WO2012157524A1 - 透明導電膜付き基板及び色素増感太陽電池 - Google Patents
透明導電膜付き基板及び色素増感太陽電池 Download PDFInfo
- Publication number
- WO2012157524A1 WO2012157524A1 PCT/JP2012/062027 JP2012062027W WO2012157524A1 WO 2012157524 A1 WO2012157524 A1 WO 2012157524A1 JP 2012062027 W JP2012062027 W JP 2012062027W WO 2012157524 A1 WO2012157524 A1 WO 2012157524A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- film
- transparent conductive
- conductive film
- layer
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 161
- 239000010410 layer Substances 0.000 claims abstract description 185
- 230000003647 oxidation Effects 0.000 claims abstract description 107
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 107
- 239000011241 protective layer Substances 0.000 claims abstract description 72
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 66
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 65
- 239000001301 oxygen Substances 0.000 claims abstract description 65
- 239000000463 material Substances 0.000 claims abstract description 59
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910001887 tin oxide Inorganic materials 0.000 claims abstract description 25
- 239000000126 substance Substances 0.000 claims abstract description 12
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 11
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 11
- 239000004020 conductor Substances 0.000 claims abstract description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 41
- 239000004065 semiconductor Substances 0.000 claims description 33
- 230000002950 deficient Effects 0.000 claims description 16
- 229910052787 antimony Inorganic materials 0.000 claims description 13
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 12
- 239000003792 electrolyte Substances 0.000 claims description 12
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 11
- 239000010955 niobium Substances 0.000 claims description 11
- 229910052718 tin Inorganic materials 0.000 claims description 11
- 229910052715 tantalum Inorganic materials 0.000 claims description 10
- 229910052758 niobium Inorganic materials 0.000 claims description 9
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 9
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 9
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 8
- 229910003437 indium oxide Inorganic materials 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 abstract description 18
- 238000010438 heat treatment Methods 0.000 abstract description 13
- 239000010408 film Substances 0.000 description 374
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 67
- 238000002834 transmittance Methods 0.000 description 61
- 239000002585 base Substances 0.000 description 36
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 36
- 230000000052 comparative effect Effects 0.000 description 30
- 238000010304 firing Methods 0.000 description 26
- 230000008859 change Effects 0.000 description 25
- 239000000975 dye Substances 0.000 description 21
- 238000000034 method Methods 0.000 description 17
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 12
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 11
- 230000007423 decrease Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 230000004888 barrier function Effects 0.000 description 10
- 239000003054 catalyst Substances 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 9
- 239000011701 zinc Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 8
- 229910052725 zinc Inorganic materials 0.000 description 8
- 229910052733 gallium Inorganic materials 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 229910052738 indium Inorganic materials 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000003566 sealing material Substances 0.000 description 7
- 239000011521 glass Substances 0.000 description 6
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000011787 zinc oxide Substances 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000007733 ion plating Methods 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000001235 sensitizing effect Effects 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 230000003064 anti-oxidating effect Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000434 metal complex dye Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- AIQCTYVNRWYDIF-UHFFFAOYSA-N 1-phenyl-9h-xanthene Chemical compound C=12CC3=CC=CC=C3OC2=CC=CC=1C1=CC=CC=C1 AIQCTYVNRWYDIF-UHFFFAOYSA-N 0.000 description 1
- JBOIAZWJIACNJF-UHFFFAOYSA-N 1h-imidazole;hydroiodide Chemical compound [I-].[NH2+]1C=CN=C1 JBOIAZWJIACNJF-UHFFFAOYSA-N 0.000 description 1
- JFJNVIPVOCESGZ-UHFFFAOYSA-N 2,3-dipyridin-2-ylpyridine Chemical compound N1=CC=CC=C1C1=CC=CN=C1C1=CC=CC=N1 JFJNVIPVOCESGZ-UHFFFAOYSA-N 0.000 description 1
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229940097275 indigo Drugs 0.000 description 1
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- DZVCFNFOPIZQKX-LTHRDKTGSA-M merocyanine Chemical compound [Na+].O=C1N(CCCC)C(=O)N(CCCC)C(=O)C1=C\C=C\C=C/1N(CCCS([O-])(=O)=O)C2=CC=CC=C2O\1 DZVCFNFOPIZQKX-LTHRDKTGSA-M 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003303 ruthenium Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2068—Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M14/00—Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2027—Light-sensitive devices comprising an oxide semiconductor electrode
- H01G9/2031—Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2059—Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
Definitions
- the present invention relates to a substrate with a transparent conductive film and a dye-sensitized solar cell, and more particularly to a substrate with a transparent conductive film and a dye-sensitized solar cell with high conductivity and transparency.
- a transparent conductive film formed of an oxide obtained by adding other elements to indium (In), zinc (Zn), tin (Sn), etc. on a transparent substrate is provided.
- a substrate with a transparent conductive film is used.
- transparent conductive films made of indium (In) -tin (Sn) oxide ITO, Indium Tin Oxide
- ITO Indium Tin Oxide
- the electrical resistance value of the transparent conductive film is small (that is, excellent conductivity) and the optical transmittance is high (that is, transparency). Excellent).
- the heating temperature in the manufacturing process of the Si-based solar cell, after forming a transparent conductive film on the substrate, it goes through an element manufacturing process for forming a compound semiconductor layer having high photoelectric conversion efficiency.
- the film forming temperature needs to be about 400 ° C., and in the manufacturing process of the dye-sensitized solar cell, it needs to be about 500 ° C., which is higher than that of the Si-based solar cell.
- the transparent conductive film made of ITO or the like is exposed to high temperature, oxygen in the atmosphere is bonded to a part of the oxygen deficient structure (vacancies), and the oxygen deficient structure acting as a carrier decreases. As a result of the carrier concentration being reduced, the conductivity of the transparent conductive film is reduced.
- Patent Document 1 considers the reduction of the oxygen deficient structure caused by heating the transparent conductive film, and on the surface side of the transparent conductive film (that is, the side exposed to the atmosphere) when forming the transparent conductive film.
- a technique for forming oxygen-deficient indium oxide on a substrate is disclosed.
- the surface side is mainly oxidized when heat-treated by making the surface side oxygen-deficient compared to the substrate side, so that a transparent conductive film having high conductivity is provided. can do.
- Patent Document 2 discloses a technique for forming a transparent conductive film by forming a tin oxide-based film having an oxygen (gas) barrier property (particularly a tin oxide film containing antimony: ATO film) on an ITO film. ing. Thus, by forming a film having a high oxygen barrier property on the ITO film, a transparent conductive film having high oxidation resistance and chemical resistance can be obtained.
- the vicinity of the surface of the transparent conductive film is preferentially oxidized during the heat treatment (firing) step by previously setting the surface vicinity of the transparent conductive film to an oxygen-deficient composition. Therefore, the oxygen deficient structure near the substrate does not decrease.
- the number of oxygen-deficient structures increases and enters an optimum range, and deterioration of conductivity and transparency can be suppressed.
- the technique disclosed in Patent Document 1 has an oxygen-deficient composition in the vicinity of the transparent conductive film surface so that an oxygen-deficient structure is a desirable number after heat treatment. It is difficult to control the amount, and it is difficult to ensure high conductivity and transparency in a transparent conductive film with a certain quality.
- a tin oxide-based film (mainly an ATO film) having an oxygen barrier property is formed on an ITO film, thereby forming a transparent conductive film having high oxidation resistance, that is, a conductive film.
- a high transparent conductive film can be formed.
- the conductivity and transparency of the ATO film are not high as compared with the ITO film, and as a result, the conductivity and transparency of the entire transparent conductive film are lowered.
- the thickness of the ATO film must be increased, and the transparency of the transparent conductive film is further impaired.
- the present invention has been made in view of the above problems, and its purpose is to improve the heat resistance and oxidation resistance of the conductive layer, thereby providing high conductivity and transparency even after the heat treatment step.
- the object is to provide a substrate with a transparent conductive film.
- the other object of this invention is to provide the dye-sensitized solar cell provided with high energy conversion efficiency by improving the electroconductivity and transparency of a transparent conductive film.
- the subject is a substrate with a transparent conductive film in which a transparent conductive film is formed on a transparent substrate, and the transparent conductive film is laminated in order from the substrate side.
- the substrate with a transparent conductive film of the present invention includes not only an oxidation-resistant protective layer whose main material is tin oxide but also a base layer on the conductive layer.
- the base layer has a lower oxide generation energy than the material constituting the conductive layer and is composed of an oxygen-deficient oxide than the chemical equivalent, even if the substrate with the transparent conductive film is heated, Since oxygen is absorbed, oxidation of the conductive layer is prevented and heat resistance is improved. That is, since the constituent material of the underlayer has a lower oxide generation energy than the constituent material of the conductive layer and has an oxygen-deficient structure, the underlayer is preferentially oxidized, thereby heat treatment (firing).
- the substrate with a conductive film of the present invention retains oxygen vacancies in the conductive layer because the conductive layer is hardly oxidized when heat-treated. Therefore, even when the substrate with a transparent conductive film is heated, oxygen vacancies in the conductive layer are maintained, so that high conductivity and transparency can be provided without impairing conductivity and transparency.
- the underlayer is made of a material represented by a chemical formula SiO x (where X is a stoichiometric ratio and 1.2 ⁇ X ⁇ 1.8). Since SiO x is a material having a relatively small oxide generation energy, the oxide generation energy is smaller than that of a general metal oxide constituting the conductive layer. Therefore, when the material constituting the underlayer is the above substance, the underlayer is more easily oxidized when the substrate with the transparent conductive film is heat-treated. In addition, since silicon oxide has higher optical transmittance than other materials (that is, high transparency), the transparency of the substrate with a transparent conductive film is not lowered.
- SiO x is a material having a relatively small oxide generation energy
- the oxide generation energy is smaller than that of a general metal oxide constituting the conductive layer. Therefore, when the material constituting the underlayer is the above substance, the underlayer is more easily oxidized when the substrate with the transparent conductive film is heat-treated.
- silicon oxide has higher optical transmittance than other materials (that
- the underlayer becomes more transparent and easily oxidized. Therefore, by forming the base layer made of the above material, it is possible to give a high antioxidation effect to the conductive layer and to obtain a transparent conductive film having high transparency.
- the conductive layer is made of indium oxide (ITO) containing tin
- the oxidation-resistant protective layer is made of tin oxide to which at least one of niobium, tantalum, and antimony is added.
- ITO indium oxide
- the oxidation-resistant protective layer is made of tin oxide to which at least one of niobium, tantalum, and antimony is added.
- ITO has the property of being easily oxidized due to heat treatment and lowering its conductivity, it is not only provided with a base layer, but also by forming an oxidation-resistant protective layer with the above-mentioned material having gas barrier properties, the ITO film is oxidized. It becomes difficult to be done. As a result, the conductivity and transparency of the conductive layer (ITO film) are kept high, and the substrate with a transparent conductive film having good conductivity and transparency as the entire transparent conductive film can be obtained.
- the oxidation-resistant protective layer is made of tin oxide (ATO) to which antimony is added.
- ATO tin oxide
- the conductive layer provided below the oxidation-resistant protective layer is further hardly oxidized.
- ATO has particularly high conductivity among materials having a high gas barrier property, and the conductivity is improved by heat treatment at 400 ° C. to 500 ° C., so that the conductivity of the transparent conductive film can be improved.
- antimony since antimony has some toxicity, it is possible to select the oxidation-resistant protective layer as tin oxide to which at least one of niobium and tantalum is added in consideration of the environment.
- the oxidation-resistant protective layer is composed of tin oxide to which at least one of niobium and tantalum is added, the conductivity and transparency are slightly inferior to ATO, but the oxidation resistance is almost the same as when ATO is used. The effect of
- a titanium oxide (TiO 2 ) film is further provided on the surface of the oxidation-resistant protective layer on the side opposite to the conductive layer.
- TiO 2 titanium oxide
- the thickness of the oxidation-resistant protective layer is preferably in the range of 200 to 1000 mm, and the thickness of the base layer is preferably in the range of 100 to 500 mm.
- the underlayer can provide an effect of suppressing the oxidation of the conductive layer, so that it is not necessary to increase the thickness of the oxidation-resistant protective layer.
- the oxidation of the conductive layer can be suppressed by setting the thickness of the oxidation protection layer made of the ATO film to 200 to 1000 mm.
- the oxidation resistance of the transparent conductive film is ensured without lowering the transparency due to the formation of the thick oxidation-resistant protective layer.
- Conductivity and transparency can be set to practically appropriate values.
- the problem is that the first conductive substrate, the second conductive substrate disposed opposite to the first conductive substrate, A porous semiconductor layer formed on the surface of the first conductive substrate on the second conductive substrate side and adsorbing a dye, and between the porous semiconductor layer and the second conductive substrate The electrolyte is formed, and the first conductive substrate is solved by being the substrate with a transparent conductive film according to any one of claims 1 to 6.
- the oxidation-resistant protective layer but also a base layer, and a substrate with a transparent conductive film having a configuration in which the base layer is preferentially oxidized compared to the conductive layer is an electrode of a dye-sensitized solar cell.
- an electrode of a dye-sensitized solar cell By using as, in the electrode of a dye-sensitized solar cell, electroconductivity and transparency can be improved. As a result, since the electrode has a small electric resistance value and a high optical transmittance, the energy conversion efficiency of the dye-sensitized solar cell can be improved.
- the substrate with a transparent conductive film of the present invention includes a base layer that is more easily oxidized than the conductive layer in the transparent conductive film, whereby oxidation of the conductive layer is prevented and heat resistance is improved. And, by improving the oxidation resistance and heat resistance of the conductive layer, it prevents the decrease in conductivity and transparency due to the decrease of oxygen deficiency in the conductive layer, and high conductivity and transparency even after the heat treatment step
- substrate with a transparent conductive film provided with can be provided. Moreover, since the electroconductivity and transparency of the transparent conductive film with which an electrode is equipped improve, a dye-sensitized solar cell with high energy conversion efficiency can be provided.
- FIG. 1 to 7 relate to a substrate with a transparent conductive film according to an embodiment of the present invention
- FIG. 1 is a schematic sectional view of the substrate with a transparent conductive film
- FIG. 3 is a graph showing the relationship between the resistance value change rate of the transparent conductive film
- FIG. 3 is a graph showing the relationship between the amount of oxygen during film formation of the underlying layer and the optical transmittance of the transparent conductive film
- FIG. 5 is a graph showing the relationship between the amount of oxygen during film formation and the O / Si ratio of SiO x constituting the underlayer
- FIG. 5 is a graph showing the relationship between the film thickness of the underlayer and the resistance value of the transparent conductive film
- FIG. Is a graph showing the relationship between the thickness of the underlying layer and the resistance change rate of the transparent conductive film
- FIG. 7 is a graph showing the relationship between the thickness of the underlying layer and the optical transmittance of the transparent conductive film.
- FIG. 8 relates to a substrate with a transparent conductive film according to another embodiment of the present invention, and is a schematic sectional view of the substrate with a transparent conductive film. Further, FIGS.
- FIG. 9 and 10 relate to a dye-sensitized solar cell according to an embodiment of the present invention
- FIG. 9 is a schematic cross-sectional view
- FIG. 10 shows the relationship between current density and output voltage (J ⁇ It is a graph which shows a V characteristic.
- the substrate 10 with a transparent conductive film according to this embodiment is formed by forming a transparent conductive film 15 on a transparent substrate 11, and the transparent conductive film 15 is arranged in order from the substrate 11 side. It has a ground layer 12, a conductive layer 13, and an oxidation-resistant protective layer 14. That is, a transparent conductive film 15 formed by sequentially laminating a base layer 12, a conductive layer 13, and an oxidation-resistant protective layer 14 on a substrate 11 is provided.
- the substrate 11 is a plate-like member, and as the material of the substrate 11, an appropriate material that can form the transparent conductive film 15 on the surface and has transparency to the extent that light is received by the transparent conductive film 15. Selected from.
- a material for example, a material capable of transmitting a predetermined amount of light such as a glass substrate, a quartz substrate, and an optical crystal substrate is used.
- a non-alkali glass not containing an alkali element such as Na or a quartz substrate having high heat resistance.
- a thin film such as SiO 2 or TiO 2 is sputtered on the surface to increase transparency, prevent diffusion of alkali elements such as Na, or improve heat resistance. It may be a substrate formed by a method. Further, these substrates 11 may be plate-shaped or film-shaped.
- the transmittance of the substrate 11 is not particularly limited as long as it can transmit light to the transparent conductive film 15.
- the average transmittance in the wavelength range of 350 to 800 nm is in the range of 10% to 99%.
- the range of 60% to 99% is preferable, and the range of 80% to 99% is optimal.
- the thickness of the substrate 11 is not particularly limited, but is usually in the range of 100 ⁇ m to 5 mm, and particularly preferably in the range of 500 ⁇ m to 2 mm.
- the transparent conductive film 15 is a film that is light transmissive and conductive.
- the transparent conductive film 15 constitutes the negative electrode of the dye-sensitized solar cell 100 described later.
- a titanium oxide paste is applied on the transparent conductive film 15.
- baking is performed at a desirable temperature of 400 to 500 ° C. Therefore, the transparent conductive film 15 is preferably made of a material whose transmittance is not reduced by this baking process and whose resistance is not increased.
- the transparent conductive film 15 is required to have high conductivity and transparency after being baked at a high temperature.
- the transparent conductive film 15 of the present embodiment is formed by sequentially laminating a base layer 12, a conductive layer 13, and an oxidation-resistant protective layer 14 on a substrate 11.
- the transparent conductive film 15 as a whole has an average transmittance in the range of wavelengths of 350 nm to 800 nm in the range of 10% to 99%, particularly preferably in the range of 60% to 99%, more preferably. Is optimally in the range of 80% to 99%.
- the conductive layer 13 is made of a metal oxide having high conductivity and high transparency.
- the transmittance of the conductive layer 13 is such that the average transmittance in the wavelength range of 350 nm to 800 nm is in the range of 10% to 99%, particularly preferably in the range of 60% to 99%, and more preferably 80%. It is optimal that it is in the range of 99% or less.
- indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), or a material obtained by adding impurities to these materials can be used.
- the material include, for example, indium oxide containing at least one of tin, germanium, zinc, and gallium, zinc oxide containing at least one of aluminum, gallium, boron, and magnesium, antimony, and fluorine. Added tin oxide can be used.
- the content of tin, germanium, zinc, and gallium added to indium oxide is the atomic ratio of these materials to indium (Sn / In, Ge / In, Zn / In, Ga / In) is preferably 0.5 to 20.0%.
- the atomic ratio is the ratio of the oxides of each material, and Sn / In should be expressed strictly as Sn oxide / In oxide, but it is based on commonly used abbreviations. Sn / In.
- Sn / In The same applies to other materials.
- the conductivity and transparency of the film constituting the conductive layer 13 can be maintained well.
- the total amount of materials to be added is preferably 20.0% or less with respect to indium.
- the content of aluminum, gallium, boron, and magnesium added to zinc oxide is the atomic ratio of these materials to zinc (Al / Zn, Ga / Zn, B / (Zn, Mg / Zn) is preferably 0.5 to 20.0%.
- Al / Zn, Ga / Zn, B / (Zn, Mg / Zn) is preferably 0.5 to 20.0%.
- ITO with tin added to indium oxide Is suitable as a material constituting the conductive layer 13 because of its excellent conductivity and transparency.
- ITO has a high conductivity and transmittance because it appropriately has oxygen vacancies serving as electron channels, and is suitable as a material constituting the conductive layer 13.
- the thickness of the conductive layer 13 is preferably in the range of 200 mm to 10,000 mm. In such a range, the resistance value of the transparent conductive film 15 can be reduced and the transmittance can be kept high.
- Transparent conductive film 15 Underlayer 12
- a base layer 12 is formed between the substrate 11 and the conductive layer 13.
- the underlayer 12 is provided together with the oxidation resistant protective layer 14 to prevent oxidation of the conductive layer 13. Therefore, for example, even when the substrate 10 with the transparent conductive film is subjected to a baking process of about 400 to 500 ° C., the underlying layer 12 is preferentially oxidized over the conductive layer 13, so The structure can be retained. As a result, the conductive layer 13 can maintain high conductivity and transparency.
- the transmittance of the underlayer 12 is such that the average transmittance in the wavelength range of 350 nm to 800 nm is in the range of 10% to 99%, particularly in the range of 60% to 99%, more preferably 80%. It is optimal that it is in the range of 99% or less.
- the underlayer 12 is formed of an oxide that has an oxide generation energy smaller than that of the material constituting the conductive layer 13 and oxygen is insufficient compared to a chemical equivalent. That is, the material constituting the underlayer 12 is an oxide whose generation energy line shown in the Ellingham diagram is lower than that of the material constituting the conductive layer 13 and has an oxygen deficient structure.
- the oxide formation energy refers to standard Gibbs energy when an oxide is formed, and is also referred to as oxide formation free energy.
- Examples of such a material include silicon oxide (SiO x ), aluminum oxide (Al x O y ), and the like. Since such a material basically has a lower generation energy line in the Ellingham diagram than the metal oxide constituting the conductive layer 13 and has a lower oxide generation energy, for example, a substrate with a transparent conductive film When 10 undergoes a baking process of about 400 to 500 ° C., the underlayer 12 is oxidized in preference to the conductive layer 13.
- the underlayer 12 may be formed of a material represented by the chemical formula SiO x .
- Silicon is a material having a low oxide generation energy and is likely to be an oxide. Therefore, by forming the underlayer 12 from SiO x having an oxygen deficient structure, the underlayer 12 can absorb oxygen and suppress the oxidation of the conductive layer 13.
- X represents the stoichiometric ratio and is preferably in the range of 1.2 ⁇ X ⁇ 1.8.
- X is 1.2 or less, since the composition approaches that of SiO, the underlayer 12 appears to be colored yellow, and the transparency is lowered. Further, those having X of 1.8 or more are inappropriate because it is difficult to form a film by sputtering or vapor deposition, and therefore it is difficult to form the underlayer 12 with a certain quality.
- the thickness of the underlayer 12 is preferably in the range of 100 to 500 mm. If the thickness is less than 100%, the transmittance is high, but the underlayer 12 cannot sufficiently absorb oxygen, and the transparent conductive film 15 cannot be provided with sufficient oxidation resistance. On the other hand, when the thickness is larger than 500 mm, the underlying layer 12 can sufficiently absorb oxygen and provide the transparent conductive film 15 with sufficient oxidation resistance, but the transmittance decreases.
- the thickness of the underlayer 12 is in the above range, the effect of suppressing the oxidation of the conductive layer 13 can be sufficiently obtained by being provided in combination with the oxidation-resistant protective layer 14.
- the oxidation-resistant protective layer 14 is a film having light permeability and conductivity, and further having an oxygen (gas) barrier property.
- the transmittance of the oxidation-resistant protective layer 14 is such that the average transmittance in the wavelength range of 350 nm to 800 nm is in the range of 10% to 99%, particularly preferably in the range of 60% to 99%, and more preferably. It is optimal to be in the range of 80% or more and 99% or less.
- the oxidation-resistant protective layer 14 is preferably composed of tin oxide containing tin oxide as a main component and at least one of niobium, tantalum, and antimony added. Further, the oxidation-resistant protective layer 14 may be composed of tin oxide that does not contain the additive.
- the content of niobium, tantalum, and antimony added to tin oxide, when adding one of these, the atomic ratio of these materials to tin (Nb / Sn, Ta / Sn, Sb / Sn) Is preferably 0.5 to 20.0%. When added in such a ratio, the conductivity and transparency of the film constituting the oxidation-resistant protective layer 14 can be maintained well. Moreover, when adding multiple types of these materials, it is good to make the addition amount of the whole material to add into 20.0% or less with respect to tin.
- tin oxide (ATO) to which antimony is added is particularly suitable as a material constituting the oxidation-resistant protective layer 14 because it has a good gas barrier property and high conductivity and transparency.
- antimony since antimony has some toxicity, its use may not be preferred due to environmental considerations.
- tin oxide (described as SnO x ) to which niobium or tantalum or both are added is slightly inferior in resistance value and transmittance as compared with ATO, as described later, in the oxidation-resistant protective layer 14 of the present embodiment. When used, the oxidation resistance shows almost the same performance as ATO, and this point can also be said to be an effect derived from the structure described in the claims.
- the thickness of the oxidation-resistant protective layer 14 is preferably in the range of 200 to 1000 mm. If it is smaller than 200 mm, the transmittance is high but sufficient oxidation resistance cannot be obtained. If it is larger than 1000 mm, the oxidation resistance is improved, but the transmittance is lowered. Therefore, when the thickness of the oxidation-resistant protective layer 14 is in the above range, the effect of suppressing the oxidation of the conductive layer 13 can be sufficiently obtained by being provided in combination with the base layer 12. In addition, since the oxidation of the conductive layer 13 is also suppressed by the base layer 12, it is not necessary to increase the thickness of the oxidation-resistant protective layer 14. Therefore, since the transparency of the oxidation-resistant protective layer 14 can be ensured, as a result, the transparency as the transparent conductive film 15 can be improved.
- Tianium oxide film 16 A titanium oxide film 16 may further be provided on the surface of the oxidation-resistant protective layer 14 on the side opposite to the conductive layer 13 as shown in FIG.
- the titanium oxide film 16 is a titanium oxide thin film that is formed by a technique such as sputtering, vacuum deposition, or ion plating, and has a denser structure than porous titanium oxide.
- the conductive layer 13 is prevented from being oxidized even when the substrate 10 with the transparent conductive film undergoes a baking step.
- the transparent conductive film 15 can maintain high conductivity and transparency.
- a porous titanium oxide layer is formed on a transparent conductive film of a substrate with a transparent conductive film, but in this embodiment, it has a denser structure than porous titanium oxide.
- each of the films constituting the transparent conductive film 15 has a substantially rectangular opening so as to form a substantially rectangular negative electrode pattern. It is formed using a plurality of formed masks.
- a known film forming technique such as a sputtering method, a vacuum deposition method, an ion plating method, or the like can be used.
- substrate 10 with a transparent conductive film is demonstrated.
- the dye-sensitized solar cell 100 includes a substrate 10 with a transparent conductive film as a first conductive substrate 110, and further a second electrode at a position facing the first conductive substrate 110.
- a conductive substrate 120 is provided.
- FIG. 9 shows an enlarged thickness of each layer of the substrate 10 with a transparent conductive film.
- symbol 17c of FIG. 9 is a sealing material
- 17d is a catalyst layer.
- the substrate 10 with a transparent conductive film is provided as a first conductive substrate 110 and is disposed with the surface on which the transparent conductive film 15 is formed facing the second conductive substrate 120 side.
- a conductive wire 30 as a lead wire is connected to the conductive layer 13 constituting the first conductive substrate 110.
- the second conductive substrate 120 is a plate-like member having the electrode layer 22 formed on the surface.
- the material of the substrate 21 constituting the second conductive substrate 120 can be selected from the same transparent material as that of the substrate 11. However, unlike the substrate 11, the substrate 21 is not necessarily on the side that captures light, and thus does not necessarily need to be formed of a transparent material, and may be formed of a material with poor light transmission. Examples of such materials include various ceramics such as oxide ceramics and nitride ceramics.
- the thickness of the substrate 21 is not particularly limited, but is usually in the range of 100 ⁇ m to 5 mm, and particularly preferably in the range of 500 ⁇ m to 2 mm.
- the substrate 21 may be plate-shaped or film-shaped.
- the electrode layer 22 formed on the substrate 21 is an electrode formed in a film shape with a conductive material.
- a conductive metal or carbon the same material as that described for the conductive layer 13 of the transparent conductive film 15, or the like is used.
- a transparent conductive film is used when the electrode layer 22 is used in a portion that needs to transmit light.
- a metal film such as Al, Pt, Pd, Au, or a carbon film is used as the electrode layer 22.
- FIG. 9 shows the configuration of the dye-sensitized solar cell 100 including the catalyst layer 17d.
- the electrode layer 22 has a catalytic action and is excellent in resistance to the electrolyte 17b. Pt, Pd, Au or the like is preferably used.
- a conductive wire 40 as a lead wire is connected to the electrode layer 22 for connection to an external load.
- the electrode layer 22 has both a catalytic function and a function as a collecting electrode, it is not necessary to separately provide a collecting electrode, and the configuration of the battery can be simplified.
- the electrode layer 22 is formed using a mask or the like in which an opening having an appropriate size is formed.
- a known film forming technique such as a sputtering method, a vacuum evaporation method, an ion plating method, or the like can be used.
- the porous semiconductor layer 17a is obtained by adsorbing a dye (dye sensitizer) to metal oxide semiconductor fine particles.
- the metal oxide semiconductor fine particles used for the porous semiconductor layer 17a are not particularly limited as long as they are made of a metal oxide having semiconductor characteristics. Examples of the metal oxide used for the porous semiconductor layer 17a include TiO 2 , ZnO, SnO 2 , ZrO 2 , Al 2 O 3 , Ta 2 O, Nb 2 O 5 and the like. Among these, it is preferable to use TiO 2 because it is particularly excellent in semiconductor characteristics.
- the porous semiconductor layer 17a made of TiO 2 is prepared by mixing titanium oxide powder with a binder to form a paste, applying this fired paste onto the titanium oxide film 16 formed on the transparent conductive film 15, and firing it. It is formed.
- the firing temperature may be 100 ° C. or higher, but it is preferably fired at 400 ° C. or higher in order to improve the sinterability between the titanium oxide particles and increase the photoelectric conversion efficiency.
- an organic solvent, an acidic solution, or the like can be used as the binder of the baked paste.
- the crystal structure of titanium oxide constituting the porous semiconductor layer 17a is preferably an anatase type.
- the porous semiconductor layer 17a has a pore structure including many small holes.
- Dye is adsorbed on a part of the porous semiconductor layer 17a.
- a dye that can efficiently absorb sunlight that is, a dye having an absorption band from the near ultraviolet region to the near infrared region centering on the visible region is used.
- the dye is dissolved in a solvent such as alcohol, and the first conductive substrate 110 formed up to the porous semiconductor layer 17a is immersed in the dye, thereby being adsorbed on the pores of the porous semiconductor layer 17a.
- Examples of such a dye include an organic dye and a metal complex dye.
- organic dyes include acridine, azo, indigo, quinone, coumarin, merocyanine, and phenylxanthene dyes.
- the metal complex dye include a ruthenium bipyridine dye and a ruthenium terpyridine dye which are ruthenium complexes.
- electrolyte 17b An electrolyte 17b is provided on the surface side of the porous semiconductor layer 17a.
- a material that can supply electrons to the dye contained in the porous semiconductor layer 17a and receive electrons by the electrode layer 22 is used.
- the electrolyte 17b may be solid or liquid, and is not particularly limited as long as it is a material used as an electrolyte for a general dye-sensitized solar cell. Specific examples of such materials include an electrolytic solution in which lithium iodide and metallic iodine are dissolved in polyethylene glycol, and an electrolytic solution in which acetonitrile and ethylene carbonate are mixed.
- sealing material 17c Between the first conductive substrate 110 and the second conductive substrate 120, a sealing material 17c for partitioning the cells of each dye-sensitized solar cell 100 is formed.
- the sealing material 17c is a member for partitioning the entire outer peripheral portion of the plurality of cells, and is also a member that separates the cells. In the space partitioned by the sealing material 17c, the porous semiconductor layer 17a and the electrolyte 17b in which the dye is adsorbed are held.
- resin, glass, or the like can be used as the material of the sealing material 17c. Specific examples of the resin include an epoxy resin and a urethane resin.
- a catalyst layer 17d is provided on the upper layer of the electrode layer 22 on the second conductive substrate 120 side.
- the catalyst layer 17d is provided to promote the oxidation-reduction reaction, and Pt, Pd, Au, C or the like is used as a material constituting the catalyst layer 17d.
- the substrate 10 with a transparent conductive film can be used as the second conductive substrate 120.
- the catalyst layer 17d is formed on the second conductive substrate 120.
- platinum chloride is used when forming a Pt film.
- the titanium oxide film 16 is formed on the transparent conductive film 15 of the transparent conductive film moon substrate 10
- the transparent conductive film 15 can be protected from the corrosiveness of platinum chloride, and the Pt film and the transparent conductive film 15 are protected.
- the film quality can be kept good.
- Example the board
- Example 1 Configuration of transparent conductive film 15
- the substrate 10 with a transparent conductive film of Example 1 has only a transparent conductive film 15 on a substrate 11.
- Example 1-i Effect of the underlayer 12
- Examples 1-1 to 1-3 having the base layer 12 were compared with Comparative Examples 1 to 5 having no base layer 12, and the effect of the base layer 12 was examined.
- Example 1-3-1 and Example 1-3-2 differ in the amount of oxygen at the time of forming the underlayer 12 (SiO x film), and the oxygen flow rate of Example 1-3-1. Is 30 cc, and the oxygen flow rate of Example 1-3-2 is 35 cc.
- the thickness of each film is as shown in Table 1.
- substrate 10 with a transparent conductive film produced as mentioned above was put into the electric furnace, and was heat-processed at 500 degreeC or 600 degreeC for 1 hour in air
- resistance value Area resistance (hereinafter referred to as “resistance value”) of transparent conductive film before and after heat treatment, average transmittance (hereinafter referred to as “transmittance”) in the visible region (350 to 800 nm), resistance value and transmission Table 1 shows the rate of change before and after the heat treatment.
- the sheet resistance was measured using a Loresta GP made by Mitsubishi Chemical Analitech.
- the transmittance was measured with a Hitachi Electronic Recording Spectrometer (U-4100) and measured with air as the reference. Unless otherwise specified, measurements according to the following examples were also measured with the same apparatus.
- Comparative Examples 1 to 5 compared to Examples 1-1 to 1-3, a transparent conductive film that does not include the base layer 12, the oxidation-resistant protective layer 14, or both is formed on the glass substrate 11. It is a thing.
- the transparent conductive film 15 includes the SiO x film as the base layer 12.
- Comparative Example 2-1 only the ITO film as the conductive layer 13 and the ATO film as the oxidation-resistant protective layer 14 are used.
- Comparative Example 2-2 the ITO film as the conductive layer 13 and the SnO film as the oxidation-resistant protective layer 14 are used. Only the x film is formed with the same thickness as in Examples 1-1 and 1-2.
- Example 1-1 and 1-2 compared with Comparative Examples 2-1 and 2-2, the thickness of the SiO x film is increased in terms of resistance, although there is no particular difference regarding transmittance. As a result, the resistance value after firing became extremely small, and the rate of change before and after firing was close to 1, indicating that the resistance value hardly changed before and after firing. Similar results were obtained when compared with reference to Examples 1-3-1, 1-3-2 and Comparative Example 4.
- Comparative Examples 1, 2-1, 2-2, and 3 shows that the thicker the ATO film or SnO x film as the oxidation-resistant protective layer 14, the lower the resistance value becomes.
- the resistance value of the transparent conductive film 15 is compared with the case where the underlayer 12 is provided as in Example 1-2. It is shown that the rate of change is large.
- Comparative Example 2-2 including only the SnO x film In Comparative Example 5 that includes only the SiO x film as the underlayer 12 and does not include the oxidation-resistant protective layer 14, the resistance value and the rate of change are large, so that the oxidation resistance of the transparent conductive film 15 is increased. In order to improve, it was shown that it is necessary to provide both the underlayer 12 and the oxidation-resistant protective layer 14.
- the transparent conductive film 15 provided with the base layer 12 and the oxidation-resistant protective layer 14 had a low resistance value and a substantially constant transmittance even after the baking treatment.
- the conductive layer 13 is oxidized and the conductivity is lowered by performing the baking treatment.
- the base layer 12 and the oxidation-resistant protective layer 14 are provided, the oxidation of the conductive layer 13 is suppressed.
- the resistance value of the transparent conductive film 15 does not decrease.
- the base layer 12 is composed of an oxide having an oxide generation energy smaller than that of the conductive layer 13 and an oxygen-deficient oxide than the chemical equivalent. In other words, the base layer 12 is preferentially oxidized over the conductive layer 13 during the firing step.
- Examples 1-1 to 1-3 as the SiO x film and ATO film becomes thick, the resistance value of the transparent conductive film 15 is reduced, and the firing before and after the change rate is found to be close to one. However, the transmittance (transparency) of the transparent conductive film 15 decreased as the thickness of each film increased.
- Example 1-ii Thickness and composition of the oxidation-resistant protective layer 14
- the transparent conductive film 15 was formed by changing the thickness of the oxidation-resistant protective layer 14 while keeping the thickness of the base layer 12 and the conductive layer 13 constant.
- Those employing an ATO film as the oxidation-resistant protective layer 14 are represented by -1 at the end of each example number, and those employing an SnO x film are represented by -2.
- the transparent conductive film 15 was formed under the same conditions as in Examples 1-1 to 1-3 except for the thickness of each layer.
- Table 2 shows the resistance value, transmittance, and change rate before and after firing for each example.
- the thickness of the oxidation-resistant protective layer 14 is set to an appropriate size in consideration of the relationship between the structure and thickness of the underlayer 12 described below. I found it necessary to do.
- Example 1-iii Composition of Underlayer 12 Next, an appropriate value of X in the SiO x film as the underlayer 12 was examined. In Examples 1-8 to 1-15, the transparent conductive film 15 was formed by changing the amount of oxygen at the time of forming the SiO x film. In Examples 1-8 and 1-9 and Examples 1-10 to 1-15, the thicknesses of the conductive layer 13 and the oxidation-resistant protective layer 14 and the firing conditions were changed. Table 3 shows the resistance value, transmittance, and change rate before and after firing for each of these examples.
- the transparent conductive film 15 desirably has a transmittance of about 80% after firing. It is appropriate that the amount of oxygen during the formation of the SiO x film is more than 30 cc. If this amount of oxygen is less than, for composition ratios SiO x film is close to SiO, become SiO x film is visually colored yellow, transparency decreases. Therefore, in view of the resistance value and the transmittance, it was shown that the amount of oxygen at the time of forming the SiO x film should be more than 30 cc.
- the value of X is 1.2 ⁇ X ⁇ 1.8 depending on the relationship between the amount of oxygen at the time of forming the SiO x film and the resistance value and transmittance of the transparent conductive film 15.
- Example 1-iv thickness of the underlayer 12
- the transparent conductive film 15 was formed by changing the thickness of the SiO x film.
- the result of Comparative Example 3 was compared. Table 4 shows the resistance value before and after firing, the rate of change in resistance value, the transmittance, the reflectance, and the absorptance for each example and comparative example.
- the ATO film as the oxidation-resistant protective layer 14 is made sufficiently thick to ensure gas barrier properties.
- FIG. 5 and the film thickness of the SiO x film the relationship between the resistance value of the transparent conductive film 15, the film thickness of the SiO x film, in FIG. 6 the relationship between the resistance value change rate, film SiO x film
- the relationship between the thickness and the transmittance is shown in FIG. 5 to 7 indicate that the thickness of the SiO x film is 100 mm.
- the resistance value before firing of the transparent conductive film 15 is substantially constant, although not dependent on the thickness of the SiO x film, the resistance value after firing, the film thickness of the SiO x film is large As it became, it was greatly reduced.
- the film thickness of the SiO x film is preferably 100 mm or more. From FIG. 6, the rate of change in the resistance value of the transparent conductive film 15 was close to 1 when the film thickness of the SiO x film was 100 mm or more. From this point, the film thickness of the SiO x film was 100 mm. The above is preferable. Further, from FIG.
- the thickness of the SiO x film is preferably 100 mm or more in consideration of both the resistance value and the transmittance.
- the film thicknesses of the ATO films are Examples 1-16 to 1-18.
- the transparent conductive film 15 of Examples 1-3-1 and 1-3-2 has a resistance value as low as about 5 ⁇ / Sq, and sufficient conductivity was obtained. Both sex can be satisfied.
- the thickness of the SiO x film is preferably in the range of 100 to 500 mm.
- the ATO film as the oxidation-resistant protective layer 14 is obtained from Tables 1 to 4 shown in the sections of Examples 1-i to 1-iv.
- the film thickness is preferably 200 to 1000 mm.
- the film thickness of the SiO x film is larger than 500 mm and the film thickness of the ATO film is larger than 1000 mm, the oxidation resistance of the transparent conductive film 15 is improved, but the transmittance is lowered. Therefore, by setting the film thickness of the SiO x film as the underlayer 12 to 100 to 500 mm and the film thickness of the ATO film to 200 to 1000 mm, both the conductivity and transparency of the transparent conductive film 15 are good. A practical resistance value and transmittance can be provided.
- Example 2 Effect of titanium oxide film 16
- the substrate 10 with a transparent conductive film of Example 2 is provided with a transparent conductive film 15 and a titanium oxide film 16 on a substrate 11 as shown in FIG.
- a SiO x film, an ITO film, and an ATO film were formed on the glass substrate 11 in the same manner as in Examples 1-1 to 1-3.
- a titanium oxide film 16 was further formed on the ATO film at a film formation temperature of 300 ° C. by sputtering.
- the thickness of the titanium oxide film 16 was 80 mm in all of Examples 2-1 to 2-4.
- Comparative Example 2-2 a titanium oxide film 16 was formed on Comparative Example 2-1 in Table 1 shown in Example 1-i above.
- Comparative Example 2-2 the thickness of the ITO film and the ATO film is the same as that of Comparative Example 2-1.
- Table 5 shows the resistance value, transmittance, and change rate before and after firing for Examples 2-1 to 2-4 and Comparative Example 2-2.
- Example 2-4 and Comparative Example 2-2 the ITO film thickness and the ATO film thickness are formed to be equal to each other. Comparing Example 2-4 and Comparative Example 2-2, Example 2-4 having the SiO x film as the underlayer 12 was post-baked compared to Comparative Example 2-2 having no SiO x film. The resistance value of the film was extremely small, and the rate of change of the resistance value before and after firing was close to 1. Thus, it was shown that the oxidation resistance was further improved by providing the titanium oxide film 16. In addition, although the transmittance was slightly lower in Example 2-4 than in Comparative Example 2-2, the practical transmittance was maintained.
- the thickness of the titanium oxide film 16 is too large, the transmittance of the transparent conductive film 15 is lowered. Since oxidation resistance and transmittance are in a trade-off relationship with each other, it is necessary to form the titanium oxide film 16 with such a thickness that both values are good.
- the rate of change in resistance value before and after firing is a value smaller than 1, and the resistance value after firing is smaller than that before firing. It has been found that the provision of the titanium film 16 can further improve the conductivity of the transparent conductive film 15.
- Example 3 Battery characteristics of dye-sensitized solar cell 100
- the dye-sensitized solar cell 100 in which the substrate 10 with the transparent conductive film of FIG. 8 described in Example 2 and including the titanium oxide film 16 was used as the first conductive substrate 110. Will be described.
- the dye-sensitized battery 100 was formed by the following steps. A titanium oxide paste was further applied onto the titanium oxide film 16 (film thickness: 80 mm) of the substrate 10 with a transparent conductive film, and then fired at 500 ° C. to form a porous semiconductor layer 17a (thickness: 50000 mm).
- a dye solution in which the sensitizing dye is dissolved at a concentration of 0.3 mmol / l is prepared in an organic solvent having the ability to dissolve the sensitizing dye, and the substrate 10 provided with the porous semiconductor layer 17a is immersed for 3 hours.
- a monomolecular film of a sensitizing dye was chemically adsorbed on the surface of the porous semiconductor layer 17a.
- an electrolyte 17b containing imidazolium iodide and iodine as main components, platinum 1000 ⁇ ⁇ ⁇ as a catalyst layer 17d, and ITO as the second conductive substrate 120 were further laminated to form a dye-sensitized solar cell 100.
- Comparative Example 2-3 a porous semiconductor layer 17a made of titanium oxide is formed on Comparative Example 2-2 in Table 5 shown in the section of Example 2 above.
- the thickness of the ITO film, the ATO film, the titanium oxide film 16 and the thickness of the porous semiconductor layer 17a are the same as those in Comparative Example 2-2.
- FIG. 9 shows a dye-sensitized solar cell 100 having a structure in which a substrate 10 with a transparent conductive film is disposed as a first conductive substrate 110 on the upper side and light is transmitted from above.
- Table 6 the battery performance of the dye-sensitized solar cell 100 and the transmittance when the porous semiconductor layer 17a made of titanium oxide is provided on the transparent conductive film 15 of the substrate 10 with the transparent conductive film, that is, The transmittances of the underlayer 12, the conductive layer 13, the oxidation-resistant protective layer 14, the titanium oxide film 16, and the porous semiconductor layer 17a are shown.
- “Pmax” in Table 6 is the maximum output point, and indicates the amount of power generation at the point of maximum output on the JV characteristic graph shown in FIG.
- FF ill Factor
- Vmax (Vmax ⁇ Imax) / (Voc ⁇ Isc)
- Vmax and Imax are the voltage value at the point where the power value is maximum in the current-voltage curve, and It is a current value
- Voc is an open circuit voltage
- Isc is a short circuit current.
- Examples 3-1 to 3-4 including the SiO x film as the underlayer 12 are more preferable than Comparative Example 2-3 including no underlayer 12. It has been shown that the battery characteristics are very good.
- the transparent conductive film 15 of the substrate 10 with the transparent conductive film is provided with the base layer 12, the conductive layer 13, and the oxidation-resistant protective layer 14 from the substrate 11 side. It was found that the oxidation resistance of the film 15 was improved. As a result, it was found that even when the baking process was performed, the conductivity of the conductive layer 13 was not impaired and the transparency was ensured. Furthermore, it was found that the oxidation resistance of the transparent conductive film 15 can be further improved by laminating the titanium oxide film 16. As described above, since the substrate 10 with a transparent conductive film of this example has good conductivity and transparency, the battery characteristics can be dramatically improved particularly when used as an electrode of the dye-sensitized solar cell 100. I understood.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Hybrid Cells (AREA)
- Photovoltaic Devices (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
加熱温度の一例を挙げると、Si系太陽電池の製造工程においては、基板上に透明導電膜を形成した後、高い光電変換効率を有する化合物半導体層を形成する素子製造工程を経るが、このとき、成膜温度を約400℃程度とする必要があり、色素増感太陽電池の製造工程においては、Si系太陽電池よりもさらに高い500℃程度とする必要がある。
しかし、特許文献1において開示された技術は、透明導電膜表面近傍で、熱処理後に酸素欠損構造が好ましい数となるような酸素欠乏の組成とするために、透明導電膜の成膜時、酸素含有量の制御が難しく、一定の品質で、透明導電膜において高い導電性及び透明性を確保するのが難しい。
また、本発明の他の目的は、透明導電膜の導電性及び透明性を向上させることにより、高いエネルギー変換効率を備えた色素増感太陽電池を提供することにある。
そして、導電層よりも下地層が優先して酸化される結果、本発明の導電膜付き基板は、熱処理された際に導電層が酸化されにくいため、導電層の酸素欠損が保持される。したがって、透明導電膜付き基板が加熱されても、導電層の酸素欠損が保持されるため、導電性及び透明性が損なわれることなく、高い導電性及び透明性を備えることができる。
SiOxは、酸化物生成エネルギーが比較的小さい材料であるため、導電層を構成する一般的な金属酸化物よりも酸化物生成エネルギーが小さい。したがって、下地層を構成する材料を上記物質とすることにより、透明導電膜付き基板を熱処理した際、下地層がより酸化されやすくなる。
また、酸化ケイ素は他の材料と比較して光学透過率が高い(すなわち、透明性が高い)ため、透明導電膜付き基板の透明性を低下させることがない。
さらに、化学量論比を示すXの値を上記範囲とすることにより、下地層は、より透明性が高く、且つ酸化されやすい状態となる。したがって、上記材料からなる下地層を形成することにより、導電層に対し高い酸化防止効果を与えることができ、且つ高い透明性を備えた透明導電膜とすることができる。
このように、導電層をITOによって構成することにより、導電層は高い導電性及び透明性を備える。したがって、ITOからなる導電層を備えた透明導電膜付き基板は、高い導電性及び透明性を備えることができる。しかし、ITOは熱処理により酸化されて導電性が低下しやすい性質があることから、下地層を備えるだけでなく、ガスバリア性を有する上記材料によって耐酸化保護層を構成することにより、ITO膜が酸化されにくくなる。その結果、導電層(ITO膜)の導電性及び透明性が高く保持され、透明導電膜全体としての導電性及び透明性が良好な透明導電膜付き基板とすることができる。
このように、耐酸化保護層をガスバリア性の高いATOによって構成することにより、耐酸化保護層の下方に備えられた導電層がさらに酸化されにくくなる。また、ATOはガスバリア性が高い材料の中でも特に導電性が高く、400℃~500℃での熱処理により導電性が向上するため、透明導電膜の導電性を向上させることができる。
なお、アンチモンは若干の毒性を有するため、環境上の配慮から、耐酸化保護層をニオブ、タンタルの少なくとも一つが添加された酸化スズとする選択も可能である。耐酸化保護層をニオブ、タンタルの少なくとも一つが添加された酸化スズからなるように構成した場合、導電性、透明性でATOより僅かに劣るものの、耐酸化性に関してATOを用いた場合とほぼ同等の効果を示す。
このように、酸化チタン膜を耐酸化保護層の前記導電層逆側の面に備えることにより、透明導電膜の耐熱性をさらに向上させることができる。
このように、SiOxからなる下地層の厚さを100~500Åとすることにより、下地層によって導電層の酸化抑制効果が得られるため、耐酸化保護層を厚くする必要が無い。そして、ATO膜からなる酸化保護層の厚さを200~1000Åとすることで、導電層の酸化を抑制することができる。このように、耐酸化保護層を厚くする必要がないため、耐酸化保護層を厚く形成することによる透明性の低下を伴うことなく、透明導電膜の耐酸化性を確保し、透明導電膜の導電性及び透明性を実用上適当な値とすることができる。
また、電極に備えられる透明導電膜の導電性及び透明性が向上するため、エネルギー変換効率の高い色素増感太陽電池を提供することができる。
図1~図7は本発明の一実施形態に係る透明導電膜付き基板に係るものであり、図1は透明導電膜付き基板の概略断面図、図2は下地層の成膜時酸素量と透明導電膜の抵抗値変化率との関係を示すグラフ図、図3は下地層の成膜時酸素量と透明導電膜の光学透過率との関係を示すグラフ図、図4は下地層の成膜時酸素量と下地層を構成するSiOxのO/Si比との関係を示すグラフ図、図5は下地層の膜厚と透明導電膜の抵抗値との関係を示すグラフ図、図6は下地層の膜厚と透明導電膜の抵抗変化率との関係を示すグラフ図、図7は下地層の膜厚と透明導電膜の光学透過率との関係を示すグラフ図である。
また、図8は本発明の他の実施形態に係る透明導電膜付き基板に係るものであり、透明導電膜付き基板の概略断面図である。
さらに図9及び図10は、本発明の一実施形態に係る色素増感太陽電池に係るものであり、図9は概略断面図であり、図10は電流密度と出力電圧との関係(J-V特性)を示すグラフ図である。
図1~図7に基づき、本実施形態の透明導電膜付き基板10について説明する。
本実施形態の透明導電膜付き基板10は、図1に示すように、透明な基板11上に、透明導電膜15が形成されたものであり、透明導電膜15は、基板11側から順に下地層12,導電層13,耐酸化保護層14を有している。すなわち、基板11上に、下地層12と、導電層13と、耐酸化保護層14とが順に積層されて形成された透明導電膜15を備えている。
基板11は、板状の部材であり、基板11の材料としては、表面に透明導電膜15を形成することができ、かつ透明導電膜15で光を受光させる程度に透明性を有する適宜の材料から選択される。このような材料としては、例えば、ガラス基板、石英基板、光学結晶基板などの光を所定量透過させることが可能なものが用いられる。特に好ましくは、Naなどのアルカリ元素を含まないノンアルカリガラスや耐熱性の高い石英基板などである。
また、透明性を増したり、Naなどのアルカリ元素の拡散を防止したり、耐熱性を向上させたりする、などの付加特性を持たせるために、表面にSiO2、TiO2などの薄膜がスパッタリング法により形成された基板であっても良い。また、これらの基板11は、板状であっても、フィルム状であっても良い。
基板11の厚さとしては、特に限定されないが、通常100μm以上5mm以下の範囲内であり、特に500μm以上2mm以下の範囲内が好ましい。
透明導電膜15は、光の透過性があり、かつ導電性を有する膜である。なお、透明導電膜15は、後述の色素増感太陽電池100の負極を構成するものである。以下で説明するように、図9に示す色素増感太陽電池100を製造する際、透明導電膜15上に多孔質のチタニア層を形成する工程では、透明導電膜15上に酸化チタンペーストを塗布して、望ましい温度として400~500℃で焼成する。したがって、透明導電膜15は、この焼成工程により透過率が減少せず、かつ抵抗も増加しない材料を用いることが好ましい。すなわち、透明導電膜15は、高温で焼成される工程を経た後の導電性及び透明性が高いものが求められる。以下、本実施形態の透明導電膜15の構成について、詳述する。
本実施形態の透明導電膜15は、基板11上に、下地層12と、導電層13と、耐酸化保護層14とが順に積層されてなる。
導電層13は、高い導電性を有すると共に、高い透明性を備える金属酸化物によって構成される。
導電層13の透過率は、波長350nm~800nmの範囲での平均透過率が10%以上99%以下の範囲内であり、特に60%以上99%以下の範囲が好ましく、より好適には80%以上99%以下の範囲内であると最適である。
上記材料の例として、例えば、スズ,ゲルマニウム,亜鉛,ガリウムのうち少なくとも1種類を含む酸化インジウムや、アルミニウム,ガリウム,ホウ素,マグネシウムのうち少なくとも1種類を含む酸化亜鉛、アンチモン,フッ素のいずれかを添加した酸化スズを利用することができる。
なお、ここでの原子比は各材料の酸化物の比であり、Sn/Inは厳密にはSn酸化物/In酸化物と表記すべきものであるが、一般的に用いられている略記法によりSn/Inとしている。他の材料についても同様である。
このような比率で添加すると、導電層13を構成する膜の導電性及び透明性を良好に維持できる。また、これらの材料の複数種類を添加する場合は、添加する材料の全体の添加量をインジウムに対して20.0%以下とするとよい。
そして、特にITOは、電子の流路となる酸素欠損を適度に備えているため、高い導電性及び透過率を有しており、導電層13を構成する材料として好適である。
基板11と導電層13の間には、下地層12が形成されている。下地層12は、耐酸化保護層14と共に、導電層13の酸化を防止するために備えられる。したがって、例えば、透明導電膜付き基板10が約400~500℃の焼成工程を経た場合であっても、下地層12が導電層13よりも優先的に酸化されるため、導電層13の酸素欠損構造を保持することができる。その結果、導電層13が高い導電性及び透明性を保持することができる。
一方、導電層13の下地層12逆側の面には、耐酸化保護層14が積層されている。耐酸化保護層14は、光の透過性、導電性を有し、さらに酸素(ガス)バリア性を有する膜である。
耐酸化保護層14の透過率は、波長350nm~800nmの範囲での平均透過率が10%以上99%以下の範囲内であり、特に60%以上99%以下の範囲が好ましく、より好適には80%以上99%以下の範囲内であると最適である。
但し、アンチモンは若干の毒性を有するため、環境に対する配慮等からその使用が好まれない場合がある。ニオブあるいはタンタル、又はその両方を添加した酸化スズ(SnOxと記載)はATOと比較して抵抗値、透過率共に僅かに劣るが、後述のように、本本実施形態の耐酸化保護層14に用いた場合、耐酸化性についてはATOとほぼ同等の性能を示しており、この点も特許請求の範囲記載の構成に由来する効果といえる。
したがって、耐酸化保護層14の厚さを上記範囲とすると、上記の下地層12と組み合わせて備えられることにより、導電層13の酸化を抑制する効果を十分に得ることができる。また、下地層12によっても導電層13の酸化が抑制されるため、耐酸化保護層14の厚さを大きくする必要がない。したがって、耐酸化保護層14の透明性も確保することができるため、結果として、透明導電膜15としての透明性を向上させることができる。
耐酸化保護層14の導電層13逆側の面には、図8のように、酸化チタン膜16がさらに備えられていても良い。この酸化チタン膜16は、スパッタリング法、真空蒸着法、イオンプレーティング法等の手法により形成され、多孔質の酸化チタンよりもさらに緻密な構造を備えた酸化チタン薄膜である。
酸化チタン膜16を耐酸化保護層14の導電層13逆側の面に積層することにより、下地層12との相乗効果により、透明導電膜15の耐熱性をさらに向上させることができる。すなわち、下地層12,耐酸化保護層14,酸化チタン膜16を備えることにより、透明導電膜付き基板10が焼成工程を経る場合であっても、導電層13が酸化されるのが防止され、透明導電膜15が高い導電性及び透明性を保持することができる。
次に、透明導電膜付き基板10を備えた色素増感太陽電池100の構成について説明する。なお、以下には、単一のセルを例に挙げて説明するが、複数のセルが直列又は並列に接続されていても良いのは勿論である。
色素増感太陽電池100は、図9に示すように透明導電膜付き基板10を第1の導電性基板110として備えており、さらに、第1の導電性基板110に対向する位置に第2の導電性基板120が備えられる。なお、図9は、説明のため、透明導電膜付き基板10の各層の厚みを大きくして図示している。
そして、第1の導電性基板110と第2の導電性基板120との間には、第1の導電性基板110側に形成された多孔質半導体層17aと、多孔質半導体層17aと第2の導電性基板120との間に形成された電解質17bと、を備えている。なお、図9の符号17cはシール材、17dは触媒層である。
透明導電膜付き基板10は、第1の導電性基板110として備えられ、透明導電膜15が形成された面を第2の導電性基板120側に向けて配置される。なお、第1の導電性基板110を構成する導電層13には、引き出し線としての導線30が接続されている。
但し、基板11とは異なり基板21は、光を取り込む側ではないので、必ずしも透明材料で形成される必要はなく、光透過性の乏しい材料で形成してもよい。このような材料としては、例えば酸化物系セラミックスや窒化物系セラミックスなどの各種セラミックスが挙げられる。
基板21の厚さも、特に限定されないが、通常100μm以上5mm以下の範囲内であり、特に500μm以上2mm以下の範囲内が好ましい。また、基板21は、板状であっても良いし、フィルム状であっても良い。
多孔質半導体層17aは、金属酸化物半導体微粒子に色素(色素増感剤)を吸着させたものである。多孔質半導体層17aに用いられる金属酸化物半導体微粒子としては、半導体特性を備える金属酸化物からなるものであれば特に限定されるものではない。多孔質半導体層17aに用いられる金属酸化物として、TiO2,ZnO,SnO2,ZrO2,Al2O3,Ta2O,Nb2O5等が挙げられる。これらの中でも、特に半導体特性に優れるため、TiO2を用いるのが好ましい。
多孔質半導体層17aの表面側には電解質17bが備えられている。
電解質17bの材料には、多孔質半導体層17aに含有される色素に電子を供給し、また、電極層22で電子を受け取ることができるものが用いられる。なお、電解質17bは、固体であっても液体であっても良く、一般的な色素増感太陽電池の電解質として用いられる材料であれば、特に限定されない。このような材料の具体例としては、例えば、ポリエチレングリコールにヨウ化リチウムと金属ヨウ素を溶かした電解液、アセトニトリルとエチレンカーボネートを混合した電解液等を用いることができる。
第1の導電性基板110と第2の導電性基板120との間には、それぞれの色素増感太陽電池100のセルを仕切るためのシール材17cが形成されている。シール材17cは、複数のセルの外周部全体を区画するための部材であり、それぞれのセル間を区切る部材でもある。このシール材17cによって仕切られた空間内に、色素を吸着させた多孔質半導体層17a、電解質17bが封入された状態に保持されている。
シール材17cの材料としては樹脂やガラスなどを用いることができる。樹脂の具体例としては、例えばエポキシ樹脂、ウレタン樹脂などが挙げられる。
第2の導電性基板120側の電極層22の上層には、触媒層17dが備えられる。触媒層17dは、酸化還元反応を促進させるために備えられるものであり、触媒層17dを構成する材料としては、Pt,Pd,Au,C等が用いられる。
以下、本発明の透明導電膜付き基板10及び色素増感太陽電池100について、実施例に基づき説明する。
実施例1の透明導電膜付き基板10は、図1に示すように、基板11上に、透明導電膜15のみを備えたものである。
透明導電膜付き基板10において、下地層12を備えた実施例1-1~1-3と、下地層12を備えない比較例1~5を比較し、下地層12の効果について検討した。なお、実施例1-3-1及び実施例1-3-2は、下地層12(SiOx膜)の成膜時の酸素量が異なるものであり、実施例1-3-1の酸素流量は30ccであり、実施例1-3-2の酸素流量は35ccである。
まず、基板11としてのガラス基板の上に、下地層12としてのSiOx膜を、スパッタリング法により成膜温度を300℃として成膜した。このとき、特に記載がない場合は、Xは1.62程度となるように酸素量を調整した。具体的には、45ccとし、酸素ガスと不活性ガスとの流量比がO2/Ar+O2=0.07となるように調整した。
次に、SiOx膜上に、導電層13としてのITO(Sn/In=10/90)膜をスパッタリング法により、成膜温度を300℃として成膜した。
さらに、ITO膜上に、耐酸化保護層14としてのATO(Sb/Sn=2.5/97.5)膜をスパッタリング法により成膜温度300℃で成膜した。上記の各膜の厚さは、表1に示すとおりである。
そして、上記のように作成された透明導電膜付き基板10を、電気炉の中に入れ大気中において500℃または600℃で1時間熱処理を行った。熱処理の前後における透明導電膜の面積抵抗(以下、「抵抗値」と記載する)、可視域(350~800nm)での平均透過率(以下、「透過率」と記載する)、抵抗値及び透過率の熱処理前後の変化率を表1に示す。
実施例1-1,1-2は、比較例2-1,2-2と比較して、透過率に関し、特に大きな違いは見られないものの、抵抗値に関し、SiOx膜の厚さが増加するにつれて焼成後の抵抗値が極めて小さくなり、且つ、焼成前後の変化率が1に近くなって、焼成前後で抵抗値が殆ど変化しないことが示された。実施例1-3-1,1-3-2,比較例4を参照して比較しても、同様の結果が得られた。
実施例1-4~1-7は、下地層12及び導電層13の厚さを一定とし、耐酸化保護層14の厚さのみを変化させて透明導電膜15を作成したものである。耐酸化保護層14としてATO膜を採用したものは各実施例番号末尾の-1で表し、SnOx膜を採用したものは末尾の-2で表した。なお、各層の厚さ以外は、実施例1-1~1-3と同様の条件で透明導電膜15を作成した。各実施例について、焼成前後における抵抗値、透過率、及び焼成前後の変化率を表2に示す。
次に、下地層12としてのSiOx膜において、適当なXの値について検討した。実施例1-8~1-15は、それぞれ、SiOx膜の成膜時の酸素量を変化させて透明導電膜15を作成したものである。なお、実施例1-8,1-9と、実施例1-10~1-15とは、互いに導電層13、耐酸化保護層14の厚さ及び焼成条件を変化させたものである。これら各実施例について、焼成前後における抵抗値、透過率、及び焼成前後の変化率を表3に示す。
図2より、成膜時の酸素量が少ないほど、すなわち、SiOx膜中の酸素含有量が少なく、Xの値が小さいほど、透明導電膜15の抵抗値の変化率が小さく、透明導電膜15の耐酸化性が高いことが示されているが、酸素量が30cc近傍でその効果が飽和していた。また、酸素量を60cc程度よりも多くしても、抵抗値の変化率は大きく変化せず、増大しないことが示された。
したがって、以上より、抵抗値及び透過率を鑑みると、SiOx膜の成膜時酸素量は30ccよりも多くするとよいことが示された。
図2及び図3より、成膜時の酸素量は30ccよりも多くすると良いことが示されているため、図4も併せて考察すると、SiOx膜のXの値は、X=1.2よりも大きいと好適である。
一方、図4より、SiOx膜の成膜酸素量が60cc程度以上となると、SiOx膜中の酸素量が飽和するため、X=1.8以上のSiOx膜は作成することが難しいと判断される。したがって、Xの値は1.8よりも小さいと好ましい。
なお、Xの値はXPS分析(X-ray Photoelectron Spectroscopy)による値である。XPS測定には日本電子製JPS-9000MCを用い、X線源としてはMgKα、X線出力10KV×10mA、照射時間及び回数は100ms×4回、測定ステップ0.1eV、測定領域φ=6.0mmで行った。
次に、下地層12としてのSiOx膜について、適当な膜厚について検討した。実施例1-16~1-18は、それぞれ、SiOx膜の膜厚を変化させて透明導電膜15を作成したものである。また、SiOx膜を備えない例として、比較例3の結果と比較した。各実施例及び比較例について、焼成前後における抵抗値、抵抗値の変化率、透過率、反射率、吸収率を表4に示す。なお、実施例1-16~1-18及び比較例3は、SiOx膜の厚さの効果を比較するため、耐酸化保護層14としてのATO膜を十分に厚くし、ガスバリア性が確保された条件とした。
一方、下地層12としてのSiOx膜を厚さ範囲100~500Åとするとき、実施例1-i~1-ivの項で示した表1~4より、耐酸化保護層14としてのATO膜の膜厚は、200~1000Åとするとよい。
SiOx膜と、ATO膜の厚さ範囲をそれぞれ、100~500Åとすることにより、十分な耐酸化性を得ることができる。SiOx膜の膜厚を500Å、ATO膜の膜厚を1000Åより大きくすると、透明導電膜15の耐酸化性は向上するものの、透過率が低下するため、好ましくない。したがって、下地層12としてのSiOx膜の膜厚を100~500Åとし、ATO膜の膜厚を200~1000Åとすることにより、透明導電膜15の導電性及び透明性の両方が良好であり、実用的な抵抗値及び透過率を備えることができる。
実施例2の透明導電膜付き基板10は、図8に示すように、基板11上に、透明導電膜15及び酸化チタン膜16を備えたものである。
実施例2-1~2-4の透明導電膜付き基板10は、上記実施例1-1~1-3と同様に、ガラス基板11上にSiOx膜、ITO膜、ATO膜を成膜した後、さらにATO膜上に、酸化チタン膜16をスパッタリング法により、成膜温度300℃で成膜した。なお、酸化チタン膜16の膜厚は、実施例2-1~2-4において、すべて80Åとした。
その後、透明導電膜付き基板10を、電気炉の中に入れ大気中において500℃で1時間熱処理を行った。
また、比較例2-2は、上記実施例1-iの項で示した表1の比較例2-1上に酸化チタン膜16を成膜したものである。比較例2-2は、ITO膜及びATO膜の膜厚が比較例2-1と同じ大きさである。
上記実施例2-1~2-4、比較例2-2について、焼成前後における抵抗値、透過率、及び焼成前後の変化率を表5に示す。
一般的な傾向として、酸化チタン膜16の膜厚を大きくしすぎると、透明導電膜15の透過率が低下する。耐酸化性と透過率は互いにトレードオフの関係にあるので、両者が良好な値となるような厚さで酸化チタン膜16を成膜することが必要である。
実施例3では、実施例2で説明した図8の透明導電膜付き基板10であって、酸化チタン膜16を備えたものを、第1の導電性基板110として用いた色素増感太陽電池100について説明する。
実施例3-1~3-4は、以下の工程により色素増感電池100としたものである。
透明導電膜付き基板10の酸化チタン膜16(膜厚:80Å)上に、さらに酸化チタンペーストを塗布した後、500℃で焼成して多孔質半導体層17a(厚さ:50000Å)を形成した。さらに、増感色素の溶解能を有する有機溶媒に、増感色素を0.3mmol/lの濃度で溶解させた色素溶液を調合し、多孔質半導体層17aを備えた基板10を3時間浸漬することで、多孔質半導体層17a表面に増感色素の単分子膜を化学吸着させた。更にヨウ化イミダゾリウムとヨウ素を主成分とした電解質17b、白金1000Åを触媒層17dとして、第2の導電性基板120としてのITOをさらに積層させて色素増感太陽電池100とした。
なお、表6中の「Pmax」とは、最大出力点であり、図10に示すJ-V特性グラフ上で最大出力となる点での発電量を示すものである。
また、表6に示す電池性能及び図10に示すJ-V特性は、JISで規定するAM1.5、放射照度Xeランプ100mW/cm2、モジュール温度25℃で測定したものである。
さらに、表6にはFF(Fill Factor、曲線因子)も示す。FFは、FF=(Vmax・Imax)/(Voc・Isc)で定義されるものであり、このとき、Vmax、Imaxはそれぞれ、電流-電圧曲線において電力値が最大となる点の電圧値、及び電流値であり、Vocは開放電圧、Iscは短絡電流である。そして、FFが大きいほど色素増感太陽電池100の内部損失が小さく性能が優れていることを示す。
さらに、酸化チタン膜16を積層することにより、透明導電膜15の耐酸化性をさらに向上させることができることが分かった。以上のように、本例の透明導電膜付き基板10は、良好な導電性及び透明性を備えるため、特に色素増感太陽電池100の電極として用いられた際、電池特性を飛躍的に向上できることが分かった。
11,21 基板
12 下地層
13 導電層
14 耐酸化保護層
15 透明導電膜
16 酸化チタン膜
17a 多孔質半導体層
17b 電解質
17c シール材
17d 触媒層
22 電極層
30,40 導線
100 色素増感太陽電池
110 第1の導電性基板
120 第2の導電性基板
Claims (8)
- 透明な基板上に透明導電膜が形成された透明導電膜付き基板であって、
前記透明導電膜は、前記基板側から順に積層された下地層、導電層、耐酸化保護層を有し、
該耐酸化保護層は、酸化スズを含有する導電性材料からなり、
前記導電層は、金属酸化物からなり、
前記下地層は、前記導電層を構成する材料よりも酸化物生成エネルギーが小さく、且つ化学当量よりも酸素が不足している酸化物からなることを特徴とする透明導電膜付き基板。 - 前記下地層は、化学式SiOx(ただし、Xは化学量論比を示すものであって、1.2<X<1.8の範囲)で示される物質からなることを特徴とする請求項1記載の透明導電膜付き基板。
- 前記導電層は、スズを含む酸化インジウム(ITO)からなり、
前記耐酸化保護層は、ニオブ、タンタル、アンチモンの少なくとも一つが添加された酸化スズからなることを特徴とする、請求項2記載の透明導電膜付き基板。 - 前記耐酸化保護層は、アンチモンが添加された酸化スズ(ATO)からなることを特徴とする請求項3記載の透明導電膜付き基板。
- 前記耐酸化保護層は、ニオブ、タンタルの少なくとも一つが添加された酸化スズからなることを特徴とする請求項3記載の透明導電膜付き基板。
- 前記耐酸化保護層の前記導電層逆側の面に、酸化チタン(TiO2)膜をさらに備えてなることを特徴とする請求項4または5記載の透明導電膜付き基板。
- 前記耐酸化保護層の厚さは、200~1000Åの範囲であり、
前記下地層の厚さは、100~500Åの範囲であることを特徴とする請求項4~6のいずれか一項に記載の透明導電膜付き基板。 - 第1の導電性基板と、
該第1の導電性基板と対向して配設される第2の導電性基板と、
前記第1の導電性基板の前記第2の導電性基板側の面に形成され、色素を吸着してなる多孔質半導体層と、
該多孔質半導体層と前記第2の導電性基板との間に形成される電解質と、を備え、
前記第1の導電性基板は、請求項1乃至7のいずれか一項に記載の透明導電膜付き基板であることを特徴とする色素増感太陽電池。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137032869A KR101903213B1 (ko) | 2011-05-13 | 2012-05-10 | 투명 도전막 부착 기판 및 색소 증감 태양전지 |
JP2013515109A JP6010024B2 (ja) | 2011-05-13 | 2012-05-10 | 透明導電膜付き基板及び色素増感太陽電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-108717 | 2011-05-13 | ||
JP2011108717 | 2011-05-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012157524A1 true WO2012157524A1 (ja) | 2012-11-22 |
Family
ID=47176848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/062027 WO2012157524A1 (ja) | 2011-05-13 | 2012-05-10 | 透明導電膜付き基板及び色素増感太陽電池 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6010024B2 (ja) |
KR (1) | KR101903213B1 (ja) |
WO (1) | WO2012157524A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014198423A (ja) * | 2013-03-29 | 2014-10-23 | 株式会社カネカ | 透明電極付き基板 |
JP2016091900A (ja) * | 2014-11-07 | 2016-05-23 | 旭硝子株式会社 | 積層膜付き基板 |
WO2018220953A1 (ja) * | 2017-05-30 | 2018-12-06 | 株式会社アルバック | 透明導電膜 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002197924A (ja) * | 2000-12-26 | 2002-07-12 | Bridgestone Corp | 透明導電フィルム及びその製造方法並びにタッチパネル |
JP2004149884A (ja) * | 2002-10-31 | 2004-05-27 | Bridgestone Corp | Ito透明導電薄膜の成膜方法とito透明導電薄膜、透明導電性フィルム及びタッチパネル |
JP2005019205A (ja) * | 2003-06-26 | 2005-01-20 | Geomatec Co Ltd | 透明導電膜及びその製造方法 |
JP2008166178A (ja) * | 2006-12-28 | 2008-07-17 | Mitsubishi Materials Corp | 導電性酸化スズ粉末とその製造方法 |
JP2010037138A (ja) * | 2008-08-05 | 2010-02-18 | Hitachi Zosen Corp | 酸化チタン膜の形成方法および光電変換素子 |
JP2010251307A (ja) * | 2009-03-23 | 2010-11-04 | Kaneka Corp | 透明電極の製造方法 |
-
2012
- 2012-05-10 JP JP2013515109A patent/JP6010024B2/ja active Active
- 2012-05-10 WO PCT/JP2012/062027 patent/WO2012157524A1/ja active Application Filing
- 2012-05-10 KR KR1020137032869A patent/KR101903213B1/ko active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002197924A (ja) * | 2000-12-26 | 2002-07-12 | Bridgestone Corp | 透明導電フィルム及びその製造方法並びにタッチパネル |
JP2004149884A (ja) * | 2002-10-31 | 2004-05-27 | Bridgestone Corp | Ito透明導電薄膜の成膜方法とito透明導電薄膜、透明導電性フィルム及びタッチパネル |
JP2005019205A (ja) * | 2003-06-26 | 2005-01-20 | Geomatec Co Ltd | 透明導電膜及びその製造方法 |
JP2008166178A (ja) * | 2006-12-28 | 2008-07-17 | Mitsubishi Materials Corp | 導電性酸化スズ粉末とその製造方法 |
JP2010037138A (ja) * | 2008-08-05 | 2010-02-18 | Hitachi Zosen Corp | 酸化チタン膜の形成方法および光電変換素子 |
JP2010251307A (ja) * | 2009-03-23 | 2010-11-04 | Kaneka Corp | 透明電極の製造方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014198423A (ja) * | 2013-03-29 | 2014-10-23 | 株式会社カネカ | 透明電極付き基板 |
JP2016091900A (ja) * | 2014-11-07 | 2016-05-23 | 旭硝子株式会社 | 積層膜付き基板 |
WO2018220953A1 (ja) * | 2017-05-30 | 2018-12-06 | 株式会社アルバック | 透明導電膜 |
JP2018206467A (ja) * | 2017-05-30 | 2018-12-27 | 株式会社アルバック | 透明導電膜 |
CN110678938A (zh) * | 2017-05-30 | 2020-01-10 | 株式会社爱发科 | 透明导电膜 |
Also Published As
Publication number | Publication date |
---|---|
KR101903213B1 (ko) | 2018-10-01 |
KR20140031307A (ko) | 2014-03-12 |
JPWO2012157524A1 (ja) | 2014-07-31 |
JP6010024B2 (ja) | 2016-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6181637B2 (ja) | 多層電子デバイス | |
US11908970B2 (en) | Process for manufacturing multilayered thin film, method of manufacturing solar cell, and method for manufacturing solar cell module | |
JP5275346B2 (ja) | 色素増感太陽電池 | |
CN111868941B (zh) | 层叠薄膜的制造方法、太阳能电池的制造方法及太阳能电池模块的制造方法 | |
US20110240989A1 (en) | Transparent conductive film and photoelectric converion element | |
KR102318356B1 (ko) | 페로브스카이트계 염료를 이용한 고체형 박막 태양전지 및 제조 방법 | |
JP2006313668A (ja) | 酸化物半導体電極用転写材、色素増感型太陽電池用基材、色素増感型太陽電池、及びそれらの製造方法 | |
TWI453924B (zh) | 電極板與具有其之染料敏化光伏電池 | |
JP6010024B2 (ja) | 透明導電膜付き基板及び色素増感太陽電池 | |
JP5400470B2 (ja) | 太陽電池 | |
JP7153166B2 (ja) | 透明電極、透明電極の製造方法、および電子デバイス | |
US9692052B2 (en) | Electrode material for battery, electrode material paste for battery, and solar cell using same, storage battery, and method for manufacturing solar cell | |
KR101232717B1 (ko) | Ti-In-Zn-O 투명전극 및 이를 이용한 금속 삽입형 3층 구조 고전도도 투명전극과 이의 제조방법 | |
JP2008277422A (ja) | 積層型光電変換装置 | |
JP2007073198A (ja) | 色素増感型太陽電池 | |
JP5876421B2 (ja) | 光起電力装置および水素発生装置 | |
JP2005243379A (ja) | 光電変換装置 | |
Passoni et al. | Multi-layered hierarchical nanostructures for transparent monolithic dye-sensitized solar cell architectures | |
JP2005158621A (ja) | 積層型光電変換装置 | |
CN113728445B (zh) | 制造多层薄膜的工艺、制造太阳能电池的方法、和制造太阳能电池组件的方法 | |
JP2009135395A (ja) | 光電変換装置及び光発電装置並びに光電変換モジュール | |
JPWO2020144885A1 (ja) | 太陽電池 | |
WO2023112807A1 (ja) | 光電変換素子および光電変換素子の製造方法 | |
JP7357247B2 (ja) | 太陽電池 | |
JP2009032661A (ja) | 積層型光電変換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12786331 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013515109 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137032869 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12786331 Country of ref document: EP Kind code of ref document: A1 |