JP2011/062000
Other languages
English (en)
French (fr)
Inventor
正樹 貝塚
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US14/118,370 priority Critical patent/US9303302B2/en
Priority to KR1020137030180A priority patent/KR20130140193A/ko
Priority to EP11866383.0A priority patent/EP2716781B1/en
Priority to PCT/JP2011/062000 priority patent/WO2012160675A1/ja
Priority to ES11866383.0T priority patent/ES2675718T3/es
Priority to BR112013030223A priority patent/BR112013030223A2/pt
Priority to CN201180071066.4A priority patent/CN103562423B/zh
Publication of WO2012160675A1 publication Critical patent/WO2012160675A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/30Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts

Definitions

  • the present invention relates to a steel material applied to bearing parts and machine structural parts used in automobiles and various industrial machines, and more particularly to a steel material that exhibits excellent rolling fatigue characteristics when used as the various members.
  • Parts such as bearings and crankshafts are important parts that support the rotating and sliding parts of machinery, but the contact surface pressure is quite high and the external force may fluctuate. Often severe. For this reason, excellent durability is required for the steel material.
  • high-carbon chromium bearing steels such as SUJ2 as defined in JIS G 4805 (1999) are conventionally used as bearing materials used in various fields such as automobiles and various industrial machines.
  • bearings are used in harsh environments such as inner and outer rings and rolling elements such as ball bearings and roller bearings with extremely high contact surface pressure, fatigue failure is likely to occur due to very fine defects (inclusions, etc.).
  • inclusions, etc. There is a problem.
  • Patent Document 1 the content of Ti and Al in the bearing material is specified, and the amount of fine Ti carbide, Ti carbonitride, Al nitride, etc. is determined by performing heat treatment after spheroidizing annealing. It has been proposed to improve rolling fatigue characteristics by controlling and thereby refining the prior austenite crystal grains (former ⁇ crystal grains).
  • the Ti content is very high at 0.26% or more, and there is a problem that not only the cost of the steel material becomes high, but also the workability of the steel material decreases. Moreover, the steel material by said technique tends to produce
  • the steel material according to the above technology has an Al content of 0.11% or more, and the Al-based nitrogen compound produced during casting and rolling may cause cracks and scratches, resulting in high productivity. There is a problem of getting worse.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a steel material having high manufacturability and improved rolling fatigue characteristics.
  • the steel materials according to the present invention that have achieved the above-mentioned object are: C: 0.65-1.30% (meaning of mass%, the same shall apply hereinafter), Si: 0.05-1.00%, Mn: 0.1 ⁇ 2.00%, P: 0.050% or less (not including 0%), S: 0.050% or less (not including 0%), Cr: 0.15 to 2.00%, Al: 0 .010 to 0.100%, N: 0.025% or less (not including 0%), Ti: 0.015% or less (not including 0%), and O: 0.0025% or less (including 0%)
  • the remainder of the Al-based nitrogen compound dispersed in the steel has an average equivalent circle diameter of 25 to 200 nm, and the number density of the Al-based nitrogen compound having an equivalent circle diameter of 25 to 200 nm. Is 1.1 points / ⁇ m 2 or more and 6.0 pieces / ⁇ m 2 or less.
  • the “equivalent circle diameter” is the diameter of a circle assumed to have the same area.
  • the equivalent circle diameter of the Al-based nitrogen compound observed on the observation surface of a transmission electron microscope (TEM) or a scanning electron microscope (SEM) is calculated.
  • the Al-based nitrogen compounds targeted in the present invention include not only AlN but also those containing elements such as Mn, Cr, S, Si in part (total content up to about 30%). Is intended.
  • the average grain size number of prior austenite is preferably 11.5 or less, and by satisfying these requirements, further excellent rolling fatigue characteristics can be obtained.
  • a steel material that has further improved rolling fatigue characteristics by appropriately adjusting the chemical composition and appropriately dispersing an appropriately sized Al-based nitrogen compound in the steel material has good manufacturability. realizable.
  • the steel material according to the present invention can exhibit excellent rolling fatigue characteristics even when used in a harsh environment such as when applied to a bearing or the like.
  • the present inventors studied from various angles with the aim of realizing a steel material having excellent rolling fatigue characteristics (long rolling fatigue life) without deteriorating manufacturability. In addition, it was found that it is effective to satisfy the following requirements (A) to (D) in order to improve the rolling fatigue characteristics of steel materials.
  • (A) Dispersing many fine Al-based nitrogen compounds while reducing the Al content, and suppressing the occurrence and propagation of cracks by the dispersion strengthening, a good rolling fatigue life can be obtained
  • (B) In order to suppress cracking during casting and rolling, it is necessary to regulate the amount (number density) and size of the Al-based nitrogen compound
  • (C) In order to achieve the degree of dispersion (number density) in the fine Al-based nitrogen compound, it is important to strictly control the content of Al and N in the steel, and in the production process, It is useful to cool the steel material from 850 ° C.
  • the inventors of the present invention have further conducted intensive studies in order to improve the rolling fatigue characteristics of steel materials.
  • the content of Al and N in the steel material is strictly defined, the production conditions are controlled, and the average equivalent circle diameter of the Al-based nitrogen compound dispersed in the steel after quenching and tempering is 25 to 200 nm. If the number density of Al-based nitrogen compounds with an equivalent circle diameter of 25 to 200 nm is 1.1 / ⁇ m 2 or more and 6.0 / ⁇ m 2 or less, the rolling fatigue characteristics of the steel material will be remarkably improved.
  • the present invention has been completed by finding out what can be done.
  • the steel material of the present invention it is an important requirement to appropriately control the number density of Al-based nitrogen compounds having an equivalent circle diameter of 25 to 200 m. That is, by the dispersion strengthening of the Al-based nitrogen compound, crack generation / propagation is suppressed, and good rolling fatigue characteristics are achieved. For that purpose, it is necessary to appropriately control the size of the Al-based nitrogen compound. When the size (average equivalent circle diameter) of the Al-based nitrogen compound is smaller than 25 nm or larger than 200 nm, the effect of dispersion strengthening cannot be exhibited.
  • the size of the Al-based nitrogen compound is preferably 40 nm or more (more preferably 50 nm or more), preferably 150 nm or less (more preferably 125 nm or less).
  • the number density of Al-based nitrogen compounds having an equivalent circle diameter of 25 to 200 m is less than 1.1 / ⁇ m 2 , the effect of improving the rolling fatigue characteristics by dispersion strengthening cannot be effectively exhibited (the rolling fatigue characteristics deteriorate).
  • the number density of Al-based nitrogen compounds having an equivalent circle diameter of 25 to 200 m exceeds 6.0 / ⁇ m 2 , the crystal grains become coarse and an incompletely quenched phase (for example, fine pearlite or bainite phase) is generated. Therefore, the rolling fatigue life is shortened (rolling fatigue characteristics are deteriorated).
  • the number density of the Al-based nitrogen compound is preferably 1.5 pieces / ⁇ m 2 or more (more preferably 2.0 pieces / ⁇ m 2 or more), preferably 5.0 pieces / ⁇ m 2 or less (more preferably 4 pieces). 0.0 pieces / ⁇ m 2 or less).
  • the grain size number of the old ⁇ is preferably 11.5 or less, more preferably 11.0 or less (more preferably 10.5 or less).
  • the chemical component composition (C, Si, Mn, P, S, Cr, Al, N, Ti, O) including the above-described Al and N contents needs to be appropriately adjusted.
  • the reasons for limiting the ranges of these components are as follows.
  • C is an essential element for increasing the quenching hardness and maintaining the strength at room temperature and high temperature to impart wear resistance.
  • C In order to exert such an effect, C must be contained in an amount of 0.65% or more, preferably 0.8% or more (more preferably 0.95% or more).
  • the C content is 1.30% or less, preferably 1.2% or less ( More preferably, it should be suppressed to 1.1% or less.
  • Si 0.05-1.00%
  • Si is an element useful for improving the solid solution strengthening and hardenability of the matrix. In order to exert such effects, it is necessary to contain Si by 0.05% or more, preferably 0.1% or more (more preferably 0.15% or more). However, since the workability and machinability are remarkably lowered when the Si content is excessively large, the Si content is 1.00% or less, preferably 0.9% or less (more preferably 0.8% or less). Should be suppressed.
  • Mn is an element useful for improving the solid solution strengthening and hardenability of the matrix.
  • Mn is an element useful for improving the solid solution strengthening and hardenability of the matrix.
  • it is necessary to contain Mn in an amount of 0.1% or more, preferably 0.15% or more (more preferably 0.2% or more).
  • the Mn content is 2.00% or less, preferably 1.6% or less (more preferably 1.2% or less). Should be suppressed.
  • P 0.050% or less (excluding 0%)
  • P is an element inevitably contained as an impurity, but it is desirable to reduce it as much as possible because it segregates at the grain boundary and lowers workability.
  • the P content is set to 0.050% or less.
  • it is good to reduce to 0.04% or less (more preferably 0.03% or less).
  • S 0.050% or less (excluding 0%)
  • S is an element inevitably contained as an impurity, but it is desirable to reduce it as much as possible in order to precipitate as MnS and improve rolling fatigue characteristics.
  • the S content is set to 0.050% or less.
  • it is good to reduce to 0.04% or less (more preferably 0.03% or less).
  • Cr 0.15 to 2.00%
  • Cr is an element that combines with C to form carbides, imparts wear resistance, and contributes to improving hardenability.
  • the Cr content needs to be 0.15% or more.
  • it is 0.5% or more (more preferably 0.9% or more).
  • the Cr content is 2.00% or less.
  • it is 1.8% or less (more preferably 1.6% or less).
  • Al 0.010 to 0.100%
  • Al is an element that plays an important role in the steel material of the present invention, and when it is combined with N, it is finely dispersed in the steel as an Al-based nitrogen compound, which is important for improving the rolling fatigue characteristics of the steel material. It is an element.
  • Al-based nitrogen compound In order to produce a fine Al-based nitrogen compound, it is necessary to contain at least 0.010% or more. However, if the Al content becomes excessive and exceeds 0.100%, the size and number of Al-based nitrogen compounds that are precipitated increase, and cracks and scratches are likely to occur during casting and rolling.
  • the preferable lower limit of the Al content is 0.013% (more preferably 0.015% or more), and the preferable upper limit is 0.08% (more preferably 0.05% or less).
  • N 0.025% or less (excluding 0%)
  • N is an element that plays an important role in the steel material of the present invention, and is an important element for exerting an effect of improving rolling fatigue characteristics by fine dispersion of an Al-based nitrogen compound.
  • the N content becomes excessive and exceeds 0.025%, the size and number density of the Al-based nitrogen compound to be precipitated increase, and cracks are likely to occur during casting and rolling.
  • the N content is excessive, the crystal grains become too fine, so that the hardenability is lowered, cannot be applied to large parts, and the rolling fatigue life is shortened.
  • the lower limit of the N content is not particularly limited as long as a predetermined amount of Al-based nitrogen compound can be precipitated, and the cooling rate after rolling and the amount of elements (Ti, V, Nb, B, Zr, Te, etc.) that bind to N are reduced. And what is necessary is just to set suitably according to Al content.
  • the N content is 0.0035% or more, a predetermined amount of an Al-based nitrogen compound can be precipitated.
  • the minimum with preferable N content is 0.004% (more preferably 0.006% or more), and a preferable upper limit is 0.020% (more preferably 0.022% or less).
  • Ti 0.015% or less (excluding 0%)
  • TiN combines with N in steel to produce TiN, which not only adversely affects rolling fatigue properties but also harms cold workability and hot workability, and it is desirable to reduce it as much as possible.
  • the Ti content needs to be 0.015% or less.
  • the upper limit with preferable Ti content is 0.01% (more preferably 0.005% or less).
  • O has a great influence on the form of impurities in the steel and forms inclusions such as Al 2 O 3 and SiO 2 that adversely affect the rolling fatigue characteristics. Doing this increases the steelmaking cost. For these reasons, the O content needs to be 0.0025% or less. In addition, the upper limit with preferable O content is 0.002% (more preferably 0.0015% or less).
  • the contained elements specified in the present invention are as described above, and the balance is iron and unavoidable impurities.
  • the unavoidable impurities mixing of elements brought in depending on the situation of raw materials, materials, manufacturing facilities, etc. can be allowed.
  • the following elements can be positively contained within a specified range.
  • Cu 0.25% or less (not including 0%), Ni: 0.25% or less (not including 0%), and Mo: 0.25% or less (not including 0%)
  • One or more types Cu, Ni, and Mo are all elements that act as a hardenability improving element of the parent phase and contribute to improving rolling fatigue characteristics by increasing hardness. All of these effects are effectively exhibited by containing 0.03% or more. However, if any content exceeds 0.25%, workability deteriorates.
  • Nb 0.5% or less (not including 0%), V: 0.5% or less (not including 0%) and B: 0.005% or less (not including 0%)
  • Nb, V, and B are all effective elements for bonding with N to form a nitrogen compound to regulate crystal grains and improve rolling fatigue characteristics. If Nb and B are added at 0.0005% or more and V is added at 0.001% or more, rolling fatigue characteristics can be improved. However, if Nb or V exceeds 0.5% and B exceeds 0.005%, the crystal grains become finer and an incompletely quenched phase is likely to be generated. More preferable upper limits are Nb and V of 0.3% (more preferably 0.1% or less), and B is 0.003% (more preferably 0.001% or less).
  • Ca, REM (rare earth element), Mg, Li and Zr are all elements that spheroidize oxide inclusions and contribute to improving rolling fatigue characteristics. These effects are effectively exhibited by containing 0.0005% or more in Ca or REM and 0.0001% or more in Mg, Li or Zr. However, even if it is contained excessively, the effect is saturated, and an effect commensurate with the content cannot be expected, which is uneconomical.
  • More preferable upper limit is 0.03% (more preferably 0.01% or less) for Ca or REM, 0.01% (more preferably 0.005% or less) for Mg or Li, and 0.15 for Zr. % (More preferably 0.10% or less).
  • Pb selected from the group consisting of 0.5% or less (not including 0%), Bi: 0.5% or less (not including 0%), and Te: 0.1% or less (not including 0%)
  • Pb, Bi, and Te are all machinability improving elements. These effects are effectively exhibited by containing Pb and Bi in an amount of 0.01% or more and Te in an amount of 0.0001% or more. However, if the content of Pb or Bi exceeds 0.5% or the content of Te exceeds 0.1%, production problems such as generation of rolling flaws occur. A more preferable upper limit is 0.3% (more preferably 0.2% or less) for Pb and Bi, and 0.075% (more preferably 0.05% or less) for Te.
  • the steel material of the present invention in order to disperse the fine Al-based nitrogen compound in the steel after quenching and tempering, a slab satisfying the above component composition is used in the steel material production process, and the cooling rate after rolling is controlled. This is very important.
  • the Al-based nitrogen compound that precipitates in the cooling process after rolling remains in the same state even after the subsequent spheroidizing annealing, parts processing, quenching / tempering process.
  • the average equivalent circle diameter of the Al-based nitrogen compound is set to 25 to 200 nm, and the Al-based nitrogen compound having an equivalent circle diameter of 25 to 200 nm is dispersed in an amount of 1.1 / ⁇ m 2 or more and 6.0 / ⁇ m 2 or less.
  • the average cooling rate in the precipitation temperature range of the Al-based nitrogen compound that is, the average cooling rate while cooling the steel material from 850 ° C. to 650 ° C. (referred to as the primary average cooling rate) is 0.10 to 0.90.
  • the average cooling rate (referred to as secondary cooling rate) from 650 ° C. to room temperature (25 ° C.) needs to be 1 ° C./second or more.
  • the average equivalent circle diameter of Al-based nitrogen compounds precipitated during the cooling process after rolling, and the number of Al-based nitrogen compounds having a circle-equivalent diameter of 25 to 200 nm per unit area are determined by the subsequent spheroidizing annealing and part processing. Even after the quenching and tempering process, it is maintained as it is regardless of the processing conditions of these processes.
  • the Al-based nitrogen compound becomes coarse.
  • the primary cooling rate exceeds 0.90 ° C./second, the average equivalent circle diameter of the Al-based nitrogen compound is less than 25 nm, or the number density of a predetermined size is less than 1.1 / ⁇ m 2. Therefore, the desired size and number cannot be obtained. Further, by setting the secondary cooling rate to 1 ° C./or more, it is possible to suppress coarsening of the Al-based nitrogen compound and to control the size thereof.
  • the steel material of the present invention is made into a bearing part and the like by being quenched and tempered after being made into a predetermined part shape, but the shape as a steel material can be any shape such as a wire, a rod, etc. applicable to such production.
  • the size as a steel material may be appropriately determined according to the final product.
  • the steel materials (test Nos. 1 to 51) having various chemical compositions shown in Tables 1 and 2 below were heated to 1100 to 1300 ° C. in a heating furnace or a soaking furnace, and then subjected to block rolling at 900 to 1200 ° C. Thereafter, after heating to 900 to 1100 ° C., rolling (including forging simulating rolling) was performed to produce a round bar with a diameter of 70 mm. After completion of rolling, the round bar is cooled at various average cooling rates from 850 ° C. to 650 ° C. (Tables 3 and 4 below), and an average of 1 ° C./second from 650 ° C. to room temperature (25 ° C.). A rolled material or a forged material was obtained by cooling at a cooling rate.
  • the spheroidizing annealing was performed on the rolled material or the forged material at 795 ° C. (holding time: 6 hours), and then the rolled material or the forged material was cut by cutting. Thereafter, a disk having a diameter of 60 mm and a thickness of 5 mm was cut out from the rolled material or the forged material, subjected to oil quenching after heating at 840 ° C. for 30 minutes, and tempered at 160 ° C. for 120 minutes. Finally, finish polishing was performed to prepare a test piece having a surface roughness Ra (arithmetic average roughness) of 0.04 ⁇ m or less.
  • Ra surface roughness
  • test no Those of 3 to 5, 8, 10, 11, 14, 16 to 22, and 27 to 32 have the requirements specified in the present invention (chemical component composition, size and number of Al-based nitrogen compounds) or preferable requirements (former ⁇ It can be seen that excellent rolling fatigue characteristics are achieved without satisfying (grain size number).
  • Test No. Tests Nos. 2, 7, 9, 24, and 25 have a high cooling rate.
  • No. 40 since Ti content increases and TiN is formed, the number of Al-based nitrogen compounds is insufficient.
  • No. 34 since the Al content is larger than the range specified in the present invention, the number density and size of the Al-based nitrogen compound are excessive, and both have a reduced rolling fatigue life. Yes.
  • Test No. Nos. 36 to 39 and 41 to 51 deviate from the chemical composition defined in the present invention (test Nos. 37 and 38 also deviate from the above requirements), and both have a short rolling fatigue life.
  • FIG. 4 shows the relationship between the primary cooling rate (average cooling rate) and the size of the Al-based nitrogen compound (average circle equivalent diameter of the Al-based nitrogen compound). From this figure, it can be seen that adjusting the primary cooling rate to an appropriate range is effective in controlling the size of the Al-based nitrogen compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 製造性が高く、転動疲労特性が向上した鋼材は、C:0.65~1.30%、Si:0.05~1.00%、Mn:0.1~2.00%、P:0.050%以下(0%を含まない)、S:0.050%以下(0%を含まない)、Cr:0.15~2.00%、Al:0.010~0.100%、N:0.025%以下(0%を含まない)、Ti:0.015%以下(0%を含まない)およびO:0.0025%以下(0%を含まない)を含み、残部が鉄および不可避不純物からなり、鋼中に分散するAl系窒素化合物の平均円相当直径が25~200nmであり、円相当直径が25~200nmのAl系窒素化合物の個数密度が1.1個/μm以上、6.0個/μm以下である。

Description

転動疲労特性に優れた鋼材
 本発明は、自動車や各種産業機械等に使用される軸受部品や機械構造用部品に適用される鋼材に関し、特に上記各種部材として用いたときに優れた転動疲労特性を発揮する鋼材に関する。
 軸受やクランクシャフト等の部品は、機械類の回転部や摺動部を支持する重要な部品であるが、接触面圧が相当高く、また外力が変動することもあるため、使用される環境が過酷である場合が多い。このため、その素材である鋼材には、優れた耐久性が要求される。
 近年、こうした要求は、機械類の高性能化や軽量化が進められるに伴って、年々厳しいものとなっている。軸部品の耐久性向上には、潤滑性に関する技術の改善も重要であるが、鋼材が転動疲労特性に優れていることが特に重要な要件となる。
 軸受に用いられる鋼材としては、従来からJIS G 4805(1999)に規定されるSUJ2等の高炭素クロム軸受鋼が、自動車や各種産業機械等の種々の分野で用いられている軸受の材料として使用されている。しかし軸受は、接触面圧が非常に高い玉軸受やころ軸受等の内・外輪や転動体等、過酷な環境で用いられるため、非常に微細な欠陥(介在物等)から疲労破壊が生じ易いといった問題がある。この問題に対し、保守の回数を低減させるべく、転動疲労寿命そのものを長くするような軸受用鋼材の改善が試みられている。
 例えば特許文献1には、軸受材料において、TiおよびAlの含有量を規定すると共に、球状化焼鈍後に加熱処理を行なうことによって、微細なTi炭化物、Ti炭窒化物、Al窒化物などの量を制御し、それによって、旧オーステナイト結晶粒(旧γ結晶粒)を微細化することで、転動疲労特性を向上させることが提案されている。
 しかしながら、上記の技術では、Ti含有量が0.26%以上と非常に高くなっており、鋼材が高コストとなるばかりか、鋼材の加工性が低下するという問題がある。また、上記の技術による鋼材は、鋳造時に粗大なTiNが生成しやすく、この析出物の生成によって疲労寿命にバラツキが生じることがある。一方、上記の技術による鋼材は、Alの含有量についても0.11%以上となっており、鋳造時および圧延時に生成するAl系窒素化合物によって、割れや傷の発生等があり、製造性が悪くなるという問題がある。
特許第3591236号公報
 本発明は、このような事情に鑑みてなされたものであって、その目的は、製造性が高く、転動疲労特性が向上した鋼材を提供することにある。
 上記目的を達成できた本発明に係る鋼材とは、C:0.65~1.30%(質量%の意味、以下同じ)、Si:0.05~1.00%、Mn:0.1~2.00%、P:0.050%以下(0%を含まない)、S:0.050%以下(0%を含まない)、Cr:0.15~2.00%、Al:0.010~0.100%、N:0.025%以下(0%を含まない)、Ti:0.015%以下(0%を含まない)およびO:0.0025%以下(0%を含まない)を含み、残部が鉄および不可避不純物からなり、鋼中に分散するAl系窒素化合物の平均円相当直径が25~200nmであり、円相当直径が25~200nmのAl系窒素化合物の個数密度が1.1個/μm以上、6.0個/μm以下である点に要旨を有する。
 尚、上記「円相当直径」とは、その面積が等しくなるように想定した円の直径である。本発明では、透過型電子顕微鏡(TEM)や走査型電子顕微鏡(SEM)の観察面上で認められるAl系窒素化合物の円相当直径を算出する。また、本発明で対象とするAl系窒素化合物は、AlNは勿論のこと、Mn,Cr,S,Si等の元素を一部(合計含有量が30%程度まで)に含有するものも含むことが意図される。
 本発明の鋼材においては、旧オーステナイトの平均結晶粒度番号が11.5以下であることが好ましく、こうした要件を満足することによって、更に優れた転動疲労特性が得られる。
 また、本発明の鋼材には、必要によって、更に他の元素として、(a)Cu:0.25%以下(0%を含まない)、Ni:0.25%以下(0%を含まない)およびMo:0.25%以下(0%を含まない)よりなる群から選択される1種以上、(b)Nb:0.5%以下(0%を含まない)、V:0.5%以下(0%を含まない)およびB:0.005%以下(0%を含まない)よりなる群から選択される1種以上、(c)Ca:0.05%以下(0%を含まない)、REM:0.05%以下(0%を含まない)、Mg:0.02%以下(0%を含まない)、Li:0.02%以下(0%を含まない)およびZr:0.2%以下(0%を含まない)よりなる群から選択される1種以上、(d)Pb:0.5%以下(0%を含まない)、Bi:0.5%以下(0%を含まない)およびTe:0.1%以下(0%を含まない)よりなる群から選択される1種以上、等を含有させることも有用である。鋼材の特性は、含有される成分に応じて更に改善され得る。
 本発明によれば、化学成分組成を適切に調整すると共に、適度な大きさのAl系窒素化合物を鋼材内に適切に分散させることによって、転動疲労特性を更に向上させた鋼材が製造性良く実現できる。このため、本発明による鋼材は、軸受等に適用したとき等、過酷な環境で用いられても、優れた転動疲労特性を発揮できる。
Al系窒素化合物の個数密度と疲労寿命L10の関係を示すグラフである。 Al系窒素化合物の個数密度と大きさの関係を示すグラフである。 旧γ結晶粒度番号と疲労寿命L10の関係を示すグラフである。 一次冷却速度とAl系窒素化合物の大きさの関係を示すグラフである。
 本発明者らは、製造性を悪化させることなく、転動疲労特性に優れた(転動疲労寿命の長い)鋼材の実現を目指して、様々な角度から検討した。そして、鋼材の転動疲労特性を向上させる上では、下記(A)~(D)の要件を満足させることが有効であるとの知見が得られた。
 (A)Al含有量を少なくしながら、微細なAl系窒素化合物を数多く分散させ、その分散強化によって、亀裂の発生・伝播を抑制し、良好な転動疲労寿命が得られること、
(B)鋳造および圧延時での割れを抑制するためには、Al系窒素化合物の量(個数密度)と大きさを規定する必要があること、
(C)微細なAl系窒素化合物における分散度合い(個数密度)を達成するためには、鋼中のAlやNの含有量を厳密に制御することが重要であること、および、製造工程において、鋼材を、熱間圧延後にAl系窒素化合物の析出温度範囲である850℃から650℃までは除冷し、その後は冷却速度を速めることが有用であること、
(D)旧オーステナイト(旧γ)の結晶粒が微細過ぎると、焼入れ性が低下するため、不完全焼入れ相が生成しやすくなり、転動疲労寿命が短くなる傾向にあること。
 本発明者らは、上記知見に基づき、鋼材の転動疲労特性を向上させるべく、更に鋭意研究を重ねた。その結果、鋼材中のAlやN含有量を厳密に規定すると共に、その製造条件を制御し、焼入れ・焼戻し後に鋼中に分散するAl系窒素化合物の平均円相当直径が25~200nmであると共に、円相当直径が25~200nmのAl系窒素化合物の個数密度が1.1個/μm以上、6.0個/μm以下となるようにすれば、鋼材の転動疲労特性を著しく向上できることを見出し、本発明を完成した。
 本発明の鋼材では、円相当直径が25~200mのAl系窒素化合物の個数密度を適切に制御することが重要な要件となる。つまり、Al系窒素化合物の分散強化によって、亀裂の発生・伝播を抑制し、良好な転動疲労特性を達成する。そのためには、Al系窒素化合物の大きさも適切に制御する必要がある。Al系窒素化合物は、その大きさ(平均円相当直径)が25nmよりも小さくなったり、200nmよりも大きくなると、分散強化の効果を発揮することができなくなる。このAl系窒素化合物の大きさは、好ましくは40nm以上(より好ましくは50nm以上)であり、好ましくは150nm以下(より好ましくは125nm以下)である。
 円相当直径が25~200mのAl系窒素化合物の個数密度が1.1個/μm未満では、分散強化による転動疲労特性の向上効果は有効に発揮されない(転動疲労特性が悪くなる)。また、円相当直径が25~200mのAl系窒素化合物の個数密度が6.0個/μmを超えると、結晶粒が粗大化し、不完全焼入れ相(例えば、微細パーライトやベイナイト相)が生成するので、転動疲労寿命が短くなる(転動疲労特性が悪くなる)。Al系窒素化合物の個数密度は、好ましくは1.5個/μm以上(より好ましくは2.0個/μm以上)であり、好ましくは5.0個/μm以下(より好ましくは4.0個/μm以下)である。
 本発明の鋼材においては、旧オーステナイト(旧γ)の結晶粒も制御することが有効である。旧γの結晶粒度番号が大きいほど(結晶粒が小さいほど)、硬さが向上し、亀裂伝播特性が向上する。しかしながら、結晶粒度番号が大きくなり過ぎると(結晶粒が小さくなり過ぎると)、焼入れ性が低下して不完全焼入れ相が生成しやすくなるので、却って転動疲労寿命が短くなる。こうしたことから、旧γの結晶粒度番号は11.5以下とすることが好ましく、より好ましくは11.0以下(更に好ましくは10.5以下)とするのが良い。
 本発明の鋼材は、上記したAlやNの含有量を含め、その化学成分組成(C、Si、Mn、P、S、Cr、Al、N、Ti、O)も適切に調整する必要がある。これらの成分の範囲限定理由は下記の通りである。
 [C::0.65~1.30%]
 Cは、焼入硬さを増大させ、室温、高温における強度を維持して耐摩耗性を付与するために必須の元素である。こうした効果を発揮させるためには、Cは0.65%以上含有させなければならず、好ましくは0.8%以上(より好ましくは0.95%以上)含有させることが望ましい。しかしながら、C含有量が多くなり過ぎると巨大炭化物が生成し易くなり、転動疲労特性に却って悪影響を及ぼすようになるので、C含有量は1.30%以下、好ましくは1.2%以下(より好ましくは1.1%以下)に抑えるべきである。
 [Si:0.05~1.00%]
 Siは、マトリックスの固溶強化および焼入れ性を向上させるために有用な元素である。こうした効果を発揮させるためには、Siは0.05%以上含有させる必要があり、好ましくは0.1%以上(より好ましくは0.15%以上)含有させることが望ましい。しかしながら、Si含有量が多くなり過ぎると加工性や被削性が著しく低下するので、Si含有量は1.00%以下、好ましくは0.9%以下(より好ましくは0.8%以下)に抑えるべきである。
 [Mn:0.1~2.00%]
 Mnは、マトリックスの固溶強化および焼入れ性を向上させるために有用な元素である。こうした効果を発揮させるためには、Mnは0.1%以上含有させる必要があり、好ましくは0.15%以上(より好ましくは0.2%以上)含有させることが望ましい。しかしながら、Mn含有量が多くなり過ぎると加工性や被削性が著しく低下するので、Mn含有量は2.00%以下、好ましくは1.6%以下(より好ましくは1.2%以下)に抑えるべきである。
 [P:0.050%以下(0%を含まない)]
 Pは、不可避的に不純物として含有する元素であるが、粒界に偏析し、加工性を低下させるため極力低減することが望ましいが、極端に低減することは製鋼コストの増大を招く。こうしたことから、P含有量は、0.050%以下とした。好ましくは0.04%以下(より好ましくは0.03%以下)に低減するのが良い。
 [S:0.050%以下(0%を含まない)]
 Sは、不可避的に不純物として含有する元素であるが、MnSとして析出し、転動疲労特性を向上させるため極力低減することが望ましいが、極端に低減することは製鋼コストの増大を招く。こうしたことから、S含有量は、0.050%以下とした。好ましくは0.04%以下(より好ましくは0.03%以下)に低減するのが良い。
 [Cr:0.15~2.00%]
 Crは、Cと結びついて炭化物を形成し、耐摩耗性を付与すると共に、焼入性の向上に寄与する元素である。この様な効果を発揮させるには、Cr含有量は0.15%以上とする必要がある。好ましくは0.5%以上(より好ましくは0.9%以上)である。しかし、Cr含有量が過剰になると、粗大な炭化物が生成し、転動疲労寿命が却って短くなる。従ってCr量は2.00%以下とする。好ましくは1.8%以下(より好ましくは1.6%以下)である。
 [Al:0.010~0.100%]
 Alは、本発明の鋼材において重要な役目を果たす元素であり、Nと結合することによって、Al系窒素化合物として鋼中に微細に分散し、鋼材の転動疲労特性を向上させる上で重要な元素である。微細なAl系窒素化合物を生成させるためには、少なくとも0.010%以上含有させる必要がある。しかしながら、Al含有量が過剰になって0.100%を超えると、析出するAl系窒素化合物の大きさおよび個数が増加し、鋳造や圧延時に割れや傷が生じやすくなる。また、Al含有量が過剰であると、結晶粒が細かくなり過ぎるため、焼入れ性が低下し、大型部品に適用できず、且つ転動疲労寿命が短縮される。尚、Al含有量の好ましい下限は、0.013%(より好ましくは0.015%以上)であり、好ましい上限は0.08%(より好ましくは0.05%以下)である。
 [N:0.025%以下(0%を含まない)]
 Nは上記Alと同様に、本発明の鋼材において重要な役目を果たす元素であり、Al系窒素化合物の微細分散による転動疲労特性向上効果を発揮させる上で重要な元素である。しかしながら、N含有量が過剰になって0.025%を超えると、析出するAl系窒素化合物の大きさおよび個数密度が増加し、鋳造や圧延時に割れ傷が生じやすくなる。また、N含有量が過剰であると、結晶粒が細かくなり過ぎるため、焼入れ性が低下し、大型部品に適用できず、且つ転動疲労寿命が短縮される。N含有量の下限は、Al系窒素化合物を所定量析出できる限り特に限定されず、圧延後の冷却速度や、Nと結合する元素(Ti,V,Nb,B,Zr,Te等)の量およびAl含有量に応じて適宜設定すれば良い。例えば、N含有量が0.0035%以上になると、所定量のAl系窒素化合物を析出させられる。尚、N含有量の好ましい下限は、0.004%(より好ましくは0.006%以上)であり、好ましい上限は0.020%(より好ましくは0.022%以下)である。
 [Ti:0.015%以下(0%を含まない)]
 Tiは、鋼中のNと結合してTiNを生成し、転動疲労特性に悪影響を及ぼすばかりでなく、冷間加工性や熱間加工性も害する有害元素であり、極力低減することが望ましいが、極端に低減することは製鋼コストの増大を招く。こうしたことから、Ti含有量は0.015%以下とする必要がある。尚、Ti含有量の好ましい上限は0.01%(より好ましくは0.005%以下)である。
 [O:0.0025%以下(0%を含まない)]
 Oは、鋼中の不純物の形態に大きな影響を及ぼし、転動疲労特性に悪影響を及ぼすAlやSiO等の介在物を形成するため、極力低減することが好ましいが、極端に低減することは製鋼コストの増大を招く。こうしたことから、O含有量は0.0025%以下とする必要がある。尚、O含有量の好ましい上限は0.002%(より好ましくは0.0015%以下)である。
 本発明で規定する含有元素は上記の通りであって、残部は鉄および不可避不純物であり、該不可避不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素の混入が許容され得る。尚、転動疲労寿命を長くするため、下記元素を規定範囲内で積極的に含有させることも可能である。
 [Cu:0.25%以下(0%を含まない)、Ni:0.25%以下(0%を含まない)およびMo:0.25%以下(0%を含まない)よりなる群から選択される1種以上]
 Cu、NiおよびMoは、いずれも母相の焼入性向上元素として作用し、硬さを高めて転動疲労特性の向上に寄与する元素である。これらの効果は、いずれも0.03%以上含有させることによって有効に発揮される。しかしながら、いずれの含有量も0.25%を超えると加工性が劣化する。
 [Nb:0.5%以下(0%を含まない)、V:0.5%以下(0%を含まない)およびB:0.005%以下(0%を含まない)よりなる群から選択される1種以上]
 Nb、VおよびBは、いずれもNと結合することで、窒素化合物を形成して、結晶粒を整粒化し、転動疲労特性を向上させる上で有効な元素である。NbおよびBは、0.0005%以上、Vは、0.001%以上添加すれば、転動疲労特性を向上させられる。しかしながら、NbまたはVは0.5%を超えると、Bは0.005%を超えると、結晶粒が微細化し、不完全焼入れ相が生成しやすくなる。尚、より好ましい上限はNbおよびVは0.3%(更に好ましくは0.1%以下)、Bは0.003%(更に好ましくは0.001%以下)である。
 [Ca:0.05%以下(0%を含まない)、REM:0.05%以下(0%を含まない)、Mg:0.02%以下(0%を含まない)、Li:0.02%以下(0%を含まない)およびZr:0.2%以下(0%を含まない)よりなる群から選択される1種以上]
 Ca、REM(希土類元素)、Mg、LiおよびZrは、いずれも酸化物系介在物を球状化させ、転動疲労特性向上に寄与する元素である。これらの効果は、CaまたはREMで0.0005%以上、Mg、LiまたはZrで0.0001%以上含有させることによって有効に発揮される。しかしながら、過剰に含有させても効果が飽和し、含有量に見合う効果が期待できず不経済となるので、夫々上記範囲内とするべきである。尚、より好ましい上限は、CaまたはREMは0.03%(更に好ましくは0.01%以下)、MgまたはLiは0.01%(更に好ましくは0.005%以下)、Zrは0.15%(更に好ましくは0.10%以下)である。
 [Pb:0.5%以下(0%を含まない)、Bi:0.5%以下(0%を含まない)およびTe:0.1%以下(0%を含まない)よりなる群から選択される1種以上]
 Pb、BiおよびTeは、いずれも被削性向上元素である。これらの効果は、Pb、Biは0.01%以上、Teで0.0001%以上含有させることによって有効に発揮される。しかし、Pb、Biの含有量が0.5%を超えるか、Teの含有量が0.1%を超えると、圧延傷の発生等、製造上の問題が生じる。尚、より好ましい上限はPbおよびBiでは0.3%(更に好ましくは0.2%以下)、Teでは0.075%(更に好ましくは0.05%以下)である。
 本発明の鋼材において、焼入れ・焼戻し後に鋼中に微細なAl系窒素化合物を分散させるためには、鋼材の製造工程において、上記成分組成を満たす鋳片を用い、圧延後の冷却速度を制御することが重要である。圧延後の冷却過程で析出するAl系窒素化合物は、その後の球状化焼鈍、部品加工、焼入れ・焼戻し過程を経ても同様の状態で残存したままである。Al系窒素化合物の平均円相当直径を25~200nmにすると共に、円相当直径で25~200nmのAl系窒素化合物を1.1個/μm以上、6.0個/μm以下分散させるためには、Al系窒素化合物の析出温度範囲における平均冷却速度、つまり、鋼材を850℃から650℃まで冷却する間の平均冷却速度(一次平均冷却速度と呼ぶ)を、0.10~0.90℃/秒の範囲とし、650℃から室温(25℃)までの平均冷却速度(二次冷却速度と呼ぶ)を、1℃/秒以上とする必要がある。尚、この圧延後の冷却過程で析出するAl系窒素化合物の平均円相当直径、及び、円相当直径で25~200nmのAl系窒素化合物の単位面積当たり個数は、その後の球状化焼鈍、部品加工、焼入れ・焼戻し過程を経ても、それら工程の処理条件に依らずそのまま維持される。
 上記一次冷却速度が0.10℃/秒未満の冷却であると、Al系窒素化合物が粗大化する。また、一次冷却速度が0.90℃/秒を超えると、Al系窒素化合物の平均円相当直径が25nm未満となったり、所定の大きさの個数密度が1.1個/μm未満となったりするので、所望の大きさと個数が得られなくなる。また二次冷却速度を1℃/以上とすることによって、Al系窒素化合物の粗大化を抑制し、その大きさを制御できる。
 本発明の鋼材は、所定の部品形状にされた後焼入れ・焼戻しされて軸受部品等に製造されるが、鋼材としての形状は、こうした製造に適用できるような線状・棒状、その他いかなる形状であってもよく、鋼材としてのサイズも、最終製品に応じて適宜決められる。
 以下、実施例によって本発明をより具体的に説明するが、本発明は、下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することは勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 下記表1、2に示す各種化学成分組成の鋼材(試験No.1~51)を加熱炉またはソーキング炉で1100~1300℃に加熱した後、900~1200℃で分塊圧延を実施した。その後、900~1100℃に加熱した後、圧延(圧延を模した鍛造も含む)して、直径:70mmの丸棒材を作製した。圧延終了後、その丸棒材を、850℃から650℃までは様々な平均冷却速度で冷却すると共に(下記表3、4)、650℃から室温(25℃)までは1℃/秒の平均冷却速度で冷却して圧延材または鍛造材を得た。
 上記圧延材または鍛造材に、795℃(保持時間:6時間)で球状化焼鈍を施した後、切削によってその圧延材または鍛造材の皮削りを行なった。その後、圧延材または鍛造材から、直径:60mm、厚さ:5mmの円盤を切り出し、840℃で30分間加熱後の油焼入れを実施し、160℃で120分間の焼戻しを実施した。最終的に仕上げ研磨を施して、表面粗さがRa(算術平均粗さ)で0.04μm以下となる試験片を作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記で得られた試験片について、下記の条件にてAl系窒素化合物の個数、大きさ、旧オーステナイト(旧γ)の結晶粒(結晶粒度番号)を測定すると共に、疲労寿命、割れの有無を評価した。
 [Al系窒素化合物の個数、大きさの測定]
 Al系窒素化合物の分散状況の確認方法としては、熱処理後の試験片を切断し、この断面を研磨した後、その面にカーボン蒸着を行い、FE-TEM(電界放出型透過型電子顕微鏡)によりレプリカ観察を実施した。この際、TEMのEDX(エネルギー分散型X線検出器)によりAl、Nを含むAl系窒素化合物の成分を特定し、30000倍の倍率にてその視野の観察を行なった。このとき、1視野を16.8μmとし、任意の3視野について観察し(合計50.4μm)、粒子解析ソフト[「粒子解析III for Windows. Version3.00 SUMITOMO METAL TECHNOLOGY」(商品名)]を用い、その大きさ(平均円相当直径)、および円相当直径が25~200nmのAl系窒素化合物の個数(個数はμm当りに換算:個数密度)を求めた。
 [旧オーステナイト(旧γ)の結晶粒(結晶粒度番号)の測定]
 熱処理後の試験片を切断し、その断面を研磨した後、旧オーステナイト粒界現出腐食を行ない、表層から150μm深さ位置を4箇所撮影し、JIS G 0551に準じて(標準図に基づく方法)旧オーステナイト粒度測定を実施した。
 [疲労寿命の測定]
 スラスト型転動疲労試験機にて、繰り返し速度:1500rpm、面圧:5.3GPa、中止回数:2×10回の条件にて、各鋼材(試験片)につき転動疲労試験を各16回ずつ実施し、疲労寿命L10(ワイブル確率紙にプロットして得られる累積破損確率10%における疲労破壊までの応力繰り返し数)を評価した。このとき、疲労寿命L10(L10寿命)で1.0×10回以上を合格基準とした。
 [割れの有無の評価]
 圧延および鍛造後のサンプル表面を切削し、その表面を目視観察し、3mm以上の傷が認められた場合を割れ有りと判定した。
 これらの結果を、製造条件(一次冷却速度、二次冷却の有無)と共に、下記表3、4に併記する。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 これらの結果から、次のように考察できる。即ち、試験No.3~5、8、10、11、14、16~22、27~32のものは、本発明で規定する要件(化学成分組成、Al系窒素化合物の大きさ、個数)または好ましい要件(旧γ結晶粒度番号)を満足し、いずれも割れが生じることなく、優れた転動疲労特性が達成されていることが分かる。
 これに対し、試験No.1、2、6、7、9、12、13、15、23~26、33~51のものは、本発明で規定する要件のいずれかが外れているため、いずれも転動疲労寿命が短くなっている。
 試験No.1、6、15、23、26、33、35、37、38のものは、圧延後の冷却条件が適切でないので、Al系窒素化合物の大きさが大きくなり過ぎており(このうち、試験No.23、26、33、37、38のものは、旧γ結晶粒度番号も外れる)、いずれも転動疲労寿命が短くなっている。
 試験No.2、7、9、24、25のものは、冷却速度が速いので、試験No.40のものは、Ti含有量が多くなってTiNを形成するので、いずれもAl系窒素化合物の個数が不足しており、試験No.34のものは、Al含有量が本発明で規定する範囲よりも多くなっているので、Al系窒素化合物の個数密度および大きさが過剰となっており、いずれも転動疲労寿命が短くなっている。
 試験No.12、13のものは、Al系窒素化合物の個数の個数密度が過剰になっており、また好ましい要件である旧γ結晶粒度番号が本発明で規定する範囲を外れており、いずれも転動疲労寿命が短くなっている。
 試験No.36~39、41~51のものは、本発明で規定する化学成分組成を外れており(試験No.37、38は上記した要件も外れる)、いずれも転動疲労寿命が短くなっている。
 これらのデータに基づいて、Al系窒素化合物(円相当直径が25~200のAl系窒素化合物)の個数密度と疲労寿命L10の関係を図1に、Al系窒素化合物の個数密度と大きさ(平均円相当直径)の関係を図2に(以上、化学成分的に本発明で規定する範囲を満足するものをプロット)夫々示す。これらの図から、Al系窒素化合物の個数密度や大きさを適切に制御することによって、長い疲労寿命L10(転動疲労寿命)が達成されることが分かる。
 旧γ結晶粒度番号と疲労寿命L10の関係を図3に示す。図からは、旧γ結晶粒度番号を適切な範囲とすることは、長い疲労寿命L10(転動疲労寿命)を達成する上で有効な手段であることが分かる。また、一次冷却速度(平均冷却速度)とAl系窒素化合物の大きさ(Al系窒素化合物の平均円相当直径)の関係を図4に示す。この図からは、一次冷却速度を適正な範囲に調整することは、Al系窒素化合物の大きさを制御する上で有効であることが分かる。

Claims (6)

  1.  C:0.65~1.30%(質量%の意味、以下同じ)、Si:0.05~1.00%、Mn:0.1~2.00%、P:0.050%以下(0%を含まない)、S:0.050%以下(0%を含まない)、Cr:0.15~2.00%、Al:0.010~0.100%、N:0.025%以下(0%を含まない)、Ti:0.015%以下(0%を含まない)およびO:0.0025%以下(0%を含まない)を含み、残部が鉄および不可避不純物からなり、
     鋼中に分散するAl系窒素化合物の平均円相当直径が25~200nmであり、
     円相当直径が25~200nmのAl系窒素化合物の個数密度が1.1個/μm以上、6.0個/μm以下であることを特徴とする鋼材。
  2.  旧オーステナイトの平均結晶粒度番号が11.5以下である請求項1に記載の鋼材。
  3.  更に他の元素として、Cu:0.25%以下(0%を含まない)、Ni:0.25%以下(0%を含まない)およびMo:0.25%以下(0%を含まない)よりなる群から選択される1種以上を含む請求項1に記載の鋼材。
  4.  更に他の元素として、Nb:0.5%以下(0%を含まない)、V:0.5%以下(0%を含まない)およびB:0.005%以下(0%を含まない)よりなる群から選択される1種以上を含む請求項1に記載の鋼材。
  5.  更に他の元素として、Ca:0.05%以下(0%を含まない)、REM:0.05%以下(0%を含まない)、Mg:0.02%以下(0%を含まない)、Li:0.02%以下(0%を含まない)およびZr:0.2%以下(0%を含まない)よりなる群から選択される1種以上を含む請求項1に記載の鋼材。
  6.  更に他の元素として、Pb:0.5%以下(0%を含まない)、Bi:0.5%以下(0%を含まない)およびTe:0.1%以下(0%を含まない)よりなる群から選択される1種以上を含む請求項1に記載の鋼材。
PCT/JP2011/062000 2011-05-25 2011-05-25 転動疲労特性に優れた鋼材 WO2012160675A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/118,370 US9303302B2 (en) 2011-05-25 2011-05-25 Steel with excellent rolling-contact fatigue properties
KR1020137030180A KR20130140193A (ko) 2011-05-25 2011-05-25 전동 피로 특성이 우수한 강재
EP11866383.0A EP2716781B1 (en) 2011-05-25 2011-05-25 Bearing steel with excellent rolling fatigue characteristics
PCT/JP2011/062000 WO2012160675A1 (ja) 2011-05-25 2011-05-25 転動疲労特性に優れた鋼材
ES11866383.0T ES2675718T3 (es) 2011-05-25 2011-05-25 Acero para cojinetes con excelentes características de fatiga rodante
BR112013030223A BR112013030223A2 (pt) 2011-05-25 2011-05-25 aço com excelentes propriedades de fadiga de contato de rolagem
CN201180071066.4A CN103562423B (zh) 2011-05-25 2011-05-25 滚动疲劳特性优异的钢材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/062000 WO2012160675A1 (ja) 2011-05-25 2011-05-25 転動疲労特性に優れた鋼材

Publications (1)

Publication Number Publication Date
WO2012160675A1 true WO2012160675A1 (ja) 2012-11-29

Family

ID=47216777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062000 WO2012160675A1 (ja) 2011-05-25 2011-05-25 転動疲労特性に優れた鋼材

Country Status (7)

Country Link
US (1) US9303302B2 (ja)
EP (1) EP2716781B1 (ja)
KR (1) KR20130140193A (ja)
CN (1) CN103562423B (ja)
BR (1) BR112013030223A2 (ja)
ES (1) ES2675718T3 (ja)
WO (1) WO2012160675A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI507546B (zh) * 2014-08-05 2015-11-11 China Steel Corp 沃斯田鐵系合金及其製造方法
JP6350156B2 (ja) * 2014-09-12 2018-07-04 愛知製鋼株式会社 クランクシャフト及びクランクシャフト鋼材
CN107130181A (zh) * 2017-06-22 2017-09-05 合肥力和机械有限公司 一种家电专用轴承钢球及其制备方法
KR20200044866A (ko) * 2017-09-13 2020-04-29 닛폰세이테츠 가부시키가이샤 전동 피로 특성이 우수한 강재
CN109252087A (zh) * 2018-11-07 2019-01-22 北京科技大学 轴承钢中添加Ce抑制TiN复合夹杂物形成的合金工艺
CN111763889A (zh) * 2020-06-02 2020-10-13 钢铁研究总院 一种高碳轴承钢及其制备方法
CN112680674B (zh) * 2020-12-08 2022-07-26 东北大学 一种含稀土元素的高碳铬轴承钢及制备方法
CN115233109B (zh) * 2022-09-23 2022-12-09 联峰钢铁(张家港)有限公司 一种窄淬透性轴承钢及其生产工艺
CN116377333B (zh) * 2023-04-27 2024-06-04 中国钢研科技集团有限公司 一种组织细质化与均质化的微合金化轴承钢铸坯

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135615A (ja) * 1986-11-27 1988-06-08 Daido Steel Co Ltd 転動寿命のすぐれた軸受鋼
JPH1180897A (ja) * 1997-09-04 1999-03-26 Nippon Seiko Kk 転がり軸受
JPH11256233A (ja) * 1998-03-13 1999-09-21 Kawasaki Steel Corp 鋼線材の直接球状化焼なまし方法
JP2007131907A (ja) * 2005-11-09 2007-05-31 Sanyo Special Steel Co Ltd 冷間加工性に優れる高周波焼入れ用鋼及びその製造方法
JP2011117009A (ja) * 2009-11-30 2011-06-16 Kobe Steel Ltd 転動疲労寿命に優れた鋼材

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294150A (ja) 1986-06-12 1987-12-21 Daido Steel Co Ltd 高品質軸受鋼およびその製造方法
JPH1030150A (ja) * 1996-07-19 1998-02-03 Nippon Seiko Kk 転がり軸受
US6224688B1 (en) 1997-08-18 2001-05-01 Nsk Ltd. Rolling bearing
JP3713975B2 (ja) * 1998-09-17 2005-11-09 住友金属工業株式会社 軸受用鋼
JP3889931B2 (ja) 2001-01-26 2007-03-07 Jfeスチール株式会社 軸受材料
JP4368308B2 (ja) * 2002-12-12 2009-11-18 新日本製鐵株式会社 素材製造性と耐食性に優れた軸受鋼およびその製造方法ならびに軸受部品およびその製造方法
JP4197459B2 (ja) * 2003-05-27 2008-12-17 株式会社ジェイテクト ステアリングラック用棒鋼
JP4319001B2 (ja) * 2003-10-10 2009-08-26 Ntn株式会社 転がり軸受
JP2008088482A (ja) * 2006-09-29 2008-04-17 Jfe Steel Kk 転動疲労特性と圧壊強度に優れた軸受のコロまたは球、および、軸受
JP2008088478A (ja) * 2006-09-29 2008-04-17 Jfe Steel Kk 疲労特性に優れた軸受用鋼部品
CN101410541B (zh) 2006-12-25 2011-11-16 新日本制铁株式会社 可切削性和强度特性优异的机械结构用钢
EP1975270A1 (en) 2007-03-31 2008-10-01 Daido Tokushuko Kabushiki Kaisha Austenitic free cutting stainless steel
JP2008274398A (ja) 2007-03-31 2008-11-13 Daido Steel Co Ltd オーステナイト系快削ステンレス鋼
RU2437958C1 (ru) * 2007-10-24 2011-12-27 Ниппон Стил Корпорейшн Нитроцементированная стальная деталь с индукционной закалкой с повышенной усталостной прочностью поверхности при высокой температуре и способ ее производства
JP5292897B2 (ja) * 2008-03-31 2013-09-18 Jfeスチール株式会社 異物環境下での疲労特性に優れた軸受部品およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135615A (ja) * 1986-11-27 1988-06-08 Daido Steel Co Ltd 転動寿命のすぐれた軸受鋼
JPH1180897A (ja) * 1997-09-04 1999-03-26 Nippon Seiko Kk 転がり軸受
JP3591236B2 (ja) 1997-09-04 2004-11-17 日本精工株式会社 転がり軸受
JPH11256233A (ja) * 1998-03-13 1999-09-21 Kawasaki Steel Corp 鋼線材の直接球状化焼なまし方法
JP2007131907A (ja) * 2005-11-09 2007-05-31 Sanyo Special Steel Co Ltd 冷間加工性に優れる高周波焼入れ用鋼及びその製造方法
JP2011117009A (ja) * 2009-11-30 2011-06-16 Kobe Steel Ltd 転動疲労寿命に優れた鋼材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2716781A4

Also Published As

Publication number Publication date
EP2716781B1 (en) 2018-06-20
US20140099228A1 (en) 2014-04-10
CN103562423B (zh) 2015-11-25
EP2716781A1 (en) 2014-04-09
CN103562423A (zh) 2014-02-05
ES2675718T3 (es) 2018-07-12
BR112013030223A2 (pt) 2016-12-06
KR20130140193A (ko) 2013-12-23
EP2716781A4 (en) 2015-04-22
US9303302B2 (en) 2016-04-05

Similar Documents

Publication Publication Date Title
JP5425736B2 (ja) 冷間加工性、耐摩耗性、及び転動疲労特性に優れた軸受用鋼
WO2012160675A1 (ja) 転動疲労特性に優れた鋼材
KR101520208B1 (ko) 기소강 및 그의 제조 방법, 및 기소강을 이용한 기계 구조 부품
TWI485267B (zh) 轉動疲勞特性優異之軸承用鋼材及其製造方法
JP5400590B2 (ja) 転動疲労寿命の安定性に優れた鋼材
JP6241136B2 (ja) 肌焼鋼鋼材
JP5400591B2 (ja) 冷間加工性に優れた軸受用鋼
JP4923776B2 (ja) 転がり、摺動部品およびその製造方法
JP5406687B2 (ja) 転動疲労寿命に優れた鋼材
JP5886119B2 (ja) 肌焼鋼鋼材
EP2834378B1 (en) Steel alloy
JP5871085B2 (ja) 冷間鍛造性および結晶粒粗大化抑制能に優れた肌焼鋼
JP2017133052A (ja) 浸炭時の粗大粒防止特性と疲労特性と被削性に優れた肌焼鋼およびその製造方法
JP5990428B2 (ja) 転動疲労特性に優れた軸受用鋼材およびその製造方法
JP4569961B2 (ja) ボールネジまたはワンウェイクラッチ用部品の製造方法
WO2018212196A1 (ja) 鋼及び部品
JP5976581B2 (ja) 転動疲労特性に優れた軸受用鋼材、および軸受部品
JP6172378B2 (ja) 肌焼鋼鋼線
JP6705344B2 (ja) 浸炭時の粗大粒防止特性と疲労特性に優れた肌焼鋼およびその製造方法
TWI448565B (zh) 轉動疲勞特性優異的鋼材
JP6085210B2 (ja) 転動疲労特性に優れた肌焼鋼、及びその製造方法
WO2012160676A1 (ja) 転動疲労寿命が一定の鋼材
WO2012160677A1 (ja) 冷間加工性に優れた軸受用鋼
JP2024101924A (ja) 軸受用鋼
TW201247900A (en) Steel with constant rolling fatigue life

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866383

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137030180

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14118370

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013030223

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: JP

ENP Entry into the national phase

Ref document number: 112013030223

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131125