WO2012157329A1 - 集電箱 - Google Patents

集電箱 Download PDF

Info

Publication number
WO2012157329A1
WO2012157329A1 PCT/JP2012/056805 JP2012056805W WO2012157329A1 WO 2012157329 A1 WO2012157329 A1 WO 2012157329A1 JP 2012056805 W JP2012056805 W JP 2012056805W WO 2012157329 A1 WO2012157329 A1 WO 2012157329A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
voltage
booster circuit
circuit
input
Prior art date
Application number
PCT/JP2012/056805
Other languages
English (en)
French (fr)
Inventor
安藤 隆史
船越 智英
宮内 拓
高田 元
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2013515029A priority Critical patent/JP5857193B2/ja
Publication of WO2012157329A1 publication Critical patent/WO2012157329A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a current collection box that collectively outputs DC power supplied from a plurality of solar cells.
  • the booster circuit of the current collection box performs an MPPT operation (Maximum Power Point Tracking) that increases or decreases the step-up ratio between the input voltage and the output voltage of the booster circuit so that the output power of the solar cell is maximized.
  • MPPT operation Maximum Power Point Tracking
  • the ON duty of the switch element included in the booster circuit is adjusted (increase / decrease), and the switch element is periodically opened and closed to increase / decrease the boost ratio.
  • the solar cells connected to the first line operate at the maximum power point with the output voltage controlled so as to output the maximum power.
  • the output power (DC power) of the solar cell collected by the current collection box is input to the power conditioner at the subsequent stage.
  • the power conditioner converts the input DC power into AC power, performs MPPT operation so that the input power (solar cell generated power) is maximized, and superimposes the converted AC power on the commercial power system. To do.
  • MPPT operation control is performed so that the input power to the power conditioner is maximized, and the solar cell generates power at the maximum power point.
  • Patent Document 1 also provides a second booster circuit similar to the booster circuit of the first current collector box for all the lines of the current collector box so that the MPPT operation is performed in each booster circuit.
  • a current collector box has also been proposed.
  • the solar cell having the largest power at the maximum power point or the largest voltage at the maximum power point is not connected to the second line (a line not boosted) (for example, the output having the highest power).
  • a line not boosted for example, the output having the highest power.
  • the second current collection box all lines are provided with boosting circuits, and each performs MPPT operation, so that all solar cells can be used at the maximum power point.
  • the booster circuit provided in all lines to perform the MPPT operation, power loss is caused by the loss of the AC component of the reactor due to switching when the booster circuit is switched and the ON resistance when the switch element is closed. There was a problem that.
  • the present invention has been made in view of the above-described problems, and a current collection box that can suppress power loss while operating all the solar cells connected to the current collection box near the maximum power point.
  • the purpose is to provide.
  • each of the power lines connected to a plurality of solar cells, and a booster circuit that boosts the output voltage of the solar cells obtained through the power lines and interposed in the power lines In a current collection box that collectively outputs the output of the power line, the booster circuit includes a series circuit of a reactor, a diode, and a capacitor that connect between the input and the output, and a switch element, and the input of each booster circuit. The operation of the switching element of the booster circuit with the highest voltage is stopped and the input power from the solar cell is output via the reactor, diode, and capacitor, and the other booster circuit periodically opens and closes the switch element to A step-up operation is performed.
  • the switch element of the booster circuit having the highest input voltage is opened to stop the boosting, and therefore the solar cell having the highest voltage at the maximum power point is always connected to a line that does not boost. Become. For this reason, all the solar cells can be operated at the maximum power point.
  • a line for outputting the input power from the solar cell by opening the switch element to stop the boosting is formed. Thereby, the loss of the AC component of the reactor due to switching and the loss of power due to the ON resistance of the switch element when the booster circuit is switched can be suppressed.
  • the non-insulated booster circuit includes a series circuit of a reactor, a diode, and a capacitor connected from the positive electrode side toward the negative electrode side, and the switch element includes the reactor and the diode Is connected to the negative electrode side, and the booster circuit obtains a boosted output from both ends of the capacitor.
  • the present invention it is possible to provide a current collection box capable of suppressing power loss while operating all the solar cells connected to the current collection box near the maximum power point.
  • FIG. 1 is a configuration diagram illustrating a photovoltaic power generation system 100 according to the first embodiment.
  • the photovoltaic power generation system 100 includes solar cells 1a to 1d and a grid interconnection system 50.
  • the grid interconnection system 50 collectively supplies the power supplied from the solar cells 1a to 1d to the commercial power system 30.
  • the grid interconnection system 50 includes a current collection box 4 and a power conditioner 2.
  • the current collecting box 4 includes lines La to Ld connected to the plurality of solar cells 1a to 1d, and outputs of the solar cells 1a to 1d obtained through the lines La to Ld, respectively.
  • Boosting circuits 40a to 40d for boosting the voltage are provided.
  • Each of the booster circuits 40a to 40d includes booster main circuits 41a to 41d that boost the output voltage of each of the solar cells 1a to 1d.
  • Each of the booster circuits 40a to 40d includes boost control circuits 42a to 42d that control the boost operation of the booster main circuits 41a to 41d.
  • the output sides of the booster main circuits 41a to 41d are connected in a single manner in the current collection box 4.
  • the current collecting box 4 collects the electric power (the electric power output from the lines La to Ld) boosted and output by these boosting main circuits 41 a to 41 d into a single unit, and outputs the combined DC power to the power conditioner 2. .
  • components having the same configuration are denoted by the same numerical symbol (1 for solar cells), and components having a connection relationship with each other are denoted by the same alphabetic symbol (solar).
  • the battery 1 and the booster circuit 41 are connected to each other by the reference numerals of the solar battery 1a and the booster circuit 41a).
  • FIG. 2 shows a circuit diagram of the booster circuit of the current collection box of the first embodiment.
  • the step-up main circuit 41 includes a pair of terminals (a positive terminal 88 and a negative terminal 89), a reactor 81, a switching element 82 such as an IGBT (insulated gate bipolar transistor), a diode 83, and a capacitor 84. It is composed of a so-called non-insulated booster circuit that does not use a transformer. Reactor 81, diode 83, and capacitor 84 form a series circuit connected in series in this order from positive terminal 88 (positive side of solar cell) to negative terminal 89 (negative side of solar cell). .
  • the switch element 82 connects the connection point between the reactor 81 and the diode 83 to the negative electrode side terminal 89.
  • the step-up circuit 40 performs a step-up operation for obtaining step-up output from both ends of the capacitor with a predetermined step-up ratio by periodically opening and closing the switch element 82.
  • the step-up main circuit 41 has a current sensor 85 that detects an input current, a voltage sensor 86 that detects an input voltage, and a voltage sensor 87 that detects an output voltage. Based on the information obtained from these sensors, the boost control circuit 42 performs the MPPT operation so that the output power of the solar cell 1 is maximized.
  • the boost control circuit 42 obtains and monitors input power from the input current and input voltage to the boost main circuit 41. At this time, if the input power is larger than the previously detected input power, set the ON duty to the same value as the previous adjustment (larger if the ON duty is increased, smaller if the ON duty is decreased). The switch element 82 is periodically opened and closed at the set ON duty. Also, if the input power is larger than the previously detected input power, set the ON duty to the opposite of the previous adjustment (smaller if the ON duty is larger, larger if it is smaller). The switch element 82 is periodically opened and closed at the set ON duty. In this way, the booster circuit 41 performs the MPPT operation by periodically opening and closing the switch element and operating at a predetermined boost ratio.
  • each of the boost control circuits 42a to 42d has a communication function and is connected to each other by a communication line LC.
  • the boost control circuit 42 receives information such as the input voltage and input power of the other boost control circuit 42 and controls the start / stop of the MPPT operation by the boost main circuit 41 based on the received information (for details) Will be described later).
  • the inverter circuit 23 is configured by connecting in parallel a first arm in which switch elements 51 and 52 are connected in series and a second arm in which switch elements 53 and 54 are connected in series.
  • semiconductor switch elements such as IGBTs may be used.
  • the inverter circuit 23 periodically opens and closes the switch elements 51 to 54 according to PWM (Pulse Width Modulation) control of the power control circuit 22.
  • PWM Pulse Width Modulation
  • the inverter circuit 23 converts the DC power output from the booster circuit 21 into three-phase AC power by opening and closing the switch elements 51 to 54.
  • a filter circuit (low-pass filter) including reactors 61 and 62 and a capacitor 63 is provided at the subsequent stage of the inverter circuit 23, and a high frequency due to the switching operation of the switch elements 51 to 54 is removed.
  • the inverter circuit 23 includes a current sensor 91 that detects an output current of the inverter circuit 23 and a voltage sensor 92 that detects an output voltage of the inverter circuit 23.
  • the power control circuit 22 uses the current values and voltage values detected from the voltage sensors 86 and 87 and the current sensor 85 included in the boost main circuit 21 and the voltage sensor 92 and current sensor 91 included in the inverter circuit 23.
  • the booster main circuit 21 and the inverter circuit 23 are controlled.
  • the power conditioner 2 converts the DC power output from the current collection box 4 into AC power, and the input power to the power conditioner 2 (DC power output from the current collection box 4) is maximized.
  • An MPPT operation is performed, and the converted AC power is superimposed on the commercial power system 30.
  • the MPPT operation of the inverter 2 is performed as follows as an example.
  • the input power Ppin (product of the input current Ipin and the input voltage Vpin) supplied to the booster main circuit 21 is substantially equal to the output power Ppo superimposed on the commercial power system 30 when the conversion efficiency of the power conditioner 2 is 100%.
  • the conversion efficiency is treated as 100%. However, when this conversion efficiency is taken into consideration, it is preferable to multiply by an appropriate constant). Since the power generation output of the solar cell 1 is supplied to the power conditioner 2 through the current collection box 4 and becomes the input power Ppin, the value of the input power Ppin also changes when the power generation amount of the solar cell 1 fluctuates.
  • the input power Ppin and the output power Ppo of the power conditioner 2 are substantially the same, if the voltage of the commercial power system 30 is constant (for example, AC 200 V in the single-phase three-wire system), the input power Ppin is the power. This can be obtained by detecting the output current Ipo that the conditioner 2 supplies to the commercial power system 30. Therefore, by changing the value of the output current Ipo, the output power Ppo value can be made equal to the current generated power of the solar cell 1.
  • the inverter circuit 23 outputs ON / OFF control of the switching elements 51 to 54 with a switching signal based on a PWM method obtained by modulating a carrier wave and a sinusoidal modulated wave, and outputs a single-phase pseudo sine wave.
  • the output current Ipo can be controlled by changing this voltage by changing the boost ratio of the booster circuit 21. Therefore, the current maximum value of the generated power of the solar cell 1 may be controlled to the target value It that maximizes the input power Ppin when the target value It of the output current Ipo is changed.
  • FIG. 4 is a flowchart showing the operation of the booster circuit 40.
  • the voltage sensor 86 detects the input voltage V to the booster circuit 40 (step S11).
  • the booster circuit 40 communicates with another booster circuit 40 using the communication function, and receives the input voltage Vn of the other booster circuit 40 (step S12).
  • the detected input voltage V and the highest voltage Vmax among the received input voltages Vn are specified (step S13).
  • the booster circuit 40 calculates a difference (Vmax ⁇ V) between the highest voltage Vmax and the detected input voltage V, and the difference (Vmax ⁇ V) is a voltage threshold Vth (Vth ⁇ Vth ⁇ Vth ⁇ V). 0) It is determined whether or not (step S14). If the difference (Vmax ⁇ V) is equal to or less than the voltage threshold Vth (about 10 V) as a result of this determination, the booster circuit 40 opens the switch element 82 to stop the boosting and input power (DC) from the solar cell 1. (Electric power) is output almost directly through the reactor, diode, and capacitor (step S15). ). If the difference (Vmax ⁇ V) is not less than or equal to the voltage threshold Vth by this determination, the booster circuit 40 performs the MPPT operation described above to operate the solar cell 1 at the maximum power point (step S16).
  • the solar cell 1 connected to the booster circuit 40 that stops the operation operates almost at the maximum power point because the solar cell 1 having the highest maximum power point voltage is close to the maximum power point voltage. To do.
  • the booster circuit 40 controls the start / stop of the MPPT operation based on the input voltage detected by the voltage sensor 86 and the received input voltage of the other booster circuit 40.
  • the booster circuit 40 controls the start / stop of the MPPT operation based on the input power detected by the voltage sensor 86 and the current sensor 85 and the received input power of the other booster circuit 40. Judging.
  • FIG. 5 is a flowchart showing the operation of the booster circuit 40 of the current collection box 4 in the second embodiment.
  • the booster circuit 40 detects the input voltage V and the input current I to the booster circuit 40 and calculates the input power P (step S21). Then, the booster circuit 40 communicates with another booster circuit 40 using the communication function, and receives the input power Pn of the other booster circuit 40 (step S22). Next, the detected input power P and the highest power Pmax among the received input power Pn are specified (step S23).
  • the booster circuit 40 calculates a difference (Pmax ⁇ P) between the highest power Pmax and the detected input power P, and the difference (Pmax ⁇ P) is the power threshold Pth (Vth ⁇ 0) It is determined whether or not it is equal to or less (step S24). If the difference (Pmax ⁇ P) is less than or equal to the power threshold Pth by this determination, the booster circuit 40 opens the switch element 82 to stop the boosting, and the input power from the solar cell 1 (DC power) is converted into the reactor. Then, it is output as it is through the diode and the capacitor (step S25). If the difference (Pmax ⁇ P) is not less than or equal to the power threshold Pth by this determination, the booster circuit 40 performs the MPPT operation described above to operate the solar cell 1 at the maximum power point (step S26).
  • step S14 the switch element 82 of the booster circuit 40 whose difference (Pmax ⁇ P) is equal to or less than the power threshold Pth is also opened to stop boosting.
  • movement of the booster circuit 40 connected to the solar cell 1 with the largest electric power of the maximum power point and the solar cell 1 with the largest electric power of the maximum power point can also be stopped, and the loss of electric power can be suppressed more.
  • the solar cell 1 connected to the booster circuit 40 that stops the operation operates almost at the maximum power point because the solar cell 1 having the largest power at the maximum power point is close to the power at the maximum power point. To do.
  • the MPPT operation start determination is performed based on the input power to the booster circuits 40a to 40d, the output voltages of the booster circuit 40 that are stopped at the same time are the same, and there is a difference between the input voltages of these booster circuits 40. Even when it is difficult to follow, it is possible to accurately determine the start of the MPPT operation.
  • the start / stop of the MPPT operation is determined based on the input voltage to the booster circuits 40a to 40d as in the first embodiment, before the power conditioner 2 starts the operation (in the booster main circuit 41). Whether or not the booster circuit 40 is to be subjected to the MPPT operation after the operation of the power conditioner 2 can be determined in advance before the current flows.
  • the booster circuit 40 when the booster circuit 40 is operated after the operation of the power conditioner 2, a predetermined time until the MPPT operation is stabilized (or the power change amount of the booster circuit 40 performing the MPPT operation is a predetermined amount). Until it becomes smaller), the operation is not changed (the booster circuit 40 performing the MPPT operation performs the MPPT operation and the stopped booster circuit 40 is stopped). Then, the operation of the booster circuit 40 is changed (from the MPPT operation to the stop or from the stop to the MPPT operation in an unstable state in which the input voltage of the booster circuits 40a to 40d changes greatly when the MPPT operation is first started. Change to). Thereby, the booster circuit 40 can be operated stably.
  • whether the difference between the input voltage (input power) of the booster circuit having the largest input voltage (input power) and this voltage (power) is within a predetermined voltage value (within a predetermined power value). Whether or not is determined by the difference of Vmax ⁇ V (difference of Pmax ⁇ P), it may be determined by a ratio such as V / Vmax (P / Pmax).
  • the booster circuit 40 of the current collection box 4 of the present embodiment performs the MPPT operation as the boosting operation, but the fluctuation of the input power of the booster circuit 40 due to the MPPT operation is smaller than a predetermined amount (maximum power In the case where it can be determined that the device is operating near a point), the step-up ratio constant operation may be performed in which the switch element 82 is periodically opened and closed while the ON duty is fixed, and the operation is performed at a fixed step-up ratio. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

複数の太陽電池(1a~1d)に夫々接続されるライン(La~Ld)、及びライン(La~Ld)に夫々介在しライン(La~Ld)を介して得られる太陽電池(1a~1d)の出力電圧を昇圧する昇圧回路(40a~40d)を有し、夫々のライン(La~Ld)の出力をまとめて出力する集電箱(4)において、昇圧回路(40a~40d)を、スイッチ素子を有する非絶縁型の昇圧回路で構成し、夫々の昇圧回路(40a~40d)のうち入力電圧が最も大きい昇圧回路は昇圧動作を停止して太陽電池からの入力電力をほぼそのまま出力し、他の昇圧回路は、スイッチ素子を周期的に開閉させて所定の昇圧動作をする。

Description

[規則26に基づく補充 09.04.2012] 集電箱
 本発明は、複数の太陽電池から供給される直流電力をまとめて出力する集電箱に関する。
 従来より、太陽電池の出力を、昇圧回路を介して昇圧して供給する第1ラインと、太陽電池の出力を直接供給する第2ラインとを有し、これらの両ラインを介して得られる太陽電池の出力をまとめて出力する第1の集電箱が提案されている(特許文献1)。
国際公開第2006/033142号
 集電箱の昇圧回路は、太陽電池の出力電力が最大になるように昇圧回路の入力電圧と出力電圧との昇圧比を増減させるMPPT動作(Maximum Power Point Tracking)を行う。このMPPT動作は、昇圧回路の有するスイッチ素子のONデューティを調整(増減)して、スイッチ素子を周期的に開閉させて昇圧比の増減を行う。このMPPT動作を行うことにより、第1ラインに接続される太陽電池は、最大電力を出力するように出力電圧が制御され最大電力点にて動作する。
 また、集電箱により集電された太陽電池の出力電力(直流電力)は、後段のパワーコンディショナに入力される。そして、パワーコンディショナは、入力された直流電力を交流電力に変換すると共に、入力電力(太陽電池の発電電力)が最大になるようにMPPT動作を行い、変換した交流電力を商用電力系統へ重畳する。このMPPT動作により、パワーコンディショナへの入力電力が最大になるように制御され最大電力点にて太陽電池が発電する。
 また、特許文献1には、集電箱の全てのラインに対して、第1の集電箱の昇圧回路と同様の昇圧回路を設けて、夫々の昇圧回路においてMPPT動作を行わせる第2の集電箱も提案されている。
 しかしながら、第1の集電箱においては、最大電力点の電力が最も大きい、或いは最大電力点の電圧が最も大きい太陽電池が第2ライン(昇圧しないライン)に接続されない(例えば、出力の一番大きい太陽電池を誤って第1ラインに接続してしまった場合(誤配線)、日射量の変化によって各々の太陽電池の最大電力点が変化した場合など)と、第1ラインに接続される太陽電池は、第2ラインに接続される太陽電池の最大電力点より出力電圧を大きくすることができず、全ての太陽電池を最大電力点で動作することができなくなるという問題があった。
 これに対して、第2の集電箱では、すべてのラインに昇圧回路が備えられ、夫々がMPPT動作を行うため、全ての太陽電池を最大電力点で利用することができる。しかしながら、全てのラインに備えられる昇圧回路にMPPT動作を行わせるため、昇圧回路がスイッチング作動した際のスイッチングによるリアクタの交流分損失や、スイッチ素子を閉じた際のON抵抗により電力をロスしてしまうという問題があった。
 本発明は上述の問題に鑑みて成された発明であり、集電箱へ接続される全ての太陽電池を最大電力点付近で動作させつつも、電力のロスを抑制することができる集電箱を提供することを目的とする。
 上記目的を達成するために、複数の太陽電池に夫々接続される電力ライン、及び電力ラインに夫々介在し電力ラインを介して得られる太陽電池の出力電圧を昇圧する昇圧回路を有し、夫々の電力ラインの出力をまとめて出力する集電箱において、昇圧回路を、入力と出力間を繋ぐリアクタ、ダイオード、コンデンサの直列回路とスイッチ素子とを有して構成し、夫々の昇圧回路のうち入力電圧が最も大きい昇圧回路のスイッチング素子の動作を停止して太陽電池からの入力電力をリアクタ、ダイオード、コンデンサを介して出力し、他の昇圧回路は、スイッチ素子を周期的に開閉させて所定の昇圧動作を行うことすることを特徴とする。
 本発明の集電箱によれば、入力電圧が最も大きい昇圧回路のスイッチ素子を開いて昇圧を停止するため、最大電力点の電圧が最も大きい太陽電池が昇圧しないラインに常に接続されることになる。このため、全ての太陽電池を最大電力点で動作することができる。また、スイッチ素子を開いて昇圧を停止し、太陽電池からの入力電力を出力するラインができる。これにより、この昇圧回路がスイッチング作動した際のスイッチングによるリアクタの交流分損失やスイッチ素子のON抵抗による電力のロスを抑制することができる。
 また、昇圧回路は、リアクトル、ダイオード、コンデンサの直列回路を正極側から負極側に向かって接続し、スイッチ素子は、リアクトルと前記ダイオードとの接続点を負極側に接続し、前記昇圧回路は、前記コンデンサの両端から昇圧出力得ることがきるものである。
 また、上述の集電箱において、前記非絶縁型の昇圧回路は、正極側から負極側に向かって接続されるリアクタ、ダイオード、コンデンサの直列回路を備え、前記スイッチ素子は、前記リアクタと前記ダイオードとの接続点を負極側に接続し、前記の昇圧回路は、前記コンデンサの両端から昇圧出力得ることを特徴とする。
 本発明によれば、集電箱へ接続される全ての太陽電池を最大電力点付近で動作させつつも、電力のロスを抑制することができる集電箱を提供することができる。
第1の実施形態に係る太陽光発電システム100を示す構成図である。 第1の実施形態の集電箱の昇圧回路の回路図である。 第1の実施形態のパワーコンディショナの回路図である。 第1の実施形態における、集電箱の昇圧回路の動作を示すフローチャートである。 第2の実施形態における、集電箱の昇圧回路の動作を示すフローチャートである。
(第1の実施形態)
 以下、図面に基づき本発明の実施形態を詳述する。図1は第1の実施形態に係る太陽光発電システム100を示す構成図である。この図に示すように太陽光発電システム100は、太陽電池1a~1d、及び系統連系システム50を備える。また、系統連系システム50は、太陽電池1a~1dの供給する電力をまとめて商用電力系統30へ供給する。
 太陽電池1a~1dは、夫々、太陽電池のセルを直列に接続して構成される。各太陽電池1a~1dのセルの枚数は、太陽電池1a~1dを設置する面積等によって変わるため、太陽電池1a~1dによって枚数が異なる。
 系統連系システム50は、集電箱4、及びパワーコンディショナ2を備える。
 集電箱4は、複数の太陽電池1a~1dに夫々接続されるラインLa~Ld、及びこのラインLa~Ldに夫々介在しこのラインLa~Ldを介して得られる太陽電池1a~1dの出力電圧を昇圧する昇圧回路40a~40dを有する。夫々の昇圧回路40a~40dは、夫々の太陽電池1a~1dの出力電圧を昇圧する昇圧主回路41a~41dを有する。また、夫々の昇圧回路40a~40dは、昇圧主回路41a~41dの昇圧動作の制御を行う昇圧制御回路42a~42dを有している。また、昇圧主回路41a~41dの出力側は、集電箱4内において単一に接続されている。集電箱4は、これらの昇圧主回路41a~41dが昇圧して出力する電力(ラインLa~Ldの出力する電力)を単一にまとめ、このまとめた直流電力をパワーコンディショナ2へ出力する。
 第1の実施形態では、同様の構成のものには同じ数字の符号(太陽電池であれば1)を、各構成同士で接続関係を有するものには同じ英字の符号を付している(太陽電池1と昇圧回路41とで接続関係にあるものを、夫々太陽電池1aと昇圧回路41aと符号を付している)。
 同様の構成において、同じ動作を行う場合、同じ説明を行うと冗長になるため、以後、同様の構成において、共通の動作を説明する場合は、末尾の符号のa、b、c、dを省いて説明する場合がある。
 図2に第1の実施形態の集電箱の昇圧回路の回路図を示す。昇圧主回路41には、一対の端子(正極側端子88、負極側端子89)、リアクトル81、IGBT(絶縁ゲートバイポーラトランジスタ)のようなスイッチ素子82、ダイオード83、及びコンデンサ84を有し、絶縁トランスを用いない、所謂、非絶縁型の昇圧回路で構成される。リアクトル81、ダイオード83、コンデンサ84は、正極側端子88(太陽電池の正極側)から負極側端子89(太陽電池の負極側)に向かってこの順に直列に接続される直列回路を成している。また、スイッチ素子82は、リアクトル81とダイオード83との接続点を負極側端子89に接続する。
昇圧回路40は、スイッチ素子82を周期的に開閉することで、所定の昇圧比によりコンデンサの両端から昇圧出力を得る昇圧動作を行う。
 昇圧主回路41は、入力電流を検出する電流センサ85、入力電圧を検出する電圧センサ86、及び出力電圧を検出する電圧センサ87を有している。昇圧制御回路42は、これらのセンサから得られる情報に基づいて、太陽電池1の出力電力が最大になるようにMPPT動作を行う。
 具体的には、昇圧制御回路42は、昇圧主回路41への入力電流及び入力電圧から入力電力を求めて監視する。このとき、入力電力が前回検出した入力電力と比較して大きくなれば、ONデューティを前回調整した方と同じ方(ONデューティを大きくしていれば大きく、小さくしていれば小さく)に設定し、設定したONデューティにてスイッチ素子82を周期的に開閉させる。また、入力電力が前回検出した入力電力と比較して大きくなれば、ONデューティを前回調整した方と反対の方(ONデューティを大きくしていれば小さく、小さくしていれば大きく)に設定し、設定したONデューティにてスイッチ素子82を周期的に開閉させる。このようにすることで、昇圧回路41は、スイッチ素子を周期的に開閉させて所定の昇圧比により動作してMPPT動作を行う。
 また、夫々の昇圧制御回路42a~42dは、通信機能を有しており、互いに通信線LCにより接続されている。そして、昇圧制御回路42は、他の昇圧制御回路42の入力電圧、入力電力などの情報を受信し、受信した情報に基づいて昇圧主回路41によるMPPT動作の開始/停止を制御する(詳細は後述する)。
 パワーコンディショナ2は、集電箱4の出力する直流電力を昇圧する昇圧主回路21と、昇圧主回路21が出力する直流電力を交流電力に変換するインバータ回路23と、昇圧主回路21及びインバータ回路23の動作の制御を行うパワコン制御回路22とを備えている。
 図3に第1の実施形態のパワーコンディショナの回路図を示す。昇圧主回路21は、リアクトル71、IGBT(絶縁ゲートバイポーラトランジスタ)のようなスイッチ素子72、ダイオード73、及びコンデンサ74を有する、集電箱4の昇圧主回路41と同様の昇圧主回路を用いる。このため、昇圧主回路21については、ここでは説明を省略する。昇圧主回路21は、集電箱4の昇圧主回路41同様の回路構成を用いているが、パワコン制御回路22により別の制御が行われる。
 インバータ回路23は、スイッチ素子51、52を直列接続した第1アームと、スイッチ素子53、54を直列接続した第2アームとを夫々並列に接続して構成される。スイッチ素子51~54には、IGBTのような半導体のスイッチ素子を用いると良い。インバータ回路23は、パワコン制御回路22のPWM(Pulse Width Modulation)制御にしたがって各スイッチ素子51~54を周期的に開閉する。インバータ回路23は、このスイッチ素子51~54の開閉により、昇圧回路21から出力される直流電力を三相交流電力に変換する。また、インバータ回路23の後段には、リアクトル61、62、及びコンデンサ63からなるフィルタ回路(ローパスフィルタ)が設けられており、スイッチ素子51~54の開閉動作による高周波を除去している。
 また、インバータ回路23は、インバータ回路23の出力電流を検出する電流センサ91と、インバータ回路23の出力電圧を検出する電圧センサ92とを有している。そして、パワコン制御回路22は、昇圧主回路21の有する電圧センサ86、87、及び電流センサ85、並びにインバータ回路23の有する電圧センサ92、電流センサ91から検出される電流値や電圧値を用いて、昇圧主回路21とインバータ回路23を制御する。これによりパワーコンディショナ2は、集電箱4の出力する直流電力を交流電力に変換すると共に、パワーコンディショナ2への入力電力(集電箱4の出力する直流電力)が最大になるようにMPPT動作を行い、変換した交流電力を商用電力系統30へ重畳する。
 パワーコンディショナ2のMPPT動作は一例として次のように行われる。昇圧主回路21に供給される入力電力Ppin(入力電流Ipinと入力電圧Vpinとの積)は、パワーコンディショナ2の変換効率を100%とすると商用電力系統30へ重畳される出力電力Ppoと実質的に等しくなる。(以下、変換効率は100%として取り扱うが、この変換効率を考慮する場合は適当な定数を掛けて用いると良い)。太陽電池1の発電出力は集電箱4を経てパワーコンディショナ2に供給され入力電力Ppinとなっているので、太陽電池1の発電量が変動するとこの入力電力Ppinの値も変化する。また、パワーコンディショナ2の入力電力Ppinと出力電力Ppoとは実質的に同じであるので、商用電力系統30の電圧が一定(例えば単相3線式ではAC200V)であれば入力電力Ppinはパワーコンディショナ2が商用電力系統30へ供給する出力電流Ipoを検出すれば求めることができる。従って出力電流Ipoの値を変えることによって出力電力Ppo値を太陽電池1の現在の発電電力に等しくすることができる。
 インバータ回路23は搬送波と正弦波状の変調波とを変調して得られるPWM方式に基づくスイッチング信号でスイッチング素子51~54をON/OFF制御して単相の疑似正弦波を出力する。この時この疑似正弦波の振幅は昇圧回路21から出力される電圧に比例するので、出力電流Ipoは昇圧回路21の昇圧比を変えることによってこの電圧を変えて制御することができる。従って、この現在の太陽電池1の発電電力の最大値は出力電流Ipoの目標値Itを変えた際に入力電力Ppinが最大になる目標値Itに出力電流Ipoを制御すればよい。
 昇圧主回路21は電流差dIp(=電流Ipo-目標値It)に基づいてスイッチング素子82のONデューティを制御する。電流差dIpが正であればONデューティの値を小さくし、負であればONデューティの値を大きくする。尚、この際のゲインは適に設定する。
(集電箱の昇圧回路の動作)
 次に、第1の実施形態の集電箱4の昇圧回路40の動作について説明する。昇圧回路40は、電圧センサ86により検出した入力電圧と、受信した他の昇圧回路40の入力電圧に基づいて、MPPT動作の開始/停止を制御する。図4は、昇圧回路40の動作を示すフローチャートである。昇圧回路40は、動作を開始すると、昇圧回路40への入力電圧Vを電圧センサ86により検出する(ステップS11)。そして、昇圧回路40は、通信機能を利用して他の昇圧回路40と通信し、他の昇圧回路40の入力電圧Vnを受信する(ステップS12)。次に、検出した入力電圧Vと、受信した入力電圧Vnの中で最も高い電圧Vmaxを特定する(ステップS13)。
 最も高い電圧Vmaxの特定が終わると、昇圧回路40は、最も高い電圧Vmaxと検出した入力電圧Vとの差分(Vmax-V)を演算し、差分(Vmax-V)が電圧閾値Vth(Vth≧0)以下であるか否かを判定する(ステップS14)。この判定により、差分(Vmax-V)が電圧閾値Vth(約10V程度)以下である場合は、昇圧回路40は、スイッチ素子82を開いて昇圧を停止して太陽電池1からの入力電力(直流電力)をリアクタ、ダイオード、コンデンサを介してほぼそのまま出力する(ステップS15
)。また、この判定により、差分(Vmax-V)が電圧閾値Vth以下でない場合は、昇圧回路40は、上述したMPPT動作を行い、太陽電池1を最大電力点で動作させる(ステップS16)。
 このように、図4のフローチャートを夫々の昇圧回路40a~40dが実行することで、入力電圧が最も大きい昇圧回路(Vmax-V=0の昇圧回路)のスイッチ素子82を開いて昇圧を停止するため、最大電力点の電圧が最も大きい太陽電池1が昇圧を行わないラインに常に接続されることになる。このため、全ての太陽電池1a~1dを最大電力点付近で動作することができる。また、スイッチ素子82を開いて昇圧を停止し、太陽電池1からの入力電力を出力するラインLができる。これにより、この昇圧回路40がスイッチング作動した際のスイッチングによるリアクタの交流分損失やスイッチ素子82のON抵抗による電力のロスを抑制することができる。
 また、ステップS14により、差分(Vmax-V)が電圧閾値Vth(約10V程度)以下である昇圧回路40のスイッチ素子82も開いて昇圧を停止する。このため、入力電圧が最も大きい昇圧回路(Vmax-V=0の昇圧回路)の入力電圧とこの電圧との差が所定電圧値以内(約10V以内)の入力電圧を有している昇圧回路は、スイッチ素子82を開いて昇圧動作を停止して前記太陽電池からの入力電力をほぼそのまま出力する。これにより、最大電力点の電圧が最も大きい太陽電池1と最大電力点の電圧が近い太陽電池1に接続される昇圧回路40の動作も停止してより電力のロスを抑制することができる。
 尚、この際に、動作を停止する昇圧回路40に接続される太陽電池1は、最大電力点の電圧が最も大きい太陽電池1と最大電力点の電圧が近いため、ほぼ最大電力点にて動作する。
(第2の実施形態)
 第1の実施形態では、昇圧回路40は、電圧センサ86により検出した入力電圧と、受信した他の昇圧回路40の入力電圧に基づいて、MPPT動作の開始/停止を制御していたが、第2の実施形態では、昇圧回路40は、電圧センサ86及び電流センサ85により検出した入力電力と、受信した他の昇圧回路40の入力電力に基づいて、MPPT動作の開始/停止を制御する昇圧回路を判断する。
 図5は、第2の実施形態における、集電箱4の昇圧回路40の動作を示すフローチャートである。昇圧回路40は、動作を開始すると、昇圧回路40への入力電圧Vと入力電流Iを検出すし、入力電力Pを演算する(ステップS21)。そして、昇圧回路40は、通信機能を利用して他の昇圧回路40と通信し、他の昇圧回路40の入力電力Pnを受信する(ステップS22)。次に、検出した入力電力Pと、受信した入力電力Pnの中で最も高い電力Pmaxを特定する(ステップS23)。
 最も高い電力Pmaxの特定が終わると、昇圧回路40は、最も高い電力Pmaxと検出した入力電力Pとの差分(Pmax-P)を演算し、差分(Pmax-P)が電力閾値Pth(Vth≧0)以下であるか否かを判定する(ステップS24)。この判定により、差分(Pmax-P)が電力閾値Pth以下である場合は、昇圧回路40は、スイッチ素子82を開いて昇圧を停止して太陽電池1からの入力電力を(直流電力)をリアクタ、ダイオード、コンデンサを介してほぼそのまま出力する(ステップS25)。また、この判定により、差分(Pmax-P)が電力閾値Pth以下でない場合は、昇圧回路40は、上述したMPPT動作を行い、太陽電池1を最大電力点で動作させる(ステップS26)。
 このように、図5のフローチャートを夫々の昇圧回路40a~40dが実行することで、入力電力が最も大きい昇圧回路(Pmax-P=0の昇圧回路)のスイッチ素子82を開いて昇圧を停止するため、最大電力点の電力が最も大きい太陽電池1が昇圧を行わないラインに常に接続されることになる。このため、全ての太陽電池1a~1dを最大電力点付近で動作することができる。また、スイッチ素子82を開いて昇圧を停止し、太陽電池1からの入力電力を出力するラインLができる。これにより、この昇圧回路40がスイッチング作動した際のスイッチングによるリアクタの交流分損失やスイッチ素子82のON抵抗による電力のロスを抑制することができる。
 また、ステップS14により、差分(Pmax-P)が電力閾値Pth以下である昇圧回路40のスイッチ素子82も開いて昇圧を停止する。このため、入力電力が最も大きい昇圧回路(Pmax-P=0の昇圧回路)の入力電力とこの電力との差が所定電力値以内の入力電力を有している昇圧回路は、スイッチ素子82を開いて昇圧動作を停止して前記太陽電池からの入力電力をほぼそのまま出力する。これにより、最大電力点の電力が最も大きい太陽電池1と最大電力点の電力が近い太陽電池1に接続される昇圧回路40の動作も停止してより電力のロスを抑制することができる。
 尚、この際に、動作を停止する昇圧回路40に接続される太陽電池1は、最大電力点の電力が最も大きい太陽電池1と最大電力点の電力が近いため、ほぼ最大電力点にて動作する。
 また、昇圧回路40a~40dへの入力電力によりMPPT動作開始の判定を行っているため、同時に停止している昇圧回路40の出力電圧が同じになり、これらの昇圧回路40の入力電圧に差がつきづらい場合でも、MPPT動作開始の判定を精度良く行うことができる。
 以上、本発明の実施形態について説明したが、以上の説明は本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。
 例えば、第1の実施形態のように、昇圧回路40a~40dへの入力電圧によりMPPT動作の開始/停止の判定を行う場合は、パワーコンディショナ2が動作を開始する前(昇圧主回路41に電流が流れる前)に、パワーコンディショナ2の動作後に昇圧回路40をMPPT動作するか否かを予め決定することができる。
 そして、この決定に従って、パワーコンディショナ2の動作後に昇圧回路40を動作させる際に、MPPT動作が安定するまでの所定時間(或いは、MPPT動作を行っている昇圧回路40の電力変化量が所定量より小さくなるまでの間)、動作を変更しない(MPPT動作を行っている昇圧回路40はMPPT動作を行い、停止している昇圧回路40は停止する)ようにする。すると、最初にMPPT動作を開始した際に昇圧回路40a~40dの入力電圧が大きく変化するような不安定な状態で、昇圧回路40の動作を変更(MPPT動作から停止へ、或いは停止からMPPT動作への変更)することが無くなる。これにより、昇圧回路40を安定して動作させることができる。
 また、例えば、本実施形態では、入力電圧(入力電力)が最も大きい昇圧回路の入力電圧(入力電力)とこの電圧(電力)との差が所定電圧値以内(所定電力値以内)であるか否かを、Vmax-Vの差分(Pmax-Pの差分)で判断したが、V/Vmax(P/Pmax)等の比で判断しても良い。
 また、例えば、本実施例の集電箱4の昇圧回路40は、昇圧動作として、MPPT動作を行ったが、MPPT動作による昇圧回路40の入力電力の変動が所定量よりも小さい場合(最大電力点付近により動作していると判断できる場合)などは、ONデューティを一定に固定した状態でスイッチ素子82を周期的に開閉させて固定の昇圧比により動作する昇圧比一定動作を行っても良い。
 
1a~1d   太陽電池
2   パワーコンディショナ
4   集電箱
21   昇圧主回路
22   パワコン制御回路
23   インバータ回路
30  商用電力系統
40a~40d      
昇圧回路
41a~41d      
昇圧主回路
42a~42d 昇圧制御回路
50   系統連系システム
 

Claims (3)

  1.  複数の太陽電池に夫々接続される電力ライン、及び前記電力ラインに夫々介在し前記電力ラインを介して得られる前記太陽電池の出力電圧を昇圧する昇圧回路を有し、夫々の前記電力ラインの出力をまとめて出力する集電箱において、
     前記昇圧回路を、入力と出力間を繋ぐリアクタ、ダイオード、コンデンサの直列回路とスイッチ素子とを有して構成し、夫々の前記昇圧回路のうち入力電圧が最も大きい昇圧回路のスイッチング素子の動作を停止して前記太陽電池からの入力電力を前記リアクタ、前記ダイオード、前記コンデンサを介して出力し、他の昇圧回路は、前記スイッチ素子を周期的に開閉させて所定の昇圧動作を行うことを特徴とする集電箱。
  2.  前記入力電圧が最も大きい昇圧回路の入力電圧とこの電圧との差が所定電圧値以内の入力電圧を有している昇圧回路は、昇圧動作を停止して前記太陽電池からの入力電力をほぼそのまま出力することを特徴とする請求項1に記載の集電箱。
  3.  前記昇圧回路は、前記リアクトル、前記ダイオード、前記コンデンサの直列回路を正極側から負極側に向かって接続し、
     前記スイッチ素子は、前記リアクトルと前記ダイオードとの接続点を負極側に接続し、昇圧回路は、前記コンデンサの両端から昇圧出力得ることを特徴とする請求項1または請求項2に記載の集電箱。
     
     
     
PCT/JP2012/056805 2011-05-17 2012-03-16 集電箱 WO2012157329A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013515029A JP5857193B2 (ja) 2011-05-17 2012-03-16 集電箱

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011110213 2011-05-17
JP2011-110213 2011-05-17

Publications (1)

Publication Number Publication Date
WO2012157329A1 true WO2012157329A1 (ja) 2012-11-22

Family

ID=47176671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056805 WO2012157329A1 (ja) 2011-05-17 2012-03-16 集電箱

Country Status (2)

Country Link
JP (1) JP5857193B2 (ja)
WO (1) WO2012157329A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014215831A (ja) * 2013-04-25 2014-11-17 株式会社安川電機 系統連系装置
JP2015139277A (ja) * 2014-01-22 2015-07-30 三菱電機株式会社 電力変換装置
JP2016220432A (ja) * 2015-05-22 2016-12-22 株式会社日立製作所 電力変換装置
CN106452137A (zh) * 2016-07-12 2017-02-22 江苏兆伏爱索新能源有限公司 一种提高多路mppt逆变器转换效率的控制方法
JP2017068531A (ja) * 2015-09-30 2017-04-06 日立アプライアンス株式会社 太陽光発電システム
WO2017163690A1 (ja) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 電力変換システム、電力変換装置
EP2993754B1 (en) 2014-07-15 2018-09-19 Sungrow Power Supply Co., Ltd. Centralized mppt exiting and switching method and application thereof
JP2019013074A (ja) * 2017-06-29 2019-01-24 京セラ株式会社 車両用太陽電池の制御装置、車両用太陽電池の制御装置の制御方法及び車両用太陽電池システム
WO2021019814A1 (ja) * 2019-07-26 2021-02-04 オムロン株式会社 電力変換装置及び発電システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5842233B1 (ja) * 2014-09-26 2016-01-13 富士電機株式会社 直流電力変換装置
CN107104461A (zh) * 2017-05-17 2017-08-29 阳光电源股份有限公司 一种光伏发电系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069321A (ja) * 1996-08-27 1998-03-10 Honda Motor Co Ltd 太陽光発電装置
JP2000112545A (ja) * 1998-09-30 2000-04-21 Daihen Corp 太陽光発電システム
JP2002199739A (ja) * 2000-12-21 2002-07-12 Sharp Corp 電力変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069321A (ja) * 1996-08-27 1998-03-10 Honda Motor Co Ltd 太陽光発電装置
JP2000112545A (ja) * 1998-09-30 2000-04-21 Daihen Corp 太陽光発電システム
JP2002199739A (ja) * 2000-12-21 2002-07-12 Sharp Corp 電力変換装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014215831A (ja) * 2013-04-25 2014-11-17 株式会社安川電機 系統連系装置
JP2015139277A (ja) * 2014-01-22 2015-07-30 三菱電機株式会社 電力変換装置
EP2993754B1 (en) 2014-07-15 2018-09-19 Sungrow Power Supply Co., Ltd. Centralized mppt exiting and switching method and application thereof
US10693297B2 (en) 2014-07-15 2020-06-23 Sungrow Power Supply Co., Ltd. Centralized MPPT exiting and switching method and application thereof
JP2016220432A (ja) * 2015-05-22 2016-12-22 株式会社日立製作所 電力変換装置
JP2017068531A (ja) * 2015-09-30 2017-04-06 日立アプライアンス株式会社 太陽光発電システム
JP2017175826A (ja) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 電力変換システム、電力変換装置
WO2017163690A1 (ja) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 電力変換システム、電力変換装置
WO2018010972A1 (en) * 2016-07-12 2018-01-18 Sma Solar Technology Ag A control method for improving conversion efficiency of a multi-channel mppt inverter
CN106452137B (zh) * 2016-07-12 2018-08-07 艾思玛新能源技术(江苏)有限公司 一种提高多路mppt逆变器转换效率的控制方法
US10488880B2 (en) 2016-07-12 2019-11-26 Sma Solar Technology Ag Control method for improving conversion efficiency of a multi-channel MPPT inverter
CN106452137A (zh) * 2016-07-12 2017-02-22 江苏兆伏爱索新能源有限公司 一种提高多路mppt逆变器转换效率的控制方法
JP2019013074A (ja) * 2017-06-29 2019-01-24 京セラ株式会社 車両用太陽電池の制御装置、車両用太陽電池の制御装置の制御方法及び車両用太陽電池システム
WO2021019814A1 (ja) * 2019-07-26 2021-02-04 オムロン株式会社 電力変換装置及び発電システム
JP2021023005A (ja) * 2019-07-26 2021-02-18 オムロン株式会社 電力変換装置及び発電システム
JP7255408B2 (ja) 2019-07-26 2023-04-11 オムロン株式会社 電力変換装置及び発電システム

Also Published As

Publication number Publication date
JP5857193B2 (ja) 2016-02-10
JPWO2012157329A1 (ja) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5857193B2 (ja) 集電箱
US20240222978A1 (en) Maximizing Power in a Photovoltaic Distributed Power System
KR100763135B1 (ko) 태양광 발전 시스템 및 그 제어방법
CN102195297B (zh) 用于太阳能发电设备的非隔离dc-dc转换器
JP5788017B2 (ja) 電力変換装置
US8335090B2 (en) Low cost high efficiency high power solar power conversion system circuit and solar power supply system
US8547716B2 (en) Power converting apparatus, grid interconnection apparatus and grid interconnection system
US20140008986A1 (en) Inverter system
US11722000B2 (en) Power converters and methods of controlling same
US9413269B2 (en) Circuits and methods for photovoltaic inverters
WO2012132949A1 (ja) 集電箱
EP2807737A1 (en) Stacked voltage source inverter with separate dc sources
TW201616800A (zh) 變換裝置
US20220263428A1 (en) Power converting apparatus and photovoltaic module including the same
JP5919483B2 (ja) 系統連系装置
JP6232912B2 (ja) 太陽光発電用パワーコンディショナ
KR101920469B1 (ko) 쿡 컨버터 기반의 계통 연계형 단일단 인버터
JP6268786B2 (ja) パワーコンディショナ、パワーコンディショナシステムおよびパワーコンディショナの制御方法
US20150326108A1 (en) Dual source dc to dc converter
JP6515006B2 (ja) 太陽光発電システム
Hyung et al. Efficiency control of multi-string PV system considering switching losses analysis
JP5869999B2 (ja) 太陽光発電システム
JP2012199519A (ja) 太陽電池システム
JP2019012380A (ja) 太陽光発電システム
Alhassani et al. Designing a Z-Source Microinverter for Low-Input Voltage Solar Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786208

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013515029

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12786208

Country of ref document: EP

Kind code of ref document: A1