WO2012157524A1 - 透明導電膜付き基板及び色素増感太陽電池 - Google Patents

透明導電膜付き基板及び色素増感太陽電池 Download PDF

Info

Publication number
WO2012157524A1
WO2012157524A1 PCT/JP2012/062027 JP2012062027W WO2012157524A1 WO 2012157524 A1 WO2012157524 A1 WO 2012157524A1 JP 2012062027 W JP2012062027 W JP 2012062027W WO 2012157524 A1 WO2012157524 A1 WO 2012157524A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
film
transparent conductive
conductive film
layer
Prior art date
Application number
PCT/JP2012/062027
Other languages
English (en)
French (fr)
Inventor
孝洋 伊東
Original Assignee
ジオマテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジオマテック株式会社 filed Critical ジオマテック株式会社
Priority to KR1020137032869A priority Critical patent/KR101903213B1/ko
Priority to JP2013515109A priority patent/JP6010024B2/ja
Publication of WO2012157524A1 publication Critical patent/WO2012157524A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a substrate with a transparent conductive film and a dye-sensitized solar cell, and more particularly to a substrate with a transparent conductive film and a dye-sensitized solar cell with high conductivity and transparency.
  • a transparent conductive film formed of an oxide obtained by adding other elements to indium (In), zinc (Zn), tin (Sn), etc. on a transparent substrate is provided.
  • a substrate with a transparent conductive film is used.
  • transparent conductive films made of indium (In) -tin (Sn) oxide ITO, Indium Tin Oxide
  • ITO Indium Tin Oxide
  • the electrical resistance value of the transparent conductive film is small (that is, excellent conductivity) and the optical transmittance is high (that is, transparency). Excellent).
  • the heating temperature in the manufacturing process of the Si-based solar cell, after forming a transparent conductive film on the substrate, it goes through an element manufacturing process for forming a compound semiconductor layer having high photoelectric conversion efficiency.
  • the film forming temperature needs to be about 400 ° C., and in the manufacturing process of the dye-sensitized solar cell, it needs to be about 500 ° C., which is higher than that of the Si-based solar cell.
  • the transparent conductive film made of ITO or the like is exposed to high temperature, oxygen in the atmosphere is bonded to a part of the oxygen deficient structure (vacancies), and the oxygen deficient structure acting as a carrier decreases. As a result of the carrier concentration being reduced, the conductivity of the transparent conductive film is reduced.
  • Patent Document 1 considers the reduction of the oxygen deficient structure caused by heating the transparent conductive film, and on the surface side of the transparent conductive film (that is, the side exposed to the atmosphere) when forming the transparent conductive film.
  • a technique for forming oxygen-deficient indium oxide on a substrate is disclosed.
  • the surface side is mainly oxidized when heat-treated by making the surface side oxygen-deficient compared to the substrate side, so that a transparent conductive film having high conductivity is provided. can do.
  • Patent Document 2 discloses a technique for forming a transparent conductive film by forming a tin oxide-based film having an oxygen (gas) barrier property (particularly a tin oxide film containing antimony: ATO film) on an ITO film. ing. Thus, by forming a film having a high oxygen barrier property on the ITO film, a transparent conductive film having high oxidation resistance and chemical resistance can be obtained.
  • the vicinity of the surface of the transparent conductive film is preferentially oxidized during the heat treatment (firing) step by previously setting the surface vicinity of the transparent conductive film to an oxygen-deficient composition. Therefore, the oxygen deficient structure near the substrate does not decrease.
  • the number of oxygen-deficient structures increases and enters an optimum range, and deterioration of conductivity and transparency can be suppressed.
  • the technique disclosed in Patent Document 1 has an oxygen-deficient composition in the vicinity of the transparent conductive film surface so that an oxygen-deficient structure is a desirable number after heat treatment. It is difficult to control the amount, and it is difficult to ensure high conductivity and transparency in a transparent conductive film with a certain quality.
  • a tin oxide-based film (mainly an ATO film) having an oxygen barrier property is formed on an ITO film, thereby forming a transparent conductive film having high oxidation resistance, that is, a conductive film.
  • a high transparent conductive film can be formed.
  • the conductivity and transparency of the ATO film are not high as compared with the ITO film, and as a result, the conductivity and transparency of the entire transparent conductive film are lowered.
  • the thickness of the ATO film must be increased, and the transparency of the transparent conductive film is further impaired.
  • the present invention has been made in view of the above problems, and its purpose is to improve the heat resistance and oxidation resistance of the conductive layer, thereby providing high conductivity and transparency even after the heat treatment step.
  • the object is to provide a substrate with a transparent conductive film.
  • the other object of this invention is to provide the dye-sensitized solar cell provided with high energy conversion efficiency by improving the electroconductivity and transparency of a transparent conductive film.
  • the subject is a substrate with a transparent conductive film in which a transparent conductive film is formed on a transparent substrate, and the transparent conductive film is laminated in order from the substrate side.
  • the substrate with a transparent conductive film of the present invention includes not only an oxidation-resistant protective layer whose main material is tin oxide but also a base layer on the conductive layer.
  • the base layer has a lower oxide generation energy than the material constituting the conductive layer and is composed of an oxygen-deficient oxide than the chemical equivalent, even if the substrate with the transparent conductive film is heated, Since oxygen is absorbed, oxidation of the conductive layer is prevented and heat resistance is improved. That is, since the constituent material of the underlayer has a lower oxide generation energy than the constituent material of the conductive layer and has an oxygen-deficient structure, the underlayer is preferentially oxidized, thereby heat treatment (firing).
  • the substrate with a conductive film of the present invention retains oxygen vacancies in the conductive layer because the conductive layer is hardly oxidized when heat-treated. Therefore, even when the substrate with a transparent conductive film is heated, oxygen vacancies in the conductive layer are maintained, so that high conductivity and transparency can be provided without impairing conductivity and transparency.
  • the underlayer is made of a material represented by a chemical formula SiO x (where X is a stoichiometric ratio and 1.2 ⁇ X ⁇ 1.8). Since SiO x is a material having a relatively small oxide generation energy, the oxide generation energy is smaller than that of a general metal oxide constituting the conductive layer. Therefore, when the material constituting the underlayer is the above substance, the underlayer is more easily oxidized when the substrate with the transparent conductive film is heat-treated. In addition, since silicon oxide has higher optical transmittance than other materials (that is, high transparency), the transparency of the substrate with a transparent conductive film is not lowered.
  • SiO x is a material having a relatively small oxide generation energy
  • the oxide generation energy is smaller than that of a general metal oxide constituting the conductive layer. Therefore, when the material constituting the underlayer is the above substance, the underlayer is more easily oxidized when the substrate with the transparent conductive film is heat-treated.
  • silicon oxide has higher optical transmittance than other materials (that
  • the underlayer becomes more transparent and easily oxidized. Therefore, by forming the base layer made of the above material, it is possible to give a high antioxidation effect to the conductive layer and to obtain a transparent conductive film having high transparency.
  • the conductive layer is made of indium oxide (ITO) containing tin
  • the oxidation-resistant protective layer is made of tin oxide to which at least one of niobium, tantalum, and antimony is added.
  • ITO indium oxide
  • the oxidation-resistant protective layer is made of tin oxide to which at least one of niobium, tantalum, and antimony is added.
  • ITO has the property of being easily oxidized due to heat treatment and lowering its conductivity, it is not only provided with a base layer, but also by forming an oxidation-resistant protective layer with the above-mentioned material having gas barrier properties, the ITO film is oxidized. It becomes difficult to be done. As a result, the conductivity and transparency of the conductive layer (ITO film) are kept high, and the substrate with a transparent conductive film having good conductivity and transparency as the entire transparent conductive film can be obtained.
  • the oxidation-resistant protective layer is made of tin oxide (ATO) to which antimony is added.
  • ATO tin oxide
  • the conductive layer provided below the oxidation-resistant protective layer is further hardly oxidized.
  • ATO has particularly high conductivity among materials having a high gas barrier property, and the conductivity is improved by heat treatment at 400 ° C. to 500 ° C., so that the conductivity of the transparent conductive film can be improved.
  • antimony since antimony has some toxicity, it is possible to select the oxidation-resistant protective layer as tin oxide to which at least one of niobium and tantalum is added in consideration of the environment.
  • the oxidation-resistant protective layer is composed of tin oxide to which at least one of niobium and tantalum is added, the conductivity and transparency are slightly inferior to ATO, but the oxidation resistance is almost the same as when ATO is used. The effect of
  • a titanium oxide (TiO 2 ) film is further provided on the surface of the oxidation-resistant protective layer on the side opposite to the conductive layer.
  • TiO 2 titanium oxide
  • the thickness of the oxidation-resistant protective layer is preferably in the range of 200 to 1000 mm, and the thickness of the base layer is preferably in the range of 100 to 500 mm.
  • the underlayer can provide an effect of suppressing the oxidation of the conductive layer, so that it is not necessary to increase the thickness of the oxidation-resistant protective layer.
  • the oxidation of the conductive layer can be suppressed by setting the thickness of the oxidation protection layer made of the ATO film to 200 to 1000 mm.
  • the oxidation resistance of the transparent conductive film is ensured without lowering the transparency due to the formation of the thick oxidation-resistant protective layer.
  • Conductivity and transparency can be set to practically appropriate values.
  • the problem is that the first conductive substrate, the second conductive substrate disposed opposite to the first conductive substrate, A porous semiconductor layer formed on the surface of the first conductive substrate on the second conductive substrate side and adsorbing a dye, and between the porous semiconductor layer and the second conductive substrate The electrolyte is formed, and the first conductive substrate is solved by being the substrate with a transparent conductive film according to any one of claims 1 to 6.
  • the oxidation-resistant protective layer but also a base layer, and a substrate with a transparent conductive film having a configuration in which the base layer is preferentially oxidized compared to the conductive layer is an electrode of a dye-sensitized solar cell.
  • an electrode of a dye-sensitized solar cell By using as, in the electrode of a dye-sensitized solar cell, electroconductivity and transparency can be improved. As a result, since the electrode has a small electric resistance value and a high optical transmittance, the energy conversion efficiency of the dye-sensitized solar cell can be improved.
  • the substrate with a transparent conductive film of the present invention includes a base layer that is more easily oxidized than the conductive layer in the transparent conductive film, whereby oxidation of the conductive layer is prevented and heat resistance is improved. And, by improving the oxidation resistance and heat resistance of the conductive layer, it prevents the decrease in conductivity and transparency due to the decrease of oxygen deficiency in the conductive layer, and high conductivity and transparency even after the heat treatment step
  • substrate with a transparent conductive film provided with can be provided. Moreover, since the electroconductivity and transparency of the transparent conductive film with which an electrode is equipped improve, a dye-sensitized solar cell with high energy conversion efficiency can be provided.
  • FIG. 1 to 7 relate to a substrate with a transparent conductive film according to an embodiment of the present invention
  • FIG. 1 is a schematic sectional view of the substrate with a transparent conductive film
  • FIG. 3 is a graph showing the relationship between the resistance value change rate of the transparent conductive film
  • FIG. 3 is a graph showing the relationship between the amount of oxygen during film formation of the underlying layer and the optical transmittance of the transparent conductive film
  • FIG. 5 is a graph showing the relationship between the amount of oxygen during film formation and the O / Si ratio of SiO x constituting the underlayer
  • FIG. 5 is a graph showing the relationship between the film thickness of the underlayer and the resistance value of the transparent conductive film
  • FIG. Is a graph showing the relationship between the thickness of the underlying layer and the resistance change rate of the transparent conductive film
  • FIG. 7 is a graph showing the relationship between the thickness of the underlying layer and the optical transmittance of the transparent conductive film.
  • FIG. 8 relates to a substrate with a transparent conductive film according to another embodiment of the present invention, and is a schematic sectional view of the substrate with a transparent conductive film. Further, FIGS.
  • FIG. 9 and 10 relate to a dye-sensitized solar cell according to an embodiment of the present invention
  • FIG. 9 is a schematic cross-sectional view
  • FIG. 10 shows the relationship between current density and output voltage (J ⁇ It is a graph which shows a V characteristic.
  • the substrate 10 with a transparent conductive film according to this embodiment is formed by forming a transparent conductive film 15 on a transparent substrate 11, and the transparent conductive film 15 is arranged in order from the substrate 11 side. It has a ground layer 12, a conductive layer 13, and an oxidation-resistant protective layer 14. That is, a transparent conductive film 15 formed by sequentially laminating a base layer 12, a conductive layer 13, and an oxidation-resistant protective layer 14 on a substrate 11 is provided.
  • the substrate 11 is a plate-like member, and as the material of the substrate 11, an appropriate material that can form the transparent conductive film 15 on the surface and has transparency to the extent that light is received by the transparent conductive film 15. Selected from.
  • a material for example, a material capable of transmitting a predetermined amount of light such as a glass substrate, a quartz substrate, and an optical crystal substrate is used.
  • a non-alkali glass not containing an alkali element such as Na or a quartz substrate having high heat resistance.
  • a thin film such as SiO 2 or TiO 2 is sputtered on the surface to increase transparency, prevent diffusion of alkali elements such as Na, or improve heat resistance. It may be a substrate formed by a method. Further, these substrates 11 may be plate-shaped or film-shaped.
  • the transmittance of the substrate 11 is not particularly limited as long as it can transmit light to the transparent conductive film 15.
  • the average transmittance in the wavelength range of 350 to 800 nm is in the range of 10% to 99%.
  • the range of 60% to 99% is preferable, and the range of 80% to 99% is optimal.
  • the thickness of the substrate 11 is not particularly limited, but is usually in the range of 100 ⁇ m to 5 mm, and particularly preferably in the range of 500 ⁇ m to 2 mm.
  • the transparent conductive film 15 is a film that is light transmissive and conductive.
  • the transparent conductive film 15 constitutes the negative electrode of the dye-sensitized solar cell 100 described later.
  • a titanium oxide paste is applied on the transparent conductive film 15.
  • baking is performed at a desirable temperature of 400 to 500 ° C. Therefore, the transparent conductive film 15 is preferably made of a material whose transmittance is not reduced by this baking process and whose resistance is not increased.
  • the transparent conductive film 15 is required to have high conductivity and transparency after being baked at a high temperature.
  • the transparent conductive film 15 of the present embodiment is formed by sequentially laminating a base layer 12, a conductive layer 13, and an oxidation-resistant protective layer 14 on a substrate 11.
  • the transparent conductive film 15 as a whole has an average transmittance in the range of wavelengths of 350 nm to 800 nm in the range of 10% to 99%, particularly preferably in the range of 60% to 99%, more preferably. Is optimally in the range of 80% to 99%.
  • the conductive layer 13 is made of a metal oxide having high conductivity and high transparency.
  • the transmittance of the conductive layer 13 is such that the average transmittance in the wavelength range of 350 nm to 800 nm is in the range of 10% to 99%, particularly preferably in the range of 60% to 99%, and more preferably 80%. It is optimal that it is in the range of 99% or less.
  • indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), or a material obtained by adding impurities to these materials can be used.
  • the material include, for example, indium oxide containing at least one of tin, germanium, zinc, and gallium, zinc oxide containing at least one of aluminum, gallium, boron, and magnesium, antimony, and fluorine. Added tin oxide can be used.
  • the content of tin, germanium, zinc, and gallium added to indium oxide is the atomic ratio of these materials to indium (Sn / In, Ge / In, Zn / In, Ga / In) is preferably 0.5 to 20.0%.
  • the atomic ratio is the ratio of the oxides of each material, and Sn / In should be expressed strictly as Sn oxide / In oxide, but it is based on commonly used abbreviations. Sn / In.
  • Sn / In The same applies to other materials.
  • the conductivity and transparency of the film constituting the conductive layer 13 can be maintained well.
  • the total amount of materials to be added is preferably 20.0% or less with respect to indium.
  • the content of aluminum, gallium, boron, and magnesium added to zinc oxide is the atomic ratio of these materials to zinc (Al / Zn, Ga / Zn, B / (Zn, Mg / Zn) is preferably 0.5 to 20.0%.
  • Al / Zn, Ga / Zn, B / (Zn, Mg / Zn) is preferably 0.5 to 20.0%.
  • ITO with tin added to indium oxide Is suitable as a material constituting the conductive layer 13 because of its excellent conductivity and transparency.
  • ITO has a high conductivity and transmittance because it appropriately has oxygen vacancies serving as electron channels, and is suitable as a material constituting the conductive layer 13.
  • the thickness of the conductive layer 13 is preferably in the range of 200 mm to 10,000 mm. In such a range, the resistance value of the transparent conductive film 15 can be reduced and the transmittance can be kept high.
  • Transparent conductive film 15 Underlayer 12
  • a base layer 12 is formed between the substrate 11 and the conductive layer 13.
  • the underlayer 12 is provided together with the oxidation resistant protective layer 14 to prevent oxidation of the conductive layer 13. Therefore, for example, even when the substrate 10 with the transparent conductive film is subjected to a baking process of about 400 to 500 ° C., the underlying layer 12 is preferentially oxidized over the conductive layer 13, so The structure can be retained. As a result, the conductive layer 13 can maintain high conductivity and transparency.
  • the transmittance of the underlayer 12 is such that the average transmittance in the wavelength range of 350 nm to 800 nm is in the range of 10% to 99%, particularly in the range of 60% to 99%, more preferably 80%. It is optimal that it is in the range of 99% or less.
  • the underlayer 12 is formed of an oxide that has an oxide generation energy smaller than that of the material constituting the conductive layer 13 and oxygen is insufficient compared to a chemical equivalent. That is, the material constituting the underlayer 12 is an oxide whose generation energy line shown in the Ellingham diagram is lower than that of the material constituting the conductive layer 13 and has an oxygen deficient structure.
  • the oxide formation energy refers to standard Gibbs energy when an oxide is formed, and is also referred to as oxide formation free energy.
  • Examples of such a material include silicon oxide (SiO x ), aluminum oxide (Al x O y ), and the like. Since such a material basically has a lower generation energy line in the Ellingham diagram than the metal oxide constituting the conductive layer 13 and has a lower oxide generation energy, for example, a substrate with a transparent conductive film When 10 undergoes a baking process of about 400 to 500 ° C., the underlayer 12 is oxidized in preference to the conductive layer 13.
  • the underlayer 12 may be formed of a material represented by the chemical formula SiO x .
  • Silicon is a material having a low oxide generation energy and is likely to be an oxide. Therefore, by forming the underlayer 12 from SiO x having an oxygen deficient structure, the underlayer 12 can absorb oxygen and suppress the oxidation of the conductive layer 13.
  • X represents the stoichiometric ratio and is preferably in the range of 1.2 ⁇ X ⁇ 1.8.
  • X is 1.2 or less, since the composition approaches that of SiO, the underlayer 12 appears to be colored yellow, and the transparency is lowered. Further, those having X of 1.8 or more are inappropriate because it is difficult to form a film by sputtering or vapor deposition, and therefore it is difficult to form the underlayer 12 with a certain quality.
  • the thickness of the underlayer 12 is preferably in the range of 100 to 500 mm. If the thickness is less than 100%, the transmittance is high, but the underlayer 12 cannot sufficiently absorb oxygen, and the transparent conductive film 15 cannot be provided with sufficient oxidation resistance. On the other hand, when the thickness is larger than 500 mm, the underlying layer 12 can sufficiently absorb oxygen and provide the transparent conductive film 15 with sufficient oxidation resistance, but the transmittance decreases.
  • the thickness of the underlayer 12 is in the above range, the effect of suppressing the oxidation of the conductive layer 13 can be sufficiently obtained by being provided in combination with the oxidation-resistant protective layer 14.
  • the oxidation-resistant protective layer 14 is a film having light permeability and conductivity, and further having an oxygen (gas) barrier property.
  • the transmittance of the oxidation-resistant protective layer 14 is such that the average transmittance in the wavelength range of 350 nm to 800 nm is in the range of 10% to 99%, particularly preferably in the range of 60% to 99%, and more preferably. It is optimal to be in the range of 80% or more and 99% or less.
  • the oxidation-resistant protective layer 14 is preferably composed of tin oxide containing tin oxide as a main component and at least one of niobium, tantalum, and antimony added. Further, the oxidation-resistant protective layer 14 may be composed of tin oxide that does not contain the additive.
  • the content of niobium, tantalum, and antimony added to tin oxide, when adding one of these, the atomic ratio of these materials to tin (Nb / Sn, Ta / Sn, Sb / Sn) Is preferably 0.5 to 20.0%. When added in such a ratio, the conductivity and transparency of the film constituting the oxidation-resistant protective layer 14 can be maintained well. Moreover, when adding multiple types of these materials, it is good to make the addition amount of the whole material to add into 20.0% or less with respect to tin.
  • tin oxide (ATO) to which antimony is added is particularly suitable as a material constituting the oxidation-resistant protective layer 14 because it has a good gas barrier property and high conductivity and transparency.
  • antimony since antimony has some toxicity, its use may not be preferred due to environmental considerations.
  • tin oxide (described as SnO x ) to which niobium or tantalum or both are added is slightly inferior in resistance value and transmittance as compared with ATO, as described later, in the oxidation-resistant protective layer 14 of the present embodiment. When used, the oxidation resistance shows almost the same performance as ATO, and this point can also be said to be an effect derived from the structure described in the claims.
  • the thickness of the oxidation-resistant protective layer 14 is preferably in the range of 200 to 1000 mm. If it is smaller than 200 mm, the transmittance is high but sufficient oxidation resistance cannot be obtained. If it is larger than 1000 mm, the oxidation resistance is improved, but the transmittance is lowered. Therefore, when the thickness of the oxidation-resistant protective layer 14 is in the above range, the effect of suppressing the oxidation of the conductive layer 13 can be sufficiently obtained by being provided in combination with the base layer 12. In addition, since the oxidation of the conductive layer 13 is also suppressed by the base layer 12, it is not necessary to increase the thickness of the oxidation-resistant protective layer 14. Therefore, since the transparency of the oxidation-resistant protective layer 14 can be ensured, as a result, the transparency as the transparent conductive film 15 can be improved.
  • Tianium oxide film 16 A titanium oxide film 16 may further be provided on the surface of the oxidation-resistant protective layer 14 on the side opposite to the conductive layer 13 as shown in FIG.
  • the titanium oxide film 16 is a titanium oxide thin film that is formed by a technique such as sputtering, vacuum deposition, or ion plating, and has a denser structure than porous titanium oxide.
  • the conductive layer 13 is prevented from being oxidized even when the substrate 10 with the transparent conductive film undergoes a baking step.
  • the transparent conductive film 15 can maintain high conductivity and transparency.
  • a porous titanium oxide layer is formed on a transparent conductive film of a substrate with a transparent conductive film, but in this embodiment, it has a denser structure than porous titanium oxide.
  • each of the films constituting the transparent conductive film 15 has a substantially rectangular opening so as to form a substantially rectangular negative electrode pattern. It is formed using a plurality of formed masks.
  • a known film forming technique such as a sputtering method, a vacuum deposition method, an ion plating method, or the like can be used.
  • substrate 10 with a transparent conductive film is demonstrated.
  • the dye-sensitized solar cell 100 includes a substrate 10 with a transparent conductive film as a first conductive substrate 110, and further a second electrode at a position facing the first conductive substrate 110.
  • a conductive substrate 120 is provided.
  • FIG. 9 shows an enlarged thickness of each layer of the substrate 10 with a transparent conductive film.
  • symbol 17c of FIG. 9 is a sealing material
  • 17d is a catalyst layer.
  • the substrate 10 with a transparent conductive film is provided as a first conductive substrate 110 and is disposed with the surface on which the transparent conductive film 15 is formed facing the second conductive substrate 120 side.
  • a conductive wire 30 as a lead wire is connected to the conductive layer 13 constituting the first conductive substrate 110.
  • the second conductive substrate 120 is a plate-like member having the electrode layer 22 formed on the surface.
  • the material of the substrate 21 constituting the second conductive substrate 120 can be selected from the same transparent material as that of the substrate 11. However, unlike the substrate 11, the substrate 21 is not necessarily on the side that captures light, and thus does not necessarily need to be formed of a transparent material, and may be formed of a material with poor light transmission. Examples of such materials include various ceramics such as oxide ceramics and nitride ceramics.
  • the thickness of the substrate 21 is not particularly limited, but is usually in the range of 100 ⁇ m to 5 mm, and particularly preferably in the range of 500 ⁇ m to 2 mm.
  • the substrate 21 may be plate-shaped or film-shaped.
  • the electrode layer 22 formed on the substrate 21 is an electrode formed in a film shape with a conductive material.
  • a conductive metal or carbon the same material as that described for the conductive layer 13 of the transparent conductive film 15, or the like is used.
  • a transparent conductive film is used when the electrode layer 22 is used in a portion that needs to transmit light.
  • a metal film such as Al, Pt, Pd, Au, or a carbon film is used as the electrode layer 22.
  • FIG. 9 shows the configuration of the dye-sensitized solar cell 100 including the catalyst layer 17d.
  • the electrode layer 22 has a catalytic action and is excellent in resistance to the electrolyte 17b. Pt, Pd, Au or the like is preferably used.
  • a conductive wire 40 as a lead wire is connected to the electrode layer 22 for connection to an external load.
  • the electrode layer 22 has both a catalytic function and a function as a collecting electrode, it is not necessary to separately provide a collecting electrode, and the configuration of the battery can be simplified.
  • the electrode layer 22 is formed using a mask or the like in which an opening having an appropriate size is formed.
  • a known film forming technique such as a sputtering method, a vacuum evaporation method, an ion plating method, or the like can be used.
  • the porous semiconductor layer 17a is obtained by adsorbing a dye (dye sensitizer) to metal oxide semiconductor fine particles.
  • the metal oxide semiconductor fine particles used for the porous semiconductor layer 17a are not particularly limited as long as they are made of a metal oxide having semiconductor characteristics. Examples of the metal oxide used for the porous semiconductor layer 17a include TiO 2 , ZnO, SnO 2 , ZrO 2 , Al 2 O 3 , Ta 2 O, Nb 2 O 5 and the like. Among these, it is preferable to use TiO 2 because it is particularly excellent in semiconductor characteristics.
  • the porous semiconductor layer 17a made of TiO 2 is prepared by mixing titanium oxide powder with a binder to form a paste, applying this fired paste onto the titanium oxide film 16 formed on the transparent conductive film 15, and firing it. It is formed.
  • the firing temperature may be 100 ° C. or higher, but it is preferably fired at 400 ° C. or higher in order to improve the sinterability between the titanium oxide particles and increase the photoelectric conversion efficiency.
  • an organic solvent, an acidic solution, or the like can be used as the binder of the baked paste.
  • the crystal structure of titanium oxide constituting the porous semiconductor layer 17a is preferably an anatase type.
  • the porous semiconductor layer 17a has a pore structure including many small holes.
  • Dye is adsorbed on a part of the porous semiconductor layer 17a.
  • a dye that can efficiently absorb sunlight that is, a dye having an absorption band from the near ultraviolet region to the near infrared region centering on the visible region is used.
  • the dye is dissolved in a solvent such as alcohol, and the first conductive substrate 110 formed up to the porous semiconductor layer 17a is immersed in the dye, thereby being adsorbed on the pores of the porous semiconductor layer 17a.
  • Examples of such a dye include an organic dye and a metal complex dye.
  • organic dyes include acridine, azo, indigo, quinone, coumarin, merocyanine, and phenylxanthene dyes.
  • the metal complex dye include a ruthenium bipyridine dye and a ruthenium terpyridine dye which are ruthenium complexes.
  • electrolyte 17b An electrolyte 17b is provided on the surface side of the porous semiconductor layer 17a.
  • a material that can supply electrons to the dye contained in the porous semiconductor layer 17a and receive electrons by the electrode layer 22 is used.
  • the electrolyte 17b may be solid or liquid, and is not particularly limited as long as it is a material used as an electrolyte for a general dye-sensitized solar cell. Specific examples of such materials include an electrolytic solution in which lithium iodide and metallic iodine are dissolved in polyethylene glycol, and an electrolytic solution in which acetonitrile and ethylene carbonate are mixed.
  • sealing material 17c Between the first conductive substrate 110 and the second conductive substrate 120, a sealing material 17c for partitioning the cells of each dye-sensitized solar cell 100 is formed.
  • the sealing material 17c is a member for partitioning the entire outer peripheral portion of the plurality of cells, and is also a member that separates the cells. In the space partitioned by the sealing material 17c, the porous semiconductor layer 17a and the electrolyte 17b in which the dye is adsorbed are held.
  • resin, glass, or the like can be used as the material of the sealing material 17c. Specific examples of the resin include an epoxy resin and a urethane resin.
  • a catalyst layer 17d is provided on the upper layer of the electrode layer 22 on the second conductive substrate 120 side.
  • the catalyst layer 17d is provided to promote the oxidation-reduction reaction, and Pt, Pd, Au, C or the like is used as a material constituting the catalyst layer 17d.
  • the substrate 10 with a transparent conductive film can be used as the second conductive substrate 120.
  • the catalyst layer 17d is formed on the second conductive substrate 120.
  • platinum chloride is used when forming a Pt film.
  • the titanium oxide film 16 is formed on the transparent conductive film 15 of the transparent conductive film moon substrate 10
  • the transparent conductive film 15 can be protected from the corrosiveness of platinum chloride, and the Pt film and the transparent conductive film 15 are protected.
  • the film quality can be kept good.
  • Example the board
  • Example 1 Configuration of transparent conductive film 15
  • the substrate 10 with a transparent conductive film of Example 1 has only a transparent conductive film 15 on a substrate 11.
  • Example 1-i Effect of the underlayer 12
  • Examples 1-1 to 1-3 having the base layer 12 were compared with Comparative Examples 1 to 5 having no base layer 12, and the effect of the base layer 12 was examined.
  • Example 1-3-1 and Example 1-3-2 differ in the amount of oxygen at the time of forming the underlayer 12 (SiO x film), and the oxygen flow rate of Example 1-3-1. Is 30 cc, and the oxygen flow rate of Example 1-3-2 is 35 cc.
  • the thickness of each film is as shown in Table 1.
  • substrate 10 with a transparent conductive film produced as mentioned above was put into the electric furnace, and was heat-processed at 500 degreeC or 600 degreeC for 1 hour in air
  • resistance value Area resistance (hereinafter referred to as “resistance value”) of transparent conductive film before and after heat treatment, average transmittance (hereinafter referred to as “transmittance”) in the visible region (350 to 800 nm), resistance value and transmission Table 1 shows the rate of change before and after the heat treatment.
  • the sheet resistance was measured using a Loresta GP made by Mitsubishi Chemical Analitech.
  • the transmittance was measured with a Hitachi Electronic Recording Spectrometer (U-4100) and measured with air as the reference. Unless otherwise specified, measurements according to the following examples were also measured with the same apparatus.
  • Comparative Examples 1 to 5 compared to Examples 1-1 to 1-3, a transparent conductive film that does not include the base layer 12, the oxidation-resistant protective layer 14, or both is formed on the glass substrate 11. It is a thing.
  • the transparent conductive film 15 includes the SiO x film as the base layer 12.
  • Comparative Example 2-1 only the ITO film as the conductive layer 13 and the ATO film as the oxidation-resistant protective layer 14 are used.
  • Comparative Example 2-2 the ITO film as the conductive layer 13 and the SnO film as the oxidation-resistant protective layer 14 are used. Only the x film is formed with the same thickness as in Examples 1-1 and 1-2.
  • Example 1-1 and 1-2 compared with Comparative Examples 2-1 and 2-2, the thickness of the SiO x film is increased in terms of resistance, although there is no particular difference regarding transmittance. As a result, the resistance value after firing became extremely small, and the rate of change before and after firing was close to 1, indicating that the resistance value hardly changed before and after firing. Similar results were obtained when compared with reference to Examples 1-3-1, 1-3-2 and Comparative Example 4.
  • Comparative Examples 1, 2-1, 2-2, and 3 shows that the thicker the ATO film or SnO x film as the oxidation-resistant protective layer 14, the lower the resistance value becomes.
  • the resistance value of the transparent conductive film 15 is compared with the case where the underlayer 12 is provided as in Example 1-2. It is shown that the rate of change is large.
  • Comparative Example 2-2 including only the SnO x film In Comparative Example 5 that includes only the SiO x film as the underlayer 12 and does not include the oxidation-resistant protective layer 14, the resistance value and the rate of change are large, so that the oxidation resistance of the transparent conductive film 15 is increased. In order to improve, it was shown that it is necessary to provide both the underlayer 12 and the oxidation-resistant protective layer 14.
  • the transparent conductive film 15 provided with the base layer 12 and the oxidation-resistant protective layer 14 had a low resistance value and a substantially constant transmittance even after the baking treatment.
  • the conductive layer 13 is oxidized and the conductivity is lowered by performing the baking treatment.
  • the base layer 12 and the oxidation-resistant protective layer 14 are provided, the oxidation of the conductive layer 13 is suppressed.
  • the resistance value of the transparent conductive film 15 does not decrease.
  • the base layer 12 is composed of an oxide having an oxide generation energy smaller than that of the conductive layer 13 and an oxygen-deficient oxide than the chemical equivalent. In other words, the base layer 12 is preferentially oxidized over the conductive layer 13 during the firing step.
  • Examples 1-1 to 1-3 as the SiO x film and ATO film becomes thick, the resistance value of the transparent conductive film 15 is reduced, and the firing before and after the change rate is found to be close to one. However, the transmittance (transparency) of the transparent conductive film 15 decreased as the thickness of each film increased.
  • Example 1-ii Thickness and composition of the oxidation-resistant protective layer 14
  • the transparent conductive film 15 was formed by changing the thickness of the oxidation-resistant protective layer 14 while keeping the thickness of the base layer 12 and the conductive layer 13 constant.
  • Those employing an ATO film as the oxidation-resistant protective layer 14 are represented by -1 at the end of each example number, and those employing an SnO x film are represented by -2.
  • the transparent conductive film 15 was formed under the same conditions as in Examples 1-1 to 1-3 except for the thickness of each layer.
  • Table 2 shows the resistance value, transmittance, and change rate before and after firing for each example.
  • the thickness of the oxidation-resistant protective layer 14 is set to an appropriate size in consideration of the relationship between the structure and thickness of the underlayer 12 described below. I found it necessary to do.
  • Example 1-iii Composition of Underlayer 12 Next, an appropriate value of X in the SiO x film as the underlayer 12 was examined. In Examples 1-8 to 1-15, the transparent conductive film 15 was formed by changing the amount of oxygen at the time of forming the SiO x film. In Examples 1-8 and 1-9 and Examples 1-10 to 1-15, the thicknesses of the conductive layer 13 and the oxidation-resistant protective layer 14 and the firing conditions were changed. Table 3 shows the resistance value, transmittance, and change rate before and after firing for each of these examples.
  • the transparent conductive film 15 desirably has a transmittance of about 80% after firing. It is appropriate that the amount of oxygen during the formation of the SiO x film is more than 30 cc. If this amount of oxygen is less than, for composition ratios SiO x film is close to SiO, become SiO x film is visually colored yellow, transparency decreases. Therefore, in view of the resistance value and the transmittance, it was shown that the amount of oxygen at the time of forming the SiO x film should be more than 30 cc.
  • the value of X is 1.2 ⁇ X ⁇ 1.8 depending on the relationship between the amount of oxygen at the time of forming the SiO x film and the resistance value and transmittance of the transparent conductive film 15.
  • Example 1-iv thickness of the underlayer 12
  • the transparent conductive film 15 was formed by changing the thickness of the SiO x film.
  • the result of Comparative Example 3 was compared. Table 4 shows the resistance value before and after firing, the rate of change in resistance value, the transmittance, the reflectance, and the absorptance for each example and comparative example.
  • the ATO film as the oxidation-resistant protective layer 14 is made sufficiently thick to ensure gas barrier properties.
  • FIG. 5 and the film thickness of the SiO x film the relationship between the resistance value of the transparent conductive film 15, the film thickness of the SiO x film, in FIG. 6 the relationship between the resistance value change rate, film SiO x film
  • the relationship between the thickness and the transmittance is shown in FIG. 5 to 7 indicate that the thickness of the SiO x film is 100 mm.
  • the resistance value before firing of the transparent conductive film 15 is substantially constant, although not dependent on the thickness of the SiO x film, the resistance value after firing, the film thickness of the SiO x film is large As it became, it was greatly reduced.
  • the film thickness of the SiO x film is preferably 100 mm or more. From FIG. 6, the rate of change in the resistance value of the transparent conductive film 15 was close to 1 when the film thickness of the SiO x film was 100 mm or more. From this point, the film thickness of the SiO x film was 100 mm. The above is preferable. Further, from FIG.
  • the thickness of the SiO x film is preferably 100 mm or more in consideration of both the resistance value and the transmittance.
  • the film thicknesses of the ATO films are Examples 1-16 to 1-18.
  • the transparent conductive film 15 of Examples 1-3-1 and 1-3-2 has a resistance value as low as about 5 ⁇ / Sq, and sufficient conductivity was obtained. Both sex can be satisfied.
  • the thickness of the SiO x film is preferably in the range of 100 to 500 mm.
  • the ATO film as the oxidation-resistant protective layer 14 is obtained from Tables 1 to 4 shown in the sections of Examples 1-i to 1-iv.
  • the film thickness is preferably 200 to 1000 mm.
  • the film thickness of the SiO x film is larger than 500 mm and the film thickness of the ATO film is larger than 1000 mm, the oxidation resistance of the transparent conductive film 15 is improved, but the transmittance is lowered. Therefore, by setting the film thickness of the SiO x film as the underlayer 12 to 100 to 500 mm and the film thickness of the ATO film to 200 to 1000 mm, both the conductivity and transparency of the transparent conductive film 15 are good. A practical resistance value and transmittance can be provided.
  • Example 2 Effect of titanium oxide film 16
  • the substrate 10 with a transparent conductive film of Example 2 is provided with a transparent conductive film 15 and a titanium oxide film 16 on a substrate 11 as shown in FIG.
  • a SiO x film, an ITO film, and an ATO film were formed on the glass substrate 11 in the same manner as in Examples 1-1 to 1-3.
  • a titanium oxide film 16 was further formed on the ATO film at a film formation temperature of 300 ° C. by sputtering.
  • the thickness of the titanium oxide film 16 was 80 mm in all of Examples 2-1 to 2-4.
  • Comparative Example 2-2 a titanium oxide film 16 was formed on Comparative Example 2-1 in Table 1 shown in Example 1-i above.
  • Comparative Example 2-2 the thickness of the ITO film and the ATO film is the same as that of Comparative Example 2-1.
  • Table 5 shows the resistance value, transmittance, and change rate before and after firing for Examples 2-1 to 2-4 and Comparative Example 2-2.
  • Example 2-4 and Comparative Example 2-2 the ITO film thickness and the ATO film thickness are formed to be equal to each other. Comparing Example 2-4 and Comparative Example 2-2, Example 2-4 having the SiO x film as the underlayer 12 was post-baked compared to Comparative Example 2-2 having no SiO x film. The resistance value of the film was extremely small, and the rate of change of the resistance value before and after firing was close to 1. Thus, it was shown that the oxidation resistance was further improved by providing the titanium oxide film 16. In addition, although the transmittance was slightly lower in Example 2-4 than in Comparative Example 2-2, the practical transmittance was maintained.
  • the thickness of the titanium oxide film 16 is too large, the transmittance of the transparent conductive film 15 is lowered. Since oxidation resistance and transmittance are in a trade-off relationship with each other, it is necessary to form the titanium oxide film 16 with such a thickness that both values are good.
  • the rate of change in resistance value before and after firing is a value smaller than 1, and the resistance value after firing is smaller than that before firing. It has been found that the provision of the titanium film 16 can further improve the conductivity of the transparent conductive film 15.
  • Example 3 Battery characteristics of dye-sensitized solar cell 100
  • the dye-sensitized solar cell 100 in which the substrate 10 with the transparent conductive film of FIG. 8 described in Example 2 and including the titanium oxide film 16 was used as the first conductive substrate 110. Will be described.
  • the dye-sensitized battery 100 was formed by the following steps. A titanium oxide paste was further applied onto the titanium oxide film 16 (film thickness: 80 mm) of the substrate 10 with a transparent conductive film, and then fired at 500 ° C. to form a porous semiconductor layer 17a (thickness: 50000 mm).
  • a dye solution in which the sensitizing dye is dissolved at a concentration of 0.3 mmol / l is prepared in an organic solvent having the ability to dissolve the sensitizing dye, and the substrate 10 provided with the porous semiconductor layer 17a is immersed for 3 hours.
  • a monomolecular film of a sensitizing dye was chemically adsorbed on the surface of the porous semiconductor layer 17a.
  • an electrolyte 17b containing imidazolium iodide and iodine as main components, platinum 1000 ⁇ ⁇ ⁇ as a catalyst layer 17d, and ITO as the second conductive substrate 120 were further laminated to form a dye-sensitized solar cell 100.
  • Comparative Example 2-3 a porous semiconductor layer 17a made of titanium oxide is formed on Comparative Example 2-2 in Table 5 shown in the section of Example 2 above.
  • the thickness of the ITO film, the ATO film, the titanium oxide film 16 and the thickness of the porous semiconductor layer 17a are the same as those in Comparative Example 2-2.
  • FIG. 9 shows a dye-sensitized solar cell 100 having a structure in which a substrate 10 with a transparent conductive film is disposed as a first conductive substrate 110 on the upper side and light is transmitted from above.
  • Table 6 the battery performance of the dye-sensitized solar cell 100 and the transmittance when the porous semiconductor layer 17a made of titanium oxide is provided on the transparent conductive film 15 of the substrate 10 with the transparent conductive film, that is, The transmittances of the underlayer 12, the conductive layer 13, the oxidation-resistant protective layer 14, the titanium oxide film 16, and the porous semiconductor layer 17a are shown.
  • “Pmax” in Table 6 is the maximum output point, and indicates the amount of power generation at the point of maximum output on the JV characteristic graph shown in FIG.
  • FF ill Factor
  • Vmax (Vmax ⁇ Imax) / (Voc ⁇ Isc)
  • Vmax and Imax are the voltage value at the point where the power value is maximum in the current-voltage curve, and It is a current value
  • Voc is an open circuit voltage
  • Isc is a short circuit current.
  • Examples 3-1 to 3-4 including the SiO x film as the underlayer 12 are more preferable than Comparative Example 2-3 including no underlayer 12. It has been shown that the battery characteristics are very good.
  • the transparent conductive film 15 of the substrate 10 with the transparent conductive film is provided with the base layer 12, the conductive layer 13, and the oxidation-resistant protective layer 14 from the substrate 11 side. It was found that the oxidation resistance of the film 15 was improved. As a result, it was found that even when the baking process was performed, the conductivity of the conductive layer 13 was not impaired and the transparency was ensured. Furthermore, it was found that the oxidation resistance of the transparent conductive film 15 can be further improved by laminating the titanium oxide film 16. As described above, since the substrate 10 with a transparent conductive film of this example has good conductivity and transparency, the battery characteristics can be dramatically improved particularly when used as an electrode of the dye-sensitized solar cell 100. I understood.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 導電層の耐熱性、耐酸化性を向上させることにより、熱処理工程を経た後でも高い導電性及び透明性を備えた透明導電膜付き基板を提供する。 透明な基板11上に透明導電膜15が形成された透明導電膜付き基板10の透明導電膜15は、基板11側から順に積層された下地層12、導電層13、耐酸化保護層14を有している。そして、耐酸化保護層14は、酸化スズを含有する導電性材料からなり、導電層13は、金属酸化物からなり、下地層12は、導電層13を構成する材料よりも酸化物生成エネルギーが小さく、且つ化学当量よりも酸素が不足している酸化物から構成されている。

Description

透明導電膜付き基板及び色素増感太陽電池
 本発明は透明導電膜付き基板及び色素増感太陽電池に係り、特に導電性及び透明性の高い透明導電膜付き基板及び色素増感太陽電池に関する。
 従来、表示装置、センサーや太陽電池の電極として、透明基板上にインジウム(In)、亜鉛(Zn)、スズ(Sn)等に他の元素を添加した酸化物により形成される透明導電膜が備えられたもの(以下、「透明導電膜付き基板」と称する)が用いられている。透明導電膜の中でも、インジウム(In)-スズ(Sn)の酸化物(ITO,Indium Tin Oxide)による透明導電膜は、抵抗値が比較的低く、可視領域での光の透過率が高く、且つエッチングが容易であることから、多くの電子表示機器に使用されている。
 上記の各種デバイスの中でも、特に太陽電池分野においては、エネルギー変換効率を向上させるため、透明導電膜の電気抵抗値が小さく(すなわち、導電性に優れ)、光学透過率が高い(すなわち、透明性に優れる)ことが求められる。
 そして、太陽電池の製造時、透明導電膜付き基板を加熱する(焼成する)工程を経ることから、透明導電膜の導電性及び透明性に影響する因子として、透明導電膜の耐熱性及び耐酸化性を向上させる技術が求められている。
 加熱温度の一例を挙げると、Si系太陽電池の製造工程においては、基板上に透明導電膜を形成した後、高い光電変換効率を有する化合物半導体層を形成する素子製造工程を経るが、このとき、成膜温度を約400℃程度とする必要があり、色素増感太陽電池の製造工程においては、Si系太陽電池よりもさらに高い500℃程度とする必要がある。
 しかしながら、ITO等によって構成される透明導電膜が高温に曝されると、酸素欠損構造(空孔)の一部に大気中の酸素が結合して、キャリアーとして働く酸素欠損構造が減少するため、キャリアー濃度が減ることになる結果、透明導電膜の導電性が低下する。
 特許文献1は、透明導電膜を加熱することに起因する酸素欠損構造の減少を考慮し、透明導電膜を成膜する際、透明導電膜の表面側(すなわち、大気に曝される側)において酸素欠乏の酸化インジウムを基板上に形成する技術が開示されている。このように、透明導電膜において、基板側と比較して表面側を酸素欠乏の組成とすることにより、熱処理した際に表面側が主として酸化されるため、高い導電性を備えた透明導電膜を提供することができる。
 また、特許文献2は、ITO膜上に酸素(ガス)バリア性を有する酸化スズ系膜(特にアンチモンを含む酸化スズ膜:ATO膜)を成膜して透明導電膜を形成する技術が開示されている。このように、酸素バリア性の高い膜をITO膜上に成膜することにより、耐酸化性及び耐薬品性の高い透明導電膜とすることができる。
特開平5-81943号公報 特開2005-19205号公報
 特許文献1で開示された技術では、予め透明導電膜の表面近傍を酸素欠乏の組成にしておくことにより、熱処理(焼成)される工程の際、透明導電膜の表面近傍が優先して酸化されるため、基板近傍の酸素欠損構造が減少することがない。一方、表面近傍では酸素欠損構造の数が増加して最適な範囲に入り、導電性及び透明性の低下を抑制することができる。
 しかし、特許文献1において開示された技術は、透明導電膜表面近傍で、熱処理後に酸素欠損構造が好ましい数となるような酸素欠乏の組成とするために、透明導電膜の成膜時、酸素含有量の制御が難しく、一定の品質で、透明導電膜において高い導電性及び透明性を確保するのが難しい。
 また、特許文献2で開示された技術では、ITO膜上に酸素バリア性を有する酸化スズ系膜(主としてATO膜)を成膜することにより、耐酸化性が高い透明導電膜、すなわち導電性の高い透明導電膜を成膜することができる。しかし、ITO膜と比較してATO膜の導電性及び透明性が高くなく、その結果、透明導電膜全体としての導電性及び透明性が低下してしまう。また、酸素バリア性を確保するためには、ATO膜の厚さを大きくしなければならず、さらに透明導電膜の透明性が損なわれてしまう。
 本発明は、上記の課題に鑑みてなされたものであり、その目的は、導電層の耐熱性、耐酸化性を向上させることにより、熱処理工程を経た後でも高い導電性及び透明性を備えた透明導電膜付き基板を提供することにある。
 また、本発明の他の目的は、透明導電膜の導電性及び透明性を向上させることにより、高いエネルギー変換効率を備えた色素増感太陽電池を提供することにある。
 前記課題は、本発明の透明導電膜付き基板によれば、透明な基板上に透明導電膜が形成された透明導電膜付き基板であって、前記透明導電膜は、前記基板側から順に積層された下地層、導電層、耐酸化保護層を有し、該耐酸化保護層は、酸化スズを含有する導電性材料からなり、前記導電層は、金属酸化物からなり、前記下地層は、前記導電層を構成する材料よりも酸化物生成エネルギーが小さく、且つ化学当量よりも酸素が不足している酸化物からなること、により解決される。
 このように、本発明の透明導電膜付き基板は、導電層上に、主たる材料を酸化スズとする耐酸化保護層を備えているだけでなく、下地層を備えている。そして、下地層が導電層を構成する材料よりも酸化物生成エネルギーが小さく、化学当量よりも酸素不足の酸化物によって構成されることにより、透明導電膜付き基板が加熱されても、下地層によって酸素が吸収されるため、導電層の酸化が防止され、耐熱性が向上する。すなわち、下地層の構成材料が、導電層の構成材料よりも酸化物生成エネルギーが小さく、且つ酸素欠損構造を備えているため、下地層の方が優先的に酸化されることにより、熱処理(焼成)による導電層の酸化が防止され、耐熱性を向上させることができる。
 そして、導電層よりも下地層が優先して酸化される結果、本発明の導電膜付き基板は、熱処理された際に導電層が酸化されにくいため、導電層の酸素欠損が保持される。したがって、透明導電膜付き基板が加熱されても、導電層の酸素欠損が保持されるため、導電性及び透明性が損なわれることなく、高い導電性及び透明性を備えることができる。
 このとき、前記下地層は、化学式SiO(ただし、Xは化学量論比を示すものであって、1.2<X<1.8の範囲)で示される物質からなると好適である。
 SiOは、酸化物生成エネルギーが比較的小さい材料であるため、導電層を構成する一般的な金属酸化物よりも酸化物生成エネルギーが小さい。したがって、下地層を構成する材料を上記物質とすることにより、透明導電膜付き基板を熱処理した際、下地層がより酸化されやすくなる。
 また、酸化ケイ素は他の材料と比較して光学透過率が高い(すなわち、透明性が高い)ため、透明導電膜付き基板の透明性を低下させることがない。
 さらに、化学量論比を示すXの値を上記範囲とすることにより、下地層は、より透明性が高く、且つ酸化されやすい状態となる。したがって、上記材料からなる下地層を形成することにより、導電層に対し高い酸化防止効果を与えることができ、且つ高い透明性を備えた透明導電膜とすることができる。
 また、このとき、前記導電層は、スズを含む酸化インジウム(ITO)からなり、前記耐酸化保護層は、ニオブ、タンタル、アンチモンの少なくとも一つが添加された酸化スズからなると好適である。
 このように、導電層をITOによって構成することにより、導電層は高い導電性及び透明性を備える。したがって、ITOからなる導電層を備えた透明導電膜付き基板は、高い導電性及び透明性を備えることができる。しかし、ITOは熱処理により酸化されて導電性が低下しやすい性質があることから、下地層を備えるだけでなく、ガスバリア性を有する上記材料によって耐酸化保護層を構成することにより、ITO膜が酸化されにくくなる。その結果、導電層(ITO膜)の導電性及び透明性が高く保持され、透明導電膜全体としての導電性及び透明性が良好な透明導電膜付き基板とすることができる。
 さらにこのとき、前記耐酸化保護層は、アンチモンが添加された酸化スズ(ATO)からなると好適である。
 このように、耐酸化保護層をガスバリア性の高いATOによって構成することにより、耐酸化保護層の下方に備えられた導電層がさらに酸化されにくくなる。また、ATOはガスバリア性が高い材料の中でも特に導電性が高く、400℃~500℃での熱処理により導電性が向上するため、透明導電膜の導電性を向上させることができる。
 なお、アンチモンは若干の毒性を有するため、環境上の配慮から、耐酸化保護層をニオブ、タンタルの少なくとも一つが添加された酸化スズとする選択も可能である。耐酸化保護層をニオブ、タンタルの少なくとも一つが添加された酸化スズからなるように構成した場合、導電性、透明性でATOより僅かに劣るものの、耐酸化性に関してATOを用いた場合とほぼ同等の効果を示す。
 また、このとき、前記耐酸化保護層の前記導電層逆側の面に、酸化チタン(TiO)膜をさらに備えてなると好ましい。
 このように、酸化チタン膜を耐酸化保護層の前記導電層逆側の面に備えることにより、透明導電膜の耐熱性をさらに向上させることができる。
 また、前記耐酸化保護層の厚さは、200~1000Åの範囲であり、前記下地層の厚さは、100~500Åの範囲であると好適である。
 このように、SiOからなる下地層の厚さを100~500Åとすることにより、下地層によって導電層の酸化抑制効果が得られるため、耐酸化保護層を厚くする必要が無い。そして、ATO膜からなる酸化保護層の厚さを200~1000Åとすることで、導電層の酸化を抑制することができる。このように、耐酸化保護層を厚くする必要がないため、耐酸化保護層を厚く形成することによる透明性の低下を伴うことなく、透明導電膜の耐酸化性を確保し、透明導電膜の導電性及び透明性を実用上適当な値とすることができる。
 さらに、前記課題は、本発明の色素増感太陽電池によれば、第1の導電性基板と、該第1の導電性基板と対向して配設される第2の導電性基板と、前記第1の導電性基板の前記第2の導電性基板側の面に形成され、色素を吸着してなる多孔質半導体層と、該多孔質半導体層と前記第2の導電性基板との間に形成される電解質と、を備え、前記第1の導電性基板は、請求項1乃至6のいずれか一項に記載の透明導電膜付き基板であること、により解決される。
 このように、耐酸化保護層だけでなく、さらに下地層を備え、導電層と比較して下地層の方が優先的に酸化される構成の透明導電膜付き基板を色素増感太陽電池の電極として用いることにより、色素増感太陽電池の電極において、導電性及び透明性を向上させることができる。その結果、電極が小さな電気抵抗値及び高い光学透過率を有するため、色素増感太陽電池のエネルギー変換効率を向上させることができる。
 本発明の透明導電膜付き基板は、透明導電膜において、導電層よりも酸化されやすい下地層を備えることにより、導電層の酸化が防止され、耐熱性が向上する。そして、導電層の耐酸化性、耐熱性を向上させることにより、導電層における酸素欠損の減少に起因する導電性及び透明性の低下を防止し、熱処理工程を経た後でも高い導電性及び透明性を備えた透明導電膜付き基板を提供することができる。
 また、電極に備えられる透明導電膜の導電性及び透明性が向上するため、エネルギー変換効率の高い色素増感太陽電池を提供することができる。
本発明の一実施形態に係る透明導電膜付き基板の概略断面図である。 本発明の一実施形態に係る透明導電膜付き基板の下地層の成膜時酸素量と透明導電膜の抵抗値変化率との関係を示すグラフ図である。 本発明の一実施形態に係る透明導電膜付き基板の下地層の成膜時酸素量と透明導電膜の光学透過率との関係を示すグラフ図である。 本発明の一実施形態に係る透明導電膜付き基板の下地層の成膜時酸素量と下地層を構成するSiOのO/Si比との関係を示すグラフ図である。 本発明の一実施形態に係る透明導電膜付き基板の下地層の膜厚と透明導電膜の抵抗値との関係を示すグラフ図である。 本発明の一実施形態に係る透明導電膜付き基板の下地層の膜厚と透明導電膜の抵抗値変化率との関係を示すグラフ図である。 本発明の一実施形態に係る透明導電膜付き基板の下地層の膜厚と透明導電膜の光学透過率との関係を示すグラフ図である。 本発明の他の実施形態に係る透明導電膜付き基板の概略断面図である。 本発明の一実施形態に係る色素増感太陽電池の概略断面図である。 本発明の一実施形態に係る色素増感太陽電池の電流密度と出力電圧との関係(J-V特性)を示すグラフ図である。
 以下、本発明の実施形態について、図を参照して説明する。なお、以下に説明する部材、材料、構成等は、本発明を限定するものではなく、本発明の趣旨に沿って各種改変することができることは勿論である。なお、以下、光学透過率を「透過率」とのみ記載する。
 図1~図7は本発明の一実施形態に係る透明導電膜付き基板に係るものであり、図1は透明導電膜付き基板の概略断面図、図2は下地層の成膜時酸素量と透明導電膜の抵抗値変化率との関係を示すグラフ図、図3は下地層の成膜時酸素量と透明導電膜の光学透過率との関係を示すグラフ図、図4は下地層の成膜時酸素量と下地層を構成するSiOのO/Si比との関係を示すグラフ図、図5は下地層の膜厚と透明導電膜の抵抗値との関係を示すグラフ図、図6は下地層の膜厚と透明導電膜の抵抗変化率との関係を示すグラフ図、図7は下地層の膜厚と透明導電膜の光学透過率との関係を示すグラフ図である。
 また、図8は本発明の他の実施形態に係る透明導電膜付き基板に係るものであり、透明導電膜付き基板の概略断面図である。
 さらに図9及び図10は、本発明の一実施形態に係る色素増感太陽電池に係るものであり、図9は概略断面図であり、図10は電流密度と出力電圧との関係(J-V特性)を示すグラフ図である。
<<導電膜付き基板10の構成>>
 図1~図7に基づき、本実施形態の透明導電膜付き基板10について説明する。
 本実施形態の透明導電膜付き基板10は、図1に示すように、透明な基板11上に、透明導電膜15が形成されたものであり、透明導電膜15は、基板11側から順に下地層12,導電層13,耐酸化保護層14を有している。すなわち、基板11上に、下地層12と、導電層13と、耐酸化保護層14とが順に積層されて形成された透明導電膜15を備えている。
(基板11)
 基板11は、板状の部材であり、基板11の材料としては、表面に透明導電膜15を形成することができ、かつ透明導電膜15で光を受光させる程度に透明性を有する適宜の材料から選択される。このような材料としては、例えば、ガラス基板、石英基板、光学結晶基板などの光を所定量透過させることが可能なものが用いられる。特に好ましくは、Naなどのアルカリ元素を含まないノンアルカリガラスや耐熱性の高い石英基板などである。
 また、透明性を増したり、Naなどのアルカリ元素の拡散を防止したり、耐熱性を向上させたりする、などの付加特性を持たせるために、表面にSiO、TiOなどの薄膜がスパッタリング法により形成された基板であっても良い。また、これらの基板11は、板状であっても、フィルム状であっても良い。
 基板11の透過率としては、透明導電膜15に対して光を透過できるものであれば特に限定されないが、通常は波長350~800nmの範囲での平均透過率が10%以上99%以下の範囲内であり、特に60%以上99%以下の範囲であると好適であり、80%以上99%以下の範囲であると最適である。
 基板11の厚さとしては、特に限定されないが、通常100μm以上5mm以下の範囲内であり、特に500μm以上2mm以下の範囲内が好ましい。
(透明導電膜15)
 透明導電膜15は、光の透過性があり、かつ導電性を有する膜である。なお、透明導電膜15は、後述の色素増感太陽電池100の負極を構成するものである。以下で説明するように、図9に示す色素増感太陽電池100を製造する際、透明導電膜15上に多孔質のチタニア層を形成する工程では、透明導電膜15上に酸化チタンペーストを塗布して、望ましい温度として400~500℃で焼成する。したがって、透明導電膜15は、この焼成工程により透過率が減少せず、かつ抵抗も増加しない材料を用いることが好ましい。すなわち、透明導電膜15は、高温で焼成される工程を経た後の導電性及び透明性が高いものが求められる。以下、本実施形態の透明導電膜15の構成について、詳述する。
 本実施形態の透明導電膜15は、基板11上に、下地層12と、導電層13と、耐酸化保護層14とが順に積層されてなる。
 なお、透明導電膜15は、全体として、波長350nm~800nmの範囲での平均透過率が10%以上99%以下の範囲内であり、特に60%以上99%以下の範囲が好ましく、より好適には80%以上99%以下の範囲内であると最適である。
(透明導電膜15:導電層13)
 導電層13は、高い導電性を有すると共に、高い透明性を備える金属酸化物によって構成される。
 導電層13の透過率は、波長350nm~800nmの範囲での平均透過率が10%以上99%以下の範囲内であり、特に60%以上99%以下の範囲が好ましく、より好適には80%以上99%以下の範囲内であると最適である。
 導電層13を構成する金属酸化物としては、酸化インジウム(In)、酸化亜鉛(ZnO)、酸化スズ(SnO)や、これらの材料に不純物を添加したものを用いることができる。
 上記材料の例として、例えば、スズ,ゲルマニウム,亜鉛,ガリウムのうち少なくとも1種類を含む酸化インジウムや、アルミニウム,ガリウム,ホウ素,マグネシウムのうち少なくとも1種類を含む酸化亜鉛、アンチモン,フッ素のいずれかを添加した酸化スズを利用することができる。
 酸化インジウムに添加されるスズ,ゲルマニウム,亜鉛,ガリウムの含有量は、これらのうち1種類を添加する場合は、インジウムに対するこれらの材料の原子比(Sn/In,Ge/In,Zn/In,Ga/In)をいずれも0.5~20.0%とするとよい。
 なお、ここでの原子比は各材料の酸化物の比であり、Sn/Inは厳密にはSn酸化物/In酸化物と表記すべきものであるが、一般的に用いられている略記法によりSn/Inとしている。他の材料についても同様である。
 このような比率で添加すると、導電層13を構成する膜の導電性及び透明性を良好に維持できる。また、これらの材料の複数種類を添加する場合は、添加する材料の全体の添加量をインジウムに対して20.0%以下とするとよい。
 また、酸化亜鉛に添加されるアルミニウム,ガリウム,ホウ素,マグネシウムの含有量は、これらのうち1種類を添加する場合は、亜鉛に対するこれらの材料の原子比(Al/Zn,Ga/Zn,B/Zn,Mg/Zn)をいずれも0.5~20.0%とするとよい。このような比率で添加すると、これら材料の導電性及び透明性を良好に維持できる。また、これらの材料の複数種類を添加する場合は、添加する材料の全体の添加量を亜鉛に対して20.0%以下とするとよい。
 上記材料の中でも、酸化インジウムにスズを添加したITO、酸化スズにアンチモンを添加したATO、酸化スズにフッ素をドープしたFTO、酸化亜鉛にアルミニウムを添加したAZO、酸化亜鉛にガリウムを添加したGZO等は、導電性及び透明性に優れるため、導電層13を構成する材料として好適である。
 そして、特にITOは、電子の流路となる酸素欠損を適度に備えているため、高い導電性及び透過率を有しており、導電層13を構成する材料として好適である。
 導電層13の厚さは、200Å~10000Åの範囲であると良い。このような範囲とすると、透明導電膜15の抵抗値を小さく、且つ透過率を高く保持することができる。
(透明導電膜15:下地層12)
 基板11と導電層13の間には、下地層12が形成されている。下地層12は、耐酸化保護層14と共に、導電層13の酸化を防止するために備えられる。したがって、例えば、透明導電膜付き基板10が約400~500℃の焼成工程を経た場合であっても、下地層12が導電層13よりも優先的に酸化されるため、導電層13の酸素欠損構造を保持することができる。その結果、導電層13が高い導電性及び透明性を保持することができる。
 下地層12の透過率は、波長350nm~800nmの範囲での平均透過率が10%以上99%以下の範囲内であり、特に60%以上99%以下の範囲が好ましく、より好適には80%以上99%以下の範囲内であると最適である。
 下地層12は、導電層13を構成する材料よりも酸化物生成エネルギーが小さく、且つ化学当量よりも酸素が不足している酸化物によって形成される。すなわち、下地層12を構成する材料は、エリンガムダイアグラムに示される生成エネルギーラインが、導電層13を構成する材料のそれと比して低い酸化物であり、且つ酸素欠損構造を有するものである。ここで、酸化物生成エネルギーとは、酸化物が生成するときの標準ギブスエネルギーをいい、酸化物生成自由エネルギーとも呼ばれるものである。
 このような材料の例として、たとえば、ケイ素酸化物(SiO),アルミニウム酸化物(Al)等を用いることができる。このような材料は、基本的に、上記の導電層13を構成する金属酸化物よりもエリンガムダイアグラムにおいて生成エネルギーラインが下方にあり、酸化物生成エネルギーが小さいため、例えば、透明導電膜付き基板10が約400~500℃の焼成工程を経た場合には、導電層13よりも優先して下地層12が酸化される。
 化学式SiOで示される物質によって下地層12を形成すると良い。ケイ素は酸化物生成エネルギーが小さい材料であり、酸化物になりやすい。したがって、酸素欠損構造を備えたSiOによって下地層12を形成することにより、下地層12に酸素を吸収させることができ、導電層13が酸化されるのを抑制することができる。
 上記Xは化学量論比を示すものであって、1.2<X<1.8の範囲であると好適である。Xの値を1.2以下とすると、その組成がSiOに近づくために下地層12が黄色に着色して見えるようになり、透明性が低下する。また、Xが1.8以上のものはスパッタリング法や蒸着法で成膜するのが難しく、したがって、一定の品質で下地層12を作成することが難しいため、不適当である。
 下地層12の厚さは、100~500Åの範囲であると良い。100Åよりも小さいと、透過率は高いが十分に下地層12が酸素を吸収することができず、透明導電膜15に十分な耐酸化性を与えることができない。また、500Åよりも大きいと、下地層12が十分に酸素を吸収して、透明導電膜15に十分な耐酸化性を与えることができるものの、透過率が低下する。
 したがって、下地層12の厚さを上記範囲とすると、耐酸化保護層14と組み合わせて備えられることにより、導電層13の酸化を抑制する効果を十分に得ることができる。
(透明導電膜15:耐酸化保護層14)
 一方、導電層13の下地層12逆側の面には、耐酸化保護層14が積層されている。耐酸化保護層14は、光の透過性、導電性を有し、さらに酸素(ガス)バリア性を有する膜である。
 耐酸化保護層14の透過率は、波長350nm~800nmの範囲での平均透過率が10%以上99%以下の範囲内であり、特に60%以上99%以下の範囲が好ましく、より好適には80%以上99%以下の範囲内であると最適である。
 耐酸化保護層14は、酸化スズを主成分とし、ニオブ,タンタル,アンチモンの少なくとも一つが添加された酸化スズによって構成されると好ましい。また、前記の添加物を含まない酸化スズによって耐酸化保護層14が構成されても良い。酸化スズに添加されるニオブ,タンタル,アンチモンの含有量は、これらのうち1種類を添加する場合は、スズに対するこれらの材料の原子比(Nb/Sn,Ta/Sn,Sb/Sn)をいずれも0.5~20.0%とするとよい。このような比率で添加すると、耐酸化保護層14を構成する膜の導電性及び透明性を良好に維持できる。また、これらの材料の複数種類を添加する場合は、添加する材料の全体の添加量をスズに対して20.0%以下とするとよい。
 上記材料の中でも、アンチモンが添加された酸化スズ(ATO)は、特にガスバリア性が良好で、且つ導電性及び透明性が高いため、耐酸化保護層14を構成する材料として好適である。
 但し、アンチモンは若干の毒性を有するため、環境に対する配慮等からその使用が好まれない場合がある。ニオブあるいはタンタル、又はその両方を添加した酸化スズ(SnOと記載)はATOと比較して抵抗値、透過率共に僅かに劣るが、後述のように、本本実施形態の耐酸化保護層14に用いた場合、耐酸化性についてはATOとほぼ同等の性能を示しており、この点も特許請求の範囲記載の構成に由来する効果といえる。
 そして、耐酸化保護層14の厚さは、200~1000Åの範囲とすると良い。200Åよりも小さいと、透過率は高いが十分な耐酸化性を得ることができず、また、1000Åよりも大きいと、耐酸化性は向上するものの、透過率が低下する。
 したがって、耐酸化保護層14の厚さを上記範囲とすると、上記の下地層12と組み合わせて備えられることにより、導電層13の酸化を抑制する効果を十分に得ることができる。また、下地層12によっても導電層13の酸化が抑制されるため、耐酸化保護層14の厚さを大きくする必要がない。したがって、耐酸化保護層14の透明性も確保することができるため、結果として、透明導電膜15としての透明性を向上させることができる。
(酸化チタン膜16)
 耐酸化保護層14の導電層13逆側の面には、図8のように、酸化チタン膜16がさらに備えられていても良い。この酸化チタン膜16は、スパッタリング法、真空蒸着法、イオンプレーティング法等の手法により形成され、多孔質の酸化チタンよりもさらに緻密な構造を備えた酸化チタン薄膜である。
 酸化チタン膜16を耐酸化保護層14の導電層13逆側の面に積層することにより、下地層12との相乗効果により、透明導電膜15の耐熱性をさらに向上させることができる。すなわち、下地層12,耐酸化保護層14,酸化チタン膜16を備えることにより、透明導電膜付き基板10が焼成工程を経る場合であっても、導電層13が酸化されるのが防止され、透明導電膜15が高い導電性及び透明性を保持することができる。
 また、一般的な色素増感電池では、透明導電膜付き基板の透明導電膜上に多孔質の酸化チタン層が形成されるが、本実施形態では、多孔質酸化チタンよりも緻密な構造を備えた酸化チタン膜16を透明導電膜15上に備えることにより、透明導電膜15側から酸化チタン膜16側へ流れる暗電流を抑制することができる。したがって、本実施形態の酸化チタン膜16を備えた透明導電膜付き基板10によれば、色素増感太陽電池100の電気特性を向上させることができる。
 透明導電膜15を構成する各膜(下地層12,導電層13,耐酸化保護層14)は、色素増感太陽電池100において、略矩形状の負極電極パターンになるよう略矩形状の開口が複数形成されたマスクなどを用いて形成される。なお、透明導電膜15を基板11の表面に形成する方法としては、スパッタリング法、真空蒸着法、イオンプレーティング法など、公知の成膜技術を用いることができる。
<<色素増感太陽電池100の構成>>
 次に、透明導電膜付き基板10を備えた色素増感太陽電池100の構成について説明する。なお、以下には、単一のセルを例に挙げて説明するが、複数のセルが直列又は並列に接続されていても良いのは勿論である。
 色素増感太陽電池100は、図9に示すように透明導電膜付き基板10を第1の導電性基板110として備えており、さらに、第1の導電性基板110に対向する位置に第2の導電性基板120が備えられる。なお、図9は、説明のため、透明導電膜付き基板10の各層の厚みを大きくして図示している。
 そして、第1の導電性基板110と第2の導電性基板120との間には、第1の導電性基板110側に形成された多孔質半導体層17aと、多孔質半導体層17aと第2の導電性基板120との間に形成された電解質17bと、を備えている。なお、図9の符号17cはシール材、17dは触媒層である。
(色素増感太陽電池100:第1の導電性基板110及び第2の導電性基板120)
 透明導電膜付き基板10は、第1の導電性基板110として備えられ、透明導電膜15が形成された面を第2の導電性基板120側に向けて配置される。なお、第1の導電性基板110を構成する導電層13には、引き出し線としての導線30が接続されている。
 第2の導電性基板120は、表面に電極層22が形成された板状の部材である。第2の導電性基板120を構成する基板21の材料としては、基板11と同様の透明材料から選択することが可能である。
 但し、基板11とは異なり基板21は、光を取り込む側ではないので、必ずしも透明材料で形成される必要はなく、光透過性の乏しい材料で形成してもよい。このような材料としては、例えば酸化物系セラミックスや窒化物系セラミックスなどの各種セラミックスが挙げられる。
 基板21の厚さも、特に限定されないが、通常100μm以上5mm以下の範囲内であり、特に500μm以上2mm以下の範囲内が好ましい。また、基板21は、板状であっても良いし、フィルム状であっても良い。
 基板21上に形成された電極層22は、導電性を有する材料で膜状に形成された電極である。電極層22には、導電性を有する金属やカーボン、透明導電膜15の導電層13で説明した材料と同じ材料などが用いられる。電極層22が光を透過させる必要がある部位に用いられる場合には、透明導電膜が用いられる。一方、電極層22において光を透過させる必要がない場合は、電極層22として、Al,Pt,Pd,Au等の金属膜や、カーボン膜が用いられる。
 図9には、触媒層17dを備えた色素増感太陽電池100の構成を示したが、光電変換効率を上げるため、電極層22には、触媒作用があり、かつ、電解質17bに対する耐性に優れるPt,Pd,Au等を用いることが好ましい。電極層22には、外部負荷に接続するため、引き出し線としての導線40が接続されている。このように、電極層22が触媒機能と集電電極としての機能を兼ね備えているため、集電電極を別途設ける必要が無く、電池の構成を簡略化することができる。
 電極層22は、適当な大きさの開口が形成されたマスクなどを用いて形成される。なお、電極層22を基板21の表面に形成する方法としては、スパッタリング法、真空蒸着法、イオンプレーティング法など、公知の成膜技術を用いることができる。
(色素増感太陽電池100:多孔質半導体層17a)
 多孔質半導体層17aは、金属酸化物半導体微粒子に色素(色素増感剤)を吸着させたものである。多孔質半導体層17aに用いられる金属酸化物半導体微粒子としては、半導体特性を備える金属酸化物からなるものであれば特に限定されるものではない。多孔質半導体層17aに用いられる金属酸化物として、TiO,ZnO,SnO,ZrO,Al,TaO,Nb等が挙げられる。これらの中でも、特に半導体特性に優れるため、TiOを用いるのが好ましい。
 TiOからなる多孔質半導体層17aは、バインダーに酸化チタン粉末を混合してペースト状にし、この焼成ペーストを透明導電膜15上に形成された酸化チタン膜16上に塗布し、焼成することにより形成される。焼成温度は100℃以上であれば良いが、酸化チタン粒子間の焼結性を良くして光電変換効率を高めるためには400℃以上で焼成するのが好ましい。
 焼成ペーストのバインダーとしては、有機系の溶媒、酸性溶液等を用いることができる。また、多孔質半導体層17aを構成する酸化チタンの結晶構造はアナターゼ型であることが好ましい。また、良好な太陽電池特性を有するためには、多孔質半導体層17aは小さな穴を多く含む細孔構造をとっていることが好ましい。
 多孔質半導体層17aの一部には色素が吸着されている。色素には、太陽光を効率よく吸収できる色素、すなわち可視域を中心に近紫外域から近赤外域にかけて収吸帯を持つものが用いられる。色素は、アルコール等の溶媒に溶かし、この中に多孔質半導体層17aまで形成された第1の導電性基板110を漬けることにより、多孔質半導体層17aの細孔部に吸着される。
 このような色素として、有機色素または金属錯体色素が挙げられる。有機色素としては、アクリジン系,アゾ系,インジゴ系,キノン系,クマリン系,メロシアニン系,フェニルキサンテン系の色素が挙げられる。また、金属錯体色素としては、ルテニウム錯体であるルテニウムビピリジン色素及びルテニウムターピリジン色素が挙げられる。これらの中でも、光で励起された際、効率良く多孔質半導体層17aに電子を移動させることができるRu錯体[RuL(NSC)](ここで、L=4,4´-dicarboxy-2,2´-bypyridine)等を使用するのが好ましい。
(色素増感太陽電池100:電解質17b)
 多孔質半導体層17aの表面側には電解質17bが備えられている。
 電解質17bの材料には、多孔質半導体層17aに含有される色素に電子を供給し、また、電極層22で電子を受け取ることができるものが用いられる。なお、電解質17bは、固体であっても液体であっても良く、一般的な色素増感太陽電池の電解質として用いられる材料であれば、特に限定されない。このような材料の具体例としては、例えば、ポリエチレングリコールにヨウ化リチウムと金属ヨウ素を溶かした電解液、アセトニトリルとエチレンカーボネートを混合した電解液等を用いることができる。
(色素増感太陽電池100:シール材17c)
 第1の導電性基板110と第2の導電性基板120との間には、それぞれの色素増感太陽電池100のセルを仕切るためのシール材17cが形成されている。シール材17cは、複数のセルの外周部全体を区画するための部材であり、それぞれのセル間を区切る部材でもある。このシール材17cによって仕切られた空間内に、色素を吸着させた多孔質半導体層17a、電解質17bが封入された状態に保持されている。
 シール材17cの材料としては樹脂やガラスなどを用いることができる。樹脂の具体例としては、例えばエポキシ樹脂、ウレタン樹脂などが挙げられる。
(色素増感太陽電池100:触媒層17d)
 第2の導電性基板120側の電極層22の上層には、触媒層17dが備えられる。触媒層17dは、酸化還元反応を促進させるために備えられるものであり、触媒層17dを構成する材料としては、Pt,Pd,Au,C等が用いられる。
 なお、第2の導電性基板120として、透明導電膜付き基板10を用いることも可能である。この場合、触媒層17dが第2の導電性基板120上に形成される。触媒層17dとして、例えば、Pt膜を成膜する際、塩化白金を用いるが、塩化白金の腐食性により、透明導電膜15の上に直接Pt膜を成膜することが難しく、また、品質も低下する。そこで、酸化チタン膜16を透明導電膜月基板10の透明導電膜15上に成膜することにより、塩化白金の腐食性から透明導電膜15を保護することができ、Pt膜及び透明導電膜15の膜質を良好に保持することができる。
<<実施例>>
 以下、本発明の透明導電膜付き基板10及び色素増感太陽電池100について、実施例に基づき説明する。
[実施例1:透明導電膜15の構成]
 実施例1の透明導電膜付き基板10は、図1に示すように、基板11上に、透明導電膜15のみを備えたものである。
(実施例1-i:下地層12の効果)
 透明導電膜付き基板10において、下地層12を備えた実施例1-1~1-3と、下地層12を備えない比較例1~5を比較し、下地層12の効果について検討した。なお、実施例1-3-1及び実施例1-3-2は、下地層12(SiO膜)の成膜時の酸素量が異なるものであり、実施例1-3-1の酸素流量は30ccであり、実施例1-3-2の酸素流量は35ccである。
 実施例1-1~1-3の透明導電膜付き基板10は、以下のように作成した。
 まず、基板11としてのガラス基板の上に、下地層12としてのSiO膜を、スパッタリング法により成膜温度を300℃として成膜した。このとき、特に記載がない場合は、Xは1.62程度となるように酸素量を調整した。具体的には、45ccとし、酸素ガスと不活性ガスとの流量比がO/Ar+O=0.07となるように調整した。
 次に、SiO膜上に、導電層13としてのITO(Sn/In=10/90)膜をスパッタリング法により、成膜温度を300℃として成膜した。
 さらに、ITO膜上に、耐酸化保護層14としてのATO(Sb/Sn=2.5/97.5)膜をスパッタリング法により成膜温度300℃で成膜した。上記の各膜の厚さは、表1に示すとおりである。
 そして、上記のように作成された透明導電膜付き基板10を、電気炉の中に入れ大気中において500℃または600℃で1時間熱処理を行った。熱処理の前後における透明導電膜の面積抵抗(以下、「抵抗値」と記載する)、可視域(350~800nm)での平均透過率(以下、「透過率」と記載する)、抵抗値及び透過率の熱処理前後の変化率を表1に示す。
 面積抵抗は三菱化学アナリテック製ロレスタGPを用いて測定した。透過率は日立電子製自記分光測定器(U-4100)で計測し、リファレンスを空気として測定した。特に記載がない場合は、以下の実施例に係る測定も同じ装置で測定した。
 比較例1~5は、上記実施例1-1~1-3と比較して、下地層12、耐酸化保護層14のいずれか、または両方を備えない透明導電膜をガラス基板11上に形成したものである。耐酸化保護層14はATO(Sb/Sn=2.5/97.5)膜を基本とし、1例(比較例2-2)のみ、タンタルとニオブを含む酸化スズ(SnO、Ta/Nb/Sn=2.0/0.5/97.5)膜を用いた。
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、実施例1-1,1-2と、比較例2-1,2-2を参照して比較する。実施例1-1,1-2は、透明導電膜15において、下地層12としてのSiO膜を備えている。比較例2-1は、導電層13としてのITO膜、耐酸化保護層14としてのATO膜のみが、比較例2-2は、導電層13としてのITO膜、耐酸化保護層14としてのSnO膜のみが実施例1-1,1-2と同じ厚さで形成されている。
 実施例1-1,1-2は、比較例2-1,2-2と比較して、透過率に関し、特に大きな違いは見られないものの、抵抗値に関し、SiO膜の厚さが増加するにつれて焼成後の抵抗値が極めて小さくなり、且つ、焼成前後の変化率が1に近くなって、焼成前後で抵抗値が殆ど変化しないことが示された。実施例1-3-1,1-3-2,比較例4を参照して比較しても、同様の結果が得られた。
 また、比較例1,2-1,2-2,3を比較すると、耐酸化保護層14としてのATO膜又はSnO膜を厚くするほど抵抗値は低くなることがわかる。しかし、例えば比較例2-1のように、ATO膜だけを備えた場合では、実施例1-2のように、下地層12を備えた場合と比較して、透明導電膜15の抵抗値、変化率が大きくなることが示されている。SnO膜だけを備えた比較例2-2でも同様である。そして、下地層12としてのSiO膜だけを備え、耐酸化保護層14が備えられていない比較例5においても、抵抗値及び変化率が大きいことから、透明導電膜15の耐酸化性を大きく向上させるためには、下地層12及び耐酸化保護層14の両方を備える必要があることが示された。
 このように、下地層12及び耐酸化保護層14を備えた透明導電膜15は、焼成処理を経た後であっても、抵抗値は低く、透過率はほぼ一定に保持されていた。一般に、焼成処理を経ることにより、導電層13が酸化されて導電性が低下するが、本例は下地層12及び耐酸化保護層14を備えることにより、導電層13の酸化が抑制されるため、結果として、焼成工程を経た後であっても、透明導電膜15の抵抗値が低下することがない。これは、導電層13よりも酸化物生成エネルギーが小さく、且つ化学当量よりも酸素不足の酸化物によって下地層12が構成されているためである。すなわち、焼成工程時、下地層12が導電層13よりも優先的に酸化されやすいことに起因する。
 さらに、実施例1-1~1-3により、SiO膜及びATO膜が厚くなるほど、透明導電膜15の抵抗値は小さくなり、且つ焼成前後の変化率が1に近くなることが分かった。ただし、各膜の厚さが大きくなるほど、透明導電膜15の透過率(透明性)は低下した。
(実施例1-ii:耐酸化保護層14の厚さ及び組成)
 実施例1-4~1-7は、下地層12及び導電層13の厚さを一定とし、耐酸化保護層14の厚さのみを変化させて透明導電膜15を作成したものである。耐酸化保護層14としてATO膜を採用したものは各実施例番号末尾の-1で表し、SnO膜を採用したものは末尾の-2で表した。なお、各層の厚さ以外は、実施例1-1~1-3と同様の条件で透明導電膜15を作成した。各実施例について、焼成前後における抵抗値、透過率、及び焼成前後の変化率を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、耐酸化保護層14としてのATO膜又はSnO膜の厚さを200~500Åの間で変化させ、各透明導電膜15の抵抗値及び透過率について測定したところ、どちらの場合にも膜厚が大きくなるほど、焼成処理後の透明導電膜15の抵抗値は小さくなることが示された。また、膜が厚くなるほど、焼成前後の抵抗値の変化率は小さくなり、透明導電膜15の耐酸化性が向上するという結果が得られた。さらに、ATO膜又はSnO膜の厚さが一定値を超えると(実施例1-6-1及び2,1-7-1及び2を参照)、焼成前よりも焼成後の抵抗値の方が低くなり、変化率が1よりも小さくなるという結果が得られた。
 一方、耐酸化保護層14の膜厚が大きくなるほど、焼成前後の変化率はほぼ一定であるが、透過率は低下した。したがって、抵抗値と透過率はトレードオフの関係にあるので、以下で説明する下地層12の構成及び厚さとの関係も考慮して、耐酸化保護層14の膜厚を適当な大きさに設定する必要があることが分かった。
 また、耐酸化保護層14の材料として、ATOだけでなく、SnOを用いた場合であっても、透明導電膜15に対して十分な耐酸化性を付与できることが分かった。各実施例番号の-1と-2の比較からわかるように、耐酸化保護層14としてSnO膜を成膜した場合、ATO膜を成膜した場合よりも透過率は若干低下するものの、SnO膜であっても十分な耐酸化性が得られることが示された。
(実施例1-iii:下地層12の組成)
 次に、下地層12としてのSiO膜において、適当なXの値について検討した。実施例1-8~1-15は、それぞれ、SiO膜の成膜時の酸素量を変化させて透明導電膜15を作成したものである。なお、実施例1-8,1-9と、実施例1-10~1-15とは、互いに導電層13、耐酸化保護層14の厚さ及び焼成条件を変化させたものである。これら各実施例について、焼成前後における抵抗値、透過率、及び焼成前後の変化率を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 さらに、SiO膜の成膜時の酸素量と、透明導電膜15の抵抗値変化率との関係を図2に、SiO膜の成膜時の酸素量と、透過率との関係を図3に示す。
 図2より、成膜時の酸素量が少ないほど、すなわち、SiO膜中の酸素含有量が少なく、Xの値が小さいほど、透明導電膜15の抵抗値の変化率が小さく、透明導電膜15の耐酸化性が高いことが示されているが、酸素量が30cc近傍でその効果が飽和していた。また、酸素量を60cc程度よりも多くしても、抵抗値の変化率は大きく変化せず、増大しないことが示された。
 一方、図3により、成膜時の酸素量が少ないほど、すなわち、SiO膜中の酸素含有量が少なく、Xの値が小さいほど、透明導電膜15の透過率が低下し、透明性が低下することが示されている。透明導電膜付き基板10を色素増感太陽電池100等の各種デバイスに使用するためには、透明導電膜15は、焼成後において約80%程度の透過率を備えることが望ましいため、図3より、SiO膜の成膜時の酸素量は30ccよりも多くすると適当である。これよりも酸素量が少ないと、SiO膜において組成比がSiOに近くなるため、SiO膜が黄色に着色して目視されるようになり、透明性が低下する。
 したがって、以上より、抵抗値及び透過率を鑑みると、SiO膜の成膜時酸素量は30ccよりも多くするとよいことが示された。
 次に、SiO膜の成膜時酸素量と、SiO膜の組成比の関係について、図4に示す。図4より、SiO膜の成膜時の酸素量を多くすれば、SiO膜中の酸素量も増加してXも大きくなり、SiO膜の成膜時の酸素量を少なくすれば、SiO膜中の酸素量も減少してXも小さくなることが示されている。しかし、酸素量が50~60ccよりも多くなると、SiOx膜中の酸素量が飽和し、Xの値は約1.8程度となっていた。したがって、上記図2及び図3においても、酸素量約60cc程度以上は、抵抗値変化率及び透過率がほぼ一定となったと予想される。
 そして、図4に基づき、SiO膜のXの下限値及び上限値について考察する。
 図2及び図3より、成膜時の酸素量は30ccよりも多くすると良いことが示されているため、図4も併せて考察すると、SiO膜のXの値は、X=1.2よりも大きいと好適である。
 一方、図4より、SiO膜の成膜酸素量が60cc程度以上となると、SiO膜中の酸素量が飽和するため、X=1.8以上のSiO膜は作成することが難しいと判断される。したがって、Xの値は1.8よりも小さいと好ましい。
 以上より、SiO膜の成膜時の酸素量と、透明導電膜15の抵抗値及び透過率との関係により、Xの値は、1.2<X<1.8とすると好ましい。
 なお、Xの値はXPS分析(X-ray Photoelectron Spectroscopy)による値である。XPS測定には日本電子製JPS-9000MCを用い、X線源としてはMgKα、X線出力10KV×10mA、照射時間及び回数は100ms×4回、測定ステップ0.1eV、測定領域φ=6.0mmで行った。
(実施例1-iv:下地層12の厚さ)
 次に、下地層12としてのSiO膜について、適当な膜厚について検討した。実施例1-16~1-18は、それぞれ、SiO膜の膜厚を変化させて透明導電膜15を作成したものである。また、SiO膜を備えない例として、比較例3の結果と比較した。各実施例及び比較例について、焼成前後における抵抗値、抵抗値の変化率、透過率、反射率、吸収率を表4に示す。なお、実施例1-16~1-18及び比較例3は、SiO膜の厚さの効果を比較するため、耐酸化保護層14としてのATO膜を十分に厚くし、ガスバリア性が確保された条件とした。
Figure JPOXMLDOC01-appb-T000004
 さらに、SiO膜の膜厚と、透明導電膜15の抵抗値との関係を図5に、SiO膜の膜厚と、抵抗値変化率との関係を図6に、SiO膜の膜厚と、透過率との関係を図7に示す。なお、図5~図7中の点線は、SiO膜の膜厚が100Åであることを示すものである。
 図5より、成膜後、焼成前の透明導電膜15の抵抗値はほぼ一定であり、SiO膜の膜厚に依存しないものの、焼成後の抵抗値は、SiO膜の膜厚が大きくなるにつれて、大きく低下していた。SiO膜の膜厚が100Åのとき、急激に抵抗値が減少していたことから、SiO膜の膜厚は、100Å以上とすると好ましい。そして、図6より、透明導電膜15の抵抗値変化率は、SiO膜の膜厚が100Å以上であるとき、1に近くなっていたため、この点からも、SiO膜の膜厚は100Å以上とすると好ましい。さらに、図7より、SiO膜の膜厚を100Åより薄くしても、透過率の向上が見られなかったことから、透過率の向上を目的としてSiO膜の膜厚100Åよりも小さくしても効果的ではないことが明らかになった。
 以上より、SiO膜の膜厚は、抵抗値及び透過率の両方を考慮すると、100Å以上とすると好適であることが示された。さらに、上記実施例1-iの項における表1の実施例1-3-1及び1-3-2に示されているように、ATO膜の膜厚が実施例1-16~1-18と同じ1000Åであるとき、SiO膜の膜厚を500Åとしても、約80%程度という十分な透過率が得られた。また、実施例1-3-1及び1-3-2の透明導電膜15は、抵抗値が約5Ω/Sqという低い値であり、十分な導電性が得られていたので、導電性及び透明性の両方を満足することができる。
 以上より、SiO膜の膜厚は、100~500Åの範囲とすると好適であることが示された。
 一方、下地層12としてのSiO膜を厚さ範囲100~500Åとするとき、実施例1-i~1-ivの項で示した表1~4より、耐酸化保護層14としてのATO膜の膜厚は、200~1000Åとするとよい。
 SiO膜と、ATO膜の厚さ範囲をそれぞれ、100~500Åとすることにより、十分な耐酸化性を得ることができる。SiO膜の膜厚を500Å、ATO膜の膜厚を1000Åより大きくすると、透明導電膜15の耐酸化性は向上するものの、透過率が低下するため、好ましくない。したがって、下地層12としてのSiO膜の膜厚を100~500Åとし、ATO膜の膜厚を200~1000Åとすることにより、透明導電膜15の導電性及び透明性の両方が良好であり、実用的な抵抗値及び透過率を備えることができる。
[実施例2:酸化チタン膜16の効果]
 実施例2の透明導電膜付き基板10は、図8に示すように、基板11上に、透明導電膜15及び酸化チタン膜16を備えたものである。
 実施例2-1~2-4の透明導電膜付き基板10は、上記実施例1-1~1-3と同様に、ガラス基板11上にSiO膜、ITO膜、ATO膜を成膜した後、さらにATO膜上に、酸化チタン膜16をスパッタリング法により、成膜温度300℃で成膜した。なお、酸化チタン膜16の膜厚は、実施例2-1~2-4において、すべて80Åとした。
 その後、透明導電膜付き基板10を、電気炉の中に入れ大気中において500℃で1時間熱処理を行った。
 また、比較例2-2は、上記実施例1-iの項で示した表1の比較例2-1上に酸化チタン膜16を成膜したものである。比較例2-2は、ITO膜及びATO膜の膜厚が比較例2-1と同じ大きさである。
 上記実施例2-1~2-4、比較例2-2について、焼成前後における抵抗値、透過率、及び焼成前後の変化率を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 実施例2-4と比較例2-2は、ITO膜厚とATO膜厚が互いに等しく形成されている。実施例2-4と比較例2-2を比較すると、下地層12としてSiO膜を備えた実施例2-4は、SiO膜を備えていない比較例2-2と比較して焼成後の抵抗値が極めて小さく、また、焼成前後の抵抗値の変化率も1に近いことから、酸化チタン膜16を設けることにより、耐酸化性がさらに向上していることが示された。また、透過率は、比較例2-2と比較して実施例2-4は若干低下するものの、実用的な透過率を保持していた。
 一般的な傾向として、酸化チタン膜16の膜厚を大きくしすぎると、透明導電膜15の透過率が低下する。耐酸化性と透過率は互いにトレードオフの関係にあるので、両者が良好な値となるような厚さで酸化チタン膜16を成膜することが必要である。
 また、実施例2-1~2-4より、焼成前後の抵抗値の変化率が1よりも小さい値であり、焼成前と比較して焼成後の方が抵抗値が小さくなることから、酸化チタン膜16を備えることにより、透明導電膜15の導電性をさらに良好にすることができることが分かった。
[実施例3:色素増感太陽電池100の電池特性]
 実施例3では、実施例2で説明した図8の透明導電膜付き基板10であって、酸化チタン膜16を備えたものを、第1の導電性基板110として用いた色素増感太陽電池100について説明する。
 実施例3-1~3-4は、以下の工程により色素増感電池100としたものである。
 透明導電膜付き基板10の酸化チタン膜16(膜厚:80Å)上に、さらに酸化チタンペーストを塗布した後、500℃で焼成して多孔質半導体層17a(厚さ:50000Å)を形成した。さらに、増感色素の溶解能を有する有機溶媒に、増感色素を0.3mmol/lの濃度で溶解させた色素溶液を調合し、多孔質半導体層17aを備えた基板10を3時間浸漬することで、多孔質半導体層17a表面に増感色素の単分子膜を化学吸着させた。更にヨウ化イミダゾリウムとヨウ素を主成分とした電解質17b、白金1000Åを触媒層17dとして、第2の導電性基板120としてのITOをさらに積層させて色素増感太陽電池100とした。
 また、比較例2-3は、上記実施例2の項で示した表5の比較例2-2上に酸化チタンからなる多孔質半導体層17aを形成したものである。比較例2-3は、ITO膜、ATO膜、酸化チタン膜16の膜厚、及び多孔質半導体層17aの厚さが比較例2-2と同じ大きさである。
 図9は、上方に第1の導電性基板110として透明導電膜付き基板10を配設し、上方から光を透過させる構成の色素増感太陽電池100を示している。また、表6中には、色素増感太陽電池100の電池性能と、透明導電膜付き基板10の透明導電膜15上に酸化チタンからなる多孔質半導体層17aを備えた際の透過率、すなわち、下地層12,導電層13,耐酸化保護層14、酸化チタン膜16,多孔質半導体層17aにおける透過率を示す。
 なお、表6中の「Pmax」とは、最大出力点であり、図10に示すJ-V特性グラフ上で最大出力となる点での発電量を示すものである。
 また、表6に示す電池性能及び図10に示すJ-V特性は、JISで規定するAM1.5、放射照度Xeランプ100mW/cm、モジュール温度25℃で測定したものである。
 さらに、表6にはFF(Fill Factor、曲線因子)も示す。FFは、FF=(Vmax・Imax)/(Voc・Isc)で定義されるものであり、このとき、Vmax、Imaxはそれぞれ、電流-電圧曲線において電力値が最大となる点の電圧値、及び電流値であり、Vocは開放電圧、Iscは短絡電流である。そして、FFが大きいほど色素増感太陽電池100の内部損失が小さく性能が優れていることを示す。
Figure JPOXMLDOC01-appb-T000006
 表6より、下地層12としてのSiO膜を備えた実施例3-4と、下地層12を備えない比較例2-3を比較すると、透明導電膜付き基板10としての透過率は若干低下するものの、色素増感太陽電池100の電池性能(特に、Pmax、FF、変換効率)が向上することが示されている。
 また、図10のJ-V特性グラフからも、下地層12を備えない比較例2-3よりも、下地層12としてのSiO膜を備えた実施例3-1~3-4の方が、電池特性が極めて良好になることが示されている。
 このように、透明導電膜付き基板10の透明導電膜15において、基板11側から下地層12,導電層13,耐酸化保護層14を備えることにより、導電層13の酸化が防止されて透明導電膜15の耐酸化性が向上することが分かった。その結果、焼成工程を経た場合であっても、導電層13の導電性が損なわれることなく、また、透明性も確保されることが分かった。
 さらに、酸化チタン膜16を積層することにより、透明導電膜15の耐酸化性をさらに向上させることができることが分かった。以上のように、本例の透明導電膜付き基板10は、良好な導電性及び透明性を備えるため、特に色素増感太陽電池100の電極として用いられた際、電池特性を飛躍的に向上できることが分かった。
10 透明導電膜付き基板
 11,21 基板
 12 下地層
 13 導電層
 14 耐酸化保護層
 15 透明導電膜
 16 酸化チタン膜
 17a 多孔質半導体層
 17b 電解質
 17c シール材
 17d  触媒層
 22 電極層
30,40 導線
100 色素増感太陽電池
110 第1の導電性基板
120 第2の導電性基板
 
 

Claims (8)

  1.  透明な基板上に透明導電膜が形成された透明導電膜付き基板であって、
     前記透明導電膜は、前記基板側から順に積層された下地層、導電層、耐酸化保護層を有し、
     該耐酸化保護層は、酸化スズを含有する導電性材料からなり、
     前記導電層は、金属酸化物からなり、
     前記下地層は、前記導電層を構成する材料よりも酸化物生成エネルギーが小さく、且つ化学当量よりも酸素が不足している酸化物からなることを特徴とする透明導電膜付き基板。
  2.  前記下地層は、化学式SiO(ただし、Xは化学量論比を示すものであって、1.2<X<1.8の範囲)で示される物質からなることを特徴とする請求項1記載の透明導電膜付き基板。
  3.  前記導電層は、スズを含む酸化インジウム(ITO)からなり、
     前記耐酸化保護層は、ニオブ、タンタル、アンチモンの少なくとも一つが添加された酸化スズからなることを特徴とする、請求項2記載の透明導電膜付き基板。
  4.  前記耐酸化保護層は、アンチモンが添加された酸化スズ(ATO)からなることを特徴とする請求項3記載の透明導電膜付き基板。
  5.  前記耐酸化保護層は、ニオブ、タンタルの少なくとも一つが添加された酸化スズからなることを特徴とする請求項3記載の透明導電膜付き基板。
  6.  前記耐酸化保護層の前記導電層逆側の面に、酸化チタン(TiO)膜をさらに備えてなることを特徴とする請求項4または5記載の透明導電膜付き基板。
  7.  前記耐酸化保護層の厚さは、200~1000Åの範囲であり、
     前記下地層の厚さは、100~500Åの範囲であることを特徴とする請求項4~6のいずれか一項に記載の透明導電膜付き基板。
  8.  第1の導電性基板と、
     該第1の導電性基板と対向して配設される第2の導電性基板と、
     前記第1の導電性基板の前記第2の導電性基板側の面に形成され、色素を吸着してなる多孔質半導体層と、
     該多孔質半導体層と前記第2の導電性基板との間に形成される電解質と、を備え、
     前記第1の導電性基板は、請求項1乃至7のいずれか一項に記載の透明導電膜付き基板であることを特徴とする色素増感太陽電池。
     
     
PCT/JP2012/062027 2011-05-13 2012-05-10 透明導電膜付き基板及び色素増感太陽電池 WO2012157524A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137032869A KR101903213B1 (ko) 2011-05-13 2012-05-10 투명 도전막 부착 기판 및 색소 증감 태양전지
JP2013515109A JP6010024B2 (ja) 2011-05-13 2012-05-10 透明導電膜付き基板及び色素増感太陽電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-108717 2011-05-13
JP2011108717 2011-05-13

Publications (1)

Publication Number Publication Date
WO2012157524A1 true WO2012157524A1 (ja) 2012-11-22

Family

ID=47176848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062027 WO2012157524A1 (ja) 2011-05-13 2012-05-10 透明導電膜付き基板及び色素増感太陽電池

Country Status (3)

Country Link
JP (1) JP6010024B2 (ja)
KR (1) KR101903213B1 (ja)
WO (1) WO2012157524A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014198423A (ja) * 2013-03-29 2014-10-23 株式会社カネカ 透明電極付き基板
JP2016091900A (ja) * 2014-11-07 2016-05-23 旭硝子株式会社 積層膜付き基板
WO2018220953A1 (ja) * 2017-05-30 2018-12-06 株式会社アルバック 透明導電膜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002197924A (ja) * 2000-12-26 2002-07-12 Bridgestone Corp 透明導電フィルム及びその製造方法並びにタッチパネル
JP2004149884A (ja) * 2002-10-31 2004-05-27 Bridgestone Corp Ito透明導電薄膜の成膜方法とito透明導電薄膜、透明導電性フィルム及びタッチパネル
JP2005019205A (ja) * 2003-06-26 2005-01-20 Geomatec Co Ltd 透明導電膜及びその製造方法
JP2008166178A (ja) * 2006-12-28 2008-07-17 Mitsubishi Materials Corp 導電性酸化スズ粉末とその製造方法
JP2010037138A (ja) * 2008-08-05 2010-02-18 Hitachi Zosen Corp 酸化チタン膜の形成方法および光電変換素子
JP2010251307A (ja) * 2009-03-23 2010-11-04 Kaneka Corp 透明電極の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002197924A (ja) * 2000-12-26 2002-07-12 Bridgestone Corp 透明導電フィルム及びその製造方法並びにタッチパネル
JP2004149884A (ja) * 2002-10-31 2004-05-27 Bridgestone Corp Ito透明導電薄膜の成膜方法とito透明導電薄膜、透明導電性フィルム及びタッチパネル
JP2005019205A (ja) * 2003-06-26 2005-01-20 Geomatec Co Ltd 透明導電膜及びその製造方法
JP2008166178A (ja) * 2006-12-28 2008-07-17 Mitsubishi Materials Corp 導電性酸化スズ粉末とその製造方法
JP2010037138A (ja) * 2008-08-05 2010-02-18 Hitachi Zosen Corp 酸化チタン膜の形成方法および光電変換素子
JP2010251307A (ja) * 2009-03-23 2010-11-04 Kaneka Corp 透明電極の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014198423A (ja) * 2013-03-29 2014-10-23 株式会社カネカ 透明電極付き基板
JP2016091900A (ja) * 2014-11-07 2016-05-23 旭硝子株式会社 積層膜付き基板
WO2018220953A1 (ja) * 2017-05-30 2018-12-06 株式会社アルバック 透明導電膜
JP2018206467A (ja) * 2017-05-30 2018-12-27 株式会社アルバック 透明導電膜
CN110678938A (zh) * 2017-05-30 2020-01-10 株式会社爱发科 透明导电膜

Also Published As

Publication number Publication date
KR101903213B1 (ko) 2018-10-01
KR20140031307A (ko) 2014-03-12
JPWO2012157524A1 (ja) 2014-07-31
JP6010024B2 (ja) 2016-10-19

Similar Documents

Publication Publication Date Title
JP6181637B2 (ja) 多層電子デバイス
US11908970B2 (en) Process for manufacturing multilayered thin film, method of manufacturing solar cell, and method for manufacturing solar cell module
JP5275346B2 (ja) 色素増感太陽電池
CN111868941B (zh) 层叠薄膜的制造方法、太阳能电池的制造方法及太阳能电池模块的制造方法
US20110240989A1 (en) Transparent conductive film and photoelectric converion element
KR102318356B1 (ko) 페로브스카이트계 염료를 이용한 고체형 박막 태양전지 및 제조 방법
JP2006313668A (ja) 酸化物半導体電極用転写材、色素増感型太陽電池用基材、色素増感型太陽電池、及びそれらの製造方法
TWI453924B (zh) 電極板與具有其之染料敏化光伏電池
JP6010024B2 (ja) 透明導電膜付き基板及び色素増感太陽電池
JP5400470B2 (ja) 太陽電池
JP7153166B2 (ja) 透明電極、透明電極の製造方法、および電子デバイス
US9692052B2 (en) Electrode material for battery, electrode material paste for battery, and solar cell using same, storage battery, and method for manufacturing solar cell
KR101232717B1 (ko) Ti-In-Zn-O 투명전극 및 이를 이용한 금속 삽입형 3층 구조 고전도도 투명전극과 이의 제조방법
JP2008277422A (ja) 積層型光電変換装置
JP2007073198A (ja) 色素増感型太陽電池
JP5876421B2 (ja) 光起電力装置および水素発生装置
JP2005243379A (ja) 光電変換装置
Passoni et al. Multi-layered hierarchical nanostructures for transparent monolithic dye-sensitized solar cell architectures
JP2005158621A (ja) 積層型光電変換装置
CN113728445B (zh) 制造多层薄膜的工艺、制造太阳能电池的方法、和制造太阳能电池组件的方法
JP2009135395A (ja) 光電変換装置及び光発電装置並びに光電変換モジュール
JPWO2020144885A1 (ja) 太陽電池
WO2023112807A1 (ja) 光電変換素子および光電変換素子の製造方法
JP7357247B2 (ja) 太陽電池
JP2009032661A (ja) 積層型光電変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013515109

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137032869

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12786331

Country of ref document: EP

Kind code of ref document: A1