WO2012159541A1 - 向核电站提供应急电源的方法和系统 - Google Patents

向核电站提供应急电源的方法和系统 Download PDF

Info

Publication number
WO2012159541A1
WO2012159541A1 PCT/CN2012/075614 CN2012075614W WO2012159541A1 WO 2012159541 A1 WO2012159541 A1 WO 2012159541A1 CN 2012075614 W CN2012075614 W CN 2012075614W WO 2012159541 A1 WO2012159541 A1 WO 2012159541A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
energy storage
storage system
module
nuclear power
Prior art date
Application number
PCT/CN2012/075614
Other languages
English (en)
French (fr)
Inventor
张善明
卢长申
戴忠华
陈军琦
王成铭
王永年
朱钢
李书周
林杰东
吴宇坤
苏广超
梅宗川
韩雪华
曾其权
黄卫刚
林鸿江
李俊
Original Assignee
中国广东核电集团有限公司
大亚湾核电运营管理有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国广东核电集团有限公司, 大亚湾核电运营管理有限责任公司 filed Critical 中国广东核电集团有限公司
Priority to KR1020137004652A priority Critical patent/KR101337565B1/ko
Priority to US13/820,454 priority patent/US8975781B2/en
Priority to EP12789217.2A priority patent/EP2600489B1/en
Priority to JP2013525134A priority patent/JP2013537636A/ja
Publication of WO2012159541A1 publication Critical patent/WO2012159541A1/zh
Priority to ZA2013/01589A priority patent/ZA201301589B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/02Arrangements of auxiliary equipment
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/04Safety arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • This application belongs to the key technology and battery management technology of a million kilowatt advanced pressurized water reactor nuclear power plant. At the same time, it involves the energy system energy-saving comprehensive optimization technology combining the key technology of the 1000-kilowatt advanced pressurized water reactor nuclear power plant and battery management technology.
  • Nuclear Power Plant uses nuclear fission (Nuclear) A power plant that generates electricity by the energy released by the Fission or Nuclear Fusion reaction.
  • Nuclear nuclear fission
  • the design, construction and operation of nuclear power plants adopt the principle of defense in depth, providing multiple protections from equipment and measures to ensure that nuclear power plants can effectively control the output power of the reactors;
  • various natural disasters such as earthquakes, tsunamis, floods, etc., or artificially generated fires and explosions
  • the power supply should reflect the concept of defense in depth, both in terms of installation and operation.
  • emergency power supply should be provided for some special important electrical equipment or special requirements equipment, and multi-functional and independent settings should be made to avoid emergency power supply caused by common mode failure.
  • the emergency power supply system of the nuclear power plant together with the normal power supply system together constitutes the plant power system, providing safe and reliable power supply for all the power equipment in the plant.
  • the nuclear power plant is equipped with multiple redundant power supplies, including special emergency power supplies such as off-site main power supply, off-site auxiliary power supply and emergency fixed diesel engine.
  • Each power supply has its own functions and cooperates with each other, not only in various forms, but also in layers. Multiple redundancy to maximize reliable power supply to electrical nuclear power plants.
  • the operation mode of the plant power system of a nuclear power plant is as follows:
  • the distribution system of the entire plant equipment is powered by the 26KV busbar of the unit through the high-voltage factory transformer;
  • the 26KV bus is powered by the main generator
  • the 220KV power grid supplies power to the safety auxiliary facilities that must be operated through the auxiliary transformer, so that the reactor is maintained in the thermal shutdown state;
  • the fixed diesel generator set supplies power to the emergency auxiliary equipment, so that the reactor enters the cold shutdown state
  • any emergency diesel generator set of the nuclear power unit When any emergency diesel generator set of the nuclear power unit is not available, it is replaced by an additional emergency diesel unit to perform the functions of the emergency diesel generator set, providing power for dedicated safety facilities, reactor core waste heat discharge and spent fuel pool cooling.
  • fixed diesel generator sets have certain limitations. In the case of other power sources lost, the fixed diesel generator set, which is the ultimate emergency power source for nuclear power plants, has its own characteristics that determine its inability to resist flooding disasters – such as floods, tsunamis, typhoons, etc., when extreme design benchmarks occur. In the case of natural disasters, fixed diesel generator sets are prone to lose power and cannot provide nuclear power plants with the power of reactor core waste heat removal and spent fuel pool cooling, which will lead to catastrophic consequences for nuclear power plants.
  • the present application provides, in one aspect, a method for providing emergency power to a nuclear power plant, comprising: providing a battery energy storage system, connected to an emergency bus, and monitoring the battery energy storage system by an online monitoring system; When the electrical equipment loses power, the battery energy storage system is activated by the online monitoring system, and the power supply equipment of the nuclear power station is powered by the emergency bus.
  • Another aspect of the present application provides a system for providing emergency power to a nuclear power plant corresponding to the above method.
  • the method and system for providing emergency power to a nuclear power plant provided by the present application can resist the over-designed reference conditions that the existing emergency power supply system of the nuclear power plant cannot resist, such as a serious natural disaster caused by an earthquake superimposed tsunami, etc.
  • the method and system for providing emergency power supply to nuclear power plants provided by the application which are designed according to the design basis and super design basis of the nuclear power plant, can operate normally in the severe natural disasters of the super design working condition, can reduce the core melting probability of the nuclear power station, and improve The safety of nuclear power plants.
  • FIG. 1 is a general schematic diagram of an energy storage system according to an embodiment of the present application.
  • FIG. 2 is a flow chart of monitoring an energy storage system of an online monitoring system according to an embodiment of the present application
  • FIG. 3 is a diagram showing an example of performance parameters of reading a battery from a battery module monitor according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a battery pack according to an embodiment of the present application.
  • FIG. 5 is a schematic structural view of a flexible electrical connection portion of a unit battery according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram showing the internal structure of a battery cabinet according to an embodiment of the present application.
  • FIG. 7 is a schematic view showing the arrangement of a battery cabinet according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a storage device according to an embodiment of the present application.
  • Figure 9 is a top plan view of the storage device of Figure 8.
  • FIG. 10 is a schematic structural diagram of a storage device according to another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a commutation device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a built-in controller of a commutation device according to an embodiment of the present application.
  • a method for providing emergency power to a nuclear power plant includes providing a battery energy storage system 2100 connected to an emergency bus 2910 and monitoring the battery energy storage system 2100 by an online monitoring system.
  • the battery energy storage system 2100 is started by the online monitoring system, and the power supply device of the nuclear power station is powered by the emergency bus 2910.
  • the electric equipment includes a cooling system, an electronic instrument, a control system, a monitoring system or a lighting system.
  • the system for providing emergency power to the nuclear power plant is applied to the power supply of the factory emergency equipment to ensure the emergency of the plant in extreme conditions. The device is powered normally.
  • a system for providing emergency power to a nuclear power plant including a battery energy storage system 2100 and an online monitoring system electrically connected thereto, is also provided.
  • the battery energy storage system 2100 is connected to the power equipment of the nuclear power plant through the emergency bus 2910.
  • the online monitoring system can be used to monitor the state of the battery energy storage system 2100 and other related lines and equipment of the nuclear power plant; under normal circumstances, the battery energy storage system 2100 is charged by a suitable route such as the internal power grid or the external power grid to make the battery energy storage system 2100 is in standby state.
  • the battery energy storage system 2100 can provide power to the relevant power equipment in the nuclear power plant, so that the related power equipment is in normal operation state. It effectively guarantees the safety of nuclear power plants.
  • the system for providing emergency power to the nuclear power plant is disposed at a suitable location above sea level and at a suitable distance from the reactor of the nuclear power plant, and the battery energy storage system may be provided with one or at least two sets, set to at least two When set, the battery energy storage system is connected to the electrical equipment through independent emergency busbars; thus, the battery energy storage system can be distributed in different locations, because a single battery storage system can meet the design and use requirements of the nuclear power plant. Therefore, by setting at least two sets of battery energy storage systems, it can be ensured that even if one of the battery energy storage systems is damaged in extreme natural disasters, the remaining battery energy storage systems can ensure the power consumption of the nuclear power plants in an emergency. In addition, by setting at least two sets of battery energy storage systems, the power supply time of the nuclear power plant can be extended by at least one time in an emergency, which extends the time limit for releasing the emergency, and is beneficial to ensure the safety of the nuclear power plant.
  • the battery energy storage system 2100 includes a plurality of parallel energy storage system modules 2110 to achieve a desired capacity, an electrical connection between the energy storage system module 2110 and the online monitoring system, and the energy storage system module 2110 passes
  • the bus bar 2920 is connected to the emergency bus 2910.
  • the energy storage system modules 2110 are all connected in parallel to the bus bar 2920.
  • a corresponding number of energy storage system modules 2110 can be selected, and the capacity of the battery energy storage system 2100 is designed to be larger than the actual required capacity, even if part of the energy storage system module If the 2110 fails or is damaged, it can be disconnected from the bus bar 2920 through the online monitoring system.
  • the remaining energy storage system module 2110 can also operate reliably and meet the actual needs, ensuring the reliability of the battery energy storage system 2100 and ensuring The reliability of the power supply in an emergency situation, so as to achieve the design purpose of improving the safety of the nuclear power plant.
  • the energy storage system module 2110 is modular in design to facilitate adjustment of the number of energy storage system modules 2110 connected to the bus bar 2920.
  • the corresponding interface and wiring can be reserved on the bus bar 2920.
  • the battery energy storage system 2100 can be flexibly designed to adapt to different power and capacity requirements according to different actual conditions such as load.
  • it can be conveniently designed according to the redundant design requirements of the nuclear power plant, and the number of the energy storage system modules 2110 can be increased according to the actual situation, and only the energy storage system module 2110 can be connected to the bus bar 2920, and the battery can be stored.
  • System 2100 is very convenient for expansion, upgrade, use, and maintenance.
  • the energy storage system module 2110 includes a commutation device 2111 and a battery array 2112.
  • the battery array 2112 is connected to the bus bar 2920 through the commutation device 2111.
  • the battery array 2112 includes a plurality of battery modules 2101.
  • the battery module 2101 is connected in parallel to the converter device 2111 through the DC bus 2930 to increase the capacity of the battery array 2112, and even if one of the battery modules fails, it can be easily cut off from the DC bus and The remaining spare battery modules in the normal state are connected to the DC bus, which does not affect the normal power supply of the battery array, further improving the operational safety of the nuclear power plant.
  • the battery array 2112 can form a modular design.
  • a suitable number of battery modules 2101 can be connected to the DC bus 2930.
  • the battery array can be flexibly flexed according to the actual situation of the load.
  • 2112 is designed to adapt to different power and capacity requirements.
  • it can be easily designed according to the redundant design requirements of nuclear power plants. According to the actual situation, the number of battery modules 2101 can be increased. Only the battery module 2101 needs to be connected to the DC bus. It is easy to expand, upgrade, use and maintain the battery energy storage system 2100.
  • the operation mode of the energy storage system module 2110 can be flexible, and the different energy storage system modules 2110 can work synchronously or separately.
  • a portion of the energy storage system module 2110 can be placed to discharge a load while, at the same time, another portion of the energy storage system module 2110 can be in a charged state or in a standby state, or one or more energy storage system modules 2110 can be The other one or more energy storage system modules 2110 are charged, which brings great convenience to maintenance, use, and testing.
  • the battery module 2101 is formed by a plurality of single battery strings or/and parallel connections.
  • the voltage, current, and capacity of the single battery cells are both low, and the plurality of single cells can be connected in series to increase
  • the voltage of the battery module can increase the current of the battery module by connecting a plurality of single cells in parallel. For example, if the voltage of the single battery is 2 volts and the voltage of the designed battery module 2101 is 600V, 300 battery cells can be connected in series to form a battery module 2101 having a voltage of 600V.
  • a first switch control unit 2160 is disposed between the energy storage system module 2110 and the bus bar 2920.
  • the first switch control unit 2160 is connected to the online monitoring system, and the first switch control unit 2160 is controlled by the online monitoring system.
  • the second switch control unit 2150 is disposed between the battery module and the commutation device, the second switch control unit 2150 is connected to the online monitoring system, and the second switch control unit is controlled by the online monitoring system. 2150 automatically switches the battery module 2101.
  • the first switch control unit 2160 is provided with a manual operation mechanism, and the operator can manually operate the energy storage system module 2110 to the bus bar 2920 or cut off from the bus bar 2920, in case of an accident, The operator manually operates the energy storage system module 2110 and supplies power to the emergency equipment in the emergency bus 2910, or sets a manual operation mechanism to the second switch control unit 2150, and the operator can manually operate the battery module to the battery.
  • the DC bus is removed from the DC bus.
  • a low voltage switch 2120 is connected to the bus bar 2920, and a transformer 2130 is connected to the low voltage switch 2120 to raise the voltage output by the battery energy storage system 2100 to a suitable voltage.
  • Transformer 2130 is coupled to emergency bus 2910 via a medium voltage switch or high voltage switch 2140.
  • the battery energy storage system 2100 has an output voltage of 380 volts, and is boosted by the transformer 2130 to form a 6.6 kilovolt high voltage power supply to the emergency bus 2910.
  • one of the energy storage system modules can be used to charge another energy storage system module as needed. Since the battery will not be charged or discharged for a long time, it will affect its performance and life, and when the equipment of the nuclear power plant is tested or tested within a certain period, the energy storage system module will be charged and discharged by human control. Through such a design, when it is necessary to charge and discharge the energy storage system module, only one of the energy storage system modules is connected to the load for discharging to the exhaustion of the electric energy, and then the energy storage system of the other energy storage system module is depleted. The system module is charged until the energy storage module is fully charged, and so on.
  • the B energy storage system module is set to the forced discharge mode to charge the A energy storage system module, and after the B discharge, the C energy storage system module is continuously set to be mandatory.
  • Discharge mode to B Charging, and so on the last stored energy storage system module is charged by the internal network power supply or other suitable means, and all the energy storage system modules are charged and discharged with little power consumption.
  • the capacity of the battery energy storage system reaches megawatts, if all the energy storage battery modules in the battery energy storage system are favorable for charging the internal network power or the external network power, the economic cost is high and environmental protection is not adopted.
  • the technical solutions meet the requirements of testing, experiment and maintenance, and on the other hand, the operating costs are reduced. Moreover, only a small number of energy storage system modules are in an unpowered state during the entire charging and discharging process, as long as the energy storage system module in the non-electric state is not larger than the design margin of the redundant design, even if a super design standard is generated during the charging and discharging experiment. In the case of working conditions, the energy storage system module in the entire battery energy storage system can also meet the requirements of emergency operation.
  • the emergency equipment can be emergency in both normal operation and charging and discharging processes. powered by.
  • the storage mode of the battery storage system includes but is not limited to the following (the following operation modes can be realized by selecting the operation mode of the converter device):
  • the online monitoring system starts the battery energy storage system to supply power to the power equipment of the nuclear power plant, including an island operation mode and a non-island operation mode.
  • the step of controlling the power supply includes: the online monitoring system determines that the nuclear power plant loses power throughout the plant.
  • the step of controlling the battery energy storage system to supply power to the power failure nuclear power device includes: controlling the battery storage Energy system driven hydraulic test pump turbine generator system (LLS, Hydrotest Pump Turbine Generator Set) and the battery storage system's own control system operate normally; control the battery storage system to drive the auxiliary water supply system to operate normally; when the external power grid returns to normal, and detects that the grid-connected grid side voltage is normal and lasts for a predetermined period of time , then disconnect the battery storage system outlet circuit breaker and enter the non-island operation mode.
  • LLC Battery Storage Energy system driven hydraulic test pump turbine generator system
  • VLS Hydrotest Pump Turbine Generator Set
  • the energy storage system In the island operation mode, the energy storage system automatically sends power to the hydrostatic test pump turbine generator system through the emergency bus, ensuring the power supply of the main pump shaft seal of the power plant and the instrument control system of the main control room of the power plant, and simultaneously accumulating energy.
  • the system itself controls the system to supply power to ensure the normal operation of the energy storage system. Since the energy storage system enters the island operation mode and enters the load condition instantaneously, the 380V AC voltage has an instantaneous drop phenomenon. After the energy storage system passes the self-test and feeds back the power supply voltage, the power switch that supplies power to the auxiliary water supply system is manually started.
  • the energy storage system Once the energy storage system enters the planned island operation, unless the external power grid is detected to return to normal power supply, it will continue to discharge until the power is discharged.
  • determining the voltage of the battery energy storage system and the first voltage threshold if the voltage value of the battery energy storage system is less than the first voltage threshold, controlling the external power grid to store the battery The system performs charging and determines the magnitude of the battery energy storage system voltage and the second voltage threshold. If the voltage value of the battery energy storage system is greater than the first voltage threshold and reaches the second voltage threshold, the battery energy storage system is terminated.
  • the online monitoring system also detects the voltage value and the frequency value of the external power grid in real time, and determines whether at least one of the voltage value and the frequency value of the external power grid reaches a preset protection threshold; if the voltage value and the frequency value are two If at least one of the presets reaches a preset protection threshold, it is determined whether an island start command is received, and if not, an anti-unplanned island protection signal is output to prevent the battery storage system from entering the island mode unplanned.
  • the system for providing emergency power to the nuclear power plant further includes a mobile battery energy storage system
  • the mobile battery energy storage system includes one or more vehicle-mounted energy storage system modules
  • the vehicle-mounted energy storage system module includes an energy storage battery.
  • the module and the mobile vehicle-mounted carrier are also used to access at least one vehicle-mounted energy storage system module when the total capacity of the battery energy storage system is less than the load capacity under current operating conditions.
  • a mobile battery energy storage system is used to charge a stationary battery energy storage system, or a vehicle-mounted energy storage system module is connected to a power plant of a nuclear power plant via an emergency bus.
  • the method of capacity detection and commissioning control of the vehicle-mounted energy storage system module can be performed with reference to a fixed energy storage system module.
  • the movable vehicle-mounted carrier includes a vehicle-mounted housing, a battery compartment fixed to the vehicle-mounted housing, and at least two rollers or rollers disposed at the bottom of the vehicle-mounted housing.
  • FIG. 2 shows a flow of monitoring the battery energy storage system 2100 by the online monitoring system provided by an embodiment of the present application, which is described in detail as follows:
  • step S101 performance parameters of the battery in the energy storage system are collected.
  • the performance parameters of the battery are at least one of performance parameters of the unit battery, performance parameters of the battery module, and performance parameters of the battery array.
  • the collected performance parameters include, but are not limited to, the capacity, voltage, current, temperature, internal resistance, etc. of the collected object.
  • the collection device is connected to each battery module in the energy storage system through the field bus, and the performance parameters of the battery in the energy storage system are collected by the collection device.
  • the collecting device is connected to the pin terminal block of the single battery in the energy storage system through the field measuring bus, so that the voltage and temperature of each single cell in the energy storage system and the battery mode can be collected. Group voltage and temperature.
  • the collection device may be any device that can collect the above information, such as a data acquisition interface board, an I/O communication unit, or a data acquisition card, which is not limited by the above description.
  • the energy storage system includes a battery module monitor 3008 that can monitor and control the state of each battery module 2101 in real time, and the battery module monitor 3008 reads the performance parameters of the battery, as shown in FIG. .
  • the battery module monitor 3008 is a device that collects information on the battery module and communicates with the online monitoring system 3040.
  • step S102 the total capacity of the energy storage system is calculated based on the performance parameters of the battery.
  • the performance parameter of the battery includes at least one of the capacity of each unit battery, the capacity of the battery module, and the capacity of the battery array composed of the plurality of battery modules
  • the energy storage can be calculated according to the performance parameters of the battery.
  • the total capacity of the system For example, the capacity of each unit cell is added to obtain the total capacity of the energy storage system, or the capacity of each battery module is added to obtain the total capacity of the energy storage system, or the capacity of the battery array is added to obtain the total capacity of the energy storage system.
  • step S103 the operating condition of the nuclear power plant is detected, and the load capacity of the nuclear power plant under current operating conditions is calculated according to the operating conditions of the nuclear power plant.
  • the operating conditions of the nuclear power plant include but are not limited to normal operation and power loss mode, shutdown and power loss mode, safety and power loss mode, reactor coolant loss accident (LOCA, Loss of Coolant Accident) and power loss mode and extreme accident mode.
  • the normal operation and power loss mode means that the reactor power is at 0% to 100% of the design power and the external power supply is lost;
  • the shutdown and power failure mode means that the reactor power is in a safe shutdown and loses the external power supply;
  • the safety and power failure mode is Refers to the loss of external power supply when there is an injection signal to activate the safety injection system and the auxiliary water supply system;
  • LOCA and power failure mode refers to the safety injection signal of the starting safety injection system and the auxiliary water supply system, and the signal of starting the safety shell spray system At the time, the external power supply is lost;
  • the extreme accident mode refers to the loss of external power when the radioactive material leaks out.
  • the operating conditions of the nuclear power plant are detected by detecting whether the external power source is lost, detecting the temperature, pressure, and boron concentration of the coolant in the reactor coolant system when the external power source is lost, and the safety of the injection system. Signal, the containment pressure signal of the safety shell sprinkler system; comparing the detected signals with the pre-stored operating conditions and signals, the current operating conditions of the nuclear power plant can be obtained.
  • the load capacity of the nuclear power plant under current operating conditions is calculated based on the relationship between the operating conditions of the nuclear power plant and the load capacity of the nuclear power plant.
  • the relationship between the operating conditions of a nuclear power plant and the load capacity of a nuclear power plant refers to the minimum load capacity that a nuclear power plant must provide for a nuclear power plant under such operating conditions.
  • LHA 6.6KV AC Emergency Power Distribution–Train A , 6.6KV AC AC emergency power distribution system series A
  • Busbar power supply 5005KW
  • LHB busbar power supply 4545KW, that is, when the nuclear power plant is in normal operation mode, if the energy storage system is powered by LHA bus, the load capacity is 5005KW, if the energy storage system passes
  • LHB 6.6 kV AC Emergency Power Distribution - Train B, 6.6KV AC AC emergency power distribution system series B
  • Busbar power supply the load capacity is 4545KW;
  • RIS Safety Injection, safety injection system
  • SEC Sesential Service Water, important plant water system
  • RRI Component Cooling, equipment cooling water system
  • LNE Uninterrupted 220V AC Power, 220V AC Uninterruptible Power System
  • 306CR Marshalling Box, power supply box
  • the power of each device in the nuclear power plant under different operating conditions included in the nuclear power plant accident specification may also be read. That is, the nuclear power plant accident regulation stipulates which equipment in the nuclear power plant needs to be supplied with power, which equipment does not need to be powered, and the power of the equipment to be powered, etc., when the nuclear power plant is under different operating conditions. According to the sum of the power of each equipment in the nuclear power plant under the current operating conditions, the load capacity under the current operating conditions of the nuclear power plant is obtained.
  • step S104 the remaining discharge time of the energy storage system under the current operating conditions of the nuclear power plant is determined and output according to the total capacity of the energy storage system and the load capacity of the nuclear power plant.
  • the current operating conditions of the nuclear power plant are judged according to the parameter values, which solves the problem that the online monitoring system of the existing energy storage system cannot monitor the critical operating parameters of the nuclear power plant and cannot judge the operating state of the nuclear power plant, especially the accident state. problem.
  • the remaining discharge time of the energy storage system under the current operating conditions of the nuclear power plant is calculated, which solves the problem that the online monitoring system of the existing energy storage system cannot be provided as a nuclear power plant.
  • the remaining discharge time of the energy storage system and the operation of the nuclear power plant are also included.
  • the working conditions and the total capacity of the energy storage system are uploaded to the main control room of the nuclear power plant or the emergency command center of the nuclear power plant.
  • the operator can monitor the residual discharge time of the energy storage system under different operating conditions of the nuclear power plant, which is a timely, efficient and accurate system for the energy storage system and the nuclear power plant.
  • the nuclear power plant in China provides information support for manual control intervention, which is a prerequisite for nuclear power plants to avoid major safety accidents or limit accidents, and greatly improves the operational safety of nuclear power plants.
  • the nuclear power plant emergency command specialist of the nuclear power plant emergency command center can also know the energy storage capacity of the energy storage system in the nuclear power plant in time when the nuclear accident occurs. Quickly determine emergency strategies, formulate contingency plans, limit further deterioration or escalation of mega-nuclear accidents, and avoid radiation radiation damage caused by leakage of nuclear radiation.
  • the method further includes: uploading the total capacity of the energy storage system to the main control room.
  • the recorder through the recorder of the main control room, instantly outputs the total capacity of the energy storage system and displays the historical trend of the total capacity of the energy storage system, so that the nuclear power plant operator can instantly and efficiently the total capacity of the energy storage system. Real-time, comprehensive monitoring to further improve the safety of nuclear power plants.
  • the method further includes: determining whether the state of each single battery in the energy storage system is abnormal according to the performance parameter of the battery in the energy storage system, and determining that the abnormality is abnormal When the position is abnormal, the physical position of the unit cell is abnormal.
  • the performance parameter of the battery satisfies at least one of the following conditions, determining that the single battery is abnormal: the current of the DC bus is higher than the normal discharge current; the voltage is lower than the cutoff voltage or higher than the allowable voltage; Above the rated temperature.
  • an address indicating an abnormality signal indicating a state abnormality of the unit cell is read, and a physical position of the unit cell in which the state is abnormal is located according to the address of the abnormality signal.
  • the method further includes: determining whether the battery module is faulty according to the performance parameter of the battery in the battery energy storage system, and when the battery module is faulty, The faulty battery module is isolated, for example, the second switch control unit between the faulty battery module and the DC bus is disconnected, and the backup battery module is put into operation.
  • the step of determining whether the battery module is faulty is as follows: determining whether the state of each single battery in the energy storage system is abnormal according to a performance parameter of the battery in the energy storage system; causing the monomer to be abnormal in the single battery When the voltage or current of the battery module where the battery is located exceeds the preset allowable error range, it is determined that the battery module in which the single battery is abnormal is faulty.
  • the method further includes: performing manual or automatic reset processing on the battery module after the fault is removed.
  • the method further includes: when the abnormality of the single battery is detected, performing an on-site alarm on the faulty single battery, and when detecting the fault of the battery module, performing remote control on the faulty battery module and the remote control room Call the police.
  • the method further includes: receiving an instruction of the main control room to perform a load or cut control of the battery module in the energy storage system.
  • the structure of the energy storage system is output through the human-machine interaction interface, and the user inputs a battery module operation command by clicking any second switch control unit of the energy storage system in the human-computer interaction interface or The battery module cutting command, the online monitoring system closes the corresponding second switch control unit according to the battery module operation command of the main control room, and can control the operation of the corresponding battery module, and is cut according to the battery module of the main control room.
  • the command opens the corresponding second switch control unit 2150 to control the cutting of the corresponding battery module.
  • the method further includes: monitoring a voltage value of the emergency bus, and generating a system commissioning signal when the duration of the emergency bus losing voltage exceeds a preset time, and switching the energy storage system to the nuclear power plant according to the system commissioning signal.
  • Emergency power supply The system commissioning signal is used to indicate that the energy storage system needs to be switched into an emergency power supply for the nuclear power plant.
  • the preset time may be 9.7 s.
  • the method further includes: when no system commissioning signal is generated, the voltage of the energy storage system module in the energy storage system is less than a preset charging voltage, and the converter device in the energy storage system module is available, The energy storage system module performs charging processing.
  • the battery module in the energy storage system is charged in time by the external power source, so that the energy storage system is always in a fully charged standby state, and the entire five power sources of the nuclear power plant can be dealt with at any time, and the energy storage is also facilitated.
  • the individual cells of the system are in an optimal state, so that the life of the energy storage system reaches its maximum design life.
  • the process of switching the energy storage system to the emergency power supply of the nuclear power plant according to the system commissioning signal includes:
  • the first energy storage system module in the energy storage system is commissioned.
  • the first energy storage system module refers to the first energy storage system module in the energy storage system, which may be any one of the energy storage system modules.
  • the first energy storage system module can be commissioned by directly closing the first switch control unit between the commutation device and the bus bar in the first energy storage system module.
  • the method further includes: Step A: determining whether the converter device in the first energy storage system module is available, and if yes, performing the step B, otherwise, perform step C; step B, put into operation the first energy storage system module; step C, re-select an energy storage system module from the energy storage system as the first energy storage system module, and restart the operation of the first An energy storage system module. After the above judgment, it is possible to ensure that the power storage system module that is put into operation can supply power normally.
  • the method when determining that the commutation device in the first energy storage system module is available, the method further includes: monitoring a voltage of the first energy storage system module, and determining whether a voltage of the first energy storage system module reaches a cutoff voltage, If not, the first energy storage system module is commissioned, otherwise an energy storage system module is selected from the energy storage system as the first energy storage system module, and the first energy storage system module is restarted. Since the voltage of the energy storage system module reaches the cutoff voltage, it is difficult for the energy storage system module to achieve a better power supply effect, and the power storage system module is not put into operation, and the power supply effect and stability of the energy storage system can be further improved.
  • the method when determining that the voltage of the first energy storage system module does not reach the cutoff voltage, the method further includes: determining whether the first switch control unit of the first energy storage system module is closed, and if yes, delivering successfully; otherwise Closing the first switch control unit of the first energy storage system module.
  • the power demand of the energy storage system can be determined by detecting the power of the bus bar, wherein the power demand of the energy storage system refers to the total power of the load currently carried on the emergency bus.
  • the second energy storage system module refers to an energy storage system module other than the first energy storage system module in the energy storage system.
  • the process of commissioning the second energy storage system module includes: Step A: determining whether the commutation device in the second energy storage system module is available, and if yes, performing step B; otherwise, performing step C; B.
  • the second energy storage system module is put into operation and connected to the network. For example, detecting the frequency and phase angle of the bus bar and the frequency and phase angle of the second energy storage system module; when the frequency difference and the phase angle difference between the second energy storage system module and the bus bar are simultaneously less than a predetermined value, the operation is performed.
  • Step C Reselect an energy storage system module from the energy storage system as the second energy storage system module, and restart the operation of the second energy storage system module. After the above judgment, it can be ensured that the second storage system module that is put into operation can supply power normally.
  • the method when it is determined that the commutation device in the second energy storage system module is available, the method further includes: monitoring a voltage of the second energy storage system module, and determining whether the voltage of the second energy storage system module reaches a cutoff voltage, If not, the second energy storage system module is commissioned, otherwise an energy storage system module is selected from the energy storage system as the second energy storage system module, and the second energy storage system module is restarted.
  • the above judging process can further improve the power supply effect and stability of the energy storage system.
  • the method when it is determined that the voltage of the second energy storage system module does not reach the cutoff voltage, the method further includes: determining whether the first switch control unit of the second energy storage system module is closed, and if yes, delivering successfully, otherwise closing A first switch control unit of the second energy storage system module.
  • the method further comprises: cutting off one of the stored energy storage system modules when detecting that the difference between the power of the bus bar and the power demand of the energy storage system exceeds the power of the single energy storage system module
  • the system module can cycle through the steps until the difference between the power of the bus bar and the power demand of the energy storage system is less than the power of the single energy storage system module.
  • the battery energy storage system provided by the present application has obvious advantages compared with the fixed diesel power generator set as the current ultimate emergency power supply: First, the battery can be in a completely isolated space when working, and is not subject to disasters. Impact. Considering that a certain amount of heat will be generated when the battery is charged and discharged, the heat can be discharged through an air conditioner or a water cooling device or a heat pipe radiator or a hot plate radiator.
  • the evaporation end of the heat pipe or the hot plate may be in close contact with the battery or a suitable position, and then the condensation end is placed outside the isolation space, and the heat pipe or the heat plate is disposed in the wall of the insulation space and is disposed to be sealed.
  • the heat generated by the battery evaporates the liquid in the heat pipe or the hot plate through the evaporation end, and then liquefies at the condensation end, and the heat generated when the battery is charged and discharged is taken out, and the liquid at the condensation end is returned to the evaporation end along the capillary in the heat pipe to form a heat dissipation cycle.
  • the system for providing emergency power to the nuclear power plant provided by the present application can conveniently add the energy storage system module to the battery energy storage system or directly replace the faulty energy storage system module through a modular design. The system can still operate reliably under the worst conditions.
  • the system for providing emergency power to the nuclear power plant provided by the present application has almost instantaneous power supply to the battery, and there is no time difference, which is of great significance for the factory emergency equipment with uninterrupted requirements.
  • the battery energy storage system uses a lithium battery as the smallest unit for energy storage, and has the advantages of good safety, small volume, long maintenance period, high reliability, and long service life.
  • the converter device may have functions such as input reverse protection, input undervoltage protection, input overvoltage protection, output overload protection, output short circuit protection, and overheat protection to ensure the safety of the converter device itself.
  • It can also have the functions of grid voltage abnormal protection, grid frequency abnormal protection, grounding protection, islanding protection, etc., to ensure the safety and reliability of the system connected to the grid.
  • the system for providing emergency power to the nuclear power plant provided by the present application can be automatically started by the online monitoring system when the trigger condition is reached or manually forcedly started by the operator, and can replace other emergency power sources in the nuclear power plant or supplement other emergency power sources.
  • Power supply to the emergency equipment in the nuclear power plant greatly enhances the ability of the nuclear power plant to resist the over-design basis disaster.
  • the baseline total risk CDF (/heap year) is reduced from 2.13E-05 to 1.67E-05. It can reduce the probability of nuclear reactor reactor core melting by 21.6%, which provides an important guarantee for ensuring the safety of nuclear power plants.
  • the battery module 2101 can be configured by a plurality of battery packs 3044 connected in series or/and in parallel to facilitate assembly and disassembly of the battery module 2101.
  • the battery pack 3044 is a module formed by connecting a plurality of unit cells 3028 in series.
  • the above configuration method can facilitate the connection, combination, packaging, transportation and installation of the individual cells on the one hand, and can flexibly configure the required capacity according to the power supply and safety protection requirements of the nuclear power plant.
  • Each of the unit cells 3028 may be arranged in series or in a row according to actual needs.
  • a flexible mat or at least two vertically disposed flexible strips 3030 may be interposed between adjacent single cells 3028 to prevent between the batteries.
  • the impact causes damage, and the machining error of the outer surface of each unit cell 3028 can be compensated, and the gap between the flexible strips is also favorable for the circulation of the airflow to achieve a heat dissipation effect.
  • the positive and negative columns 3025 of each adjacent single cell are electrically connected by a flexible connector 3029.
  • the flexible connecting member 3029 includes a cord 3033 and a metal connector 3036 connected to both ends of the cord.
  • the metal head 3032 of each of the positive and negative columns 3025 of each unit is provided with a bolt hole.
  • the metal connector 3036 at both ends of the flexible connector 3029 is pressed against the corresponding metal head 3032 by a bolt 3034.
  • the unit cell 3028 has a temperature collecting component and a voltage collecting component for transmitting the temperature and voltage signals of the collected single cell 3028 to the signal port 3031 of the single cell 3028, and the signal of the signal port 3031 is transmitted to the associated battery pack.
  • the signal processing module 3027 is connected to the battery module monitor 3008 through a data transmission line, as shown in FIG. In an embodiment, after the terminal block of the signal processing module 3027 is removed, all the corresponding single cells 3028 are disconnected from the signal processing module 3027 to facilitate the removal and replacement of the battery pack, thereby reducing the wiring workload.
  • a plurality of battery packs are detachably fixed in a battery cabinet 3042 (or a battery rack) for facilitating installation and replacement, and a plurality of parallel partitions are disposed in the battery cabinet 3042.
  • the board 3024 forms a plurality of battery compartments 3010 in which the battery packs can be placed.
  • the pin type signal processing module 3027 is disposed in the battery compartment 3010 to facilitate one-time insertion and removal of the individual cells in the battery pack.
  • a wiring compartment 3011 is vertically provided for concentrating and fixing various cable lines to prevent the disorder of the wires and the mutual involvement and accidental short circuit.
  • the battery module monitor 3008 is disposed on the cabinet, so that the operator can view the state parameters of the single cells in the battery module 2101, and the battery module monitor 3008 and the online monitoring system 3040 communicate through the CAN bus for data transmission.
  • the battery pack is first placed in a battery basket 3012 that is open at one end, and then mounted on the battery compartment 3010.
  • the battery basket 3012 is provided with an elastic member that is in flexible contact with the outside of the battery pack to prevent the battery.
  • the battery case 3012 is provided with a second connecting member for connecting a fastening strip 3019 that tensions the respective unit cells arranged in the battery basket 3012.
  • a fixing ear 3016 is disposed on the back surface of the battery basket 3012, and is fixed on the positioning ear 3015 of the battery compartment; and a fixing ear 3018 is disposed at a front middle position of the battery basket 3012, and is fixed to The positioning ears 3017 in the battery compartment; on the bottom surface of the battery basket 3012, there are four legs 3020 fixed to the bearing beam 3021 of the battery compartment 3010.
  • the battery compartment 3010 is provided with a bead 3013 that can be fixed on the angle steel 3014 to press the battery pack.
  • the battery cabinet body includes four channel steels 3023 disposed inside the four vertical sides, a steel frame structure on both sides of the battery compartment, and a reinforced steel beam welded on the side of the cabinet; the reinforcing steel beams are diagonally cross-welded on the adjacent channel steel.
  • the structural stability of the battery cabinet is enhanced, and the reliability of the battery pack inside the cabinet can be ensured even under severe conditions such as high-intensity earthquakes.
  • the partition plate 3024 is fixedly coupled to the four channel steels by a locking member, and can be reliably fixed even under extreme conditions such as earthquakes. In one embodiment, the locking member uses bolts of 6.8 or higher to ensure structural reliability.
  • the battery pack can also be placed in a housing and then installed in the battery compartment.
  • an elastic member that is in flexible contact with the outside of the battery pack is provided on the inner wall of the casing.
  • the outer cover is further provided with an end cover for pressing and fixing the single cells in the outer casing.
  • a heat dissipation groove may be formed on the side and the bottom surface of the outer casing.
  • a first connecting member fixable on the battery compartment is respectively disposed on both sides of the outer casing, and the battery pack can be firmly fixed in the battery compartment through the first connecting component.
  • at least two rollers or rollers are arranged at the bottom of the outer casing, and the operator can conveniently pull out and put the battery pack in the battery compartment.
  • the bottom of the battery cabinet 3042 is provided with a mounting component
  • the battery cabinet body is fixed on the cement platform 3026
  • the embedded part is embedded in the cement platform 3026
  • the embedded part is provided with a screw.
  • the hole and the mounting part at the bottom of the battery cabinet are locked in the screw hole of the embedded part by the fastener.
  • the fastener is a bolt that is sheathed with a loose spring washer to increase structural reliability.
  • the top of the battery cabinet 3042 is provided with a lifting eye 3005, which is convenient for lifting during the installation phase.
  • a cable hole 3006 is arranged at the top of the battery cabinet 3042 to fix the incoming and outgoing cables, and the cable holes 3006 are sealed with a fireproof material.
  • the cabinet door 3043 is provided with two upper and lower locking handles 3009.
  • an air inlet louver is also provided, and an exhaust fan 3007 is arranged at the top to remove heat from the cabinet, thereby improving the heat dissipation performance of each battery module 2101, which is beneficial to improving the service life of the battery.
  • the battery energy storage system 2100 of the present application is secured within a waterproof, shock-proof, temperature-adjustable storage device to ensure the reliability of the battery energy storage system 2100.
  • the storage device comprises a shock-resistant accommodating cavity, which can be cast from reinforced concrete, or can be made of metal material or other combination of anti-vibration, anti-pressure and waterproof materials.
  • the strength of the cavity structure should meet the outer side of the flooding. In the case of impact by other objects, it can still remain intact, and the inner surface of the cavity can be provided with a flame retardant material to prevent damage caused by fire to the accommodating cavity.
  • the accommodating cavity has a cavity for storing the battery cabinet 30423042, the commutation device 2111, and the monitoring device 4301 used by the online monitoring system 3040.
  • the cavity in which the battery cabinet 3042 is stored is sealed around the cavity to resist flooding or other objects. Shock.
  • the storage location of the commutation device 2111 and the monitoring device 4301 is higher than the storage location of the battery cabinet 3042.
  • the accommodating cavity is disposed in two upper and lower layers, wherein the entire first layer cavity 4001 located in the lower layer is used for arranging a plurality of battery cabinets 3042, and the second layer located in the upper layer is divided into two cavities 4003, 4004, one of which The cavity 4004 is for placing a commutation device 2111 electrically connected to the battery cabinet 3042, a power distribution device 4402, and the like.
  • the commutation device 2111 has the following functions: (1) AC/DC conversion function; (2) power capacity increase and decrease function; (3) energy storage system self-distribution; (4) external power supply high voltage control during normal operation And convert it to the AC level required by the converter station; (5) When the external grid needs power, convert the AC output from the converter device 2111 into a high-voltage output.
  • the internal components of the converter equipment 2111 are made of impact-resistant components, and the fixing bolts of the plates and components are equipped with springs or plastic gaskets to prevent loosening under earthquake or vibration conditions.
  • the battery cabinet 3042 and the commutation device 2111 and the monitoring device 4301 are provided with a plurality of flexible electrical connection interfaces.
  • the second layer of another cavity 4003 is a control room for placing the monitoring device 4301, which can monitor the state of the entire energy storage system, and can operate and adjust the input and output of the stored energy.
  • an access room can be set up for the placement of tools and spare battery modules.
  • a stair 4002 for facilitating access to the second floor by a person may also be provided outside the accommodating cavity.
  • the side wall of the first layer cavity 4001 for placing the battery cabinet 3042 is provided with a passage opening to facilitate the transportation of the equipment and the access of the operator.
  • the passage opening is closed by the waterproof door 4104, so that the first layer cavity forms a cavity that can be closed around, which effectively prevents water, mudslides and the like from entering the battery cabinet 3042 and other electrical components during disasters.
  • the passage opening may be disposed at the top of the first layer cavity 4001, and the height of the passage opening should ensure that floods, tsunamis, mudslides, and the like cannot enter the disaster situation.
  • each battery cabinet 3042 can be transported into or out of the first layer cavity 4001.
  • a ladder or stairway for facilitating operation and access to the access opening of the access personnel may also be provided in the first layer of cavity 4001.
  • the bottom surface of the first layer cavity 4001 is further provided with a base 4102 higher than the bottom surface for fixing the battery cabinet 3042, such as the cement platform 3026 shown in FIG. 7, to prevent water and impurities on the bottom surface from facing the battery cabinet. damage.
  • a base 4102 higher than the bottom surface for fixing the battery cabinet 3042, such as the cement platform 3026 shown in FIG. 7, to prevent water and impurities on the bottom surface from facing the battery cabinet. damage.
  • an elastic pad 4150 can be added to firmly fix the battery cabinet placed on the base, and the collision between the two can be avoided when the earthquake occurs, thereby ensuring The entire energy storage system is safe and reliable.
  • the susceptor 4102 can be constructed of a material having high strength, corrosion resistance, and high shock resistance, and can be better combined with the bottom surface of the first layer of the cavity.
  • the base may be composed of a plurality of bosses higher than the ground, and each of the bosses may be a frustum-like structure, such as a truncated cone, a polygonal frustum or a trapezoidal frustum, so that a drainage slope is formed around the upper surface of the boss. It is a non-slip surface to facilitate the fixing of the battery cabinet.
  • the base may be formed by a base having a plurality of hollowed out areas, and the bottom of the battery cabinet is fixed on the solid part of the base. When a disaster such as flood, tsunami, mudslide occurs, water is present in the first layer of the cavity. When infiltrating, the hollowed out area of the abutment facilitates the overflow of the water flow and improves the reliability of the battery cabinet.
  • a puddle 4109 is opened in the ground of the first layer cavity 4001.
  • a drainage device 4108 is disposed in the pit, and the water can be pumped out to the outside of the accommodating cavity through the control valve 4106.
  • the pipe 4130 is discharged.
  • a plurality of nozzles 4105 capable of spraying water during a fire are disposed above the position where the battery cabinet 3042 is installed, and each nozzle 4105 may be disposed at a first floor.
  • the water pipe 4158 is provided on the top of the cavity 4001.
  • the water pipe 4158 is provided with two branches. One of the pipes is connected to the water tank 4007 provided outside the accommodating cavity.
  • the pipeline is provided with a water pump 4601 and a control valve 4008.
  • the other pipeline extends to the sump 4109, and the water inlet is placed in the sump 4109, and a control valve 4107 is also disposed on the pipeline.
  • the water delivery line 4158 Through the water delivery line 4158, the water in the water tank 4007 can be introduced into the nozzle 4105 to extinguish the fire in the event of a fire, and the water in the water puddle 4109 can be introduced into the nozzle through the control valve 4107 in the case where the water in the external water tank 4007 is insufficient. Extinguish the fire in 4105.
  • the puddle 4109 can also be used to collect the water sprayed from the nozzle 4105 as a backup fire water source.
  • a filtering device may also be provided.
  • the spray water and the accumulated water may be filtered through a coarse filter and then enter the puddle 4109, and then enter the suction port of the pump 4108 through a fine filter to ensure pumping. Equipment reliability.
  • the first layer of cavity should be ventilated and dissipated to ensure the normal use of the battery cabinet 3042 placed therein to improve its service life.
  • the ventilation is mainly used to discharge the gas in the room, and also serves to adjust the room temperature to maintain the first layer of cavity. The temperature is often between 10 and 30 °C.
  • the top of the first layer cavity 4001 is provided with at least one waterproof vent 4005 connected to a ventilating device 4501 disposed outside the accommodating cavity, and the venting exhaust pipe should be led to the outside of the accommodating cavity above the roof thereof.
  • the air inlet device should be installed at the air inlet to ensure that the battery cabinet is in normal working condition.
  • an air conditioning device for dissipating the two cavities 4003, 4004 of the second layer may be disposed outside the accommodating cavity.
  • the commutation device includes a multi-channel commutation unit, a plurality of built-in controllers 5400, a plurality of AC filtering units 5600, a plurality of DC filtering units 5700, an AC side sampling unit 5200, a DC side sampling unit 5300, and Central controller 5500.
  • Each of the converter units is a bidirectional converter 5100.
  • the AC side of each bidirectional converter 5100 is connected to the bus bar through an AC filter unit 5600, and the DC side is connected to the DC bus through a DC stream filter unit 5700.
  • the AC side sampling units 5200 are respectively connected to the AC side of each of the bidirectional inverters 5100, and the DC side sampling units 5300 are respectively connected to the DC side of each of the bidirectional inverters 5100.
  • Each of the bidirectional converters 5100 is connected to a built-in controller 5400, and the plurality of built-in controllers 5400 are used to respectively control the on and off times of the IGBT switches of the multi-way bidirectional converter 5100 to be completely synchronized, so that the multi-way commutation is performed.
  • the 5100 current and voltage regulators work synchronously.
  • the central controller 5500 is connected to the AC side sampling unit 5200, the DC side sampling unit 5300, and the plurality of built-in controllers 5400, respectively, for using an electrical signal collected by the AC side sampling unit 5200, such as an AC voltage, an AC current, or a phase angle, and The electrical signals collected by the DC side sampling unit 5300, such as a DC voltage or a DC current, control the operation of the plurality of built-in controllers 5400.
  • the central controller can be DSP or programmable advanced controller.
  • the central controller is coupled to a plurality of built-in controllers via a CAN-BUS bus for two-wire serial communication.
  • the built-in controller 5400 includes: an AC side sampling module 54001 connected to an AC side of a bidirectional converter, and a DC side sampling module 54002 connected to a DC side of the bidirectional converter. And a control module 54003 respectively connected to the AC side sampling module 54001, the DC side sampling module 54002, the central controller 5500, and the bidirectional converter, and the control module 54003 is configured to collect according to the AC side sampling module 54001 and the DC side sampling module 54002.
  • the electrical signal and the control signal of the central controller 5500 are such that the electrical signal value output by the bidirectional converter is the same as the preset electrical signal value.
  • the multiple commutation unit in the commutation device may also be a multi-channel rectifier.
  • the AC side sampling unit is no longer provided compared with the commutation device shown in FIG.
  • the controller controls the operation of multiple built-in controllers according to the electrical signals collected by the DC side sampling unit.
  • the corresponding built-in controller no longer sets the AC side sampling module.
  • the control module of the built-in controller makes the electrical signal value and pre-output of the connected rectifiers according to the electric signal collected by the DC side sampling module and the control signal of the central controller. Set the electrical signal value to be the same.
  • the multiple commutation unit in the commutation device may also be a multi-inverter.
  • the DC side sampling unit is no longer set compared with the commutation device shown in FIG.
  • the central controller controls the operation of the plurality of built-in controllers according to the electrical signals collected by the AC side sampling unit.
  • the corresponding built-in controller no longer sets the DC side sampling module.
  • the control module of the built-in controller makes the electrical signal value of the connected one inverter according to the electric signal collected by the AC side sampling module and the control signal of the central controller. Same as the preset electrical signal value.
  • the synchronous working control method of the commutation device is as follows: multiple built-in controllers respectively collect electrical signal values output by the multiple commutation units; and the central controller collects electrical signal values according to multiple built-in controllers. Calculating the average value of the electrical signal; the sampling unit collects the average value of the real-time parallel electrical signal of the electrical signal value output by the multi-channel commutation unit; the central controller calculates the average value of the electrical signal and the average of the real-time parallel electrical signals collected by the sampling unit Value, calculate the average difference of the electrical signal, and decompose the average difference of the electrical signal to obtain the compensation value; multiple built-in controllers obtain the compensation value, and control the electrical signal outputted by the corresponding converter unit to make the multiplex
  • the electrical signals output by the flow unit are synchronized.
  • the operating modes of the commutation device are divided into two types: one is to change the alternating current into direct current; the other is to convert the direct current into alternating current.
  • the selection of the operating mode is controlled by a working mode selector that can automatically detect, accept signals from the online monitoring system, or determine the operating mode of the bidirectional commutation device based on the manual signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Power Engineering (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

一种向核电站提供应急电源的方法以及系统,其中方法包括,提供蓄电池蓄能系统(2100),连接于应急母线(2910)中,在线监控蓄电池蓄能系统(2100),在核电站的用电设备失电时,由控制系统启动蓄电池蓄能系统(2100),并通过应急母线(2910)向核电站的用电设备供电。该系统和方法在遭遇自然灾害时,能提高核电站的安全性。

Description

向核电站提供应急电源的方法和系统 技术领域
本申请属于百万千瓦级先进压水堆核电站关键技术和电池管理技术, 同时涉及到百万千瓦级先进压水堆核电站关键技术和电池管理技术结合的能量系统节能综合优化技术。
背景技术
核电站(Nuclear Power Plant)是利用核裂变(Nuclear Fission)或核聚变(Nuclear Fusion)反应所释放的能量产生电能的发电厂。 为了保护核电站工作人员和核电站周围居民的健康,核电站的设计、建造和运行均采用纵深防御的原则,从设备、措施上提供多重保护,以确保核电站对反应堆的输出功率进行有效的控制;且能够在出现各种自然灾害,如地震、海啸、洪水等,或人为产生的火灾、爆炸等,也能确保对反应堆燃料组件进行充分的冷却,进而保证放射性物质不发生向环境的排放。 电源作为核电站运行的动力源,无论是设置上还是运行上,都应体现纵深防御的理念。为实现核电站电源系统的高可靠性,对某些特别重要的用电设备或特殊要求的设备均应备有应急电源,同时进行多重性、独立性地设置,以避免发生共模故障导致应急电源的不可用。 核电站的应急电源系统和正常电源系统一起,共同构成厂用电系统,为厂内所有的用电设备提供安全可靠的供电。 核电站设置有多道冗余电源,包括厂外主电源、厂外辅助电源和应急固定式柴油机等专用应急电源,各电源各司其职,同时又互有配合,不仅形式多样,而且层层设置,多重冗余,最大限度地为电核电站提供可靠的供电。
目前,核电站的厂用电系统运行方式如下:
在正常运行条件下,整个厂用设备的配电系统由机组的26KV母线经过高压厂用变压器供电;
当机组运行时,26KV母线由主发电机供电;
发电机停机时,则由400/500KV电网经过主变压器向26KV母线倒送电;
如果26KV母线失去电源或失去高压厂用变压器,即失去厂外主电源,则220KV电网经过辅助变压器向必须运行的安全辅助设施供电,使反应堆维持在热停堆状态;
如果厂外主电源和厂外辅助电源均失去供电,则由固定式柴油发电机组向应急附属设备供电,使反应堆进入冷停堆状态;
当核电机组的任何一台应急柴油发电机组不可用时,则由附加应急柴油机组取代,执行应急柴油发电机组的功能,为专设安全设施、反应堆芯余热排出和乏燃料水池冷却供电。
然而,固定式柴油发电机组,具有一定的局限性。在其他电源失去的情况下,作为核电站最终应急电源的固定式柴油发电机组,由于其自身特点决定了其不能抵抗水淹灾害——如洪水、海啸、台风潮等,当出现超设计基准的极端自然灾害时,固定式柴油发电机组很容易失去供电,无法为核电站提供反应堆芯余热排出和乏燃料水池冷却的动力,这将导致核电站产生灾难性的后果。
技术问题
本发明的目的在于克服上述现有技术的不足,提供向核电站提供应急电源的方法和系统。
技术解决方案
为实现上述目的,本申请一方面提供一种向核电站提供应急电源的方法,包括:提供蓄电池蓄能系统,连接于应急母线中,并由在线监控系统对蓄电池蓄能系统进行监控;在核电站的用电设备失电时,由在线监控系统启动蓄电池蓄能系统,并通过应急母线向核电站的用电设备供电。
本申请另一方面提供与上述方法相应的向核电站提供应急电源的系统。
有益效果
本申请提供的向核电站提供应急电源的方法和系统,其通过设置蓄电池蓄能系统,可抵抗核电站现有应急电源系统不能抵抗的超设计基准工况,如地震叠加海啸的严重自然灾害等,本申请所提供的向核电站提供应急电源的方法和系统,其以核电站的设计基准和超设计基准考虑设计,可在超设计工况的严重自然灾害中正常运行,可降低核电站堆芯熔化概率,提高核电站的安全性。
附图说明
图1是本申请一种实施例提供的蓄能系统的总体示意图;
图2是本申请一种实施例的在线监控系统对蓄电池蓄能系统进行监控的流程图;
图3是本申请一种实施例提供的从电池模组监控器读取电池的性能参数的示例图;
图4是本申请一种实施例提供的电池包的结构示意图;
图5是本申请一种实施例提供的单体电池的柔性电连接部分的结构示意图;
图6是本申请一种实施例提供的电池柜的内部结构示意图;
图7是本申请一种实施例提供的电池柜的布置示意图;
图8是本申请一种实施例提供的存放装置的结构示意图;
图9是图8中存放装置的俯视示意图;
图10是本申请另一种实施例提供的存放装置的结构示意图;
图11是本申请一种实施例提供的换流设备的结构示意图;
图12是本申请一种实施例提供的换流设备的内置控制器的结构示意图。
本发明的最佳实施方式
本发明的实施方式
如图1所示,本申请一种实施方式提供的向核电站提供应急电源的方法包括,提供蓄电池蓄能系统2100,连接于应急母线2910中,并由在线监控系统对蓄电池蓄能系统2100进行监控;在核电站的用电设备失电时,由在线监控系统启动蓄电池蓄能系统2100,并通过应急母线2910向核电站的用电设备供电。用电设备包括冷却系统、电子仪表、控制系统、监控系统或照明系统等,本实施例中,将向核电站提供应急电源的系统应用于厂用应急设备的供电,以在极端条件保证厂用应急设备的正常供电。
在一种实施方式中,还提供与上述实施方式的方法相应的向核电站提供应急电源的系统,包括蓄电池蓄能系统2100和与之电连接的在线监控系统, 蓄电池蓄能系统2100通过应急母线2910连接于核电站的用电设备。
在线监控系统可用于监控蓄电池蓄能系统2100及核电站其余相关线路、设备的状态;在正常情况下,利用厂内电网或外部电网等合适途径对蓄电池蓄能系统2100进行充电,使蓄电池蓄能系统2100处于随时备用状态,当发生紧急情况而核电站内其它应急电源损毁或不能正常工作时,蓄电池蓄能系统2100可对核电站内相关的用电设备提供电源,使相关用电设备处于正常的运行状态,有效地保证了核电站的安全。
通过设置在线监控系统,可以实时检测相关设备如单体电池、换流设备、电池阵列等的状态,并能实现对相关设备的自动智能投切功能,例如进行故障诊断、对存在故障的相关设备进行自我修复、自动隔离故障设备等,避免故障的扩大导致系统的不可用。
在一种实施方式中,向核电站提供应急电源的系统设置于合适的位置,其高于海平面且距离核电站的反应堆合适的距离,蓄电池蓄能系统可设置有一套或至少二套,设置为至少二套时,蓄电池蓄能系统分别通过独立的应急母线连接于用电设备;这样,可使蓄电池蓄能系统分散布置于不同的地点,由于单套的蓄电池蓄能系统便可满足核电站的设计使用要求,因此,通过设置至少二套蓄电池蓄能系统,可保证即使其中一套蓄电池蓄能系统在极端自然灾害中损毁,其余的蓄电池蓄能系统也可保证核电站在紧急情况下的用电。另外,通过设置至少二套蓄电池蓄能系统,可使核电站在紧急情况下供电时间延长至少一倍,给解除紧急情况延长了时间的限制,有利于保证核电站的安全。
在一种实施方式中,蓄电池蓄能系统2100包括多个并联的蓄能系统模块2110,以达到所需的容量,蓄能系统模块2110和在线监控系统之间电连接,蓄能系统模块2110通过汇流母线2920连接至应急母线2910上。在一种实施方式中,蓄能系统模块2110均并联于汇流母线2920上。具体应用中,可根据蓄电池蓄能系统2100设计的续航时间等实际情况,以选择相应数量的蓄能系统模块2110,蓄电池蓄能系统2100设计的容量大于实际所需容量,即使部分蓄能系统模块2110出现故障或损毁,可通过在线监控系统将其从汇流母线2920上断开,剩余的蓄能系统模块2110也可以可靠地运行并满足实际需求,保证了蓄电池蓄能系统2100的可靠性,保证了紧急情况下的供电的可靠性,从而达到提高核电站安全性的设计目的。
蓄能系统模块2110采用模块化的设计,以方便调整连接在汇流母线2920上的蓄能系统模块2110的数量。在一种实施方式中,可在汇流母线2920上预留相应的接口和布线,一方面可以根据负载的不同等实际情况,灵活地将蓄电池蓄能系统2100设计为适应于不同功率和容量的要求,另一方面可以方便地按照核电站的冗余设计要求进行设计,根据实际情况增加蓄能系统模块2110的数量,只需将蓄能系统模块2110连接于汇流母线2920上即可,对蓄电池蓄能系统2100进行扩容升级、使用、维护、都十分方便。
在一种实施方式中,蓄能系统模块2110包括换流设备2111和电池阵列2112,将电池阵列2112通过换流设备2111连接于汇流母线2920上,电池阵列2112包括多个电池模组2101,多个电池模组2101通过直流母线2930并联于换流设备2111上以增加电池阵列2112的容量,并且即使其中某一电池模组产生故障时,也可以很方便地将其从直流母线上切除并将其余备用的处于正常状态的电池模组并至直流母线上,不影响电池阵列的正常供电,进一步提高了核电站运行安全性。电池阵列2112可形成模块化的设计,通过这种模块化的设计,可将合适数量的电池模组2101连接于直流母线2930上,一方面可以根据负载的不同等实际情况,灵活地将电池阵列2112设计为适应于不同功率和容量的要求,另一方面可以方便地按照核电站的冗余设计要求进行设计,根据实际情况增加电池模组2101的数量,只需将电池模组2101连接于直流母线上即可,对蓄电池蓄能系统2100进行扩容升级、使用、维护、都十分方便。
通过设置换流设备2111和在线监控系统,蓄能系统模块2110的运行方式可以灵活多变,不同的蓄能系统模块2110可以同步工作,也可以分立工作。例如,可使部分蓄能系统模块2110对负载进行放电,与此同时,可使另一部分的蓄能系统模块2110处于充电状态或处于待命状态,也可以使一个或多个蓄能系统模块2110向另外的一个或多个蓄能系统模块2110进行充电,给维护、使用、试验带来很大的便利。
在一种实施方式中,电池模组2101由多个单体电池串或/和并联而成,单块单体电池的电压、电流、容量均低,通过将多个单体电池串联,可增加电池模组的电压,通过将多个单体电池并联,可增加电池模组的电流。例如单体电池的电压为2伏,设计的电池模组2101的电压为600V,那么可将300块单体电池串联形成电压为600V的电池模组2101。
在一种实施方式中,于蓄能系统模块2110与汇流母线2920之间设置第一开关控制单元2160,第一开关控制单元2160与在线监控系统连接,由在线监控系统控制第一开关控制单元2160以自动投切蓄能系统模块2110;于电池模组和换流设备之间设置第二开关控制单元2150,第二开关控制单元2150与在线监控系统连接,由在线监控系统控制第二开关控制单元2150以自动投切电池模组2101。通过这样的设计,一旦在线监控系统检测到某一蓄能系统模块或电池模组的电压、电流、容量或温度等设备参数处于设定的范围以外时,便可及时控制第一或第二开关控制单元切除该蓄能系统模块或电池模组,并将另一处于备用状态下的蓄能系统模块或电池模组投运,系统可靠性高。
在一种实施方式中,于第一开关控制单元2160设置手动操作机构,操作人员可以手动操作将蓄能系统模块2110投运至汇流母线2920或从汇流母线2920上切除,万一出现意外,可由操作人员手动操作将蓄能系统模块2110并于应急母线2910中对厂用应急设备进行供电,或者;于第二开关控制单元2150设置手动操作机构,操作人员可以手动操作将电池模组投运至直流母线或从直流母线上切除。
在一种实施方式中,于汇流母线2920上连接低压开关2120,于低压开关2120上连接变压器2130,以将蓄电池蓄能系统2100所输出的电压升至合适的电压。变压器2130通过中压开关或高压开关2140连接于应急母线2910。本实施例中,蓄电池蓄能系统2100输出电压为380伏,经过变压器2130升压后形成6.6千伏的高压电向应急母线2910供电。
在一种实施方式中,其中一蓄能系统模块于需要时可用于对另一蓄能系统模块进行充电。由于电池长期不进行充电或放电将会影响其使用性能和寿命,而且核电站的设备在一定周期内进行检测或实验时,将会对蓄能系统模块进行人为控制的充放电。通过这样的设计,当需要对蓄能系统模块进行充放电时,只需将其中一蓄能系统模块接负载进行放电至电能耗尽,然后另一蓄能系统模块对该电能耗尽的蓄能系统模块进行充电,直至该蓄能系统模块的电量充满,依此类推。例如,A蓄能系统模块接负载或通过合适方式单独放电后,B蓄能系统模块设置为强制放电模式对A蓄能系统模块进行充电,B放电后,继续将C蓄能系统模块设置为强制放电模式对B 进行充电,依此类推,最后一个进行放电的蓄能系统模块由内网电源或其它合适方式进行充电,只需消耗很小的电能即对所有的蓄能系统模块进行了充放电。特别是蓄电池蓄能系统容量达到兆瓦规格的情况下,若对蓄电池蓄能系统中所有的储能电池模组利于内网电源或外网电源进行充电,其经济成本高,不环保,通过上述的技术方案,一方面达到了检测、实验、维护的要求,另一方面降低了运行成本。而且在整个充放电过程中只有少数的蓄能系统模块处于无电状态,只要处于无电状态的蓄能系统模块不大于冗余设计的设计余量,即使在充放电实验过程中产生超设计基准工况的灾害,整个蓄电池蓄能系统中处于有电状态的蓄能系统模块也可满足应急运行的要求,无论在正常运行状态,还是在充放电过程中,均可对厂用应急设备进行应急供电。
蓄电池蓄能系统的运行方式除了正常的充放电外,还包括但不限于以下的几种(可通过选择换流设备的运行模式来实现下述各种运行方式):
(1)平均充电:在电池阵列电量下降或放电试验完成后,需要对电池阵列进行深度充电,这时可将蓄能系统模块设置为平均充电模式,一方面使电池阵列储存尽可能多的电量,另一方面,有利于延长蓄能系统模块的使用寿命。
(2)强制充电:在核电站面临失电风险时,例如在线监控系统检测到其余应急系统供电持续时间低于设定的安全值时,则对电池阵列进行强制充电,保证电池阵列在最短的时间内快速储存尽可能多的电量,这样虽然可能影响电池阵列的使用寿命,但是可以最大程度地保障核电站的供电安全,可延长蓄电池蓄能系统的供电时间。
(3)强制放电:正常运行情况下,强制放电可以实现一个蓄能系统模块的放电实验,并将其电能转移至其他蓄能系统模块;在核电站在危急情况下,强制放电可以让蓄能系统模块输出尽可能多的电量,直至电池阵列损坏。这样虽然缩短电池阵列的寿命,但是却能最大程度延长蓄电池蓄能系统的供电时间。
在一种实施方式中,在线监控系统启动蓄电池蓄能系统向核电站的用电设备供电的模式包括孤岛运行模式和非孤岛运行模式,控制供电的步骤包括:在线监控系统判断核电站全厂失电,发送孤岛启动命令给蓄电池蓄能系统,进入孤岛运行模式,控制蓄电池蓄能系统对失电的核电设备进行供电,其中控制蓄电池蓄能系统对失电的核电设备进行供电的步骤包括:控制蓄电池蓄能系统驱动水压试验泵汽轮发电机系统(LLS,Hydrotest Pump Turbine Generator Set)以及蓄电池蓄能系统自身的控制系统正常运行;控制蓄电池蓄能系统驱动辅助给水系统正常运行;当外部电网恢复正常后,并且检测到并网的断路器电网侧电压正常并持续预定时间后,则断开蓄电池蓄能系统出口断路器,进入非孤岛运行模式。在孤岛运行模式下,蓄能系统通过应急母线自动向水压试验泵汽轮发电机系统送电,保证电厂主泵轴封水供应和电厂主控制室仪表控制系统用电,并同时向蓄能系统自身控制系统供电,以保障蓄能系统的正常运行。由于蓄能系统进入孤岛运行模式时是瞬时进入带载工况,380V交流电电压有瞬时跌落现象,蓄能系统经过自检并反馈电源电压正常后,手动启动向辅助给水系统供电的电源开关。蓄能系统一旦进入计划孤岛运行时,除非检测到外电网恢复正常供电,否则将持续放电,直至电量放电完毕。在一种实施方式中,进入非孤岛运行模式后,判断蓄电池蓄能系统电压与第一电压阈值的大小,如果蓄电池蓄能系统的电压值小于第一电压阈值,则控制外部电网对蓄电池蓄能系统进行充电,并判断蓄电池蓄能系统电压与第二电压阈值的大小,如果蓄电池蓄能系统的电压值大于第一电压阈值并达到第二电压阈值,则结束对电池蓄能系统充电。在一种实施方式中,在线监控系统还实时检测外部电网的电压值和频率值,判断外部电网的电压值和频率值两者中是否至少一个达到预设保护阈值;如果电压值和频率值两者中至少一个达到预设保护阈值,则判断是否接收到孤岛启动命令,如果没有,则输出防非计划孤岛保护信号,防止蓄电池蓄能系统非计划进入孤岛模式。
在一种实施方式中,向核电站提供应急电源的系统中还包括移动式蓄电池蓄能系统,移动式蓄电池蓄能系统包括一个以上车载式蓄能系统模块,车载式蓄能系统模块包括蓄能电池模块和可移动车载式载体,在线监控系统还用于在蓄电池蓄能系统的总容量不足当前运行工况下的负荷容量时,接入至少一个车载式蓄能系统模块。例如,使用移动式蓄电池蓄能系统给固定式的蓄电池蓄能系统充电,或者将车载式蓄能系统模块通过应急母线连接于核电站的用电设备。对车载式蓄能系统模块的容量检测、投运控制等方式可参照固定式的蓄能系统模块执行。在一种实施方式中,可移动车载式载体包括车载式外壳、固定在车载式外壳上的电池放置仓以及设置在车载式外壳底部的至少两个滚轮或者滚轴。
图2示出了本申请一种实施方式提供的在线监控系统对蓄电池蓄能系统2100进行监控的流程,详述如下:
在步骤S101中,采集蓄能系统中电池的性能参数。
电池的性能参数为单体电池的性能参数、电池模组的性能参数和电池阵列的性能参数中的至少一个。所采集的性能参数包括但不限于所采集的对象的容量、电压、电流、温度、内阻等。
在一种实施方式中,将采集设备通过现场总线与蓄能系统中的各电池模组连接,通过采集设备采集蓄能系统中电池的性能参数。在一种实施方式中,采集设备通过现场测量总线连接至蓄能系统中的单体电池的插针式端子排,即可采集到蓄能系统中各单体电池的电压和温度以及各电池模组的电压和温度。其中采集设备可以为任意可以采集上述信息的设备,如数据采集接口板、I/O通讯单元或者数据采集卡,在此不以上述举例说明为限。
在另一种实施方式中,蓄能系统包括可实时监测和控制各电池模组2101状态的电池模组监控器3008,通过电池模组监控器3008读取电池的性能参数,如图3所示。其中电池模组监控器3008是对电池模组进行信息采集并与在线监控系统3040进行通讯的设备。
在步骤S102中,根据电池的性能参数计算蓄能系统的总容量。
由于电池的性能参数中包括各单体电池的容量、电池模组的容量、由多个电池模组构成的电池阵列的容量中的至少一个,因此,根据电池的性能参数即可计算出蓄能系统的总容量。例如,将各单体电池的容量累加得到蓄能系统的总容量,或者将各电池模组的容量累加得到蓄能系统的总容量,或者将电池阵列的容量累加得到蓄能系统的总容量。
在步骤S103中,检测核电站的运行工况,根据核电站的运行工况计算核电站当前运行工况下的负荷容量。
其中核电站的运行工况包括但不限于正常运行并失电模式、停堆并失电模式、安注并失电模式、反应堆冷却剂丧失事故(LOCA,Loss of Coolant Accident)并失电模式以及极端事故模式。其中正常运行并失电模式是指反应堆功率处于0%到100%设计功率时失去外部电源;停堆并失电模式是指反应堆功率处于安全停堆时失去外部电源;安注并失电模式是指有启动安注系统和辅助给水系统的安注信号时失去外部电源;LOCA并失电模式是指有启动安注系统和辅助给水系统的安注信号,同时有启动安全壳喷淋系统的信号时,失去外部电源;极端事故模式是指放射性物质外泄时失去外部电源。
在一种实施方式中,通过如下步骤检测核电站的运行工况:检测是否失去外部电源;检测在失去外部电源时反应堆冷却剂系统冷却剂的温度、压力和硼浓度,以及安注系统的安注信号,安全壳喷淋系统的安全壳压力信号;将检测到的上述信号与预先存储的运行工况与信号之间的对应关系进行比较,即可得到核电站当前所处的运行工况。
在一种实施方式中,根据核电站的运行工况与核电站的负荷容量之间的关系计算核电站当前运行工况下的负荷容量。核电站的运行工况与核电站的负荷容量之间的关系是指核电站在该种运行工况下所必须的为核电站提供的最小负荷容量。例如,
正常运行并失电模式:LHA(6.6KV AC Emergency Power Distribution–Train A , 6.6KV AC交流应急配电系统系列A)母线供电5005KW,LHB母线供电4545KW,即在核电站处于正常运行模式时,如果蓄能系统通过LHA母线供电,则负荷容量为5005KW,如果蓄能系统通过LHB(6.6kV AC Emergency Power Distribution - Train B, 6.6KV AC交流应急配电系统系列B)母线供电,则负荷容量为4545KW;
停堆并失电模式:LHA母线供电4705KW,LHB母线供电4240KW;
安注并失电模式:LHA母线供电5230KW,LHB母线供电4770KW;
LOCA并失电模式:LHA母线供电4990KW,LHB母线供电4595KW;
极端事故模式:一台RIS(Safety Injection,安全注入系统)泵供电355KW,一台SEC(Essential Service Water,重要厂用水系统)泵供电315KW,一台RRI(Component Cooling,设备冷却水系统)泵供电600KW,LNE(Uninterrupted 220V AC Power,220V交流不间断电源系统)306CR(Marshalling Box,供电箱)供电16KW,即在核电站处于极端事故模式时,负荷容量为355KW+315KW+600KW+16KW=1286KW。
在其他实施方式中,还可以读取核电站事故规程中包括的不同运行工况下核电站中各设备的功率。即核电站事故规程规定了在核电站处于不同运行工况下时,核电站中的哪些设备需要供电,哪些设备不需要供电,需要供电的设备的功率等。根据对当前运行工况下核电站中各设备的功率进行求和得到核电站当前运行工况下的负荷容量。
在步骤S104中,根据蓄能系统的总容量和核电站的负荷容量确定核电站当前运行工况下蓄能系统的剩余放电时间并输出。
由于实时监测核电站关键运行参数,根据参数值判断当前核电站属于何种运行工况,解决了现有蓄能系统的在线监控系统无法监测核电站关键运行参数问题和无法判断核电站运行状态尤其是事故状态的问题。根据预先固化的运行工况与核电站负荷容量的关系,结合蓄能系统容量计算得到核电站当前运行工况下蓄能系统的剩余放电时间,解决了现有蓄能系统的在线监控系统无法提供作为核电站应急电源的蓄能系统剩余放电时间的问题。
在其他实施方式中,在根据蓄能系统的总容量和核电站的负荷容量确定核电站当前运行工况下蓄能系统的剩余放电时间之后,还包括:将蓄能系统的剩余放电时间、核电站的运行工况、蓄能系统的总容量上传至核电站主控制室或核电站应急指挥中心。在将相关信息上传至核电站主控制室的情况下,可使操作人员在核电站的不同运行工况下均可以监控蓄能系统的剩余放电时间,为及时、高效、准确的对蓄能系统和核电站中的核电机组进行人工控制干预提供信息支撑,是核电站避免发生重大安全事故或限制事故扩大化的先决条件,极大的提高了核电站的运行安全性。在将相关信息上传至核电站应急指挥中心的情况下,可使得发生特大核事故情况下,核电站应急指挥中心的核电站应急指挥部专家也可以及时的获知核电站中蓄能系统的蓄能情况,进而可以快速确定应急策略,制定应急预案,限制特大核事故的进一步恶化或升级,避免核辐射的外泄对公众造成辐射伤害。
在其他实施方式中,在根据蓄能系统的总容量和核电站的负荷容量确定核电站当前运行工况下蓄能系统的剩余放电时间后,还包括:将蓄能系统的总容量上传至主控制室的记录仪,通过主控制室的记录仪即时的输出蓄能系统的总容量,并显示蓄能系统的总容量历史变化趋势,从而使核电站操作人员可以即时、高效的对蓄能系统的总容量进行实时、全面的监控,进一步提高核电站的安全性。
在其他实施方式中,在采集蓄能系统中电池的性能参数后,还包括:根据蓄能系统中电池的性能参数判断蓄能系统中的各单体电池的状态是否异常,并在判断为异常时,定位状态异常的单体电池的物理位置。在一种实施方式中,当电池的性能参数满足如下条件中的至少一个时,判定该单体电池异常:直流母线的电流高于正常放电电流;电压低于截止电压或者高于允许电压;温度高于额定温度。在一种实施方式中,读取表示单体电池的状态异常的异常信号的地址,根据异常信号的地址定位状态异常的单体电池的物理位置。
在其他实施方式中,在采集蓄电池蓄能系统中电池的性能参数后,还包括:根据蓄电池蓄能系统中电池的性能参数,判断电池模组是否存在故障,并在电池模组存在故障时,隔离存在故障的电池模组,例如,断开该故障电池模组与直流母线之间的第二开关控制单元,并投运备用电池模组。在一种实施方式中,判断电池模组是否故障的步骤如下:根据蓄能系统中电池的性能参数判断蓄能系统中的各单体电池的状态是否异常;在单体电池异常致使该单体电池所在的电池模组的电压或者电流变化超出预设的允许误差范围时,判定单体电池异常所在的电池模组故障。
在其他实施方式中,隔离了存在故障的电池模组后,还包括:对排除了故障后的电池模组进行手动或者自动复位处理。
在其他实施方式中,还包括:当检测到单体电池异常时,对故障单体电池进行就地报警,当检测到电池模组故障时,对故障电池模组进行就地及主控室远程报警。
在其他实施方式中,还包括:接收主控制室的指令对蓄能系统中的电池模组进行投运或切除控制。例如,在主控制室的显示设备中通过人机交互界面输出蓄能系统的结构,用户通过点击该人机交互界面中蓄能系统的任意一个第二开关控制单元输入电池模组投运命令或电池模组切除命令,在线监控系统根据主控制室的电池模组投运命令闭合对应的第二开关控制单元,即可控制对应的电池模组的投运,根据主控制室的电池模组切除命令打开对应的第二开关控制单元2150,即可控制对应的电池模组的切除。
在其他实施方式中,还包括:监测应急母线的电压值,当应急母线失去电压的持续时间超过预设时间时,产生系统投运信号,根据系统投运信号将蓄能系统投切为核电站的应急供电电源。其中系统投运信号用于指示需要将蓄能系统投切为核电站的应急供电电源。在一种实施方式中,预设时间可以为9.7s。
在其他实施方式中,还包括:在未产生系统投运信号、蓄能系统中蓄能系统模块的电压小于预设的充电电压、且该蓄能系统模块中的换流设备可用时,对该蓄能系统模块进行充电处理。这样通过外部电源及时的对蓄能系统中的电池模组进行充电,使得蓄能系统始终处于充满电的备用状态下可以随时应对核电站现有五道电源全部丧失事故,同时也有助于使蓄能系统各单体电池达到最佳状态,从而蓄能系统使用期限达到其最大设计寿命。
在一种实施方式中,根据系统投运信号将蓄能系统投切为核电站的应急供电电源的过程包括:
首先,投运蓄能系统中的第一蓄能系统模块。其中第一蓄能系统模块是指蓄能系统中第一个投运的蓄能系统模块,其可以为蓄能系统中的任意一个蓄能系统模块。在一种实施方式中,可以直接闭合第一蓄能系统模块中的换流设备与汇流母线之间的第一开关控制单元来投运第一蓄能系统模块。在其他实施方式中,为了达到较好的投运效果,在投运第一蓄能系统模块之前还包括:步骤A、判断第一蓄能系统模块中的换流设备是否可用,若是,执行步骤B,否则,执行步骤C;步骤B、投运第一蓄能系统模块;步骤C、重新从蓄能系统中选择一个蓄能系统模块作为第一蓄能系统模块,并重新开始投运该第一蓄能系统模块。经过上述判断,能够确保投运的蓄能系统模块可以正常的进行供电。
在其他实施方式中,在判定第一蓄能系统模块中的换流设备可用时,还包括:监测第一蓄能系统模块的电压,并判断第一蓄能系统模块的电压是否达到截止电压,如果否,投运第一蓄能系统模块,否则重新从蓄能系统中选择一个蓄能系统模块作为第一蓄能系统模块,并重新开始投运该第一蓄能系统模块。由于蓄能系统模块的电压达到截止电压代表该蓄能系统模块难以达到较好的供电效果,对于这种蓄能系统模块不予以投运,能够进一步提高蓄能系统的供电效果和稳定性。
在其他实施方式中,在判定第一蓄能系统模块的电压未达到截止电压时,还包括:判断第一蓄能系统模块的的第一开关控制单元是否闭合,如果是,则投放成功,否则闭合第一蓄能系统模块的第一开关控制单元。
在投运第一蓄能系统模块后,投运蓄能系统中的第二蓄能系统模块,并循环执行该步骤,直到蓄能系统中蓄能系统模块均投运完毕或者蓄能系统已满足功率需求为止。在一种实施方式中,可通过检测汇流母线的功率来判断是否已满足蓄能系统的功率需求,其中蓄能系统的功率需求是指当前在应急母线上所带负载的总功率。
第二蓄能系统模块是指蓄能系统中除第一蓄能系统模块以外的蓄能系统模块。在一种实施方式中,投运第二蓄能系统模块的过程包括:步骤A、判断第二蓄能系统模块中的换流设备是否可用,若是,执行步骤B,否则,执行步骤C;步骤B、对第二蓄能系统模块进行投运并网处理。例如,检测汇流母线的频率和相角以及第二蓄能系统模块的频率和相角;当第二蓄能系统模块与汇流母线之间的频率差和相角差同时小于预定值时,投运第二蓄能系统模块。步骤C、重新从蓄能系统中选择一个蓄能系统模块作为第二蓄能系统模块,并重新开始投运该第二蓄能系统模块。经过上述判断,能够确保投运的第二蓄能系统模块可以正常的进行供电。
在其他实施方式中,当判定第二蓄能系统模块中的换流设备可用时,还包括:监测第二蓄能系统模块的电压,并判断第二蓄能系统模块的电压是否达到截止电压,如果否,投运第二蓄能系统模块,否则重新从蓄能系统中选择一个蓄能系统模块作为第二蓄能系统模块,并重新开始投运该第二蓄能系统模块。上述判断过程能够进一步提高蓄能系统的供电效果和稳定性。
在其他实施方式中,在判定第二蓄能系统模块的电压未达到截止电压时,还包括:判断第二蓄能系统模块的第一开关控制单元是否闭合,如果是,则投放成功,否则闭合第二蓄能系统模块的第一开关控制单元。
在其他实施方式中, 当蓄能系统投运后,还包括:在检测到汇流母线的功率与蓄能系统的功率需求之差超过单个蓄能系统模块的功率时,从已投运的蓄能系统模块中切除一个蓄能系统模块,循环执行该步骤,直到汇流母线的功率与蓄能系统的功率需求之差小于单个蓄能系统模块的功率为止。
当超设计基准的极端自然灾害发生时,核反应堆很可能将全部停止运行而失去厂用电,而连接于外部电网的输电线也很可能由于地震、台风等灾害而使电线杆倒塌、输电线路中断,外部输入的应急电源也无法工作。在这种情况下,本申请提供的蓄电池蓄能系统与作为目前最终应急电源的固定式柴油发电机组相比,具有明显的优势:首先,蓄电池工作时可处于完全隔绝的空间内,不受灾害的影响。考虑到蓄电池充放电时将产生一定的热量,可通过空调设备或水冷设备或热管散热器或热板散热器将热量排出。具体地,可将热管或热板的蒸发端贴紧于蓄电池或合适的位置,再将冷凝端放置于隔绝空间外侧,热管或热板穿设于隔绝空间的墙体并设置成密封。蓄电池产生的热量通过蒸发端将热管或热板内液体蒸发,然后在冷凝端液化,将蓄电池充放电时产生的热量带出,冷凝端的液体再沿热管内的毛细管回流至蒸发端,形成散热循环。其二,本申请提供的向核电站提供应急电源的系统,通过模块化的设计方式,可以很方便地将蓄能系统模块增加至蓄电池蓄能系统内或直接取代有故障的蓄能系统模块,保证系统在最恶劣的情况下仍然可以可靠的运行。其三,本申请提供的向核电站提供应急电源的系统,其蓄电池提供电源几乎是瞬时的,不存在时间差,对于有不间断要求的厂用应急设备来说有着重要的意义。在一种实施方式中,蓄电池蓄能系统选用锂电池作为储能的最小单元,具有安全性佳,体积小,维护周期长、可靠性高、使用寿命长等优点。
在一种实施方式中,换流设备可具有输入接反保护、输入欠压保护、输入过压保护、输出过载保护、输出短路保护、过热保护等功能,以保证换流设备自身工作的安全性。还可具有电网电压异常保护、电网频率异常保护、接地保护、孤岛效应保护等功能,以保证系统并网运行的安全性和可靠性。
本申请所提供的向核电站提供应急电源的系统,可通过在线监控系统监控在到达到触发条件时自动启动或通过操作人员直接手动强制启动,可取代核电站中其它应急电源或作为其他应急电源的补充向核电站内厂用应急设备进行供电,大大增强了核电站抵抗超设计基准灾害的能力,根据核电站安全概率分析计算,基准总风险CDF(/堆年)由2.13E-05下降至1.67E-05,可使核电站反应堆堆芯熔化概率降低21.6%,对保证核电站的安全提供了重要保障。
参见图4,在一种实施方式中,电池模组2101可由多个电池包3044串联或/和并联构成,以便于电池模组2101的拆装与维护。电池包3044是由多个单体电池3028串接后形成的模块。上述构成方式,一方面可方便各单体电池之间的连接、组合、包装、运输和安装,同时可根据核电厂供电和安全防护要求灵活配置所需的容量。各单体电池3028可根据实际需要成行或成列排列串接,相邻各单体电池3028之间可夹设有柔性垫或至少两个竖向设置的柔性条3030,以防止电池之间的撞击而引起损坏,且可补偿各单体电池3028外表面加工误差,柔性条之间的空隙也有利于气流的流通,实现散热效果。各相邻的单体电池的正、负极柱3025通过柔性连接件3029电连接。参见图5,在一种实施方式中,柔性连接件3029包括软线3033和连接在软线两端的金属连接头3036,各单体电池之正、负极柱3025的金属头3032上开设有螺栓孔,通过一螺栓3034将柔性连接件3029两端的金属连接头3036压紧在相应的金属头3032上。螺栓3034固定后,可用一绝缘罩3035包覆。在整个电池模组2101受到外来冲击力时,例如地震,柔性电连接线3033可承受和吸收其冲击,以保证可靠的导通,使得电池模组2101能正常使用。单体电池3028内置有温度采集元件、电压采集元件,用于将采集的单体电池3028的温度和电压信号传送至单体电池3028的信号端口3031上,信号端口3031的信号传送至所属电池包的插针式信号处理模块3027的汇总端子排上,信号处理模块3027通过数据传输线与电池模组监控器3008相连,如图3所示。在一种实施方式中,信号处理模块3027的端子排拔出后,对应的所有单体电池3028便与信号处理模块3027断开连接,以方便电池包的拆卸和更换,减少接线工作量。
参见图6,在一种实施方式中,为方便安装和更换,可将多个电池包可拆卸式固定于一电池柜3042(或电池架)内,电池柜3042内设置有多个平行的隔板3024,形成可放置电池包的多个电池仓3010,插针式信号处理模块3027设于电池仓3010内,便于电池包中各单体电池的一次性插拔。于电池柜3042侧端,竖向设有布线仓3011,用于集中、固定各种电缆线,防止线的散乱和相互的牵扯及意外短路。电池模组监控器3008设于柜体上,便于操作者察看电池模组2101中各单体电池的状态参数,电池模组监控器3008与在线监控系统3040通过CAN总线通讯进行数据传递。
参见图6,在一种实施方式中,电池包先放置在一端开口的电池筐3012中,再安装于电池仓3010上;电池筐3012上设有与电池包外侧柔性接触的弹性件,防止电池包安装于电池筐3012内时因震动引起晃动。电池筐3012上设置有第二连接件,用于连接将排列于电池筐3012内的各单体电池拉紧的紧固条3019。为便于将电池筐3012固定于电池仓3010,在电池筐3012背面上方设有固定耳3016,固定于电池仓的定位耳3015上;在电池筐3012的正面中间位置设有固定耳3018,固定于电池仓内的定位耳3017上;在电池筐3012的底面两端有四个底脚3020,固定于电池仓3010的承力梁3021上。为了使电池筐3012中的电池包不在地震中上下窜动,电池仓3010内设有可固定在角钢3014上的压条3013,将电池包压紧。为方便电池包的更换和维修,在电池筐3012底部,设有至少二个滚轮3022(或滚轴),操作者可方便地将电池仓3010内的电池包抽出和放入。电池柜柜体包括设置于四条竖直边内部的四根槽钢3023、电池仓两侧的钢架结构和柜体侧面焊接的加强钢梁;加强钢梁对角交叉焊接在相邻槽钢上,增强了电池柜的结构稳定性,即使在高烈度的地震等恶劣情况下,仍然可以保证柜体内部的电池包的可靠性。隔板3024通过锁紧件固定连接于四根槽钢上,即使在地震等极限情况下仍然可以可靠地固定。在一种实施方式中锁紧件采用6.8级以上的螺栓,以保证结构的可靠性。
在其他实施方式中,也可将电池包先放置在一外壳内,再安装于电池仓内。为防止电池包安装于外壳内时因震动引起的晃动,在外壳内壁设有与电池包外侧柔性接触的弹性件。为更好的固定各单体电池,外壳上还设有一可将外壳内单体电池压紧、固定的端盖。为提高置于外壳内的电池模组的散热性能,可在外壳侧面及底面开设散热槽。在外壳两个侧面分别设置有可固定在电池仓上的第一连接件,通过该第一连接件可将各电池包牢固固定在电池仓内。为方便电池包的更换和维修,在外壳底部,设有至少二个滚轮或滚轴,操作者可方便地将电池仓内的电池包抽出和放入。
参见图7,在一种实施方式中,电池柜3042的底部设置有安装部件,电池柜柜体固定于水泥台3026上,水泥台3026中预埋有预埋件,预埋件上设置有螺丝孔,电池柜底部的安装部件通过紧固件锁紧于预埋件的螺丝孔内,通过这样的设计,可以使电池柜柜体可靠地固定于预埋件上。在一种实施方式中,紧固件为套有防松动弹簧垫圈的螺栓,以提高结构的可靠性。电池柜3042顶端设有吊耳3005,方便安装阶段进行吊装。电池柜3042顶端设有电缆孔3006,对进出电缆进行固定,电缆孔3006用防火材料进行封堵。电池柜正面和背面有柜门3043,均打开后,可对电池柜3042内的设备进行两个方向的操作。柜门3043设有上下两个锁紧把手3009。在电池柜3042的背部,还开设有可进气的百叶窗,顶部设有排气风扇3007,用于排除柜内的热量,提高各电池模组2101的散热性能,有利于提高电池的使用寿命。
参见图8和图9,在一种实施方式中,本申请蓄电池蓄能系统2100固定于防水、防震且可调节温度的存放装置内,以保证蓄电池蓄能系统2100工作的可靠性。存放装置包括一可抗震的容置腔体,可由钢筋混凝土浇铸而成,也可采用金属材料或其他可抗震、防压、防水材料组合制成,其腔体结构强度应满足其外侧在水淹或其他物体冲击的情况下,仍能保持完整,其腔体内表面可设置阻燃材料,用于防止火灾对容置腔体产生的损害。容置腔体具有可存放电池柜30423042、换流设备2111及在线监控系统3040所使用的监控设备4301等的空腔,其中存放有电池柜3042的空腔四周密封,可抵御水淹或其他物体冲击。换流设备2111及监控设备4301的存放位置高于电池柜3042的存放位置。例如,容置腔体设置为上下两层,其中位于下层的整个第一层空腔4001用于置放多个电池柜3042,位于上层的第二层分两个空腔4003、4004,其中一个空腔4004用于放置与电池柜3042电连接的换流设备2111以及配电设备4402等。换流设备2111具备以下功能:(1)交直流变换的功能;(2)电能容量增减的功能;(3)蓄能系统自身配电;(4)正常运行时,接受外电网高压电,并将其转换为换流站所需电压等级的交流电;(5)当外电网需电时,将换流设备2111输出的交流电变换成高压电输出。为抗地震,换流设备2111内部元器件选用耐冲击的元器件,板件和元器件的固定螺栓加装弹簧或塑料垫片以防止在地震或振动工况下松动。为保证设备的抗震性能,电池柜3042与换流设备2111及监控设备4301上设置有多个柔性电连接接口。第二层另一个空腔4003为一控制室,用于放置监控设备4301,可以监测整个蓄能系统的状态,可以操作和调配蓄能电量的输入和输出。此外,还可设置检修间,用于放置工具及备用的电池模组。容置腔体外还可设置有方便人员进出第二层的楼梯4002。
用于放置电池柜3042的第一层空腔4001的侧壁开设有通道口,以便于设备的运输和操作人员的出入。该通道口通过防水门4104封闭,使第一层空腔形成一可四周封闭的空腔,有效防止了灾害产生时水、泥石流等进入对电池柜3042及其他电气部件造成损坏。在其他实施方式中,如图10所示,该通道口可设置于第一层空腔4001顶部,通道口高度应保证在灾害情形下,洪水、海啸、泥石流等不能进入其内。于通道口的上方,设有一设备运输仓4009,其顶部设有吊装机构4901,可将各电池柜3042运入或吊出第一层空腔4001。第一层空腔4001内还可设置方便操作及检修人员进出通道口的爬梯或楼梯。
第一层空腔4001的底面上还设有高于底面的基座4102,用于固定电池柜3042,例如图7中所示的水泥台3026,以防止底面上的水及杂质对电池柜的损害。在基座4102与电池柜3042的连接面上,可加设弹性垫4150,以使置于基座上的电池柜牢固的固定,而且可避免地震发生时两者之间的相互撞击,从而保证整个蓄能系统的安全可靠。在一种实施方式中,基座4102可采用高强度、耐腐蚀、抗震性能较强的材料构成,且能与第一层空腔底面较好的结合。此外,基座可由多个高于地面的凸台组合构成,各凸台可为锥台状结构,例如圆锥台、多边形锥台或梯形锥台,使之周围形成一排水坡度,凸台上表面为防滑面以便于电池柜固定。在另一种实施方式中,基座可由具有多个镂空区域的基台构成,电池柜底部固定于基台实体部分上,当洪水、海啸、泥石流等灾害发生使第一层空腔内有水渗入时,基台的镂空区域便于水流的溢出,提高了电池柜的可靠性。
在第一层空腔4001的地面开设一积水坑4109,为防止积水过多蔓延至地面,坑内设置有排水设备4108,通过控制阀4106可将积水抽取到伸出容置腔体外的管道4130中排出。为保证电池柜在遇到火灾等情形时的安全,安装有电池柜3042的位置的上方还设置有多个可在火灾时喷水的喷嘴4105,各喷嘴4105可设置于一固定在第一层空腔4001顶面的输水管4158上,该输水管4158设有两个分支,其中一管路与设于容置腔体外部的水箱4007相连,其管路上设有抽水泵4601及控制阀4008,另一管路则延伸至积水坑4109,入水口置于积水坑4109内,其管路上亦设有控制阀4107。通过输水管路4158,可在火灾时将水箱4007内的水引入喷嘴4105进行灭火,还可在外部水箱4007中的水不够的情形下,通过控制阀4107将积水坑4109内的水引入喷嘴4105内进行灭火。此时,积水坑4109还可用于收集喷嘴4105喷淋出的水,作为备用的消防水源。在积水坑4109内,还可设有过滤装置,喷淋水和积水可通过一粗过滤网过滤后进入积水坑4109,再经一细过滤网进入抽水泵4108吸入口,以保证抽水设备可靠性。
第一层空腔应进行通风、散热,保证其中放置的电池柜3042正常使用,提高其使用寿命,通风主要用于排出室内的气体,并兼作调节室温之用,以保持第一层空腔内的温度经常在10~30℃之间。第一层空腔4001的顶部设有至少一可防水的通风口4005,其与一设置于容置腔体外部的通风设备4501相连,通风排气管应引至容置腔体外高于其屋顶的位置,进风口应装设空气滤过设备,以保证电池柜处于正常的工况下。为保证第二层两个空腔4003、4004中放置的电气设备的正常运行,还可于容置腔体外部设置对第二层两个空腔4003、4004进行散热的空调设备。
参见图11, 在一种实施方式中,换流设备包括多路换流单元、多个内置控制器5400、多个交流滤波单元5600、多个直流滤波单元5700、交流侧采样单元5200、直流侧采样单元5300和中央控制器5500。其中每一路换流单元为双向换流器5100,每一路双向换流器5100的交流侧通过一个交流滤波单元5600接汇流母线,直流侧通过一个直流流滤波单元5700接直流母线。交流侧采样单元5200分别与每一路双向换流器5100的交流侧连接,直流侧采样单元5300分别与每一路双向换流器5100的直流侧连接。每一路双向换流器5100连接一个内置控制器5400,多个内置控制器5400用于分别控制多路双向换流器5100的IGBT开关的导通和关断时间完全同步,使多路双向换流器5100均流、稳压同步工作。中央控制器5500分别与交流侧采样单元5200、直流侧采样单元5300以及多个内置控制器5400连接,用于根据交流侧采样单元5200采集的电信号,例如交流电压、交流电流或相角,和直流侧采样单元5300采集的电信号,例如直流电压或直流电流,对多个内置控制器5400的工作进行控制。中央控制器可采用DSP或可编程先进控制器。在一种实施方式中,中央控制器分别通过双线串行通信的CAN-BUS总线与多个内置控制器连接。
参见图12,在一种实施方式中,内置控制器5400包括:与一路双向换流器的交流侧连接的交流侧采样模块54001,与该双向换流器的直流侧连接的直流侧采样模块54002,以及分别与交流侧采样模块54001、直流侧采样模块54002、中央控制器5500和该双向换流器连接的控制模块54003,控制模块54003用于根据交流侧采样模块54001和直流侧采样模块54002采集的电信号以及中央控制器5500的控制信号,使该双向换流器输出的电信号值与预设电信号值相同。
在其他实施方式中,换流设备中的多路换流单元也可以是多路整流器,在这种情况下,与图11所示的换流设备相比,不再设置交流侧采样单元,中央控制器根据直流侧采样单元采集的电信号,对多个内置控制器的工作进行控制。相应的内置控制器也不再设置交流侧采样模块,内置控制器的控制模块根据直流侧采样模块采集的电信号以及中央控制器的控制信号,使所连接的一路整流器输出的电信号值与预设电信号值相同。
在其他实施方式中,换流设备中的多路换流单元也可以是多路逆变器,在这种情况下,与图11所示的换流设备相比,不再设置直流侧采样单元,中央控制器根据交流侧采样单元采集的电信号,对多个内置控制器的工作进行控制。相应的内置控制器也不再设置直流侧采样模块,内置控制器的控制模块根据交流侧采样模块采集的电信号以及中央控制器的控制信号,使所连接的一路逆变器输出的电信号值与预设电信号值相同。
在一种实施方式中,换流设备的同步工作控制方法流程如下:多个内置控制器分别采集多路换流单元输出的电信号值;中央控制器根据多个内置控制器采集的电信号值,计算出电信号平均值;采样单元采集多路换流单元输出的电信号数值的实时并列电信号平均值;中央控制器根据计算出的电信号平均值和采样单元采集的实时并列电信号平均值,计算电信号平均差值,并对电信号平均差值进行分解,得到补偿值;多个内置控制器得到补偿值,并控制与相对应的换流单元输出的电信号,使多路换流单元输出的电信号同步。
在一种实施方式中,换流设备的工作模式分为两种:一种是将交流电变为直流电;另一种是将直流电变为交流电。工作模式的选择由工作模式选择器来控制,工作模式选择器可通过自动检测,或接受来自在线监控系统的信号,或根据手动信号来决定双向换流设备的工作模式。
应该理解,以上实施方式只是用于帮助理解本申请,而不应理解为对本申请的限制。对于本领域的技术人员,依据本申请的思想,可以对上述具体实施方式进行变化。
工业实用性
序列表自由内容

Claims (16)

  1. 向核电站提供应急电源的方法,其特征在于,包括:
    提供蓄电池蓄能系统,连接于应急母线中,并由在线监控系统对所述蓄电池蓄能系统进行监控;
    在核电站的用电设备失电时,由所述在线监控系统启动所述蓄电池蓄能系统,并通过应急母线向核电站的用电设备供电。
  2. 如权利要求1所述的方法,其特征在于,
    所述在线监控系统对蓄电池蓄能系统进行监控包括:由在线监控系统采集蓄电池蓄能系统中电池的性能参数,计算蓄电池蓄能系统的总容量;
    所述在线监控系统在核电站的用电设备失电时启动蓄电池蓄能系统向核电站的用电设备供电包括:监测核电站的运行工况,根据核电站的运行工况计算核电站当前运行工况下的负荷容量,在核电站的用电设备失电时,启动蓄电池蓄能系统,根据蓄电池蓄能系统的总容量以及核电站当前运行工况下的负荷容量通过应急母线向核电站的用电设备供电。
  3. 如权利要求2所述的方法,其特征在于:所述蓄电池蓄能系统包括多个并联的蓄能系统模块,蓄能系统模块通过汇流母线连接至应急母线上,所述蓄能系统模块包括换流设备和电池阵列,将电池阵列通过换流设备连接于汇流母线上,于所述蓄能系统模块与汇流母线之间设置第一开关控制单元,在线监控系统通过控制所述第一开关控制单元根据核电站当前运行工况下的负荷容量控制蓄能系统模块的投运。
  4. 如权利要求3所述的方法,其特征在于:所述电池阵列包括多个电池模组,所述多个电池模组并联于所述换流设备上,所述电池模组由多个单体电池串或/和并联而成,于所述电池模组和换流设备之间设置第二开关控制单元,在线监控系统根据蓄电池蓄能系统中电池的性能参数,判断电池模组是否存在故障,通过控制第二开关控制单元隔离存在故障的电池模组并投运备用电池模组。
  5. 如权利要求3所述的方法,其特征在于:在进行电池测试或维护时,控制一蓄能系统模块对另一蓄能系统模块进行充电。
  6. 如权利要求3所述的方法,其特征在于,在线监控系统根据核电站当前运行工况下的负荷容量控制蓄能系统模块的投运包括:
    投运蓄电池蓄能系统中的第一蓄能系统模块;
    投运蓄电池蓄能系统中的第二蓄能系统模块,并循环执行,直到蓄电池蓄能系统中的蓄能系统模块均投运完毕或者蓄电池蓄能系统满足供电需求为止。
  7. 如权利要求1所述的方法,其特征在于:在线监控系统启动蓄电池蓄能系统向核电站的用电设备供电的步骤包括:发送孤岛启动命令给蓄电池蓄能系统,进入孤岛运行模式,控制蓄电池蓄能系统对失电的核电设备进行供电,其中控制蓄电池蓄能系统对失电的核电设备进行供电的步骤包括:控制蓄电池蓄能系统驱动水压试验泵汽轮发电机系统以及蓄电池蓄能系统自身的控制系统正常运行;控制蓄电池蓄能系统驱动辅助给水系统正常运行;当外部电网恢复正常后,并且检测到并网的断路器电网侧电压正常并持续预定时间后,则断开蓄电池蓄能系统出口断路器,进入非孤岛运行模式。
  8. 如权利要求2所述的方法,其特征在于:还提供移动式蓄电池蓄能系统,在蓄电池蓄能系统的总容量不足当前运行工况下的负荷容量时,接入至少一个移动式蓄电池蓄能系统。
  9. 向核电站提供应急电源的系统,用于向核电站的用电设备提供应急供电,其特征在于,包括:蓄电池蓄能系统和与之电连接的在线监控系统,所述蓄电池蓄能系统通过应急母线连接于核电站的用电设备;
    所述在线监控系统用于采集蓄电池蓄能系统中电池的性能参数,计算蓄电池蓄能系统的总容量,监测核电站的运行工况,根据核电站的运行工况计算核电站当前运行工况下的负荷容量,在核电站的用电设备失电时,启动蓄电池蓄能系统,根据蓄电池蓄能系统的总容量以及核电站当前运行工况下的负荷容量通过应急母线向核电站的用电设备供电。
  10. 如权利要求9所述的系统,其特征在于:所述蓄电池蓄能系统包括多个蓄能系统模块,所述多个蓄能系统模块并联连接于汇流母线上;所述蓄能系统模块包括换流设备和电池阵列,所述换流设备连接于所述汇流母线上,所述电池阵列连接于所述换流设备上;所述电池阵列包括直流母线和电池模组,所述电池模组并联于所述直流母线上,所述直流母线连接于所述换流设备上;所述电池模组由多个单体电池串或/和并联而成;所述电池模组与换流设备之间设置有第二开关控制单元,由在线监控系统控制;所述蓄能系统模块与汇流母线之间设置有第一开关控制单元,由在线监控系统控制。
  11. 如权利要求10所述的系统,其特征在于:所述蓄能系统模块还包括可实时监测各电池模组状态的电池模组监控器,所述电池模组由多个电池包串联或/和并联构成,所述电池包由多个单体电池串接构成;各单体电池成行或成列排列,各单体电池之间夹设有柔性垫或至少两竖向设置的柔性条,且各相邻的单体电池正、负极柱之间柔性电连接,所述单体电池内置有温度采集元件、电压采集元件,用于将采集的单体电池温度和电压信息传送至所属电池包的信号汇集模块上,所述信号汇集模块通过数据传输线与电池模组监控器相连。
  12. 如权利要求11所述的系统,其特征在于,将多个所述电池包固定于一电池柜或电池架内,所述电池柜或电池架内设置有多个平行的隔板,形成可放置多个电池包的电池仓,所述信号汇集模块设于电池仓内,于电池柜或电池架侧端竖向设有布线仓,所述电池模组监控器设于柜体或架体上,将所述电池包置于一外壳内,再安装于所述电池仓内;所述外壳内壁设有与所述电池包外侧柔性接触的弹性件,所述外壳上还设有一可将外壳内单体电池压紧、固定的端盖。
  13. 如权利要求11所述的系统,其特征在于,将多个所述电池包固定于一电池柜或电池架内,所述电池柜或电池架内设置有多个平行的隔板,形成可放置多个电池包的电池仓,所述信号汇集模块设于电池仓内,于电池柜或电池架侧端竖向设有布线仓,所述电池模组监控器设于柜体或架体上,将所述单体电池排列后的电池包置于一端开口的电池筐上,再安装于所述电池仓上;所述电池筐上设有与所述电池包外侧柔性接触的弹性件,所述电池筐上设置有第二连接件,用于连接将排列于电池筐内单体电池拉紧的紧固条。
  14. 如权利要求12或13所述的系统,其特征在于:所述向核电站提供应急电源的系统放置于防水、防震且可调节温度的存放装置内,所述存放装置设置于一基准平台上,包括一可抗震且固定于所述基准平台上的容置腔体,于所述容置腔体内,具有可存放电池柜或电池架、换流设备及监视和控制设备的空腔,所述换流设备及监视和控制设备的存放位置高于电池柜或电池架的存放位置,用于放置所述电池柜或电池架的空腔内,具有多个可安装和固定所述电池柜或电池架的基座,各基座均高于该空腔的地面。
  15. 如权利要求14所述的系统,其特征在于:用于放置所述电池柜或电池架的空腔底面开设有积水坑,其坑内设置有可将积水抽取到所述容置腔体外面的排水设备,用于放置所述电池柜或电池架的空腔顶面设置有多个可在火灾时喷水的喷嘴,各喷嘴设置于一可与积水坑连通的输水管上,该输水管同时与设于容置腔体外面的水箱连通,所述输水管路上还设有抽水泵及控制阀。
  16. 如权利要求9所述的系统,其特征在于:还包括移动式蓄电池蓄能系统,所述移动式蓄电池蓄能系统包括一个以上车载式蓄能系统模块,所述车载式蓄能系统模块包括蓄能电池模块和可移动车载式载体,所述在线监控系统还用于在蓄电池蓄能系统的总容量不足当前运行工况下的负荷容量时,接入至少一个车载式蓄能系统模块。
PCT/CN2012/075614 2011-05-20 2012-05-16 向核电站提供应急电源的方法和系统 WO2012159541A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137004652A KR101337565B1 (ko) 2011-05-20 2012-05-16 원자력 발전소에 긴급 전원을 공급하는 방법 및 시스템
US13/820,454 US8975781B2 (en) 2011-05-20 2012-05-16 Method and system for supplying emergency power to nuclear power plant
EP12789217.2A EP2600489B1 (en) 2011-05-20 2012-05-16 Method and system for supplying emergency power to nuclear power plant
JP2013525134A JP2013537636A (ja) 2011-05-20 2012-05-16 原子力発電所へ非常用電源を供給するための方法とシステム
ZA2013/01589A ZA201301589B (en) 2011-05-20 2013-03-01 Method and system for supplying emergency power to nuclear power plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101311199A CN102255377B (zh) 2011-05-20 2011-05-20 向核电站提供应急动力电源的方法和系统
CN201110131119.9 2011-05-20

Publications (1)

Publication Number Publication Date
WO2012159541A1 true WO2012159541A1 (zh) 2012-11-29

Family

ID=44982419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075614 WO2012159541A1 (zh) 2011-05-20 2012-05-16 向核电站提供应急电源的方法和系统

Country Status (7)

Country Link
US (1) US8975781B2 (zh)
EP (1) EP2600489B1 (zh)
JP (1) JP2013537636A (zh)
KR (1) KR101337565B1 (zh)
CN (1) CN102255377B (zh)
WO (1) WO2012159541A1 (zh)
ZA (1) ZA201301589B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5518242B1 (ja) * 2013-08-29 2014-06-11 メトラス株式会社 蓄電装置
WO2014130123A2 (en) * 2012-12-04 2014-08-28 Nuscale Power, Llc Managing electrical power for a nuclear reactor system

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255377B (zh) * 2011-05-20 2012-12-05 中国广东核电集团有限公司 向核电站提供应急动力电源的方法和系统
FR2985359A1 (fr) * 2012-01-02 2013-07-05 Jean Pronost Dispositifs capables d'alimenter les organes de surete et de securite des centrales et installations nucleaires en cas de perte totale des alimentations electriques
WO2013113289A1 (zh) * 2012-02-02 2013-08-08 中广核工程有限公司 一种核电厂冷态功能试验的供电方法
CN103427471B (zh) * 2012-05-16 2016-03-30 中国广核集团有限公司 一种核电站应急蓄能系统孤岛运行方法及系统
CN103427470B (zh) * 2012-05-16 2015-07-22 中国广核集团有限公司 核电站提供应急动力电源的方法和移动式蓄电池蓄能系统
CN102722163B (zh) * 2012-06-27 2017-07-21 国核自仪系统工程有限公司 一种分散式网络控制系统
CN102915778B (zh) * 2012-09-21 2015-07-08 中国核电工程有限公司 利用功能组分析法对核电厂数字化仪控系统进行失电分析的方法
JP5898604B2 (ja) * 2012-10-31 2016-04-06 日立Geニュークリア・エナジー株式会社 原子力発電プラントの安全対策設備
DE102013105516A1 (de) * 2013-05-29 2014-12-04 Weidmüller Interface GmbH & Co. KG Basismodul für ein elektronisches Gerät
JP6384483B2 (ja) 2013-09-19 2018-09-05 東芝三菱電機産業システム株式会社 蓄電池システム
US9935473B2 (en) * 2013-09-19 2018-04-03 Toshiba Mitsubishi-Electric Industrial Systems Corporation Storage battery system
FR3012693B1 (fr) * 2013-10-27 2016-02-05 Commissariat Energie Atomique Protection d'une alimentation incluant plusieurs batteries en parallele contre un court circuit externe
CN103578590B (zh) * 2013-11-13 2016-06-22 中广核工程有限公司 核电站失电事故分析方法和系统
CN103595054B (zh) * 2013-11-28 2015-10-28 国家电网公司 一种适用于单母线失压的故障供电恢复方法
JP2016012980A (ja) * 2014-06-27 2016-01-21 三菱重工業株式会社 直流電源設備
DE102014212933B3 (de) * 2014-07-03 2015-06-25 Siemens Aktiengesellschaft Vorrichtung und Verfahren zum Ladezustandsausgleich für ein Batteriesystem
JP6444098B2 (ja) * 2014-08-26 2018-12-26 三菱重工業株式会社 原子力発電プラントの監視制御装置
CA2963304C (en) 2014-10-14 2024-01-23 Kci Licensing, Inc. System for monitoring compliant usage of negative pressure wound therapy
EP3035477A1 (en) 2014-12-19 2016-06-22 ABB Technology Ltd A power system comprising a central energy storage system and a method of controlling power transfer in a power system
FR3033452B1 (fr) * 2015-03-03 2018-04-06 Renault S.A.S. Procede et systeme d'allocation d'une requete de puissance a une pluralite de batteries connectees en parallele
JP6609625B2 (ja) 2015-03-31 2019-11-20 三菱重工業株式会社 状況判定システム、意思決定支援システム、及び状況判定方法
US9780591B2 (en) * 2015-04-03 2017-10-03 Schneider Electric It Corporation Adaptive battery pack
US9899864B2 (en) * 2015-04-10 2018-02-20 Enovate Medical, Llc Bidirectional power converter
CN105448368A (zh) * 2015-11-12 2016-03-30 中广核工程有限公司 一种核电站多样性驱动系统及方法和多样性保护系统
CN106803436B (zh) * 2015-11-26 2018-08-17 大亚湾核电运营管理有限责任公司 核电厂后备事故缓解电源事故应用功能的验证方法及装置
CN105406585A (zh) * 2015-12-11 2016-03-16 上海查尔斯电子有限公司 一种用于核电站的应急电电源
US10510455B2 (en) * 2015-12-17 2019-12-17 Nuscale Power, Llc Multi-modular power plant with off-grid power source
US10404062B2 (en) * 2016-04-21 2019-09-03 Nuscale Power, Llc Fault-tolerant power-distribution modules for a power plant
CN107462919B (zh) * 2016-06-03 2019-04-26 广东核电合营有限公司 核电厂地震响应预警装置及其构建方法
US10975538B2 (en) * 2016-06-13 2021-04-13 Rsa Protective Technologies, Llc Method and system for a retractable floodwall system
US10141776B2 (en) * 2016-06-20 2018-11-27 General Electric Company Distribution of power commands in an energy storage system
US9966878B2 (en) * 2016-07-29 2018-05-08 Ge Aviation Systems Llc Method and modular system for a power system architecture
DE102017102257A1 (de) 2017-02-06 2018-08-09 Man Diesel & Turbo Se Schiffs- oder Kraftwerksspannungsversorgungssystem
WO2018189865A1 (ja) * 2017-04-13 2018-10-18 三菱電機株式会社 プロセス信号監視制御システム
CN107845436B (zh) * 2017-09-27 2023-11-14 中国核电工程有限公司 压水堆核电厂主控制室不可居留时的远程停堆站操控方法
KR102087143B1 (ko) 2018-03-06 2020-03-10 엘에스산전 주식회사 저압 계통에서 복수의 회로차단기의 보호 협조 장치
DE102018105173B3 (de) * 2018-03-07 2019-06-19 Framatome Gmbh Modular aufgebaute Einschubwandlereinheit sowie Leittechnikstromversorgungssystem für ein Kernkraftwerk
CN109004738B (zh) * 2018-07-04 2021-06-04 中广核研究院有限公司 一种核动力船舶一回路应急供电系统及方法
CN109066767B (zh) * 2018-07-09 2023-10-20 国网浙江省电力有限公司台州供电公司 一种低压分布式电源的零盲区反孤岛保护系统
CN110907056A (zh) * 2018-09-14 2020-03-24 宁德时代新能源科技股份有限公司 一种电池组温度检测系统
CN109359882B (zh) * 2018-10-29 2022-02-01 武汉理工大学 一种台风灾害下输电线路跳闸风险评估方法
CN109586361B (zh) * 2018-11-13 2021-04-30 苏州热工研究院有限公司 一种锂电池储能供电系统
DE102018128735A1 (de) * 2018-11-15 2020-05-20 Westnetz Gmbh Umspannanlage eines Energieversorgungsnetzes sowie ein Verfahren zum Betreiben einer Umspannanlage
KR102149094B1 (ko) * 2019-01-31 2020-08-27 한국수력원자력 주식회사 축전지 시스템 및 이를 갖는 원자력 발전소
CN110190616B (zh) * 2019-06-29 2024-06-11 深圳高力特通用电气有限公司 一种智能直流供电系统及网络
JP6638848B1 (ja) * 2019-07-04 2020-01-29 富士電機株式会社 電力変換装置、制御装置、サーバ、およびシステム
CN110601168A (zh) * 2019-09-10 2019-12-20 无锡江南计算技术研究所 一种大功率高可靠高压直流供电系统
CN110676928B (zh) * 2019-09-24 2021-11-05 中广核研究院有限公司 一种海上小型堆重要系统的辅助供电方法及装置
CN111912641A (zh) * 2020-07-15 2020-11-10 中国核动力研究设计院 用于运行态安注泵环境试验的大型箱体装置和试验方法
KR102229359B1 (ko) * 2020-08-20 2021-03-18 박기태 비상 전원 공급기
CN112152094B (zh) * 2020-09-23 2023-09-08 中广核工程有限公司 核电站控制室人机接口设备的交叉供电结构
CN113597156A (zh) * 2021-07-05 2021-11-02 浙江广厦建设职业技术大学 一种具有应急供电功能的财税控制机机柜
CN113555847B (zh) * 2021-07-23 2022-06-07 华能平凉发电有限责任公司 一种高厂变低压分支的死区保护方法、装置、设备及介质
CN114677014A (zh) * 2022-03-28 2022-06-28 广东核电合营有限公司 基于风险地图的核电厂台风风险管理方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1907176A1 (de) * 1969-02-13 1970-09-03 Siemens Ag Stromversorgungseinrichtung fuer Kernkraftanlagen
JP2001238368A (ja) * 2000-02-28 2001-08-31 Hitachi Ltd 発電プラントの非常用電源装置
CN1536731A (zh) * 2003-04-04 2004-10-13 京东方科技集团股份有限公司 具有冗余电池单元的电池
CN101312293A (zh) * 2007-05-22 2008-11-26 深圳市金一泰实业有限公司 一种动力锂电池智能管理系统
CN102195334A (zh) * 2011-05-20 2011-09-21 中国广东核电集团有限公司 一种提高核电站应急电源可靠性的方法和系统
CN102255377A (zh) * 2011-05-20 2011-11-23 中国广东核电集团有限公司 向核电站提供应急动力电源的方法和系统
CN102324757A (zh) * 2011-05-20 2012-01-18 中国广东核电集团有限公司 核电站应急动力电源之蓄能系统的监控方法和系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115529A (ja) * 1988-10-26 1990-04-27 Toshiba Corp ディーゼル発電機設備
JPH02114350U (zh) * 1989-03-02 1990-09-13
JPH04372587A (ja) * 1991-06-20 1992-12-25 Fuji Electric Co Ltd 二層式cvcf装置及びcvcfシステム
JPH0568071U (ja) * 1992-02-21 1993-09-10 株式会社三陽電機製作所 無停電電源装置の蓄電池取付け構造
JPH06289189A (ja) * 1993-04-06 1994-10-18 Toshiba Corp 原子力発電所の直流電源設備
JPH08111943A (ja) * 1994-10-12 1996-04-30 Toshiba Corp 無停電電源装置
JPH08126226A (ja) * 1994-10-24 1996-05-17 Fuji Electric Co Ltd 無停電電源装置
US5745355A (en) * 1996-06-25 1998-04-28 Exide Electronics Corporation Wireless selective tripping of AC power systems connected in parallel
JPH10210683A (ja) * 1997-01-20 1998-08-07 Fuji Electric Co Ltd 無停電電源装置
JPH10260294A (ja) * 1997-03-21 1998-09-29 Hitachi Ltd 電源設備
JP3114673B2 (ja) * 1997-11-07 2000-12-04 日本電気株式会社 冗長機能を有する無停電電源装置
JP3072310U (ja) * 1999-10-29 2000-10-13 双葉工具株式会社 電源バックアップ装置
FR2823592B1 (fr) * 2001-04-13 2005-10-07 Framatome Anp Dispositif d'alimentation electrique de secours de composants auxiliaires d'une centrale nucleaire et procede de mise en oeuvre
JP3908076B2 (ja) * 2002-04-16 2007-04-25 株式会社日立製作所 直流バックアップ電源装置
JP4055189B2 (ja) * 2003-02-04 2008-03-05 株式会社日立製作所 発電プラント用の非常用電動機用電源設備
US7379305B2 (en) * 2004-01-23 2008-05-27 American Power Conversion Corporation Modular UPS
JP2005227017A (ja) * 2004-02-10 2005-08-25 Toshiba Corp 原子力発電所の直流電源システム
JP2005354754A (ja) * 2004-06-08 2005-12-22 Hitachi Ltd 発電プラントの直流電源設備
US7844440B2 (en) * 2006-07-07 2010-11-30 Edsa Micro Corporation Systems and methods for real-time dynamic simulation of uninterruptible power supply solutions and their control logic systems
US20090085553A1 (en) * 2007-09-28 2009-04-02 Pavan Kumar Reconfigurable battery pack

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1907176A1 (de) * 1969-02-13 1970-09-03 Siemens Ag Stromversorgungseinrichtung fuer Kernkraftanlagen
JP2001238368A (ja) * 2000-02-28 2001-08-31 Hitachi Ltd 発電プラントの非常用電源装置
CN1536731A (zh) * 2003-04-04 2004-10-13 京东方科技集团股份有限公司 具有冗余电池单元的电池
CN101312293A (zh) * 2007-05-22 2008-11-26 深圳市金一泰实业有限公司 一种动力锂电池智能管理系统
CN102195334A (zh) * 2011-05-20 2011-09-21 中国广东核电集团有限公司 一种提高核电站应急电源可靠性的方法和系统
CN102255377A (zh) * 2011-05-20 2011-11-23 中国广东核电集团有限公司 向核电站提供应急动力电源的方法和系统
CN102324757A (zh) * 2011-05-20 2012-01-18 中国广东核电集团有限公司 核电站应急动力电源之蓄能系统的监控方法和系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014130123A2 (en) * 2012-12-04 2014-08-28 Nuscale Power, Llc Managing electrical power for a nuclear reactor system
WO2014130123A3 (en) * 2012-12-04 2014-11-06 Nuscale Power, Llc Managing electrical power for a nuclear reactor system
US9305671B2 (en) 2012-12-04 2016-04-05 Nuscale Power, Llc Managing electrical power for a nuclear reactor system
JP5518242B1 (ja) * 2013-08-29 2014-06-11 メトラス株式会社 蓄電装置
JP2015047026A (ja) * 2013-08-29 2015-03-12 メトラス株式会社 蓄電装置

Also Published As

Publication number Publication date
EP2600489A1 (en) 2013-06-05
KR101337565B1 (ko) 2013-12-06
ZA201301589B (en) 2014-05-28
CN102255377A (zh) 2011-11-23
CN102255377B (zh) 2012-12-05
EP2600489A4 (en) 2014-10-15
US8975781B2 (en) 2015-03-10
JP2013537636A (ja) 2013-10-03
US20140001863A1 (en) 2014-01-02
EP2600489B1 (en) 2016-08-17
KR20130062331A (ko) 2013-06-12

Similar Documents

Publication Publication Date Title
WO2012159541A1 (zh) 向核电站提供应急电源的方法和系统
CN102195334B (zh) 一种提高核电站应急电源可靠性的方法和系统
US11318858B2 (en) Intelligent electric-vehicle charging station
KR101304397B1 (ko) 리튬철 전지 기반의 변전소 직류전원 비상 시스템
CN103427471B (zh) 一种核电站应急蓄能系统孤岛运行方法及系统
CN103427470B (zh) 核电站提供应急动力电源的方法和移动式蓄电池蓄能系统
CN105319517A (zh) 核电站应急电源设备的试验系统
Kim et al. The operation experience of KEPCO UPFC
CN115498671A (zh) 一种集装箱式储能系统
CN210468888U (zh) 一种不间断电源系统
CN217789143U (zh) 一种可移动的储能电站抢修设备
CN206180689U (zh) 矿用隔爆兼本安型锂离子蓄电池不间断电源
CN220674155U (zh) 服务器系统及服务器一体机柜
CN212649185U (zh) 基于电动汽车蓄电阵列和不间断电源的应急供电系统
CN212649186U (zh) 基于电动汽车蓄电阵列的应急供电系统
CN212649181U (zh) 基于电动汽车蓄电阵列和氢燃料电池耦合的应急供电系统
CN220822286U (zh) 一种储能控制汇流柜
CN219875188U (zh) 一种a型应急照明集中电源箱
CN220107582U (zh) 低压电能质量治理装置
CN221103026U (zh) 新能源电站配套储能系统
CN210016313U (zh) 一种新型分布式直流电源箱
CN217642873U (zh) 一种微电网应用的电化学储能一体机
CN117713388A (zh) 一种组合式储能系统
CN114825585A (zh) 一种用于核电厂涉网通信机房的光伏储能供电系统和方法
CN207117263U (zh) 一种撬装化阀室蓄电池管理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137004652

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013525134

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012789217

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012789217

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13820454

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE