WO2018189865A1 - プロセス信号監視制御システム - Google Patents

プロセス信号監視制御システム Download PDF

Info

Publication number
WO2018189865A1
WO2018189865A1 PCT/JP2017/015143 JP2017015143W WO2018189865A1 WO 2018189865 A1 WO2018189865 A1 WO 2018189865A1 JP 2017015143 W JP2017015143 W JP 2017015143W WO 2018189865 A1 WO2018189865 A1 WO 2018189865A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal
signal
processing device
process signal
signal processing
Prior art date
Application number
PCT/JP2017/015143
Other languages
English (en)
French (fr)
Inventor
陽一郎 ▲濱▼谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019512129A priority Critical patent/JP6727416B2/ja
Priority to US16/490,692 priority patent/US11145426B2/en
Priority to PCT/JP2017/015143 priority patent/WO2018189865A1/ja
Publication of WO2018189865A1 publication Critical patent/WO2018189865A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/001Computer implemented control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/002Detection of leaks
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/04Safety arrangements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/04Safety arrangements
    • G21D3/06Safety arrangements responsive to faults within the plant
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/10Control circuit supply, e.g. means for supplying power to the control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a process signal monitoring control system, and more particularly to a process signal monitoring control system that receives a process signal related to a nuclear power plant and transmits the received process signal to the outside.
  • a process signal of a nuclear power plant or the like is input to a process signal input device of a process signal monitoring control system (see, for example, Patent Documents 1 to 5).
  • a sensor and a transmitter are attached to the process signal input device.
  • process signal input devices temporarily convert analog signals such as pressure, temperature, and flow rate from sensors and transmitters into digital signals.
  • the process signal input device further sends this digital signal to the signal processing device (arithmetic mechanism) of the plant monitoring control unit. Further, the process signal input device supplies power to the sensor and the transmitter using the power obtained from the outside (signal processing device).
  • the process signal input device of the process signal monitoring and control system related to the nuclear power plant is configured as described above. If an accident occurs at a nuclear power plant, it is assumed that the process signal input device loses an external power source. When the external power source is lost, such a process signal input device cannot monitor the process signal of the nuclear power plant, and the operator cannot make an appropriate judgment.
  • the present invention has been made to solve the problems in the process signal monitoring and control system as described above, and in order to achieve improvement in safety of a nuclear power plant even when an external power source is lost,
  • An object of the present invention is to obtain a process signal monitoring control system capable of monitoring a process signal to be transmitted.
  • the process signal monitoring and control system includes a signal processing device installed outside a reactor containment vessel, an internal power source for charging power supplied from the signal processing device to a rechargeable battery, and the reactor containment vessel An analog-to-digital conversion unit that converts an analog signal transmitted from a sensor installed inside the signal into a digital signal, and an internal communication unit that transmits the digital signal converted by the analog-to-digital conversion unit to the signal processing device And an internal repeater installed inside the reactor containment vessel and an external repeater installed outside the reactor containment vessel and receiving a signal from the internal repeater, directing the received signal to a communication satellite An external repeater for transmitting, and when the power supply from the signal processing device is interrupted, the internal power supply converts the power charged in the rechargeable battery to the power supply.
  • the internal communication unit determines whether or not the communication with the signal processing device is continued, if it determines that communication is continued, The digital signal converted by the analog-digital conversion unit is continuously transmitted to the signal processing device.
  • the process signal monitoring and control system includes a signal processing device installed outside a reactor containment vessel, an internal power source for charging power supplied from the signal processing device to a rechargeable battery, and the reactor containment vessel An analog-to-digital conversion unit that converts an analog signal transmitted from a sensor installed inside the signal into a digital signal, and an internal communication unit that transmits the digital signal converted by the analog-to-digital conversion unit to the signal processing device And an internal repeater installed inside the reactor containment vessel and an external repeater installed outside the reactor containment vessel and receiving a signal from the internal repeater, directing the received signal to a communication satellite An external repeater for transmitting, and when the power supply from the signal processing device is interrupted, the internal power supply converts the power charged in the rechargeable battery to the power supply.
  • the internal communication unit determines whether or not the communication with the signal processing device is continued, if it determines that communication is continued, By continuously transmitting the digital signal converted by the analog-digital conversion unit to the signal processing device, it is possible to monitor the process signal of the nuclear power plant even when the external power source is lost. Become. Thereby, the improvement of the safety
  • FIG. 1 is an overall view showing a configuration of a process signal monitoring control system according to a first embodiment of the present invention. It is a flowchart showing operation
  • a process signal monitoring control system will be described below with reference to the drawings.
  • the same or similar components are denoted by the same reference numerals, and the sizes and scales of the corresponding components are independent.
  • the process signal monitoring and control system actually includes a plurality of members, but for the sake of simplicity, only the portions necessary for the description are described, and the other portions are omitted.
  • FIG. 1 schematically shows the configuration of an emergency response center of a nuclear power plant and a reactor containment vessel.
  • the emergency countermeasure center 50 of the nuclear power plant is installed outside the reactor containment vessel 60.
  • a monitoring device 52 for a nuclear power plant is arranged inside the emergency countermeasure center 50.
  • a monitoring device 52 and a wireless communication device 51 are connected to the network 53 (first network) of the emergency countermeasure center 50.
  • the wireless communication device 51 can obtain information from the relay unit 20 via the communication satellite 54.
  • each monitoring control unit 70 includes a signal processing device 30, a process signal input device 10, and a sensor 40.
  • the sensor 40 and the process signal input device 10 are installed inside the reactor containment vessel 60.
  • the signal processing device 30 is installed outside the reactor containment vessel 60.
  • the signal processing device 30 is connected to a network 56 (second network) disposed outside the reactor containment vessel 60.
  • the reactor containment vessel 60 is provided with a process signal monitoring control system in order to transmit process signals related to the nuclear power plant to the outside (see FIG. 3).
  • the sensor 40 is installed inside the reactor containment vessel 60 and obtains process information such as pressure, temperature, and flow rate. Process signals (analog signals such as pressure, temperature, and flow rate) acquired by the sensor 40 are transmitted to the process signal input device 10.
  • the process signal input device 10 transmits the received process signal to the signal processing device 30 installed outside the reactor containment vessel 60.
  • a wireless communication device 55 is connected to the network 56.
  • the monitoring control unit 70 (process signal input device 10) communicates with the wireless communication device 51 via the wireless communication device 55.
  • the monitoring control unit 70 can transmit process information to the relay unit 20 in an emergency.
  • process information is transmitted from the process signal input device 10 to the relay unit 20
  • the relay unit 20 is connected to the outside of the nuclear power plant via the radio communication device 51 and the network 53 by satellite communication via the communication satellite 54.
  • the received process information is transmitted to the emergency countermeasure center 50 (monitoring device 52) installed in the facility.
  • FIG. 2 shows the configuration of the process signal input device 10 and the relay unit 20.
  • the monitoring control unit 70 includes a signal processing device 30, a process signal input device 10, and a sensor 40.
  • the process signal input device 10 includes an analog-digital (A / D) conversion unit 11, an internal communication unit 12, an internal power supply 13, and the like.
  • the process signal input device 10 is connected to the signal processing device 30 installed outside the reactor containment vessel 60 by a communication cable 61 and a power cable 62.
  • the internal power supply 13 has a built-in rechargeable battery (storage battery) 13a.
  • the analog-digital converter 11 performs A-D conversion on the process signal received from the sensor 40.
  • the internal power supply 13 is supplied with power from the signal processing device 30 via the power cable 62.
  • the sensor 40 is connected to the process signal input device 10 by a signal line 63.
  • the sensor 40 includes a transmitter, a pressure gauge, a thermometer, a flow meter, and the like.
  • the analog process signal obtained from the sensor 40 is transmitted to the process signal input device 10 (analog-digital conversion unit 11) via the signal line 63.
  • the relay unit 20 includes an internal relay machine 21 and an external relay machine 22.
  • the internal repeater 21 and the external repeater 22 are connected by a communication cable 64.
  • the internal repeater 21 is installed inside the reactor containment vessel 60.
  • the external repeater 22 is installed outside the reactor containment vessel 60.
  • the internal communication unit 12 of the process signal input device 10 has a function of communicating with the signal processing device 30 through the communication cable 61 and a function of communicating with the wireless communication device 51 through the wireless communication device 55 (external transmission device).
  • the wireless communication device 51 can communicate with the emergency countermeasure center 50 outside the nuclear power plant via the network 53.
  • FIG. 3 shows the configuration of the process signal monitoring control system.
  • the process signal monitoring control system 100 includes a relay unit 20, a process signal input device 10, and a signal processing device 30.
  • the signal processing device 30 includes an external communication unit 31 and an external power source 32.
  • the external communication unit 31 of the signal processing device 30 is connected to the internal communication unit 12 of the process signal input device 10 and transmits a signal to the network 56.
  • the internal power supply 13 of the process signal input device 10 includes a rechargeable battery (storage battery) 13a and an AC / DC charger 13b.
  • the AC / DC charger 13b of the internal power supply 13 normally charges the rechargeable battery 13a with the power supplied from the external power supply 32 of the signal processing device 30 via the power cable 62.
  • the internal power supply 13 has a function of supplying power to the analog-digital (A / D) conversion unit 11 and the internal communication unit 12 for a certain period of time by a built-in rechargeable battery 13a when power supply from the signal processing device 30 is interrupted. Can be maintained.
  • the AC / DC charger 13b supplies power to the process signal input device 10 and charges an internal rechargeable battery (storage battery) 13a.
  • the internal communication unit 12 or the internal power supply 13 constantly detects the input side voltage 13c of the AC / DC charger 13b.
  • the internal power supply 13 or the internal communication unit 12 has a problem in power supply from the signal processing device 30, that is, the power supply is lost.
  • the switch 13d When the power supply is lost and the internal power supply 13 is in an emergency operation mode, the switch 13d is turned ON, and the rechargeable battery (storage battery) 13a is connected to the analog-digital (A / D) conversion unit 11 and the internal communication unit 12. Start feeding.
  • the process signal monitoring control system 100 has different operation modes (normal operation mode and emergency operation mode) depending on the supply state of the internal power supply 13. First, the normal operation mode will be described.
  • the process signal monitoring control system 100 executes the normal operation mode when it is calm (step 1). In the normal operation mode, power is supplied from the external power supply 32 of the signal processing device 30 to the internal power supply 13 of the process signal input device 10 by the power cable 62.
  • the process signal input device 10 operates with the power supplied from the power cable 62 in the normal operation mode.
  • the internal communication unit 12 of the process signal input device 10 transmits a process signal to the signal processing device 30 via the communication cable 61.
  • the signal processing device 30 is connected to other monitoring control units via a network 56.
  • the process signal measured by the monitoring control unit 70 is transmitted to the emergency countermeasure center 50 outside the nuclear power plant by the off-site transmission device (wireless communication device 55).
  • the emergency operation mode power supply from the signal processing device 30 to the process signal input device 10 is lost (step 2), and the process signal input device 10 (internal communication unit 12) and the sensor 40 are supplied from the rechargeable battery 13a of the internal power supply 13 to the process signal input device 10. Power supply is started (step 3).
  • the internal communication unit 12 determines the operation state of the signal processing device 30 through the communication cable 61. That is, the internal communication unit 12 confirms whether the power supply to the process signal input device 10 is stopped or whether the operation of the signal processing device 30 is continued (step 4).
  • the process signal input device 10 It operates by supplying power from the rechargeable battery 13a.
  • the internal communication unit 12 continues communication with the signal processing device 30 via the communication cable 61 (step 5).
  • the internal communication unit 12 determines that not only the power supply to the process signal input device 10 but also the operation of the signal processing device 30 is stopped, the internal communication unit 12 sends the process signal to the emergency countermeasure center 50 by wireless communication. Is switched to the emergency communication operation mode to be transmitted (step 6).
  • the process signal input device 10 operates by supplying power from the rechargeable battery 13a of the internal power supply 13. That is, the internal communication unit 12 of the process signal input device 10 transmits the process signal to the internal repeater 21 of the relay unit 20 in the emergency communication operation mode.
  • the internal repeater 21 transmits a process signal to the external repeater 22 by wire (communication cable 64).
  • Information transmitted from the internal communication unit 12 of the process signal input device 10 to the external repeater 22 is transmitted to the emergency countermeasure center 50 (wireless communication device) installed outside the nuclear power plant by satellite communication via the communication satellite 54. 51) (step 7).
  • the internal communication unit 12 determines the operation status of the signal processing device 30 and switches from wired communication to wireless communication, the internal communication unit 12 performs signal transmission via wired communication in order to save power consumption of the rechargeable battery 13a.
  • the transmission cycle is made longer than when the process signal is transmitted to the processing device 30, that is, the transmission cycle is made longer than the transmission cycle in the normal operation mode.
  • the internal repeater 21 is connected to the external repeater 22 disposed outside the reactor containment vessel 60 through a communication cable 64.
  • the process signal wirelessly communicated from the external repeater 22 is sent to the emergency countermeasure center 50 outside the nuclear power plant by satellite communication that is not affected by the situation at the site, and can be used for grasping the status of the power plant.
  • a process signal monitoring control system includes a signal processing device installed outside a reactor containment vessel, an internal power source for charging a rechargeable battery with power supplied from the signal processing device, and the nuclear reactor.
  • An analog-to-digital converter that converts an analog signal transmitted from a sensor installed inside the containment vessel into a digital signal, and an internal that transmits the digital signal converted by the analog-to-digital converter to the signal processing device
  • a communication unit, an internal repeater installed inside the reactor containment vessel, and an external repeater installed outside the reactor containment vessel and receiving a signal from the internal repeater the received signal is transmitted to a communication satellite.
  • the internal power supply is charged to the rechargeable battery when the power supply from the signal processing device is cut off.
  • Power is supplied to the analog-digital conversion unit and the internal communication unit, and the internal communication unit determines whether communication with the signal processing device is continued or not, and determines that communication is continued. Then, the digital signal converted by the analog-digital conversion unit is continuously transmitted to the signal processing device.
  • the process signal input device of the monitoring control unit is a communication unit capable of switching the operation mode according to the operation state of the signal processing device in order to monitor the process signal even when the external power source is lost.
  • a power source having a storage battery (rechargeable battery) is provided. According to the present invention, since the process signal input device used in normal times and the process signal input device used when the external power supply is lost can be shared, the operation status can always be confirmed, the reliability is high, and the It becomes possible to plan for equipment.
  • Embodiment 2 For security reasons, the emergency operation mode for wirelessly communicating nuclear power plant measurement data should be kept to a minimum.
  • the internal communication unit 12 determines the operation mode based on the power supply state and the communication state of the signal processing device 30. By adding determination based on the value of the monitored parameter to the determination condition for the emergency operation mode by wireless communication, switching to the operation mode of wireless communication can be further minimized.
  • the process signal monitoring control system 100 has different operation modes (normal operation mode and emergency operation mode) depending on the supply state of the internal power supply 13.
  • the process signal monitoring control system 100 executes the normal operation mode when it is calm (step 1). In the normal operation mode, power is supplied from the external power supply 32 of the signal processing device 30 to the internal power supply 13 of the process signal input device 10 by the power cable 62.
  • the process signal input device 10 operates with the power supplied from the power cable 62 in the normal operation mode.
  • the internal communication unit 12 of the process signal input device 10 transmits a process signal to the signal processing device 30 via the communication cable 61.
  • the signal processing device 30 is connected to other monitoring control units via a network 56.
  • the process signal measured by the monitoring control unit 70 is transmitted to the emergency countermeasure center 50 outside the nuclear power plant by the off-site transmission device (wireless communication device 55).
  • the emergency operation mode power supply from the signal processing device 30 to the process signal input device 10 is lost (step 2), and the process signal input device 10 (internal communication unit 12) and the sensor 40 are supplied from the rechargeable battery 13a of the internal power supply 13 to the process signal input device 10. Power supply is started (step 3).
  • the internal communication unit 12 determines the operation state of the signal processing device 30 through the communication cable 61. That is, the internal communication unit 12 confirms whether the power supply to the process signal input device 10 is stopped or whether the operation of the signal processing device 30 is continued (step 4).
  • the process signal input device 10 It operates by supplying power from the rechargeable battery 13a.
  • the internal communication unit 12 continues communication with the signal processing device 30 via the communication cable 61 (step 5).
  • the internal communication unit 12 determines that not only the power supply to the process signal input device 10 but also the operation of the signal processing device 30 is stopped, the internal communication unit 12 determines the value of the monitoring parameter (step 8). .
  • the monitor parameter is compared with the set value, and if the monitor parameter is within the set value range, communication is not performed (step 9). For example, the internal temperature of the reactor containment vessel 60 is adopted as the monitoring parameter.
  • step 8 Since the determination in step 8 is repeated, communication from the process signal input device 10 to the signal processing device 30 is not performed as long as the monitoring parameter is within the set value range.
  • the internal communication unit 12 switches to a mode in which a process signal is transmitted to the emergency response center 50 by wireless communication. (Step 6).
  • the process signal input device 10 is operated by feeding power from the rechargeable battery 13 a of the internal power supply 13.
  • the internal communication unit 12 of the process signal input device 10 transmits the process signal to the internal repeater 21 of the relay unit 20 in the emergency communication operation mode.
  • the internal repeater 21 transmits a process signal to the external repeater 22 by wire (communication cable 64).
  • Information transmitted from the internal communication unit 12 of the process signal input device 10 to the external repeater 22 is transmitted to the emergency countermeasure center 50 (wireless communication device) installed outside the nuclear power plant by satellite communication via the communication satellite 54. 51) (step 7).
  • the internal communication unit 12 determines only the power supply state and the communication state of the signal processing device 30 and does not determine the operation mode, but wirelessly. The determination based on the value of the monitored parameter is added to the determination condition for the communication operation mode. Thereby, in the process signal monitoring control system according to the present embodiment, switching to the operation mode of wireless communication can be further minimized.
  • Embodiment 3 FIG.
  • the relay unit 20 and the internal communication unit 12 according to the present embodiment have not only a function of transmitting a process signal but also a function of receiving information from the outside.
  • the wireless communication device 51 obtains information from the relay unit 20 (process signal input device 10) via the communication satellite 54, and information transmitted from the emergency countermeasure center 50 to the relay unit 20 via the communication satellite 54. Is transmitted.
  • the reactor containment vessel 60 includes a process signal monitoring and control system 100 in order to transmit process signals related to the nuclear power plant to the outside.
  • FIG. 6 schematically shows the configuration of the process signal monitoring control system 100 according to the present embodiment.
  • the internal repeater 21 transmits the signal received by the external repeater 22 through satellite communication toward the inside of the reactor containment vessel 60. .
  • the internal communication unit 12 can communicate with the emergency countermeasure center 50 outside the nuclear power plant in both directions.
  • the sensor 40 is installed inside the reactor containment vessel 60 and obtains process information such as pressure, temperature, and flow rate.
  • Process signals analog signals such as pressure, temperature, and flow rate
  • the process signal input device 10 transmits the received process signal to the signal processing device 30 installed outside the reactor containment vessel 60.
  • each monitoring control unit 70 includes a signal processing device 30, a process signal input device 10, and a sensor 40.
  • the sensor 40 and the process signal input device 10 are installed inside the reactor containment vessel 60.
  • the signal processing device 30 is installed outside the reactor containment vessel 60.
  • the signal processing device 30 is connected to a network 56 (second network) disposed outside the reactor containment vessel 60.
  • a wireless communication device 55 is connected to the network 56.
  • the monitoring control unit 70 (process signal input device 10) communicates with the wireless communication device 51 via the wireless communication device 55.
  • the monitoring control unit 70 can transmit process information to the relay unit 20 in an emergency.
  • process information is transmitted from the process signal input device 10 to the relay unit 20
  • the relay unit 20 is connected to the outside of the nuclear power plant via the radio communication device 51 and the network 53 by satellite communication via the communication satellite 54.
  • the received process information is transmitted to the emergency countermeasure center 50 (monitoring device 52) installed in the facility.
  • the internal repeater 21 and the external repeater 22 are connected by a communication cable 64.
  • the internal repeater 21 is installed inside the reactor containment vessel 60.
  • the external repeater 22 is installed outside the reactor containment vessel 60.
  • the internal communication unit 12 of the process signal input device 10 can communicate with the emergency countermeasure center 50 outside the nuclear power plant in both directions by the relay unit 20 even in the emergency operation mode.
  • the process signal monitoring control system 100 has different operation modes (normal operation mode and emergency operation mode) depending on the supply state of the internal power supply 13.
  • the process signal monitoring control system 100 executes the normal operation mode when it is calm (step 1). In the normal operation mode, power is supplied from the external power supply 32 of the signal processing device 30 to the internal power supply 13 of the process signal input device 10 by the power cable 62.
  • the process signal input device 10 operates with the power supplied from the power cable 62 in the normal operation mode.
  • the internal communication unit 12 of the process signal input device 10 transmits a process signal to the signal processing device 30 via the communication cable 61.
  • the signal processing device 30 is connected to other monitoring control units via a network 56.
  • the process signal measured by the monitoring control unit 70 is transmitted to the emergency countermeasure center 50 outside the nuclear power plant by the off-site transmission device (wireless communication device 55).
  • the emergency operation mode power supply from the signal processing device 30 to the process signal input device 10 is lost (step 2), and the process signal input device 10 (internal communication unit 12) and the sensor 40 are supplied from the rechargeable battery 13a of the internal power supply 13 to the process signal input device 10. Power supply is started (step 3).
  • the internal communication unit 12 determines the operation state of the signal processing device 30 through the communication cable 61. That is, the internal communication unit 12 confirms whether the power supply to the process signal input device 10 is stopped or whether the operation of the signal processing device 30 is continued (step 4).
  • the process signal input device 10 It operates by supplying power from the rechargeable battery 13a.
  • the internal communication unit 12 continues communication with the signal processing device 30 via the communication cable 61 (step 5).
  • the internal communication unit 12 determines that not only the power supply to the process signal input device 10 but also the operation of the signal processing device 30 is stopped, the internal communication unit 12 sends the process signal to the emergency countermeasure center 50 by wireless communication.
  • the mode is switched to the transmission mode (step 6).
  • the process signal input device 10 operates by supplying power from the rechargeable battery 13a of the internal power supply 13. That is, the internal communication unit 12 of the process signal input device 10 transmits the process signal to the internal repeater 21 of the relay unit 20 in the emergency operation mode.
  • the internal repeater 21 transmits a process signal to the external repeater 22 by wire (communication cable 64).
  • Information transmitted from the internal communication unit 12 of the process signal input device 10 to the external repeater 22 is transmitted to the emergency countermeasure center 50 (wireless communication device) installed outside the nuclear power plant by satellite communication via the communication satellite 54. 51) (step 7).
  • the emergency countermeasure center 50 may issue a change command that makes the transmission cycle longer than when the process signal is transmitted to the signal processing device 30 by wired communication. It can. That is, the emergency countermeasure center 50 issues an instruction to the internal communication unit 12 of the process signal input device 10 via the relay unit 20 so that the transmission cycle is longer than the transmission cycle in the normal operation mode.
  • the internal communication unit 12 makes the transmission cycle longer than the transmission cycle in the normal operation mode in accordance with the instruction from the emergency countermeasure center 50 (step 10).
  • the process signal monitoring control system not only the process signal transmission function but also the external reception function is provided in the relay unit 20 and the internal communication unit 12, so that the transmission cycle is set in advance. It is possible to change the value other than the value set in.
  • the internal communication unit 12 changes the transmission cycle based on an instruction from the external emergency countermeasure center. As a result, further power saving can be achieved, and monitoring for a long time after the loss of power can be performed.
  • the internal power supply 13 has a rechargeable battery (storage battery) 13a inside.
  • thermoelectric power generation using the internal exhaust heat (pipe temperature difference) of the reactor containment vessel 60 can be used.
  • FIG. 8 schematically shows the configuration of the process signal monitoring control system 100 according to the present embodiment.
  • the monitoring control unit 70 processing signal input device 10
  • the present embodiment includes a thermoelectric element 71.
  • the monitoring control unit 70 includes a signal processing device 30, a process signal input device 10, a sensor 40, a thermoelectric element 71, and the like.
  • the process signal input device 10 includes an analog-digital (A / D) conversion unit 11, an internal communication unit 12, an internal power supply 13, and the like.
  • the process signal input device 10 is connected to the signal processing device 30 installed outside the reactor containment vessel 60 by a communication cable 61 and a power cable 62.
  • the internal power supply 13 has a built-in rechargeable battery and is also connected to the thermoelectric element 71.
  • the analog-digital converter 11 performs A-D conversion on the process signal received from the sensor 40.
  • the internal power supply 13 is supplied with power from the signal processing device 30 via the power cable 62 in the normal operation mode.
  • the sensor 40 is connected to the process signal input device 10 by a signal line 63.
  • the sensor 40 includes a transmitter, a pressure gauge, a thermometer, a flow meter, and the like.
  • the analog process signal obtained from the sensor 40 is transmitted to the process signal input device 10 (analog-digital converter 11) via the signal line 63.
  • the relay unit 20 includes an internal relay machine 21 and an external relay machine 22.
  • the internal repeater 21 and the external repeater 22 are connected by a communication cable 64.
  • the internal repeater 21 is installed inside the reactor containment vessel 60.
  • the external repeater 22 is installed outside the reactor containment vessel 60.
  • the internal communication unit 12 of the process signal input device 10 has a function of communicating with the signal processing device 30 through the communication cable 61 and a function of communicating with the wireless communication device 51 through the wireless communication device 55 (external transmission device).
  • the wireless communication device 51 can communicate with the emergency countermeasure center 50 outside the nuclear power plant via the network 53.
  • the internal power supply 13 normally charges the rechargeable battery with the power supplied from the external power supply 32 of the signal processing device 30 via the power cable 62.
  • the internal power supply 13 has a function of supplying power to the analog-digital (A / D) conversion unit 11 and the internal communication unit 12 for a certain period of time by a built-in rechargeable battery 13a when power supply from the signal processing device 30 is interrupted. Can be maintained.
  • the internal power supply 13 changes the power supply source from the rechargeable battery 13a to the thermoelectric element 71.
  • the internal power supply 13 stores the power supplied from the thermoelectric element 71 in the rechargeable battery 13a.
  • the internal power supply 13 determines that the power of the rechargeable battery 13a has been exhausted when the output side voltage of the rechargeable battery 13a becomes lower than the specified value. Therefore, the process signal input device of the monitoring control unit according to the present invention uses the energy in the reactor containment vessel such as thermoelectric power generation to monitor the process signal even when the external power supply is lost. It has a power supply that can be used.
  • FIG. 9 schematically shows the configuration of the emergency countermeasure center and the reactor containment vessel according to the present embodiment.
  • the relay unit 20 includes a wired-compatible internal relay 23 and a wireless-compatible external relay 22.
  • the process signal input device 10 and the relay unit 20 are connected by a communication cable 65.
  • the wired internal repeater 23 communicates bidirectionally with all the process signal input devices 10 in the reactor containment vessel.
  • the emergency response center 50 of the nuclear power plant is installed outside the reactor containment vessel 60.
  • a monitoring device 52 for a nuclear power plant is arranged inside the emergency countermeasure center 50.
  • a monitoring device 52 and a wireless communication device 51 are connected to the network 53 (first network) of the emergency countermeasure center 50.
  • the wireless communication device 51 can obtain information from the relay unit 20 via the communication satellite 54.
  • each monitoring control unit 70 includes a signal processing device 30, a process signal input device 10, and a sensor 40.
  • the sensor 40 and the process signal input device 10 are installed inside the reactor containment vessel 60.
  • the signal processing device 30 is installed outside the reactor containment vessel 60.
  • the signal processing device 30 is connected to a network 56 (second network) disposed outside the reactor containment vessel 60.
  • FIG. 10 shows the configuration of the process signal monitoring control system according to the present embodiment.
  • the process signal monitoring control system 100 includes a relay unit 20, a process signal input device 10, and a signal processing device 30.
  • the sensor 40 is installed inside the reactor containment vessel 60 and obtains process information such as pressure, temperature, and flow rate. Process signals (analog signals such as pressure, temperature, and flow rate) acquired by the sensor 40 are transmitted to the process signal input device 10.
  • the process signal input device 10 transmits the received process signal to the signal processing device 30 installed outside the reactor containment vessel 60.
  • a wireless communication device 55 is connected to the network 56.
  • the monitoring control unit 70 (process signal input device 10) communicates with the wireless communication device 51 via the wireless communication device 55.
  • the monitoring control unit 70 can communicate information with the emergency countermeasure center 50 in both directions via the internal repeater 23 of the relay unit 20.
  • the relay unit 20 transmits the nuclear power via the wireless communication device 51 and the network 53 by satellite communication via the communication satellite 54.
  • the received process information is transmitted to the emergency countermeasure center 50 (monitoring device 52) installed outside the power plant. That is, the process signal input device of the supervisory control unit according to the present invention relays the radio communication in the reactor containment vessel to the outside of the reactor containment vessel by the communication cable, and the relay unit that communicates by satellite communication to the outside. I have.
  • a process signal input device and a relay unit that can change the transmission cycle of the process signal by wireless communication by external communication are provided.
  • a communication unit of the monitoring control unit that can switch the operation mode according to the operation state of the signal processing device and the value of the process signal being measured. I have.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

原子炉格納容器の外部に設置される信号処理装置と、信号処理装置から給電される電力を充電池に充電する内部電源と、センサーから送信されてくるアナログ信号を変換するアナログ-デジタル変換部と、変換されたデジタル信号を信号処理装置に送信する内部通信部と、原子炉格納容器の内部に設置されている内部中継機と、内部中継機から信号を受信すると、この受信した信号を通信衛星に向けて発信する外部中継機と、を備えているプロセス信号監視制御システム。内部電源は、信号処理装置からの給電が途絶えると、充電池に充電されている電力をアナログ-デジタル変換部と内部通信部に供給し、内部通信部は、信号処理装置との通信が継続しているか途絶えているかを判断し、通信は継続していると判断すれば、信号処理装置にアナログ-デジタル変換部で変換されたデジタル信号を継続して送信する。

Description

プロセス信号監視制御システム
 この発明は、プロセス信号監視制御システムに関し、特に、原子力プラントに係わるプロセス信号を受信して、この受信したプロセス信号を外部に発信するプロセス信号監視制御システムに関するものである。
 原子力プラントなどのプロセス信号は、プロセス信号監視制御システムのプロセス信号入力装置に入力される(例えば、特許文献1~5を参照)。プロセス信号入力装置には、プロセス信号を測定するために、センサーや伝送器が取り付けられている。現在、広く利用されているプロセス信号入力装置は、センサーや伝送器からの圧力、温度、流量等のアナログ信号を、一旦、デジタル信号に変換している。
 プロセス信号入力装置は、さらに、このデジタル信号を、プラント監視制御ユニットの信号処理装置(演算機構)に送っている。また、プロセス信号入力装置は、外部(信号処理装置)から得た電力を利用して、センサーや伝送器に電力を供給している。
特開2013-217923号公報 特開2002-23832号公報 特開2008-309748号公報 特表2011-524014号公報 国際公開2010/038794号
 原子力プラントに係わるプロセス信号監視制御システムのプロセス信号入力装置は、以上のように構成されている。仮に、事故が原子力発電所において発生したとすると、プロセス信号入力装置は、外部電源を失うことも想定される。外部電源が失われた場合、このようなプロセス信号入力装置では、原子力プラントのプロセス信号を監視することができなくなり、運転員は、適切な判断ができなくなる。
 この発明は上記のようなプロセス信号監視制御システムにおける課題を解決するためになされたものであり、外部電源が失われた場合においても、原子力プラントの安全性の向上を達成するために、プラントが発信するプロセス信号を監視可能なプロセス信号監視制御システムを得ることを目的とする。
 本発明に係わるプロセス信号監視制御システムは、原子炉格納容器の外部に設置される信号処理装置と、前記信号処理装置から給電される電力を充電池に充電する内部電源と、前記原子炉格納容器の内部に設置されたセンサーから送信されてくるアナログ信号をデジタル信号に変換するアナログ-デジタル変換部と、前記アナログ-デジタル変換部で変換されたデジタル信号を前記信号処理装置に送信する内部通信部と、前記原子炉格納容器の内部に設置されている内部中継機と、前記原子炉格納容器の外部に設置され、前記内部中継機から信号を受信すると、この受信した信号を通信衛星に向けて発信する外部中継機と、を備えていて、前記内部電源は、前記信号処理装置からの給電が途絶えると、前記充電池に充電されている電力を前記アナログ-デジタル変換部と前記内部通信部に供給し、前記内部通信部は、前記信号処理装置との通信が継続しているか途絶えているかを判断し、通信は継続していると判断すれば、前記信号処理装置に前記アナログ-デジタル変換部で変換されたデジタル信号を継続して送信することを特徴とする。
 本発明に係わるプロセス信号監視制御システムは、原子炉格納容器の外部に設置される信号処理装置と、前記信号処理装置から給電される電力を充電池に充電する内部電源と、前記原子炉格納容器の内部に設置されたセンサーから送信されてくるアナログ信号をデジタル信号に変換するアナログ-デジタル変換部と、前記アナログ-デジタル変換部で変換されたデジタル信号を前記信号処理装置に送信する内部通信部と、前記原子炉格納容器の内部に設置されている内部中継機と、前記原子炉格納容器の外部に設置され、前記内部中継機から信号を受信すると、この受信した信号を通信衛星に向けて発信する外部中継機と、を備えていて、前記内部電源は、前記信号処理装置からの給電が途絶えると、前記充電池に充電されている電力を前記アナログ-デジタル変換部と前記内部通信部に供給し、前記内部通信部は、前記信号処理装置との通信が継続しているか途絶えているかを判断し、通信は継続していると判断すれば、前記信号処理装置に前記アナログ-デジタル変換部で変換されたデジタル信号を継続して送信することを特徴とすることにより、外部電源を喪失した場合においても、原子力プラントのプロセス信号の監視が可能となる。これにより、原子力プラントの安全性の向上を達成できる。
緊急対策センターと、本発明の実施の形態1によるプロセス信号監視制御システムとの関係を示す全体構成図である。 本発明の実施の形態1による監視制御ユニットの概略を示す構成図である。 本発明の実施の形態1によるプロセス信号監視制御システムの構成を表している全体図である。 本発明の実施の形態1によるプロセス信号監視制御システムの動作を表しているフロー図である。 本発明の実施の形態2によるプロセス信号監視制御システムの動作を表しているフロー図である。 本発明の実施の形態3によるプロセス信号監視制御システムの構成を表している全体図である。 本発明の実施の形態3によるプロセス信号監視制御システムの動作を表しているフロー図である。 本発明の実施の形態4による監視制御ユニットの概略を示す構成図である。 緊急対策センターと、本発明の実施の形態5によるプロセス信号監視制御システムとの関係を示す全体構成図である。 本発明の実施の形態5によるプロセス信号監視制御システムの構成を表している全体図である。
 本発明の実施の形態に係わるプロセス信号監視制御システムについて、図を参照しながら以下に説明する。なお、各図において、同一または同様の構成部分については同じ符号を付しており、対応する各構成部のサイズや縮尺はそれぞれ独立している。例えば構成の一部を変更した断面図の間で、変更されていない同一構成部分を図示する際に、同一構成部分のサイズや縮尺が異なっている場合もある。また、プロセス信号監視制御システムは、実際にはさらに複数の部材を備えているが、説明を簡単にするため、説明に必要な部分のみを記載し、他の部分については省略している。
実施の形態1.
 以下、この発明の実施の形態を、図に基づいて説明する。図1は、原子力発電所の緊急対策センターと原子炉格納容器の構成を概略的に表している。原子力発電所の緊急対策センター50は、原子炉格納容器60の外部に設置されている。緊急対策センター50の内部には、原子力発電所の監視装置52が配置されている。緊急対策センター50のネットワーク53(第1のネットワーク)には、監視装置52と無線通信機51が接続されている。無線通信機51は、通信衛星54を介して、中継ユニット20から情報を入手することができる。
 原子炉格納容器60には、中継ユニット20と、複数台の監視制御ユニット70が設置されている。それぞれの監視制御ユニット70は、信号処理装置30とプロセス信号入力装置10とセンサー40とによって構成されている。センサー40とプロセス信号入力装置10は、原子炉格納容器60の内部に設置されている。信号処理装置30は、原子炉格納容器60の外部に設置されている。信号処理装置30は、原子炉格納容器60の外部に配設されているネットワーク56(第2のネットワーク)に接続している。
 原子炉格納容器60は、原子力プラントに係わるプロセス信号を外部に送信するために、プロセス信号監視制御システムを備えている(図3を参照)。センサー40は、原子炉格納容器60の内部に設置され、圧力、温度、流量などのプロセス情報を入手している。センサー40が入手したプロセス信号(圧力、温度、流量などのアナログ信号)は、プロセス信号入力装置10に送信される。プロセス信号入力装置10は、原子炉格納容器60の外部に設置されている信号処理装置30に、受信したプロセス信号を送信する。
 ネットワーク56には、無線通信機55が接続している。平時には、監視制御ユニット70(プロセス信号入力装置10)は、無線通信機55を経由して、無線通信機51と通信している。監視制御ユニット70は、緊急時には、中継ユニット20にプロセス情報を伝達することができる。中継ユニット20にプロセス信号入力装置10からプロセス情報が伝達されると、通信衛星54を介した衛星通信により、中継ユニット20は、無線通信機51とネットワーク53を経由して、原子力発電所の外に設置されている緊急対策センター50(監視装置52)に、受信したプロセス情報を送信する。
 図2は、プロセス信号入力装置10と中継ユニット20の構成を示している。監視制御ユニット70は、信号処理装置30とプロセス信号入力装置10とセンサー40とによって構成されている。プロセス信号入力装置10は、アナログ-デジタル(A/D)変換部11、内部通信部12、内部電源13などから構成されている。プロセス信号入力装置10は、原子炉格納容器60の外部に設置されている信号処理装置30と、通信ケーブル61および電源ケーブル62によって接続されている。内部電源13は、充電池(蓄電池)13aを内蔵している。アナログ-デジタル変換部11は、センサー40から受信したプロセス信号をA-D変換する。
 内部電源13は、電源ケーブル62を経由して、信号処理装置30から電力を供給されている。センサー40は、プロセス信号入力装置10と信号線63によって接続されている。センサー40には、伝送器、圧力計、温度計、流量計などが含まれている。センサー40から入手したアナログ状態のプロセス信号は、信号線63を経由して、プロセス信号入力装置10(アナログ-デジタル変換部11)に伝送される。中継ユニット20は、内部中継機21と外部中継機22などから構成されている。
 内部中継機21と外部中継機22は、通信ケーブル64にて接続されている。内部中継機21は、原子炉格納容器60の内部に設置されている。外部中継機22は、原子炉格納容器60の外部に設置されている。プロセス信号入力装置10の内部通信部12は、通信ケーブル61により信号処理装置30と通信する機能と、無線通信機55(所外伝送装置)により無線通信機51と通信する機能を有する。無線通信機51は、ネットワーク53により、原子力発電所の外にある緊急対策センター50と通信することができる。
 図3は、プロセス信号監視制御システムの構成を表している。プロセス信号監視制御システム100は、中継ユニット20と、プロセス信号入力装置10と、信号処理装置30から構成されている。信号処理装置30は、外部通信部31と外部電源32を備えている。信号処理装置30の外部通信部31は、プロセス信号入力装置10の内部通信部12と接続され、ネットワーク56に信号を発信する。プロセス信号入力装置10の内部電源13は、充電池(蓄電池)13aとAC/DC充電器13bを内蔵している。
 内部電源13のAC/DC充電器13bは、通常、信号処理装置30の外部電源32から電源ケーブル62を経由して給電された電力を、充電池13aに充電している。内部電源13は、信号処理装置30から給電が途絶えた場合、内蔵している充電池13aによって、一定時間、ナログ-デジタル(A/D)変換部11および内部通信部12に、給電する機能を維持することができる。AC/DC充電器13bは、プロセス信号入力装置10に給電するとともに、内部の充電池(蓄電池)13aを充電している。
 内部通信部12または内部電源13は、常時、AC/DC充電器13bの入力側電圧13cを検出している。内部電源13または内部通信部12は、このAC/DC充電器13bの入力側電圧13cが規定値よりも低くなると、信号処理装置30からの給電に不都合が発生した、すなわち、電源供給が喪失したと判断する。内部電源13は、電源供給が喪失し、緊急動作モードになると、スイッチ13dをONにして、充電池(蓄電池)13aから、アナログ-デジタル(A/D)変換部11および内部通信部12に、給電を開始する。
 次に、図4を参照して、プロセス信号監視制御システム100の動作について説明する。プロセス信号監視制御システム100は、内部電源13の供給状態によって、動作モード(通常動作モードおよび緊急動作モード)が異なる。はじめに、通常動作モードについて説明する。プロセス信号監視制御システム100は、平静時には、通常動作モードを実行している(ステップ1)。通常動作モードでは、電源ケーブル62によって信号処理装置30の外部電源32からプロセス信号入力装置10の内部電源13に電力が供給されている。
 プロセス信号入力装置10は、通常動作モードでは、電源ケーブル62から供給された電源にて動作する。プロセス信号入力装置10の内部通信部12は、通信ケーブル61にて、信号処理装置30に、プロセス信号を送信している。信号処理装置30は、他の監視制御ユニットとネットワーク56で接続されている。監視制御ユニット70で測定されたプロセス信号は、所外伝送装置(無線通信機55)により原子力発電所外の緊急対策センター50に伝送されている。
 次に、緊急動作モードについて説明する。緊急動作モードでは、信号処理装置30からプロセス信号入力装置10への電源供給が失われ(ステップ2)、内部電源13の充電池13aからプロセス信号入力装置10(内部通信部12)及びセンサー40に給電が開始される(ステップ3)。信号処理装置30から内部電源13への電源供給が失われたとき、内部通信部12は、通信ケーブル61にて信号処理装置30の動作状態を判断する。すなわち、内部通信部12は、プロセス信号入力装置10への電源供給が停止しているだけか、それとも信号処理装置30の動作は継続しているか、どうかを確認する(ステップ4)。
 信号処理装置30の通信機能は正常に動作しており、プロセス信号入力装置10への給電機能だけが停止していると内部通信部12が判断した場合、プロセス信号入力装置10は、内部電源13の充電池13aからの給電により動作する。内部通信部12は、通信ケーブル61にて信号処理装置30との通信を継続する(ステップ5)。プロセス信号入力装置10への給電だけでなく、信号処理装置30の動作も停止していると内部通信部12が判断した場合、内部通信部12は、無線通信にてプロセス信号を緊急対策センター50に送信する緊急通信動作モードに切り替わる(ステップ6)。
 プロセス信号入力装置10は、内部電源13の充電池13aからの給電により動作する。すなわち、プロセス信号入力装置10の内部通信部12は、緊急通信動作モードでは、中継ユニット20の内部中継機21にプロセス信号を伝達する。内部中継機21は有線(通信ケーブル64)で外部中継機22にプロセス信号を伝達する。外部中継機22にプロセス信号入力装置10の内部通信部12から伝達された情報は、通信衛星54を介した衛星通信により、原子力発電所の外に設置されている緊急対策センター50(無線通信機51)に送られる(ステップ7)。
 さらに、内部通信部12が信号処理装置30の動作状況を判断し、有線通信から無線通信に切り替わった場合、充電池13aの電力消費を節約するため、内部通信部12は、有線通信にて信号処理装置30にプロセス信号を送信していた時よりも送信周期を長くする、すなわち、通常動作モードの送信周期よりも送信周期を長くする。プロセス信号入力装置10が原子炉格納容器60の内部に設置されている場合、プロセス信号入力装置10から送信された無線信号は、原子炉格納容器60の内部に配置されている内部中継機21にて受信される。
 内部中継機21は、通信ケーブル64にて原子炉格納容器60の外部に配置されている外部中継機22と接続している。外部中継機22から無線通信されたプロセス信号は、現場の状況に影響されない衛星通信により、原子力発電所外の緊急対策センター50に送られ、発電所の状況把握に活用することができる。
 すなわち、本発明に係わるプロセス信号監視制御システムは、原子炉格納容器の外部に設置される信号処理装置と、前記信号処理装置から給電される電力を充電池に充電する内部電源と、前記原子炉格納容器の内部に設置されたセンサーから送信されてくるアナログ信号をデジタル信号に変換するアナログ-デジタル変換部と、前記アナログ-デジタル変換部で変換されたデジタル信号を前記信号処理装置に送信する内部通信部と、前記原子炉格納容器の内部に設置されている内部中継機と、前記原子炉格納容器の外部に設置され、前記内部中継機から信号を受信すると、この受信した信号を通信衛星に向けて発信する外部中継機と、を備えていて、前記内部電源は、前記信号処理装置からの給電が途絶えると、前記充電池に充電されている電力を前記アナログ-デジタル変換部と前記内部通信部に供給し、前記内部通信部は、前記信号処理装置との通信が継続しているか途絶えているかを判断し、通信は継続していると判断すれば、前記信号処理装置に前記アナログ-デジタル変換部で変換されたデジタル信号を継続して送信することを特徴とする。
 また、本発明に係わる監視制御ユニットのプロセス信号入力装置は、外部の電源が失われた場合においてもプロセス信号を監視するために、信号処理装置の動作状態により動作モードを切り替えることができる通信部と外部の電源が失われた場合においてもプロセス信号を監視するために、蓄電池(充電池)を有する電源を備えている。本発明によれば、通常時に使用するプロセス信号入力装置と外部電源が失われた場合に使用するプロセス信号入力装置を共有化できるため、動作状況を常に確認可能であり、信頼性が高く、省設備化を図ることが可能となる。
実施の形態2.
 セキュリティ上、原子力発電所の測定データを無線通信する緊急動作モードは最小限とすべきである。実施の形態1では、内部通信部12は、信号処理装置30の給電状態及び通信状態から判断して、動作モードを決定していた。無線通信による緊急動作モードへの判定条件に、監視しているパラメータの値による判定を加えることにより、無線通信の動作モードへの切り替わりをより最小限にすることができる。
 次に、図5を参照して、本実施の形態にかかわるプロセス信号監視制御システム100の動作について説明する。プロセス信号監視制御システム100は、内部電源13の供給状態によって、動作モード(通常動作モードおよび緊急動作モード)が異なる。はじめに、通常動作モードについて説明する。プロセス信号監視制御システム100は、平静時には、通常動作モードを実行している(ステップ1)。通常動作モードでは、電源ケーブル62によって信号処理装置30の外部電源32からプロセス信号入力装置10の内部電源13に電力が供給されている。
 プロセス信号入力装置10は、通常動作モードでは、電源ケーブル62から供給された電源にて動作する。プロセス信号入力装置10の内部通信部12は、通信ケーブル61にて、信号処理装置30に、プロセス信号を送信している。信号処理装置30は、他の監視制御ユニットとネットワーク56で接続されている。監視制御ユニット70で測定されたプロセス信号は、所外伝送装置(無線通信機55)により原子力発電所外の緊急対策センター50に伝送されている。
 次に、緊急動作モードについて説明する。緊急動作モードでは、信号処理装置30からプロセス信号入力装置10への電源供給が失われ(ステップ2)、内部電源13の充電池13aからプロセス信号入力装置10(内部通信部12)及びセンサー40に給電が開始される(ステップ3)。信号処理装置30から内部電源13への電源供給が失われたとき、内部通信部12は、通信ケーブル61にて信号処理装置30の動作状態を判断する。すなわち、内部通信部12は、プロセス信号入力装置10への電源供給が停止しているだけか、それとも信号処理装置30の動作は継続しているか、どうかを確認する(ステップ4)。
 信号処理装置30の通信機能は正常に動作しており、プロセス信号入力装置10への給電機能だけが停止していると内部通信部12が判断した場合、プロセス信号入力装置10は、内部電源13の充電池13aからの給電により動作する。内部通信部12は、通信ケーブル61にて信号処理装置30との通信を継続する(ステップ5)。プロセス信号入力装置10への給電だけでなく、信号処理装置30の動作も停止していると内部通信部12が判断した場合、内部通信部12は、監視パラメータの値を判定する(ステップ8)。監視パラメータと設定値との比較を行い、監視パラメータが設定値の範囲内に納まっていれば、通信を行わない(ステップ9)。監視パラメータには、例えば、原子炉格納容器60の内部温度を採用する。
 ステップ8の判定は繰り返して行われるため、監視パラメータが設定値の範囲内に納まっている限りは、プロセス信号入力装置10から信号処理装置30への通信は実施されない。監視パラメータと設定値との比較を行い、監視パラメータが設定値の範囲から外れていると判断すれば、内部通信部12は、無線通信にてプロセス信号を緊急対策センター50に送信するモードに切り替わる(ステップ6)。この緊急通信動作モードでは、プロセス信号入力装置10は、内部電源13の充電池13aからの給電により動作している。
 プロセス信号入力装置10の内部通信部12は、緊急通信動作モードでは、中継ユニット20の内部中継機21にプロセス信号を伝達する。内部中継機21は有線(通信ケーブル64)で外部中継機22にプロセス信号を伝達する。外部中継機22にプロセス信号入力装置10の内部通信部12から伝達された情報は、通信衛星54を介した衛星通信により、原子力発電所の外に設置されている緊急対策センター50(無線通信機51)に送られる(ステップ7)。
 以上のように、本実施の形態に係わるプロセス信号監視制御システムでは、内部通信部12は、信号処理装置30の給電状態及び通信状態だけから判断して、動作モードを決定するのではなく、無線通信の動作モードへの判定条件に監視しているパラメータの値による判定を加えている。このことにより、本実施の形態に係わるプロセス信号監視制御システムでは、無線通信の動作モードへの切り替わりをより最小限にすることができる。
実施の形態3.
 本実施の形態にかかわる中継ユニット20および内部通信部12は、プロセス信号を送信する機能だけではなく、外部から情報を受信する機能を備えている。無線通信機51は、通信衛星54を介して、中継ユニット20(プロセス信号入力装置10)から情報を入手するとともに、通信衛星54を介して、中継ユニット20に緊急対策センター50から発信された情報を伝送する。
 原子炉格納容器60は、原子力プラントに係わるプロセス信号を外部に送信するために、プロセス信号監視制御システム100を備えている。図6は、本実施の形態にかかわるプロセス信号監視制御システム100の構成を概略的に表している。外部中継機22が、衛星通信を通じて緊急対策センター50から信号を受信すると、内部中継機21は、外部中継機22が衛星通信を通じて受信した信号を、原子炉格納容器60の内部に向けて発信する。このため、内部通信部12は、双方向に、原子力発電所の外にある緊急対策センター50と通信することが可能である。
 センサー40は、原子炉格納容器60の内部に設置され、圧力、温度、流量などのプロセス情報を入手している。センサー40が入手したプロセス信号(圧力、温度、流量などのアナログ信号)は、プロセス信号入力装置10に送信される。プロセス信号入力装置10は、原子炉格納容器60の外部に設置されている信号処理装置30に、受信したプロセス信号を送信する。
 原子炉格納容器60には、中継ユニット20と、複数台の監視制御ユニット70が設置されている。それぞれの監視制御ユニット70は、信号処理装置30とプロセス信号入力装置10とセンサー40とによって構成されている。センサー40とプロセス信号入力装置10は、原子炉格納容器60の内部に設置されている。信号処理装置30は、原子炉格納容器60の外部に設置されている。信号処理装置30は、原子炉格納容器60の外部に配設されているネットワーク56(第2のネットワーク)に接続している。
 ネットワーク56には、無線通信機55が接続している。平時には、監視制御ユニット70(プロセス信号入力装置10)は、無線通信機55を経由して、無線通信機51と通信している。監視制御ユニット70は、緊急時には、中継ユニット20にプロセス情報を伝達することができる。中継ユニット20にプロセス信号入力装置10からプロセス情報が伝達されると、通信衛星54を介した衛星通信により、中継ユニット20は、無線通信機51とネットワーク53を経由して、原子力発電所の外に設置されている緊急対策センター50(監視装置52)に、受信したプロセス情報を送信する。
 内部中継機21と外部中継機22は、通信ケーブル64にて接続されている。内部中継機21は、原子炉格納容器60の内部に設置されている。外部中継機22は、原子炉格納容器60の外部に設置されている。プロセス信号入力装置10の内部通信部12は、緊急動作モードでも、中継ユニット20により双方向に、原子力発電所の外にある緊急対策センター50と通信することができる。
 次に、図7を参照して、本実施の形態にかかわるプロセス信号監視制御システム100の動作について説明する。プロセス信号監視制御システム100は、内部電源13の供給状態によって、動作モード(通常動作モードおよび緊急動作モード)が異なる。はじめに、通常動作モードについて説明する。プロセス信号監視制御システム100は、平静時には、通常動作モードを実行している(ステップ1)。通常動作モードでは、電源ケーブル62によって信号処理装置30の外部電源32からプロセス信号入力装置10の内部電源13に電力が供給されている。
 プロセス信号入力装置10は、通常動作モードでは、電源ケーブル62から供給された電源にて動作する。プロセス信号入力装置10の内部通信部12は、通信ケーブル61にて、信号処理装置30に、プロセス信号を送信している。信号処理装置30は、他の監視制御ユニットとネットワーク56で接続されている。監視制御ユニット70で測定されたプロセス信号は、所外伝送装置(無線通信機55)により原子力発電所外の緊急対策センター50に伝送されている。
 次に、緊急動作モードについて説明する。緊急動作モードでは、信号処理装置30からプロセス信号入力装置10への電源供給が失われ(ステップ2)、内部電源13の充電池13aからプロセス信号入力装置10(内部通信部12)及びセンサー40に給電が開始される(ステップ3)。信号処理装置30から内部電源13への電源供給が失われたとき、内部通信部12は、通信ケーブル61にて信号処理装置30の動作状態を判断する。すなわち、内部通信部12は、プロセス信号入力装置10への電源供給が停止しているだけか、それとも信号処理装置30の動作は継続しているか、どうかを確認する(ステップ4)。
 信号処理装置30の通信機能は正常に動作しており、プロセス信号入力装置10への給電機能だけが停止していると内部通信部12が判断した場合、プロセス信号入力装置10は、内部電源13の充電池13aからの給電により動作する。内部通信部12は、通信ケーブル61にて信号処理装置30との通信を継続する(ステップ5)。プロセス信号入力装置10への給電だけでなく、信号処理装置30の動作も停止していると内部通信部12が判断した場合、内部通信部12は、無線通信にてプロセス信号を緊急対策センター50に送信するモードに切り替わる(ステップ6)。
 プロセス信号入力装置10は、内部電源13の充電池13aからの給電により動作する。すなわち、プロセス信号入力装置10の内部通信部12は、緊急動作モードでは、中継ユニット20の内部中継機21にプロセス信号を伝達する。内部中継機21は有線(通信ケーブル64)で外部中継機22にプロセス信号を伝達する。外部中継機22にプロセス信号入力装置10の内部通信部12から伝達された情報は、通信衛星54を介した衛星通信により、原子力発電所の外に設置されている緊急対策センター50(無線通信機51)に送られる(ステップ7)。
 さらに、充電池13aの電力消費を節約するため、緊急対策センター50は、有線通信にて信号処理装置30にプロセス信号を送信していた時よりも送信周期を長くする変更命令を発行することができる。すなわち、緊急対策センター50は、通常動作モードの送信周期よりも送信周期を長くするように、中継ユニット20を経由して、プロセス信号入力装置10の内部通信部12に指示を出す。内部通信部12は、緊急対策センター50からの指示に従って、通常動作モードの送信周期よりも送信周期を長くする(ステップ10)。
 以上のように、本実施の形態に係わるプロセス信号監視制御システムでは、中継ユニット20および内部通信部12にプロセス信号の送信機能だけでなく、外部からの受信機能を設けることにより、送信周期を事前に設定した値以外に変更することができる。内部通信部12と中継ユニット20に外部からの通信の受信機能を設けることにより、内部通信部12は、外部の緊急対策センターからの指示に基づき送信周期を変更する。これにより、さらに、省電力化を図り、電源喪失後の長時間の監視が可能となる。
実施の形態4.
 なお、実施の形態1では、内部電源13は内部に充電池(蓄電池)13aを有していた。プロセス信号入力装置10の電源には、原子炉格納容器60の内部排熱(配管の温度差)を利用した熱電発電も利用可能である。図8は、本実施の形態にかかわるプロセス信号監視制御システム100の構成を概略的に表している。同図に示すように、本実施の形態にかかわる監視制御ユニット70(プロセス信号入力装置10)は、熱電素子71を備えている。
 監視制御ユニット70は、信号処理装置30とプロセス信号入力装置10とセンサー40と熱電素子71などによって構成されている。プロセス信号入力装置10は、アナログ-デジタル(A/D)変換部11、内部通信部12、内部電源13などから構成されている。プロセス信号入力装置10は、原子炉格納容器60の外部に設置されている信号処理装置30と、通信ケーブル61および電源ケーブル62によって接続されている。内部電源13は、充電池を内蔵しているうえに、熱電素子71とも繋がっている。アナログ-デジタル変換部11は、センサー40から受信したプロセス信号をA-D変換する。
 内部電源13は、通常動作モードでは、電源ケーブル62を経由して、信号処理装置30から電力を供給されている。センサー40は、プロセス信号入力装置10と信号線63によって接続されている。センサー40には、伝送器、圧力計、温度計、流量計などが含まれている。センサー40から入手したアナログ状態のプロセス信号は、信号線63を経由してプロセス信号入力装置10(アナログ-デジタル変換部11)に伝送される。中継ユニット20は、内部中継機21と外部中継機22などから構成されている。
 内部中継機21と外部中継機22は、通信ケーブル64にて接続されている。内部中継機21は、原子炉格納容器60の内部に設置されている。外部中継機22は、原子炉格納容器60の外部に設置されている。プロセス信号入力装置10の内部通信部12は、通信ケーブル61により信号処理装置30と通信する機能と、無線通信機55(所外伝送装置)により無線通信機51と通信する機能を有する。無線通信機51は、ネットワーク53により、原子力発電所の外にある緊急対策センター50と通信することができる。
 内部電源13は、通常、信号処理装置30の外部電源32から電源ケーブル62を経由して給電された電力を、充電池に充電している。内部電源13は、信号処理装置30から給電が途絶えた場合、内蔵している充電池13aによって、一定時間、ナログ-デジタル(A/D)変換部11および内部通信部12に、給電する機能を維持することができる。内部電源13は、充電池13aの電力が枯渇し始めると、電力の供給元を充電池13aから熱電素子71に変更する。
 また、内部電源13は、この熱電素子71から供給されてくる電力を充電池13aに貯蔵する。なお、内部電源13は、充電池13aの出力側電圧が規定値よりも低くなると、充電池13aの電力が枯渇したと判断する。したがって、本発明に係わる監視制御ユニットのプロセス信号入力装置は、外部の電源が失われた場合においても、プロセス信号を監視するために、熱電発電等の原子炉格納容器内のエネルギーを利用し発電できる電源を備えている。
実施の形態5.
 実施の形態1では、内部通信部12と中継ユニット20は、無線で通信を行っていた。信頼性の向上のため、内部通信部12と中継ユニット20の通信に通信ケーブルを利用することも可能である。図9は、本実施の形態に係わる緊急対策センターと原子炉格納容器の構成を概略的に表している。中継ユニット20は、有線対応の内部中継機23と、無線対応の外部中継機22などから構成されている。プロセス信号入力装置10と中継ユニット20は、通信ケーブル65で接続されている。同図に示すように、原子炉格納容器60を貫くケーブル量を減らすため、有線対応の内部中継機23は、原子炉格納容器内のすべてのプロセス信号入力装置10と双方向に通信する。
 原子力発電所の緊急対策センター50は、原子炉格納容器60の外部に設置されている。緊急対策センター50の内部には、原子力発電所の監視装置52が配置されている。緊急対策センター50のネットワーク53(第1のネットワーク)には、監視装置52と無線通信機51が接続されている。無線通信機51は、通信衛星54を介して、中継ユニット20から情報を入手することができる。
 原子炉格納容器60には、中継ユニット20と、複数台の監視制御ユニット70が設置されている。それぞれの監視制御ユニット70は、信号処理装置30とプロセス信号入力装置10とセンサー40とによって構成されている。センサー40とプロセス信号入力装置10は、原子炉格納容器60の内部に設置されている。信号処理装置30は、原子炉格納容器60の外部に設置されている。信号処理装置30は、原子炉格納容器60の外部に配設されているネットワーク56(第2のネットワーク)に接続している。
 図10は、本実施の形態に係わるプロセス信号監視制御システムの構成を表している。プロセス信号監視制御システム100は、中継ユニット20と、プロセス信号入力装置10と、信号処理装置30から構成されている。センサー40は、原子炉格納容器60の内部に設置され、圧力、温度、流量などのプロセス情報を入手している。センサー40が入手したプロセス信号(圧力、温度、流量などのアナログ信号)は、プロセス信号入力装置10に送信される。
 プロセス信号入力装置10は、原子炉格納容器60の外部に設置されている信号処理装置30に、受信したプロセス信号を送信する。ネットワーク56には、無線通信機55が接続している。平時には、監視制御ユニット70(プロセス信号入力装置10)は、無線通信機55を経由して、無線通信機51と通信している。監視制御ユニット70は、緊急時には、中継ユニット20の内部中継機23を経由して、双方向に、緊急対策センター50と情報を通信することができる。
 通信ケーブル65により中継ユニット20にプロセス信号入力装置10からプロセス情報が伝達されると、通信衛星54を介した衛星通信により、中継ユニット20は、無線通信機51とネットワーク53を経由して、原子力発電所の外に設置されている緊急対策センター50(監視装置52)に、受信したプロセス情報を送信する。すなわち、本発明に係わる監視制御ユニットのプロセス信号入力装置は、原子炉格納容器内の無線通信を原子炉格納容器外に通信ケーブルにて中継し、所外へは衛星通信で通信する中継ユニットを備えている。
 また、外部からの通信により、プロセス信号の無線通信による送信周期を変更することができるプロセス信号入力装置と中継ユニットを備えている。また、外部の電源が失われた場合においてもプロセス信号を監視するために、信号処理装置の動作状態および測定しているプロセス信号の値により動作モードを切り替えることができる監視制御ユニットの通信部を備えている。
 なお、本発明は、その発明の範囲内において、実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
 10 プロセス信号入力装置、11 アナログ-デジタル変換部、12 内部通信部、13 内部電源、13a 充電池、13b 充電器、13c 入力側電圧、13d スイッチ、20 中継ユニット、21 内部中継機、22 外部中継機、23 内部中継機、30 信号処理装置、31 外部通信部、32 外部電源、40 センサー、50 緊急対策センター、51 無線通信機、52 監視装置、53 ネットワーク、54 通信衛星、55 無線通信機、56 ネットワーク、60 原子炉格納容器、61 通信ケーブル、62 電源ケーブル、63 信号線、64 通信ケーブル、65 通信ケーブル、70 監視制御ユニット、71 熱電素子、100 プロセス信号監視制御システム

Claims (8)

  1.  原子炉格納容器の外部に設置される信号処理装置と、
    前記信号処理装置から給電される電力を充電池に充電する内部電源と、
    前記原子炉格納容器の内部に設置されたセンサーから送信されてくるアナログ信号をデジタル信号に変換するアナログ-デジタル変換部と、
    前記アナログ-デジタル変換部で変換されたデジタル信号を前記信号処理装置に送信する内部通信部と、
    前記原子炉格納容器の内部に設置されている内部中継機と、
    前記原子炉格納容器の外部に設置され、前記内部中継機から信号を受信すると、この受信した信号を通信衛星に向けて発信する外部中継機と、を備えていて、
     前記内部電源は、前記信号処理装置からの給電が途絶えると、前記充電池に充電されている電力を前記アナログ-デジタル変換部と前記内部通信部に供給し、
     前記内部通信部は、前記信号処理装置との通信が継続しているか途絶えているかを判断し、通信は継続していると判断すれば、前記信号処理装置に前記アナログ-デジタル変換部で変換されたデジタル信号を継続して送信することを特徴とするプロセス信号監視制御システム。
  2.  前記内部通信部は、前記信号処理装置との通信が途絶えたと判断すると、前記内部中継機に前記アナログ-デジタル変換部で変換されたデジタル信号を送信することを特徴とする請求項1に記載のプロセス信号監視制御システム。
  3.  前記内部通信部は、前記内部中継機に前記アナログ-デジタル変換部で変換されたデジタル信号を無線で送信することを特徴とする請求項2に記載のプロセス信号監視制御システム。
  4.  前記内部通信部は、前記内部中継機に前記アナログ-デジタル変換部で変換されたデジタル信号を無線で送信する際に、通常動作時よりも送信周期を遅くして送信することを特徴とする請求項3に記載のプロセス信号監視制御システム。
  5.  前記外部中継機が、通信衛星から信号を受信すると、
    前記内部中継機は、この外部中継機が通信衛星から受信した信号を、発信することを特徴とする請求項2に記載のプロセス信号監視制御システム。
  6.  前記内部通信部は、前記内部中継機が発信した信号を受信すると、通常動作時よりも送信周期を遅くして、前記内部通信部に送信することを特徴とする請求項5に記載のプロセス信号監視制御システム。
  7.  前記内部通信部は、前記内部中継機に前記アナログ-デジタル変換部で変換されたデジタル信号を有線で送信することを特徴とする請求項2に記載のプロセス信号監視制御システム。
  8.  前記原子炉格納容器の内部に設置されている熱電素子を備え、
    前記内部通信部は、この熱電素子が供給する電力によって動作することを特徴とする請求項1から7のいずれか1項に記載のプロセス信号監視制御システム。
PCT/JP2017/015143 2017-04-13 2017-04-13 プロセス信号監視制御システム WO2018189865A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019512129A JP6727416B2 (ja) 2017-04-13 2017-04-13 プロセス信号監視制御システム
US16/490,692 US11145426B2 (en) 2017-04-13 2017-04-13 Independent process signal control and monitoring system for a nuclear reactor containment vessel
PCT/JP2017/015143 WO2018189865A1 (ja) 2017-04-13 2017-04-13 プロセス信号監視制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015143 WO2018189865A1 (ja) 2017-04-13 2017-04-13 プロセス信号監視制御システム

Publications (1)

Publication Number Publication Date
WO2018189865A1 true WO2018189865A1 (ja) 2018-10-18

Family

ID=63792957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015143 WO2018189865A1 (ja) 2017-04-13 2017-04-13 プロセス信号監視制御システム

Country Status (3)

Country Link
US (1) US11145426B2 (ja)
JP (1) JP6727416B2 (ja)
WO (1) WO2018189865A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109462277A (zh) * 2018-11-08 2019-03-12 深圳中广核工程设计有限公司 一种核电厂应急电源系统以及供电控制方法
JP2020197462A (ja) * 2019-06-03 2020-12-10 三菱重工業株式会社 炉物理検査装置、炉物理検査システム及び炉物理検査方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6727416B2 (ja) * 2017-04-13 2020-07-22 三菱電機株式会社 プロセス信号監視制御システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309748A (ja) * 2007-06-18 2008-12-25 Toshihisa Shirakawa Bwrまたはabwrの改修
JP2009271056A (ja) * 2008-04-09 2009-11-19 Toshiba Corp 原子炉水位計測装置および原子炉水位計測方法
JP2014503070A (ja) * 2011-01-07 2014-02-06 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー 無線炉内中性子モニタ
JP2016164579A (ja) * 2016-06-14 2016-09-08 株式会社荏原製作所 非常用冷却ポンプシステム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002023832A (ja) 2000-07-04 2002-01-25 Mitsubishi Electric Corp 監視システムおよび放射線監視システムとそのインテリジェントセンサ、並びに自動販売機管理システム
FR2932310B1 (fr) 2008-06-10 2010-08-13 Areva Np Procede et dispositif de surveillance a distance de vannes manuelles de circuits fluides dans l'ilot nucleaire d'une centrale nucleaire
CH702344B1 (de) 2008-10-02 2013-01-31 Toshiba Kk Steuerungssystem für Messungen bei Anlagen.
US8599987B2 (en) * 2009-10-13 2013-12-03 Westinghouse Electric Company Llc Wireless transmission of nuclear instrumentation signals
US9691508B2 (en) * 2010-10-01 2017-06-27 Terrapower, Llc System and method for determining a state of operational readiness of a fuel cell backup system of a nuclear reactor system
JP5758692B2 (ja) * 2011-04-28 2015-08-05 日立Geニュークリア・エナジー株式会社 原子力プラントの監視制御システム
CN102255377B (zh) * 2011-05-20 2012-12-05 中国广东核电集团有限公司 向核电站提供应急动力电源的方法和系统
US10438708B2 (en) * 2011-10-04 2019-10-08 Westinghouse Electric Company Llc In-core instrument thimble assembly
US20130272469A1 (en) 2012-04-11 2013-10-17 Ge-Hitachi Nuclear Energy Americas Llc Device and method for reactor and containment monitoring
JP5890752B2 (ja) * 2012-06-15 2016-03-22 株式会社東芝 プラント監視制御システム
JP6727416B2 (ja) * 2017-04-13 2020-07-22 三菱電機株式会社 プロセス信号監視制御システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309748A (ja) * 2007-06-18 2008-12-25 Toshihisa Shirakawa Bwrまたはabwrの改修
JP2009271056A (ja) * 2008-04-09 2009-11-19 Toshiba Corp 原子炉水位計測装置および原子炉水位計測方法
JP2014503070A (ja) * 2011-01-07 2014-02-06 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー 無線炉内中性子モニタ
JP2016164579A (ja) * 2016-06-14 2016-09-08 株式会社荏原製作所 非常用冷却ポンプシステム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109462277A (zh) * 2018-11-08 2019-03-12 深圳中广核工程设计有限公司 一种核电厂应急电源系统以及供电控制方法
JP2020197462A (ja) * 2019-06-03 2020-12-10 三菱重工業株式会社 炉物理検査装置、炉物理検査システム及び炉物理検査方法
JP7291545B2 (ja) 2019-06-03 2023-06-15 三菱重工業株式会社 炉物理検査装置、炉物理検査システム及び炉物理検査方法

Also Published As

Publication number Publication date
US20200027597A1 (en) 2020-01-23
JP6727416B2 (ja) 2020-07-22
JPWO2018189865A1 (ja) 2019-08-08
US11145426B2 (en) 2021-10-12

Similar Documents

Publication Publication Date Title
WO2018189865A1 (ja) プロセス信号監視制御システム
KR102168343B1 (ko) 에너지 하베스팅 무선 전력 온도 차단기 복합 감시제어 시스템
US20140106687A1 (en) Power supply system for a field device with a radio module
CN104944245A (zh) 一种电梯状态信息采集装置
US20140216171A1 (en) Load measurement of the load receiver of hoisting devices
CN106230122B (zh) 一种基于无线网络的电力设备安全监控系统
WO2011055185A1 (ja) 配電システム
CN108027598A (zh) 模块化的现场设备
JP4869125B2 (ja) プラント監視システムおよび監視方法
CN102385329B (zh) 现场设备
JP6016267B2 (ja) 信号変換アダプタ
US9577470B2 (en) Electrical and/or electronic supply circuit and method for providing a supply voltage
KR101370622B1 (ko) 붐 탐지 장치 및 붐 작동 상태의 탐지 방법
KR101455351B1 (ko) 전동기 자동전환 운전장치의 제어 및 통합감시가 가능한 통합감시 시스템
JP2015226288A (ja) 通信システム、太陽光発電用監視システム、通信方法、及びコンピュータプログラム
CN205045629U (zh) 一种电梯门开闭状态检测装置和系统
JP5890752B2 (ja) プラント監視制御システム
RU2449940C2 (ru) Способ передачи данных между измерительным преобразователем и управляющим устройством и линия связи для его осуществления
US20160099754A1 (en) Apparatus for Supplying Power to a Field Device
WO2021166838A1 (ja) 無瞬停電源装置及びこれを備える無瞬停電源システム
KR20170080991A (ko) 회전기기의 운전 감시 장치
RU106997U1 (ru) Устройство контроля, защиты и мониторинга электроустановки
CN104986666A (zh) 一种造船起重机在线监测系统
JP5684175B2 (ja) 遮断判定補完システム
JPH04332099A (ja) 信号伝送方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905569

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512129

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905569

Country of ref document: EP

Kind code of ref document: A1