WO2017163690A1 - 電力変換システム、電力変換装置 - Google Patents

電力変換システム、電力変換装置 Download PDF

Info

Publication number
WO2017163690A1
WO2017163690A1 PCT/JP2017/005923 JP2017005923W WO2017163690A1 WO 2017163690 A1 WO2017163690 A1 WO 2017163690A1 JP 2017005923 W JP2017005923 W JP 2017005923W WO 2017163690 A1 WO2017163690 A1 WO 2017163690A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
voltage
bus
solar cell
control unit
Prior art date
Application number
PCT/JP2017/005923
Other languages
English (en)
French (fr)
Inventor
菊池 彰洋
祐輔 岩松
守雄 中村
藤井 裕之
直生 辻本
賢治 花村
直章 藤居
寛和 林
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017163690A1 publication Critical patent/WO2017163690A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a power conversion system and a power conversion device that convert DC power generated by a solar cell into AC power.
  • MPPT Maximum Power Point Tracking
  • the MPPT control is a control for searching for the maximum power point of the solar cell by changing the operating voltage (output voltage) of the solar cell with a predetermined step width.
  • the MPPT control is normally executed by a booster circuit provided between the solar cell and the inverter, and the generated power at the maximum power point is output to the inverter via the DC bus.
  • the inverter converts generated power (DC power) input via a DC bus into AC power and outputs the AC power to a commercial power system (hereinafter simply referred to as system) (for example, see Patent Document 1).
  • the inverter outputs power to the system by controlling the voltage of the DC bus so that the voltage of the DC bus is higher than the voltage of the system. At this time, the conversion loss can be reduced as the voltage of the DC bus is closer to the system voltage.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to achieve the maximum power point of the solar cell even when the power exceeding the voltage controllable range of the DC-DC converter for boosting is generated by the solar cell.
  • An object of the present invention is to provide a power conversion system and a power conversion device that can be operated in the above manner.
  • a power conversion system converts a DC power supplied from a solar cell into a DC power of another voltage and outputs the DC power to a DC bus.
  • a converter an inverter that converts DC power input from the DC bus into AC power, and outputs the AC power to a system; and the DC-DC converter is controlled so that the output power of the solar cell is maximized.
  • a control unit for controlling the inverter so that the voltage of the DC bus maintains a target voltage.
  • the control unit uses the operating point voltage as the target voltage of the DC bus.
  • the present invention even when electric power exceeding the voltage controllable range of the DC-DC converter for boosting is generated by the solar cell, it can be operated at the maximum power point of the solar cell.
  • FIG. 5 is a diagram showing an example of PV characteristics of the solar cell according to Embodiment 1.
  • FIG. 3 is a flowchart showing a DC-DC converter and inverter control method according to Example 1 of Embodiment 1; 3 is a flowchart showing a method for controlling a DC-DC converter and an inverter according to Example 2 of Embodiment 1. It is a figure for demonstrating the power conversion system which concerns on Embodiment 2 of this invention.
  • 6 is a diagram showing an example of PV characteristics of a plurality of solar cell strings according to Embodiment 2.
  • 6 is a flowchart showing a DC-DC converter and inverter control method according to Example 1 of Embodiment 2.
  • 6 is a flowchart showing a method for controlling a DC-DC converter and an inverter according to Example 2 of Embodiment 2.
  • 6 is a flowchart showing a method for controlling a DC-DC converter and an inverter according to a modification of the second embodiment. It is a figure for demonstrating the power conversion system which concerns on Embodiment 3 of this invention. It is a figure which shows an example of an integrated power conversion system.
  • FIG. 1 is a diagram for explaining a power conversion system 1 according to Embodiment 1 of the present invention.
  • Embodiment 1 is an example in which a solar cell is configured as a centralized type.
  • the solar cell 2 in FIG. 1 is a generic name for a plurality of solar cell panels and a junction box for connecting outputs of the plurality of solar cell panels in one system.
  • a DC-DC converter that converts electric power generated by the solar cell 2 into electric power of another voltage
  • an inverter that converts direct-current electric power converted into another voltage into AC electric power are provided in different cases. Shows an example of installation. By installing both in separate casings, the individual casings can be reduced in size, and the flexibility of installation is improved. For example, it is also possible to install both at positions separated from each other. In addition, it is easy to add new solar cells and storage batteries.
  • the power conversion system 1 includes a first power conversion device 10 and a second power conversion device 20, and both are connected by a DC bus 30.
  • the first power conversion device 10 includes a DC-DC converter 11 and a first control unit 12, and the second power conversion device 20 includes an inverter 21 and a second control unit 22.
  • the DC-DC converter 11 converts the DC power supplied from the solar cell 2 into DC power of another voltage and outputs the DC power to the DC bus 30.
  • the DC-DC converter 11 can be constituted by a step-up chopper, for example.
  • the first control unit 12 controls the DC-DC converter 11 so that the output power of the solar cell 2 is maximized.
  • the first control unit 12 includes an input current / voltage detection unit 121, an MPPT control unit 122, a first bus voltage detection unit 123, a first communication unit 124, a first voltage command value determination unit 125, and a first drive unit 126. .
  • the structure of the 1st control part 12 is realizable by cooperation of a hardware resource and a software resource, or only a hardware resource.
  • hardware resources analog elements, microcomputers, DSPs, ROMs, RAMs, FPGAs, and other LSIs can be used.
  • Firmware and other programs can be used as software resources.
  • the input current / voltage detection unit 121 detects the input current and input voltage of the DC-DC converter 11 which are the output current and output voltage of the solar cell 2.
  • the MPPT control unit 122 performs control so that the generated power of the solar cell 2 measured based on the detected input current and input voltage becomes the maximum power point (optimum operating point). Specifically, the maximum power point is searched by changing the operating point voltage with a predetermined step width according to the hill-climbing method, and control is performed so that the output power of the solar cell 2 maintains the maximum power point.
  • the first bus voltage detection unit 123 detects the voltage of the DC bus 30 and outputs it to the first voltage command value determination unit 125.
  • the first communication unit 124 communicates with the second communication unit 224 of the second power conversion device 20.
  • the first communication unit 124 of the first control unit 12 and the second communication unit 224 of the second control unit 22 are connected by a communication line 40. For example, it is connected with a cable corresponding to the RS-485 standard, and serial communication is performed according to a communication method compliant with the standard.
  • the first voltage command value determination unit 125 generates a voltage command value based on the difference between the operating point voltage supplied from the MPPT control unit 122 and the DC bus voltage detected by the first bus voltage detection unit 123. And output to the first drive unit 126.
  • the first drive unit 126 generates a drive signal based on the voltage command value, and drives the duty control switching element of the DC-DC converter 11.
  • an IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the first driving unit 126 includes, for example, a comparator that compares the voltage command value with a carrier wave (triangular wave), and the comparator uses a PWM signal corresponding to a comparison result between the voltage command value and the carrier wave as a drive signal. Output to the gate terminal.
  • the inverter 21 converts the DC power input from the DC bus 30 into AC power and outputs the AC power to the system 3.
  • the inverter 21 includes a bridge circuit in which four switching elements are bridge-connected. The output of the inverter 21 can be adjusted by controlling the duty of the switching element.
  • the second control unit 22 controls the inverter 21 so that the voltage of the DC bus 30 maintains the target voltage.
  • the second control unit 22 includes a second bus voltage detection unit 221, a system current / voltage detection unit 223, a second communication unit 224, a second voltage command value determination unit 225, and a second drive unit 226.
  • the configuration of the second control unit 22 can be realized by cooperation of hardware resources and software resources, or only by hardware resources.
  • hardware resources analog elements, microcomputers, DSPs, ROMs, RAMs, FPGAs, and other LSIs can be used.
  • Firmware and other programs can be used as software resources.
  • the second bus voltage detection unit 221 detects the voltage of the DC bus 30 and outputs it to the second voltage command value determination unit 225.
  • the system current / voltage detection unit 223 detects the current and voltage of the distribution line connecting the second power conversion device 20 and the system 3.
  • a load 4 is connected to the distribution line, and a current flowing through the distribution line changes depending on a use state of the load 4.
  • the voltage of the distribution line is defined by the voltage of system 3 unless a power failure occurs.
  • the second communication unit 224 communicates with the first communication unit 124 of the first power conversion device 10. Both are connected by the communication line 40 as mentioned above.
  • the second voltage command value determination unit 225 generates a voltage command value based on the difference between the preset target value of the DC bus voltage and the bus voltage detected by the second bus voltage detection unit 221.
  • the target value is higher than the system voltage (for example, AC 200 V) and set to a value as close to the system voltage as possible. For example, it is set to DC320V.
  • the smaller the difference between the voltage of the DC bus 30 and the system voltage the smaller the conversion loss in the inverter 21 (specifically, the switching element), and the more efficient power conversion becomes possible.
  • the second voltage command value determination unit 225 is based on the difference between the voltage command value based on the difference between the target value and the detected bus voltage and the distribution line voltage detected by the system current / voltage detection unit 223. A final voltage command value is generated and output to the second drive unit 226.
  • the second drive unit 226 generates a drive signal based on the voltage command value and drives the duty control switching element of the inverter 21.
  • the above is the basic processing of the first power converter 10 and the second power converter 20.
  • the basic process assumes that the operating voltage at the maximum power point of the solar cell 2 is within a voltage range that can be boosted by the DC-DC converter 11.
  • the DC-DC converter 11 increases the operating voltage of the solar cell 2 to the maximum.
  • the power point cannot be controlled. In this case, the power generation capability of the solar cell 2 cannot be fully exhibited.
  • the DC-DC converter 11 having a wide controllable voltage range, it is necessary to use the high-breakdown voltage DC-DC converter 11, which increases the cost and the circuit area.
  • FIG. 2 is a diagram showing an example of the PV characteristics of the solar cell 2 according to the first embodiment.
  • the operating voltage at the maximum power point of the solar cell 2 exceeds the voltage control range of the DC-DC converter 11. Therefore, in the first embodiment, the second control unit 22 controls the target value of the bus voltage of the inverter 21 to the operating voltage at the maximum power point.
  • the solar cell 2 can be operated at the maximum power point.
  • specific processing for realizing this control will be described.
  • FIG. 3 is a flowchart showing a method for controlling the DC-DC converter 11 and the inverter 21 according to Example 1 of the first embodiment.
  • the second communication unit 224 of the second control unit 22 transmits the target value of the voltage of the DC bus 30 (the default value or the target value calculated from the system voltage) to the first communication of the first control unit 12 via the communication line 40.
  • the unit 124 is notified (S10).
  • the notification step is omitted.
  • a default value is used as a target value serving as a reference for the voltage of the DC bus 30 will be described.
  • a target value calculated from the system voltage may be used as the target value.
  • the input current / voltage detector 121 of the first power converter 10 detects the input current and input voltage of the DC-DC converter 11 and measures the generated power of the solar cell 2 (S11).
  • the first voltage command value determination unit 125 compares the operating point voltage of the solar cell 2 with the target value of the bus voltage (S12). When the operating point voltage is equal to or lower than the target value of the bus voltage (N in S12), the MPPT control unit 122 moves (increases or decreases) the operating point voltage of the solar cell 2 by one step according to the hill-climbing method (S13).
  • the MPPT control unit 122 determines whether or not the maximum power point of the solar cell 2 has been detected (S14). For example, when a reciprocating movement is made to return to the next operating point after exceeding a certain operating point, the operating point is detected as the maximum power point.
  • the process returns to step S11.
  • the first communication unit 124 of the first control unit 12 detects the maximum power point via the communication line 40 and the second communication unit 224 of the second control unit 22. (S18).
  • the second voltage command value determination unit 225 of the second control unit 22 maintains the target value of the bus voltage at the default value (S19).
  • the first voltage command value determination unit 125 of the first control unit 12 sets a voltage command value based on the detected operating voltage at the maximum power point (S110).
  • step S12 when the operating point voltage of the solar cell 2 is higher than the target value of the bus voltage (Y in S12), the first communication unit 124 of the first control unit 12 displays the comparison result including the operating point voltage as a communication line. It notifies to the 2nd communication part 224 of the 2nd control part 22 via 40 (S15).
  • the second voltage command value determination unit 225 of the second control unit 22 determines the target value of the bus voltage by MPPT control using the acquired operating point voltage as an initial value (S16).
  • the first voltage command value determination unit 125 of the first control unit 12 stops the operation of the DC-DC converter 11 and simply passes the input power (S17).
  • FIG. 4 is a flowchart showing a method for controlling the DC-DC converter 11 and the inverter 21 according to Example 2 of the first embodiment.
  • the input current / voltage detector 121 of the first power converter 10 detects the input current and input voltage of the DC-DC converter 11 and measures the generated power of the solar cell 2 (S20).
  • the first communication unit 124 of the first control unit 12 notifies the operating point voltage of the solar battery 2 to the second communication unit 224 of the second control unit 22 via the communication line 40 (S21).
  • the MPPT control unit 122 moves (increases or decreases) the operating point voltage of the solar cell 2 by one step according to the hill-climbing method (S22).
  • the MPPT control unit 122 determines whether or not the maximum power point of the solar cell 2 has been detected (S23).
  • the process returns to step S20.
  • the first voltage command value determination unit 125 sets a voltage command value based on the detected operating voltage of the maximum power point (S28).
  • the second voltage command value determination unit 225 of the second control unit 22 compares the acquired operating point voltage of the solar cell 2 with the target value (default value) of the bus voltage (S24). When the operating point voltage is equal to or lower than the bus voltage target value (N in S24), the second voltage command value determination unit 225 maintains the bus voltage target value at the default value (S29).
  • step S24 when the operating point voltage is higher than the target value of the bus voltage (Y in S24), the second communication unit 224 of the second control unit 22 sends the comparison result to the first control unit 12 via the communication line 40.
  • the first voltage command value determination unit 125 of the first control unit 12 stops the operation of the DC-DC converter 11 and simply passes the input power (S26).
  • the second voltage command value determination unit 225 of the second control unit 22 determines the target value of the bus voltage by MPPT control (S27).
  • the inverter 21 causes the bus voltage to reach the operating voltage. Can be continuously followed by the maximum power point of the solar cell 2. Accordingly, power can be generated at the maximum power point in the entire voltage range input from the solar cell 2 to the power conversion system 1, and the power generation capability of the solar cell 2 can be fully utilized at all times.
  • the target value of the bus voltage needs to be coordinated between the first power conversion device 10 and the second power conversion device 20.
  • the first power conversion device 10 DC-DC converter side
  • the second embodiment compares the comparison with the second power conversion device 20 ( This is a configuration performed on the inverter side.
  • the former has a configuration in which processing load is distributed and delay due to calculation or the like hardly occurs.
  • the target value is collectively managed on the inverter side, it is possible to prevent the occurrence of variations in the bus voltage on the DC-DC converter side and the bus voltage on the inverter side due to the influence of disturbance noise or the like.
  • the output power can be suppressed by bringing the operating voltage of the solar cell close to the open circuit voltage Voc. .
  • the output power can be suppressed by shifting the operating voltage from the maximum power point to the right side.
  • the inverter 21 can control the operating voltage of the solar cell 2 in addition to the DC-DC converter 11 as in the first embodiment, the operating voltage of the solar cell 2 can be controlled over the entire range. Therefore, the process which suppresses output electric power by making the operating voltage of the solar cell 2 close to the open circuit voltage Voc can be accurately executed. There will be no situation where the output power cannot be reduced.
  • FIG. 5 is a diagram for explaining the power conversion system 1 according to the second embodiment of the present invention.
  • a plurality of solar cell strings are provided.
  • four solar cell strings 2a-2d are provided.
  • a plurality of first power converters 10a-10d (a plurality of DC-DC converters 11a-11d) are provided for each of the plurality of solar cell strings 2a-2d.
  • the output sides of the plurality of DC-DC converters 11a-11d are coupled together and connected to the DC bus 30.
  • each of the plurality of first power conversion devices 10a to 10d are basically the same as the configuration and operation of the first power conversion device 10 described in the first embodiment.
  • the configuration and operation of second power conversion device 20 according to the second embodiment are also basically the same as the configuration and operation of second power conversion device 20 described in the first embodiment.
  • FIG. 6 is a graph showing an example of the PV characteristics of the plurality of solar cell strings 2a-2d according to the second embodiment.
  • the operating voltage at the maximum power point of three solar cell strings out of the four solar cell strings 2 a to 2 d exceeds the voltage control range of the DC-DC converter 11.
  • FIG. 7 is a flowchart showing a method for controlling the DC-DC converter 11 and the inverter 21 according to Example 1 of the second embodiment.
  • each of the first controllers 12a-12d executes the same processing as steps S11-S14 in the flowchart of FIG.
  • the first communication unit 124 of the first control unit 12 of the power conversion device 10 connected to the solar cell string detects the maximum power point via the communication line 40. 2 Notify the second communication unit 224 of the control unit 22 (S18).
  • the second voltage command value determination unit 225 of the second control unit 22 maintains the target value of the bus voltage at the default value (S19).
  • the process proceeds to step S16a.
  • the first voltage command value determination unit 125 of the first control unit 12 sets a voltage command value based on the detected operating voltage at the maximum power point (S110).
  • step S12 when the operating point voltage of the solar cell string is higher than the target value of the bus voltage (Y in S12), the first communication unit 124 of the first control unit 12 compares the operating point voltage and the generated power. Is notified to the second communication unit 224 of the second control unit 22 via the communication line 40 (S15).
  • the second voltage command value determination unit 225 of the second control unit 22 performs MPPT control based on the operating point voltage and the generated power of the solar cell string having the maximum generated power among the acquired data, and sets the target of the bus voltage. The value is determined (S16a).
  • the first voltage command value determination unit 125 of the first control unit 12 stops the operation of the DC-DC converter 11 and simply passes the input power (S17). In the example shown in FIG. 6, the operating voltage at the maximum power point of the solar cell string having the second PV characteristic from the top is set.
  • FIG. 8 is a flowchart showing a method for controlling the DC-DC converter 11 and the inverter 21 according to Example 2 of the second embodiment.
  • each of the first controllers 12a-12d executes basically the same processing as steps S20-S23, S28 in the flowchart of FIG.
  • step 21 a of the flowchart of FIG. 8 the first communication unit 124 of the first control unit 12 transmits the operating point voltage and generated power of the solar cell string via the communication line 40 to the second communication unit of the second control unit 22. 224 is notified (S21a).
  • step S24 the second voltage command value determination unit 225 of the second control unit 22 compares the operating point voltage of the solar cell string acquired from the plurality of first control units 12a-12d and the target value (default value) of the bus voltage. (S24). For the first power conversion device 10 in which the operating point voltage of the solar cell string is higher than the target value of the bus voltage (Y in S24), the second communication unit 224 of the second control unit 22 displays the comparison result on the communication line 40. Is sent to the first communication unit 124 of the first control unit 12 (S25). Receiving the notification, the first voltage command value determination unit 125 of the first control unit 12 stops the operation of the DC-DC converter 11 and simply passes the input power (S26).
  • the second voltage command value determining unit 225 of the second control unit 22 is based on the operating point voltage and generated power of the solar cell string having the maximum generated power among the data acquired from the plurality of first control units 12a-12d. Then, MPPT control is performed to determine a target value of the bus voltage (S27a).
  • step S24 when the operating point voltages of all the solar cell strings are equal to or lower than the target value (default value) of the bus voltage (N in S24, Y in S285), the target value of the bus voltage is maintained at the default value ( S29).
  • the process proceeds to step S27a.
  • the second embodiment even when the solar cell is a multi-string type, the highest maximum of the operating voltages at the maximum power point that is higher than the target value (default value) of the bus voltage.
  • the target value default value
  • the operation voltage at the highest maximum power point among the operation voltages at the maximum power point that is higher than the target value (default value) of the bus voltage is set as the bus voltage target value.
  • An average value or median value of the operating voltages at a plurality of maximum power points higher than the target value (default value) may be set as the target value of the bus voltage.
  • the operating voltage at the maximum power point is The operation of the DC-DC converter 11 was not stopped in the first power conversion device 10 having a voltage value equal to or lower than the target value (default value).
  • the plurality of DC-DC converters 11a-11d may be stopped uniformly.
  • the operating voltage at the maximum power point is equal to or lower than the target value (default value) of the bus voltage.
  • Whether or not to stop the operation of the DC-DC converter 11 of the single power conversion device 10 may be determined as follows. For example, the output power of the inverter 21 is measured for each of the case where the operation of the DC-DC converter 11 is stopped and the case where the operation is not stopped, and the control having the larger value is selected. The output power of the inverter 21 is measured based on the output current and the system voltage of the inverter 21 detected by the system current / voltage detection unit 223.
  • FIG. 9 is a flowchart showing a method for controlling the DC-DC converter 11 and the inverter 21 according to a modification of the second embodiment.
  • each of the first controllers 12a-12d executes the same processing as steps S11-S15, S17, S18, and S110 of the flowchart of FIG.
  • the flowchart of FIG. 9 differs from the flowchart of FIG. 3 in the process of step S16.
  • the output power of the inverter 21 is The target value of the bus voltage is determined so as to be maximized (S16b). Specifically, the output power of the inverter 21 is measured based on the output current and the system voltage of the inverter 21 detected by the system current / voltage detection unit 223, and the second voltage command value determination unit 225 performs the second drive. The voltage command value supplied to the unit 226 is moved (increased or decreased) by one step. The second voltage command value determination unit 225 determines whether the maximum power point of the output power of the inverter 21 has been detected.
  • the operating point is detected as the maximum power point of the inverter 21.
  • the second voltage command value determination unit 225 determines the voltage command value when the maximum power point is detected as the target value of the bus voltage.
  • the optimum output is obtained by monitoring the output power of the inverter 21.
  • a target value for the bus voltage can be determined.
  • FIG. 10 is a diagram for explaining the power conversion system 1 according to the third embodiment of the present invention.
  • power storage unit 5 includes a lithium ion storage battery, a nickel hydride storage battery, a lead storage battery, an electric double layer capacitor, or a lithium ion capacitor.
  • the third power conversion device 50 includes a third DC-DC converter 51 and a third control unit 52.
  • the third DC-DC converter 51 is connected between the power storage unit 5 and the DC bus 30 to charge / discharge the power storage unit 5.
  • the third control unit 52 controls the third DC-DC converter 51 based on a predetermined voltage command value to charge / discharge the power storage unit 5 at a constant voltage (CV).
  • the third control unit 52 controls the third DC-DC converter 51 based on a predetermined current command value to charge / discharge the power storage unit 5 with a constant current (CC).
  • the third control unit 52 is connected to the first control unit 12 and the second control unit 22 through the communication line 40.
  • the control according to the first embodiment described above can be performed between the first power conversion device 10 and the second power conversion device 20 in FIG.
  • the second control unit 22 determines the target value of the bus voltage so that the output power of the inverter 21 is maximized when the operating voltage at the maximum power point of the solar cell 2 is higher than the target value (default value) of the bus voltage. May be. Further, while the power storage unit 5 is being charged, the target value of the bus voltage may be determined so that the sum of the output power of the inverter 21 and the charging power of the third DC-DC converter 51 is maximized. The charging power of the third DC-DC converter 51 is acquired by the second control unit 22 from the third control unit 52 via the communication line 40. Note that the target value of the bus voltage is determined so that the output power of the inverter 21 is maximized while the power storage unit 5 is being discharged or stopped.
  • FIG. 10 shows an example in which the solar cell is a concentrated type, it may be a string type.
  • the control according to the second embodiment described above can be performed between the plurality of first power conversion devices 10a-10d and the second power conversion device 20. Further, it is possible to perform control to maximize the output power of the inverter 21 or the sum of the output power of the inverter 21 and the charging power of the third DC-DC converter 51 described above.
  • the separated power conversion system 1 has been described.
  • the control according to the above-described first to third embodiments controls the DC-DC converter 11, the inverter 21, and both as shown in FIG. It can also be applied to the integrated power conversion system 1 in which the control unit 12 is installed in one housing.
  • the third DC-DC converter 51 is also installed in the same housing.
  • the DC-DC converter (11) is controlled so that the output power of the solar cell (2) is maximized, and the inverter (21) is controlled so that the voltage of the DC bus (30) maintains the target voltage.
  • a control unit (12 and / or 22) When the operating point voltage of the solar cell (2) is higher than a preset target voltage of the DC bus (30), the control unit (12 and / or 22) is configured to target voltage of the DC bus (30).
  • the solar cell (2) has a plurality of solar cell strings (2a-2d)
  • the DC-DC converter (11) has a plurality of DC-DC converters (11a) whose input side is connected to the plurality of solar cell strings (2a-2d) and whose output side is commonly connected to the DC bus (30).
  • the control unit (12 and / or 22) has a plurality of operating point voltages higher than a preset target voltage of the DC bus (30) among operating point voltages of the solar cell string (2a-2d).
  • Item 3 When the control unit (12 and / or 22) has an operating point voltage higher than a preset target voltage of the DC bus (30) among the operating point voltages of the solar cell string (2a-2d), Item 3.
  • a power conversion system (1) comprising a first power conversion device (10) and a second power conversion device (20),
  • the first power converter (10) A DC-DC converter (11) for converting DC power supplied from the solar cell (2) into DC power of another voltage and outputting the DC power to the DC bus (30);
  • a first controller (12) for controlling the DC-DC converter (11) so that the output power of the solar cell (2) is maximized,
  • the second power converter (20) An inverter (21) for converting DC power input from the DC bus (30) into AC power and outputting the AC power to the grid (3);
  • the first control unit (12) of the first power conversion device (10) and the second control unit (22) of the second power conversion device (20) are connected by a communication line (40),
  • the second control unit (22) uses the target voltage of the DC bus (30) as the target voltage.
  • a power conversion system (1) characterized by using an operating point voltage. According to this, even when the maximum operating point voltage of the solar cell (2) is higher than the preset target voltage of the DC bus (30) in the separated power conversion system (1), the solar cell (2). The maximum operating point can be continuously tracked over the entire output voltage range.
  • the first control unit (12) compares the operating point voltage of the solar cell (2) with a preset target voltage of the DC bus (30), and the operating point voltage is higher than the target voltage.
  • the power conversion system (1) according to item 4 wherein the operating point voltage is notified to the second control unit (22). According to this, the processing load can be distributed between the first control unit (12) and the second control unit (22), and a delay due to calculation or the like can be avoided.
  • the first control unit (12) notifies the operating point voltage of the solar cell (2) to the second control unit (22),
  • the second control unit (22) compares the operating point voltage acquired from the first control unit (12) with a preset target voltage of the DC bus (30).
  • the power conversion system (1) described in 1. According to this, the target voltage of the DC bus (30) can be collectively managed by the second control unit (22), thereby reducing the influence of the entire operation on the disturbance or the like.
  • the first control unit (12) boosts the DC-DC converter (11). 7.
  • the DC-DC converter (11) is controlled so that the output power of the solar cell (2) is maximized, and the inverter (21) is controlled so that the voltage of the DC bus (30) maintains the target voltage.
  • a control unit (12 and / or 22) When the operating point voltage of the solar cell (2) is higher than a preset target voltage of the DC bus (30), the control unit (12 and / or 22) has an output power of the inverter (21).
  • the power conversion system (1) wherein the target voltage of the DC bus (30) is determined so as to be maximized. According to this, when the maximum operating point voltage of the solar cell (2) is higher than the preset target voltage of the DC bus (30), the target voltage of the highly efficient DC bus (30) can be set. it can.
  • the DC-DC converter (11) is controlled so that the output power of the solar cell (2) is maximized, and the inverter (21) is controlled so that the voltage of the DC bus (30) maintains the target voltage.
  • a control unit (12 and / or 22) When the operating point voltage of the solar cell (2) is higher than a preset target voltage of the DC bus (30), the control unit (12 and / or 22) outputs the output power of the inverter (21), Alternatively, the target voltage of the DC bus (30) is determined such that the sum of the output power of the inverter (21) and the charging power of the power storage unit (5) is maximized. According to this, when the maximum operating point voltage of the solar cell (2) provided with the power storage unit (5) is higher than a preset target voltage of the DC bus (30), the highly efficient DC bus (30 ) Target voltage can be set.
  • a conversion device (10) comprising: A DC-DC converter (11) for converting DC power supplied from the solar cell (2) into DC power of another voltage and outputting the DC power to the DC bus (30); A first controller (12) for controlling the DC-DC converter (11) so that the output power of the solar cell (2) is maximized, The first control unit (12)
  • the inverter (21) is controlled so that the voltage of the DC bus (30) maintains the target voltage, and the operating point voltage of the solar cell (2) is more than the preset target voltage of the DC bus (30).
  • a characteristic power converter (10) for converting DC power supplied from the solar cell (2) into DC power of another voltage and outputting the DC power to the DC bus (30); and the solar cell (2) A first control unit (12) for controlling the DC-DC converter (11) so that output power is maximized, and a second power conversion device (20) connected to the first power conversion device (10).
  • An inverter (21) for converting DC power input from the DC bus (30) into AC power and outputting the AC power to the grid (3);
  • a second controller (22) for controlling the inverter (21) so that the voltage of the DC bus (30) maintains a target voltage
  • the second control unit (22) of the second power conversion device (20) is connected to the first control unit (12) of the first power conversion device (10) via a communication line (40),
  • the second control unit (22) uses the target voltage of the DC bus (30) as the target voltage.
  • a power converter (20) characterized by using an operating point voltage. According to this, even when the maximum operating point voltage of the solar cell (2) is higher than the preset target voltage of the DC bus (30), the maximum operation is performed over the entire output voltage range of the solar cell (2). You can keep following the point.
  • 1 power conversion system 2 solar cells, 2a 1st solar cell string, 2b 2nd solar cell string, 2c 3rd solar cell string, 2d 4th solar cell string, 3 systems, 4 loads, 5 power storage unit, 10 1st Power converter, 11 DC-DC converter, 12 1st control unit, 121 Input current / voltage detection unit, 122 MPPT control unit, 123 1st bus voltage detection unit, 124 1st communication unit, 125 1st voltage command value determination Unit, 126, first drive unit, 20 second power conversion device, 21 inverter, 22 second control unit, 221 second bus voltage detection unit, 223 system current / voltage detection unit, 224 second communication unit, 225 second voltage Command value determination unit, 226, second drive unit, 30 DC bus 40 communication line, 50 a third power converter, 51 second 3DC-DC converter, 52 the third control unit.
  • the present invention can be used for a photovoltaic power generation system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

DC-DCコンバータ11は、太陽電池2から供給される直流電力を別の電圧の直流電力に変換し、当該直流電力を直流バス30に出力する。インバータ21は、直流バス30から入力される直流電力を交流電力に変換し、当該交流電力を系統3に出力する。制御部12、22は、太陽電池2の出力電力が最大になるようDC-DCコンバータ11を制御するとともに、直流バス30の電圧が目標電圧を維持するようインバータ21を制御する。制御部12、22は、太陽電池2の動作点電圧が、直流バス30の予め設定された目標電圧より高い場合、直流バス30の目標電圧として前記動作点電圧を使用する。

Description

電力変換システム、電力変換装置
 本発明は、太陽電池で発電された直流電力を交流電力に変換する電力変換システム、電力変換装置に関する。
 従来より、太陽電池の発電電力を最大限に取得するための制御として、MPPT (Maximum Power Point Tracking) 制御が良く利用されている。MPPT制御は、太陽電池の動作電圧(出力電圧)を所定のステップ幅で変動させ、太陽電池の最大電力点を探索する制御である。MPPT制御は通常、太陽電池とインバータの間に設けられる昇圧回路により実行され、最大電力点の発電電力が直流バスを介してインバータに出力される。インバータは、直流バスを介して入力される発電電力(直流電力)を交流電力に変換して商用電力系統(以下単に、系統という)に出力する(例えば、特許文献1参照)。
 インバータは、直流バスの電圧が系統の電圧より高くなるように、当該直流バスの電圧を制御して系統に電力を出力する。この際、直流バスの電圧が系統の電圧に近いほど変換損失を小さくできる。
特開2013-90364号公報
 近年、太陽電池パネルの性能が向上してきており、最大電力点の動作電圧が高いパネルも市販されている。これに伴い、太陽電池の最大電力点の動作電圧が、昇圧回路の電圧制御可能な範囲を超えるケースが発生している。この場合、昇圧回路で太陽電池の動作点を制御することが困難になる。
 本発明はこうした状況に鑑みなされたものであり、その目的は、昇圧用のDC-DCコンバータの電圧制御可能な範囲を超える電力が太陽電池で発電されている場合でも、太陽電池の最大電力点で動作させることができる電力変換システム、電力変換装置を提供することにある。
 上記課題を解決するために、本発明のある態様の電力変換システムは、太陽電池から供給される直流電力を別の電圧の直流電力に変換し、当該直流電力を直流バスに出力するDC-DCコンバータと、前記直流バスから入力される直流電力を交流電力に変換し、当該交流電力を系統に出力するインバータと、前記太陽電池の出力電力が最大になるよう前記DC-DCコンバータを制御するとともに、前記直流バスの電圧が目標電圧を維持するよう前記インバータを制御する制御部と、を備える。前記制御部は、前記太陽電池の動作点電圧が、前記直流バスの予め設定された目標電圧より高い場合、前記直流バスの目標電圧として前記動作点電圧を使用する。
 本発明によれば、昇圧用のDC-DCコンバータの電圧制御可能な範囲を超える電力が太陽電池で発電されている場合でも、太陽電池の最大電力点で動作させることができる。
本発明の実施の形態1に係る電力変換システムを説明するための図である。 実施の形態1に係る太陽電池のP-V特性の一例を示す図である。 実施の形態1の実施例1に係るDC-DCコンバータ及びインバータの制御方法を示すフローチャートである。 実施の形態1の実施例2に係るDC-DCコンバータ及びインバータの制御方法を示すフローチャートである。 本発明の実施の形態2に係る電力変換システムを説明するための図である。 実施の形態2に係る複数の太陽電池ストリングのP-V特性の一例を示す図である。 実施の形態2の実施例1に係るDC-DCコンバータ及びインバータの制御方法を示すフローチャートである。 実施の形態2の実施例2に係るDC-DCコンバータ及びインバータの制御方法を示すフローチャートである。 実施の形態2の変形例に係るDC-DCコンバータ及びインバータの制御方法を示すフローチャートである。 本発明の実施の形態3に係る電力変換システムを説明するための図である。 一体型の電力変換システムの一例を示す図である。
 図1は、本発明の実施の形態1に係る電力変換システム1を説明するための図である。実施の形態1は太陽電池が集中型で構成される例である。図1の太陽電池2は、複数の太陽電池パネルと、複数の太陽電池パネルの出力を1系統に接続する接続箱の総称である。また実施の形態1では太陽電池2で発電された電力を別の電圧の電力に変換するDC-DCコンバータと、別の電圧に変換された直流電力を交流電力に変換するインバータを別の筐体に設置する例を示す。両者を別の筐体に設置することにより、個々の筐体を小型化することができ、設置の柔軟性が向上する。例えば、両者を離れた位置に設置することも可能である。また、新たな太陽電池や蓄電池の増設が容易である。
 実施の形態1に係る電力変換システム1は、第1電力変換装置10及び第2電力変換装置20を備え、両者は直流バス30で接続される。第1電力変換装置10はDC-DCコンバータ11及び第1制御部12を含み、第2電力変換装置20はインバータ21及び第2制御部22を含む。
 DC-DCコンバータ11は、太陽電池2から供給される直流電力を別の電圧の直流電力に変換し、当該直流電力を直流バス30に出力する。DC-DCコンバータ11は例えば、昇圧チョッパで構成することができる。
 第1制御部12は、太陽電池2の出力電力が最大になるようDC-DCコンバータ11を制御する。第1制御部12は、入力電流・電圧検出部121、MPPT制御部122、第1バス電圧検出部123、第1通信部124、第1電圧指令値決定部125及び第1駆動部126を含む。第1制御部12の構成は、ハードウェア資源とソフトウェア資源の協働、またはハードウェア資源のみにより実現できる。ハードウェア資源としてアナログ素子、マイクロコンピュータ、DSP、ROM、RAM、FPGA、その他のLSIを利用できる。ソフトウェア資源としてファームウェア等のプログラムを利用できる。
 入力電流・電圧検出部121は、太陽電池2の出力電流および出力電圧である、DC-DCコンバータ11の入力電流および入力電圧を検出する。MPPT制御部122は、検出された入力電流および入力電圧をもとに計測された太陽電池2の発電電力が最大電力点(最適動作点)となるよう制御する。具体的には山登り法に従い動作点電圧を所定のステップ幅で変化させて最大電力点を探索し、太陽電池2の出力電力が最大電力点を維持するよう制御する。
 第1バス電圧検出部123は、直流バス30の電圧を検出して第1電圧指令値決定部125に出力する。第1通信部124は、第2電力変換装置20の第2通信部224と通信する。第1制御部12の第1通信部124と第2制御部22の第2通信部224間は通信線40で接続される。例えばRS-485規格に対応したケーブルで接続され、当該規格に準拠した通信方式に従いシリアル通信する。
 第1電圧指令値決定部125は、MPPT制御部122から供給される動作点電圧と、第1バス電圧検出部123により検出される直流バス電圧との差分をもとに電圧指令値を生成し、第1駆動部126に出力する。第1駆動部126は当該電圧指令値をもとに駆動信号を生成し、DC-DCコンバータ11のデューティ制御用のスイッチング素子を駆動する。スイッチング素子には例えば、IGBT(Insulated Gate Bipolar Transistor)又はMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)を使用することができる。第1駆動部126は例えば、当該電圧指令値と搬送波(三角波)を比較するコンパレータを含み、当該コンパレータは、当該電圧指令値と搬送波の比較結果に応じたPWM信号を駆動信号として上記スイッチング素子のゲート端子に出力する。
 インバータ21は、直流バス30から入力される直流電力を交流電力に変換し、当該交流電力を系統3に出力する。インバータ21は例えば、4つのスイッチング素子をブリッジ接続したブリッジ回路を含む。当該スイッチング素子のデューティを制御することにより、インバータ21の出力を調整することができる。
 第2制御部22は、直流バス30の電圧が目標電圧を維持するようインバータ21を制御する。第2制御部22は、第2バス電圧検出部221、系統電流・電圧検出部223、第2通信部224、第2電圧指令値決定部225及び第2駆動部226を含む。第2制御部22の構成は、ハードウェア資源とソフトウェア資源の協働、またはハードウェア資源のみにより実現できる。ハードウェア資源としてアナログ素子、マイクロコンピュータ、DSP、ROM、RAM、FPGA、その他のLSIを利用できる。ソフトウェア資源としてファームウェア等のプログラムを利用できる。
 第2バス電圧検出部221は、直流バス30の電圧を検出して第2電圧指令値決定部225に出力する。系統電流・電圧検出部223は、第2電力変換装置20と系統3間を繋ぐ配電線の電流および電圧を検出する。当該配電線には負荷4が接続され、負荷4の使用状態により当該配電線に流れる電流が変化する。当該配電線の電圧は、停電にならない限り系統3の電圧で規定される。
 第2通信部224は、第1電力変換装置10の第1通信部124と通信する。上述のように両者は通信線40で接続される。
 第2電圧指令値決定部225は、予め設定された直流バス電圧の目標値と、第2バス電圧検出部221により検出されるバス電圧との差分をもとに電圧指令値を生成する。当該目標値は、系統電圧(例えば、AC200V)より高い電圧であって、できるだけ系統電圧に近い値に設定される。例えば、DC320Vに設定される。直流バス30の電圧と系統電圧の差が小さいほどインバータ21(具体的にはスイッチング素子)での変換損失が少なく、高効率な電力変換が可能となる。
 第2電圧指令値決定部225は、上記目標値と検出されたバス電圧の差分にもとづく電圧指令値と、系統電流・電圧検出部223により検出された配電線の電圧との差分をもとに最終的な電圧指令値を生成し、第2駆動部226に出力する。第2駆動部226は当該電圧指令値をもとに駆動信号を生成し、インバータ21のデューティ制御用のスイッチング素子を駆動する。
 以上が第1電力変換装置10及び第2電力変換装置20の基本処理である。当該基本処理は、太陽電池2の最大電力点の動作電圧が、DC-DCコンバータ11による昇圧可能な電圧範囲内の場合を想定している。これに対して、太陽電池2の最大電力点の動作電圧が、DC-DCコンバータ11の昇圧制御可能な電圧範囲より上にある場合、DC-DCコンバータ11が太陽電池2の動作電圧を、最大電力点まで制御できなくなる。この場合、太陽電池2の発電能力がフルに発揮できない状態となる。これに対して、制御可能な電圧範囲が広いDC-DCコンバータ11を使用することが考えられるが、高耐圧のDC-DCコンバータ11を使用する必要があり、コスト及び回路面積が増加する。
 図2は、実施の形態1に係る太陽電池2のP-V特性の一例を示す図である。図2に示すP-V特性では、太陽電池2の最大電力点の動作電圧が、DC-DCコンバータ11の電圧制御範囲を超えている。そこで実施の形態1では、第2制御部22がインバータ21のバス電圧の目標値を、最大電力点の動作電圧に制御する。これにより太陽電池2の最大電力点の動作電圧が、DC-DCコンバータ11の電圧制御範囲を超える場合でも、太陽電池2を最大電力点で動作させることができる。以下、この制御を実現するための具体的な処理を説明する。
 図3は、実施の形態1の実施例1に係るDC-DCコンバータ11及びインバータ21の制御方法を示すフローチャートである。第2制御部22の第2通信部224は、直流バス30の電圧の目標値(デフォルト値または系統電圧から算出される目標値)を通信線40を介して第1制御部12の第1通信部124に通知する(S10)。なお当該目標値を第1制御部12が予め保持している場合、当該通知ステップは省略される。以下の説明では、直流バス30の電圧の基準となる目標値として、デフォルト値を使用する例を示す。なお当該目標値に系統電圧から算出される目標値を使用してもよい。
 第1電力変換装置10の入力電流・電圧検出部121は、DC-DCコンバータ11の入力電流および入力電圧を検出し、太陽電池2の発電電力を計測する(S11)。第1電圧指令値決定部125は太陽電池2の動作点電圧と、バス電圧の目標値を比較する(S12)。動作点電圧がバス電圧の目標値以下の場合(S12のN)、MPPT制御部122は、太陽電池2の動作点電圧を山登り法に従い1ステップ移動(増加または減少)させる(S13)。MPPT制御部122は太陽電池2の最大電力点を検出したか否か判定する(S14)。例えば、ある動作点を超えて次にその動作点に戻る往復移動したとき、当該動作点を最大電力点として検出する。
 最大電力点に到達していない場合(S14のN)、ステップS11に戻る。最大電力点が検出された場合(S14のY)、第1制御部12の第1通信部124は、最大電力点の検出を通信線40を介して第2制御部22の第2通信部224に通知する(S18)。第2制御部22の第2電圧指令値決定部225は、バス電圧の目標値をデフォルト値に維持する(S19)。第1制御部12の第1電圧指令値決定部125は、検出された最大電力点の動作電圧をもとに電圧指令値を設定する(S110)。
 ステップS12において、太陽電池2の動作点電圧がバス電圧の目標値より高い場合(S12のY)、第1制御部12の第1通信部124は、当該動作点電圧を含む比較結果を通信線40を介して第2制御部22の第2通信部224に通知する(S15)。第2制御部22の第2電圧指令値決定部225はバス電圧の目標値を、取得した動作点電圧を初期値としたMPPT制御により決定する(S16)。第1制御部12の第1電圧指令値決定部125は、DC-DCコンバータ11の動作を停止させ、入力電力を単純に通過させる(S17)。
 図4は、実施の形態1の実施例2に係るDC-DCコンバータ11及びインバータ21の制御方法を示すフローチャートである。第1電力変換装置10の入力電流・電圧検出部121は、DC-DCコンバータ11の入力電流および入力電圧を検出し、太陽電池2の発電電力を計測する(S20)。第1制御部12の第1通信部124は、太陽電池2の動作点電圧を通信線40を介して第2制御部22の第2通信部224に通知する(S21)。MPPT制御部122は、太陽電池2の動作点電圧を山登り法に従い1ステップ移動(増加または減少)させる(S22)。MPPT制御部122は太陽電池2の最大電力点を検出したか否か判定する(S23)。
 最大電力点に到達していない場合(S23のN)、ステップS20に戻る。最大電力点が検出された場合(S23のY)、第1電圧指令値決定部125は、検出された最大電力点の動作電圧をもとに電圧指令値を設定する(S28)。
 第2制御部22の第2電圧指令値決定部225は、取得した太陽電池2の動作点電圧と、バス電圧の目標値(デフォルト値)を比較する(S24)。動作点電圧がバス電圧の目標値以下の場合(S24のN)、第2電圧指令値決定部225は、バス電圧の目標値をデフォルト値に維持する(S29)。
 ステップS24において、動作点電圧がバス電圧の目標値より高い場合(S24のY)、第2制御部22の第2通信部224は、当該比較結果を通信線40を介して第1制御部12の第1通信部124に通知する(S25)。第1制御部12の第1電圧指令値決定部125は、DC-DCコンバータ11の動作を停止させ、入力電力を単純に通過させる(S26)。第2制御部22の第2電圧指令値決定部225はバス電圧の目標値を、MPPT制御により決定する(S27)。
 以上説明したように実施の形態1によれば、太陽電池2の最大電力点の動作電圧が、DC-DCコンバータ11の昇圧不能な領域に存在する場合でも、インバータ21により当該動作電圧までバス電圧を昇圧させることにより、太陽電池2の最大電力点を追従し続けることができる。従って太陽電池2から電力変換システム1に入力される電圧範囲の全領域において最大電力点で発電させることができ、太陽電池2の発電能力を常時、フルに活用することができる。
 実施の形態1のように分離型の電力変換システム1では、第1電力変換装置10と第2電力変換装置20間でバス電圧の目標値の協調が必要になる。実施例1は最大電力点の動作電圧とバス電圧の目標値との比較を第1電力変換装置10(DC-DCコンバータ側)で行い、実施例2は当該比較を第2電力変換装置20(インバータ側)で行う構成である。前者は処理負荷が分散されるため、演算等による遅延が発生しにくい構成である。後者はインバータ側で目標値が一括管理されるため、外乱ノイズ等の影響によりDC-DCコンバータ側のバス電圧と、インバータ側のバス電圧にばらつきが発生することを防止することができる。
 ところで近年、系統に接続される再生可能エネルギーを用いた発電装置(太陽光発電システム、風力発電システムなど)が増加してきており、パワーコンディショナに出力抑制機能が標準搭載されるようになってきている。太陽電池に接続されるパワーコンディショナでは、電気事業者から出力抑制を指示するデマンドレスポンス指令を受信した場合、系統電圧が設定値を上回った場合、パワーコンディショナの温度が設定値を上回った場合などに、系統への出力電力を抑制する。
 系統への出力電力を抑制する方法には様々なものがあるが、MPPT制御機能を搭載した電力変換装置では、太陽電池の動作電圧を開放電圧Vocに近づけることにより出力電力を抑制することができる。図2に示す例では、最大電力点から右側へ動作電圧をシフトすることにより出力電力を抑制することができる。
 実施の形態1のようにDC-DCコンバータ11に加えて、インバータ21でも太陽電池2の動作電圧を制御可能な構成では、太陽電池2の動作電圧を全範囲に渡り制御可能である。従って太陽電池2の動作電圧を開放電圧Vocに近づけることにより出力電力を抑制する処理を、正確に実行することができる。途中で出力電力を低下できなくなる事態が発生しない。
 図5は、本発明の実施の形態2に係る電力変換システム1を説明するための図である。実施の形態1では太陽電池を集中型で構成する例を示したが、実施の形態2では太陽電池をマルチストリング型で構成する例を説明する。実施の形態2では複数の太陽電池ストリングが設けられる。図5では4つの太陽電池ストリング2a-2dが設けられる。また複数の太陽電池ストリング2a-2dごとに複数の第1電力変換装置10a-10d(複数のDC-DCコンバータ11a-11d)が設けられる。複数のDC-DCコンバータ11a-11dの出力側は1つに結合されて直流バス30に接続される。
 複数の第1電力変換装置10a-10dのそれぞれの構成および動作は、実施の形態1で説明した第1電力変換装置10の構成および動作と基本的に同じである。実施の形態2に係る第2電力変換装置20の構成および動作も、実施の形態1で説明した第2電力変換装置20の構成および動作と基本的に同じである。以下、実施の形態1との相違点を説明する。
 図6は、実施の形態2に係る複数の太陽電池ストリング2a-2dのP-V特性の一例を示す図である。図4に示すP-V特性では4つの太陽電池ストリング2a-2dの内、3つの太陽電池ストリングの最大電力点の動作電圧が、DC-DCコンバータ11の電圧制御範囲を超えている。
 図7は、実施の形態2の実施例1に係るDC-DCコンバータ11及びインバータ21の制御方法を示すフローチャートである。当該フローチャートにおいて各第1制御部12a-12dはそれぞれ、図3のフローチャートのステップS11-S14と同様の処理を実行する。最大電力点を検出した(S14のY)、太陽電池ストリングに接続された電力変換装置10の第1制御部12の第1通信部124は、最大電力点の検出を通信線40を介して第2制御部22の第2通信部224に通知する(S18)。第2制御部22の第2電圧指令値決定部225は、全ての太陽電池ストリングが最大電力点を検出した場合(S185のY)、バス電圧の目標値をデフォルト値に維持する(S19)。少なくとも1台の太陽電池ストリングが最大電力点を検出していない場合(S185のN)、ステップS16aに遷移する。第1制御部12の第1電圧指令値決定部125は、検出された最大電力点の動作電圧をもとに電圧指令値を設定する(S110)。
 ステップS12において、太陽電池ストリングの動作点電圧がバス電圧の目標値より高い場合(S12のY)、第1制御部12の第1通信部124は、当該動作点電圧と発電電力を含む比較結果を通信線40を介して第2制御部22の第2通信部224に通知する(S15)。第2制御部22の第2電圧指令値決定部225は、取得したデータの内、発電電力が最大の太陽電池ストリングの動作点電圧および発電電力をもとにMPPT制御を行い、バス電圧の目標値を決定する(S16a)。第1制御部12の第1電圧指令値決定部125は、DC-DCコンバータ11の動作を停止させ、入力電力を単純に通過させる(S17)。図6に示す例では、上から2番目のP-V特性を持つ太陽電池ストリングの最大電力点の動作電圧を設定する。
 図8は、実施の形態2の実施例2に係るDC-DCコンバータ11及びインバータ21の制御方法を示すフローチャートである。当該フローチャートにおいて各第1制御部12a-12dはそれぞれ、図4のフローチャートのステップS20-S23、S28と基本的に同様の処理を実行する。なお図8のフローチャートのステップ21aでは、第1制御部12の第1通信部124は、太陽電池ストリングの動作点電圧と発電電力を通信線40を介して第2制御部22の第2通信部224に通知する(S21a)。
 ステップS24において第2制御部22の第2電圧指令値決定部225は、複数の第1制御部12a-12dから取得した太陽電池ストリングの動作点電圧とバス電圧の目標値(デフォルト値)を比較する(S24)。太陽電池ストリングの動作点電圧がバス電圧の目標値より高い第1電力変換装置10に対して(S24のY)、第2制御部22の第2通信部224は、当該比較結果を通信線40を介して第1制御部12の第1通信部124に通知する(S25)。通知を受けた第1制御部12の第1電圧指令値決定部125は、DC-DCコンバータ11の動作を停止させ、入力電力を単純に通過させる(S26)。第2制御部22の第2電圧指令値決定部225は、複数の第1制御部12a-12dから取得したデータの内、発電電力が最大の太陽電池ストリングの動作点電圧および発電電力をもとにMPPT制御を行い、バス電圧の目標値を決定する(S27a)。
 ステップS24の比較において、全ての太陽電池ストリングの動作点電圧がバス電圧の目標値(デフォルト値)以下の場合(S24のN、S285のY)、バス電圧の目標値をデフォルト値に維持する(S29)。少なくとも1台の太陽電池ストリングの動作点電圧がバス電圧の目標値(デフォルト値)より高い場合(S285のN)、ステップS27aに遷移する。
 以上説明したように実施の形態2によれば、太陽電池がマルチストリング型の場合であっても、バス電圧の目標値(デフォルト値)より高い、最大電力点の動作電圧の内、最も高い最大電力点の動作電圧をバス電圧の目標値に設定することにより、実施の形態1の効果と同様の効果を奏する。
 図7、8のフローチャートでは、バス電圧の目標値(デフォルト値)より高い、最大電力点の動作電圧の内、最も高い最大電力点の動作電圧をバス電圧の目標値に設定したが、バス電圧の目標値(デフォルト値)より高い、複数の最大電力点の動作電圧の平均値または中央値をバス電圧の目標値に設定してもよい。
 また図7、8のフローチャートでは、最大電力点の動作電圧がバス電圧の目標値(デフォルト値)より高い第1電力変換装置10が存在する場合であっても、最大電力点の動作電圧がバス電圧の目標値(デフォルト値)以下の第1電力変換装置10ではDC-DCコンバータ11の動作を停止させなかった。この点、最大電力点の動作電圧がバス電圧の目標値(デフォルト値)より高い第1電力変換装置10が存在する場合、複数のDC-DCコンバータ11a-11dを一律に停止させてもよい。一律に停止させる制御を用いた場合、系統3からの外乱ノイズにより、各装置間の直流バス30の電圧にばらつきが発生することを防止することができる。
 また最大電力点の動作電圧がバス電圧の目標値(デフォルト値)より高い第1電力変換装置10が存在する場合において、最大電力点の動作電圧がバス電圧の目標値(デフォルト値)以下の第1電力変換装置10のDC-DCコンバータ11の動作を停止させるか否かを以下のように決定してもよい。例えば、当該DC-DCコンバータ11の動作を停止させた場合と停止させない場合のそれぞれについて、インバータ21の出力電力を計測し、値が大きい方の制御を選択する。インバータ21の出力電力は、系統電流・電圧検出部223により検出されるインバータ21の出力電流および系統電圧をもとに計測される。
 図9は、実施の形態2の変形例に係るDC-DCコンバータ11及びインバータ21の制御方法を示すフローチャートである。当該フローチャートにおいて各第1制御部12a-12dはそれぞれ、図3のフローチャートのステップS11-S15、S17、S18、S110と同様の処理を実行する。図9のフローチャートは、図3のフローチャートとステップS16の処理が異なる。
 第2制御部22の第2電圧指令値決定部225は、少なくとも1台の第1電力変換装置10の第1制御部12から太陽電池ストリングの動作点電圧を取得すると、インバータ21の出力電力が最大化されるようにバス電圧の目標値を決定する(S16b)。具体的には、系統電流・電圧検出部223により検出されるインバータ21の出力電流および系統電圧をもとにインバータ21の出力電力を計測し、第2電圧指令値決定部225は、第2駆動部226に供給する電圧指令値を1ステップ移動(増加または減少)させる。第2電圧指令値決定部225はインバータ21の出力電力の最大電力点を検出したか否か判定する。例えば、ある動作点を超えて次にその動作点に戻る往復移動したとき、当該動作点をインバータ21の最大電力点として検出する。最大電力点が検出されると、第2電圧指令値決定部225は最大電力点を検出したときの電圧指令値をバス電圧の目標値に決定する。
 当該変形例によれば、最大電力点の動作電圧がバス電圧の目標値(デフォルト値)より高い第1電力変換装置10が存在する場合において、インバータ21の出力電力を監視することにより、最適なバス電圧の目標値を決定することができる。
 図10は、本発明の実施の形態3に係る電力変換システム1を説明するための図である。実施の形態3では蓄電部5及び第3電力変換装置50が追加される。蓄電部5は、リチウムイオン蓄電池、ニッケル水素蓄電池、鉛蓄電池、電気二重層キャパシタ、又はリチウムイオンキャパシタ等を含んで構成される。
 第3電力変換装置50は第3DC-DCコンバータ51及び第3制御部52を備える。第3DC-DCコンバータ51は、蓄電部5と直流バス30の間に接続され、蓄電部5を充放電する。第3制御部52は所定の電圧指令値をもとに第3DC-DCコンバータ51を制御して蓄電部5を定電圧(CV)充電/放電する。また第3制御部52は所定の電流指令値をもとに第3DC-DCコンバータ51を制御して蓄電部5を定電流(CC)充電/放電する。第3制御部52は、第1制御部12及び第2制御部22と通信線40で接続される。
 図10の第1電力変換装置10と第2電力変換装置20間において、上述した実施の形態1に係る制御を行うことができる。また第2制御部22は、太陽電池2の最大電力点の動作電圧がバス電圧の目標値(デフォルト値)より高い場合において、インバータ21の出力電力が最大になるようバス電圧の目標値を決定してもよい。また蓄電部5が充電中は、インバータ21の出力電力と第3DC-DCコンバータ51の充電電力の和が、最大になるようバス電圧の目標値を決定してもよい。第3DC-DCコンバータ51の充電電力は第3制御部52から通信線40を介して第2制御部22が取得する。なお蓄電部5の放電中または停止中は、インバータ21の出力電力が最大になるようバス電圧の目標値を決定する。
 なお図10では太陽電池が集中型の例を描いているが、ストリング型であってもよい。その場合、複数の第1電力変換装置10a-10dと第2電力変換装置20間において、上述した実施の形態2に係る制御を行うことができる。また上述したインバータ21の出力電力、またはインバータ21の出力電力と第3DC-DCコンバータ51の充電電力の和を最大化する制御を行うこともできる。
 以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 図1から図10では分離型の電力変換システム1を説明したが、上述の実施の形態1-3に係る制御は、図11に示すようにDC-DCコンバータ11、インバータ21及び、両者を制御する制御部12を一つの筐体に設置した一体型の電力変換システム1にも適用可能である。なお蓄電部5が設置される構成では、同一筐体内に第3DC-DCコンバータ51も設置される。
 なお、実施の形態は、以下の項目によって特定されてもよい。
[項目1]
 太陽電池(2)から供給される直流電力を別の電圧の直流電力に変換し、当該直流電力を直流バス(30)に出力するDC-DCコンバータ(11)と、
 前記直流バス(30)から入力される直流電力を交流電力に変換し、当該交流電力を系統(3)に出力するインバータ(21)と、
 前記太陽電池(2)の出力電力が最大になるよう前記DC-DCコンバータ(11)を制御するとともに、前記直流バス(30)の電圧が目標電圧を維持するよう前記インバータ(21)を制御する制御部(12 and/or 22)と、を備え、
 前記制御部(12 and/or 22)は、前記太陽電池(2)の動作点電圧が、前記直流バス(30)の予め設定された目標電圧より高い場合、前記直流バス(30)の目標電圧として前記動作点電圧を使用することを特徴とする電力変換システム(1)。
 これによれば、太陽電池(2)の最大動作点電圧が、直流バス(30)の予め設定された目標電圧より高い場合でも、太陽電池(2)の出力電圧範囲の全領域に渡り最大動作点を追従し続けることができる。
[項目2]
 前記太陽電池(2)は、複数の太陽電池ストリング(2a-2d)を有し、
 前記DC-DCコンバータ(11)は、入力側が前記複数の太陽電池ストリング(2a-2d)にそれぞれ接続され、出力側が前記直流バス(30)に共通に接続された複数のDC-DCコンバータ(11a-11d)を有し、
 前記制御部(12 and/or 22)は、前記太陽電池ストリング(2a-2d)の動作点電圧の内、前記直流バス(30)の予め設定された目標電圧より高い動作点電圧が複数ある場合、当該複数の動作点電圧のうち最も高い動作点電圧を前記直流バス(30)の目標電圧として使用することを特徴とする項目1に記載の電力変換システム(1)。
 これによれば、少なくとも1つの太陽電池ストリング(2b)の最大動作点電圧が、直流バス(30)の予め設定された目標電圧より高い場合でも、太陽電池ストリング(2b)の出力電圧範囲の全領域に渡り最大動作点を追従し続けることができる。
[項目3]
 前記制御部(12 and/or 22)は、前記太陽電池ストリング(2a-2d)の動作点電圧の内、前記直流バス(30)の予め設定された目標電圧より高い動作点電圧がある場合、少なくとも1つのDC-DCコンバータ(11a-11d)の昇圧動作を停止させることを特徴とする項目2に記載の電力変換システム(1)。
 これによれば、昇圧する必要のないDC-DCコンバータ(11a-11d)の動作を停止させることにより、DC-DCコンバータ(11a-11d)の変換損失を低減することができる。
[項目4]
 第1電力変換装置(10)と第2電力変換装置(20)を備える電力変換システム(1)であって、
 前記第1電力変換装置(10)は、
 太陽電池(2)から供給される直流電力を別の電圧の直流電力に変換し、当該直流電力を直流バス(30)に出力するDC-DCコンバータ(11)と、
 前記太陽電池(2)の出力電力が最大になるよう前記DC-DCコンバータ(11)を制御する第1制御部(12)と、を有し、
 前記第2電力変換装置(20)は、
 前記直流バス(30)から入力される直流電力を交流電力に変換し、当該交流電力を系統(3)に出力するインバータ(21)と、
 前記直流バス(30)の電圧が目標電圧を維持するよう前記インバータ(21)を制御する第2制御部(22)と、を有し、
 前記第1電力変換装置(10)の第1制御部(12)と前記第2電力変換装置(20)の第2制御部(22)との間は通信線(40)で接続されており、
 前記第2制御部(22)は、前記太陽電池(2)の動作点電圧が、前記直流バス(30)の予め設定された目標電圧より高い場合、前記直流バス(30)の目標電圧として前記動作点電圧を使用することを特徴とする電力変換システム(1)。
 これによれば、分離型の電力変換システム(1)において、太陽電池(2)の最大動作点電圧が、直流バス(30)の予め設定された目標電圧より高い場合でも、太陽電池(2)の出力電圧範囲の全領域に渡り、最大動作点を追従し続けることができる。
[項目5]
 前記第1制御部(12)は、前記太陽電池(2)の動作点電圧と、前記直流バス(30)の予め設定された目標電圧とを比較し、当該動作点電圧が当該目標電圧より高い場合、当該動作点電圧を前記第2制御部(22)に通知することを特徴とする項目4に記載の電力変換システム(1)。
 これによれば、処理負荷を第1制御部(12)と第2制御部(22)とで分散させることができ、演算等による遅延を回避することができる。
[項目6]
 前記第1制御部(12)は、前記太陽電池(2)の動作点電圧を前記第2制御部(22)に通知し、
 前記第2制御部(22)は、前記第1制御部(12)から取得した動作点電圧と、前記直流バス(30)の予め設定された目標電圧とを比較することを特徴とする項目4に記載の電力変換システム(1)。
 これによれば、直流バス(30)の目標電圧を第2制御部(22)で一括管理することにより、外乱などに対する全体動作の影響を低減することができる。
[項目7]
 前記第1制御部(12)は、前記太陽電池(2)の動作点電圧が、前記直流バス(30)の予め設定された目標電圧より高い場合、前記DC-DCコンバータ(11)の昇圧動作を停止させることを特徴とする項目5または6に記載の電力変換システム(1)。
 これによれば、DC-DCコンバータ(11)の変換損失を低減することができる。
[項目8]
 太陽電池(2)から供給される直流電力を別の電圧の直流電力に変換し、当該直流電力を直流バス(30)に出力するDC-DCコンバータ(11)と、
 前記直流バス(30)から入力される直流電力を交流電力に変換し、当該交流電力を系統(3)に出力するインバータ(21)と、
 前記太陽電池(2)の出力電力が最大になるよう前記DC-DCコンバータ(11)を制御するとともに、前記直流バス(30)の電圧が目標電圧を維持するよう前記インバータ(21)を制御する制御部(12 and/or 22)と、を備え、
 前記制御部(12 and/or 22)は、前記太陽電池(2)の動作点電圧が、前記直流バス(30)の予め設定された目標電圧より高い場合、前記インバータ(21)の出力電力が最大になるよう前記直流バス(30)の目標電圧を決定することを特徴とする電力変換システム(1)。
 これによれば、太陽電池(2)の最大動作点電圧が、直流バス(30)の予め設定された目標電圧より高い場合において、高効率な直流バス(30)の目標電圧を設定することができる。
[項目9]
 太陽電池(2)から供給される直流電力を別の電圧の直流電力に変換し、当該直流電力を直流バス(30)に出力する第1DC-DCコンバータ(11)と、
 蓄電部(5)と前記直流バス(30)の間に接続され、前記蓄電部(5)を充放電する第2DC-DCコンバータ(51)と、
 前記直流バス(30)から入力される直流電力を交流電力に変換し、当該交流電力を系統(3)に出力するインバータ(21)と、
 前記太陽電池(2)の出力電力が最大になるよう前記DC-DCコンバータ(11)を制御するとともに、前記直流バス(30)の電圧が目標電圧を維持するよう前記インバータ(21)を制御する制御部(12 and/or 22)と、を備え、
 前記制御部(12 and/or 22)は、前記太陽電池(2)の動作点電圧が、前記直流バス(30)の予め設定された目標電圧より高い場合、前記インバータ(21)の出力電力、または前記インバータ(21)の出力電力と前記蓄電部(5)の充電電力の和が最大になるよう前記直流バス(30)の目標電圧を決定することを特徴とする電力変換システム(1)。
 これによれば、蓄電部(5)が併設された太陽電池(2)の最大動作点電圧が、直流バス(30)の予め設定された目標電圧より高い場合において、高効率な直流バス(30)の目標電圧を設定することができる。
[項目10]
 直流バス(30)から入力される直流電力を交流電力に変換し、当該交流電力を系統(3)に出力するインバータ(21)を有する第2電力変換装置(20)と接続される第1電力変換装置(10)であって、
 太陽電池(2)から供給される直流電力を別の電圧の直流電力に変換し、当該直流電力を前記直流バス(30)に出力するDC-DCコンバータ(11)と、
 前記太陽電池(2)の出力電力が最大になるよう前記DC-DCコンバータ(11)を制御する第1制御部(12)と、を備え、
 前記第1制御部(12)は、
 前記直流バス(30)の電圧が目標電圧を維持するよう前記インバータ(21)を制御し、前記太陽電池(2)の動作点電圧が、前記直流バス(30)の予め設定された目標電圧より高い場合、前記直流バス(30)の目標電圧として前記動作点電圧を使用する、前記第2電力変換装置(20)の第2制御部(22)と通信線(40)で接続されることを特徴とする電力変換装置(10)。
 これによれば、太陽電池(2)の最大動作点電圧が、直流バス(30)の予め設定された目標電圧より高い場合でも、太陽電池(2)の出力電圧範囲の全領域に渡り最大動作点を追従し続けることができる。
[項目11]
 太陽電池(2)から供給される直流電力を別の電圧の直流電力に変換し、当該直流電力を直流バス(30)に出力するDC-DCコンバータ(11)と、前記太陽電池(2)の出力電力が最大になるよう前記DC-DCコンバータ(11)を制御する第1制御部(12)と、を有する第1電力変換装置(10)に接続される第2電力変換装置(20)であって、
 前記直流バス(30)から入力される直流電力を交流電力に変換し、当該交流電力を系統(3)に出力するインバータ(21)と、
 前記直流バス(30)の電圧が目標電圧を維持するよう前記インバータ(21)を制御する第2制御部(22)と、を備え、
 前記第2電力変換装置(20)の第2制御部(22)は、前記第1電力変換装置(10)の第1制御部(12)と通信線(40)で接続され、
 前記第2制御部(22)は、前記太陽電池(2)の動作点電圧が、前記直流バス(30)の予め設定された目標電圧より高い場合、前記直流バス(30)の目標電圧として前記動作点電圧を使用することを特徴とする電力変換装置(20)。
 これによれば、太陽電池(2)の最大動作点電圧が、直流バス(30)の予め設定された目標電圧より高い場合でも、太陽電池(2)の出力電圧範囲の全領域に渡り最大動作点を追従し続けることができる。
 1 電力変換システム、 2 太陽電池、 2a 第1太陽電池ストリング、 2b 第2太陽電池ストリング、 2c 第3太陽電池ストリング、 2d 第4太陽電池ストリング、 3 系統、 4 負荷、 5 蓄電部、 10 第1電力変換装置、 11 DC-DCコンバータ、 12 第1制御部、 121 入力電流・電圧検出部、 122 MPPT制御部、 123 第1バス電圧検出部、 124 第1通信部、 125 第1電圧指令値決定部、 126 第1駆動部、 20 第2電力変換装置、 21 インバータ、 22 第2制御部、 221 第2バス電圧検出部、 223 系統電流・電圧検出部、 224 第2通信部、 225 第2電圧指令値決定部、 226 第2駆動部、 30 直流バス、 40 通信線、 50 第3電力変換装置、 51 第3DC-DCコンバータ、 52 第3制御部。
 本発明は、太陽光発電システムに利用可能である。

Claims (11)

  1.  太陽電池から供給される直流電力を別の電圧の直流電力に変換し、当該直流電力を直流バスに出力するDC-DCコンバータと、
     前記直流バスから入力される直流電力を交流電力に変換し、当該交流電力を系統に出力するインバータと、
     前記太陽電池の出力電力が最大になるよう前記DC-DCコンバータを制御するとともに、前記直流バスの電圧が目標電圧を維持するよう前記インバータを制御する制御部と、を備え、
     前記制御部は、前記太陽電池の動作点電圧が、前記直流バスの予め設定された目標電圧より高い場合、前記直流バスの目標電圧として前記動作点電圧を使用することを特徴とする電力変換システム。
  2.  前記太陽電池は、複数の太陽電池ストリングを有し、
     前記DC-DCコンバータは、入力側が前記複数の太陽電池ストリングにそれぞれ接続され、出力側が前記直流バスに共通に接続された複数のDC-DCコンバータを有し、
     前記制御部は、前記太陽電池ストリングの動作点電圧の内、前記直流バスの予め設定された目標電圧より高い動作点電圧が複数ある場合、当該複数の動作点電圧のうち最も高い動作点電圧を前記直流バスの目標電圧として使用することを特徴とする請求項1に記載の電力変換システム。
  3.  前記制御部は、前記太陽電池ストリングの動作点電圧の内、前記直流バスの予め設定された目標電圧より高い動作点電圧がある場合、少なくとも1つのDC-DCコンバータの昇圧動作を停止させることを特徴とする請求項2に記載の電力変換システム。
  4.  第1電力変換装置と第2電力変換装置を備える電力変換システムであって、
     前記第1電力変換装置は、
     太陽電池から供給される直流電力を別の電圧の直流電力に変換し、当該直流電力を直流バスに出力するDC-DCコンバータと、
     前記太陽電池の出力電力が最大になるよう前記DC-DCコンバータを制御する第1制御部と、を有し、
     前記第2電力変換装置は、
     前記直流バスから入力される直流電力を交流電力に変換し、当該交流電力を系統に出力するインバータと、
     前記直流バスの電圧が目標電圧を維持するよう前記インバータを制御する第2制御部と、を有し、
     前記第1電力変換装置の第1制御部と前記第2電力変換装置の第2制御部との間は通信線で接続されており、
     前記第2制御部は、前記太陽電池の動作点電圧が、前記直流バスの予め設定された目標電圧より高い場合、前記直流バスの目標電圧として前記動作点電圧を使用することを特徴とする電力変換システム。
  5.  前記第1制御部は、前記太陽電池の動作点電圧と、前記直流バスの予め設定された目標電圧とを比較し、当該動作点電圧が当該目標電圧より高い場合、当該動作点電圧を前記第2制御部に通知することを特徴とする請求項4に記載の電力変換システム。
  6.  前記第1制御部は、前記太陽電池の動作点電圧を前記第2制御部に通知し、
     前記第2制御部は、前記第1制御部から取得した動作点電圧と、前記直流バスの予め設定された目標電圧とを比較することを特徴とする請求項4に記載の電力変換システム。
  7.  前記第1制御部は、前記太陽電池の動作点電圧が、前記直流バスの予め設定された目標電圧より高い場合、前記DC-DCコンバータの昇圧動作を停止させることを特徴とする請求項5または6に記載の電力変換システム。
  8.  太陽電池から供給される直流電力を別の電圧の直流電力に変換し、当該直流電力を直流バスに出力するDC-DCコンバータと、
     前記直流バスから入力される直流電力を交流電力に変換し、当該交流電力を系統に出力するインバータと、
     前記太陽電池の出力電力が最大になるよう前記DC-DCコンバータを制御するとともに、前記直流バスの電圧が目標電圧を維持するよう前記インバータを制御する制御部と、を備え、
     前記制御部は、前記太陽電池の動作点電圧が、前記直流バスの予め設定された目標電圧より高い場合、前記インバータの出力電力が最大になるよう前記直流バスの目標電圧を決定することを特徴とする電力変換システム。
  9.  太陽電池から供給される直流電力を別の電圧の直流電力に変換し、当該直流電力を直流バスに出力する第1DC-DCコンバータと、
     蓄電部と前記直流バスの間に接続され、前記蓄電部を充放電する第2DC-DCコンバータと、
     前記直流バスから入力される直流電力を交流電力に変換し、当該交流電力を系統に出力するインバータと、
     前記太陽電池の出力電力が最大になるよう前記DC-DCコンバータを制御するとともに、前記直流バスの電圧が目標電圧を維持するよう前記インバータを制御する制御部と、を備え、
     前記制御部は、前記太陽電池の動作点電圧が、前記直流バスの予め設定された目標電圧より高い場合、前記インバータの出力電力、または前記インバータの出力電力と前記蓄電部の充電電力の和が最大になるよう前記直流バスの目標電圧を決定することを特徴とする電力変換システム。
  10.  直流バスから入力される直流電力を交流電力に変換し、当該交流電力を系統に出力するインバータを有する第2電力変換装置と接続される第1電力変換装置であって、
     太陽電池から供給される直流電力を別の電圧の直流電力に変換し、当該直流電力を前記直流バスに出力するDC-DCコンバータと、
     前記太陽電池の出力電力が最大になるよう前記DC-DCコンバータを制御する第1制御部と、を備え、
     前記第1制御部は、
     前記直流バスの電圧が目標電圧を維持するよう前記インバータを制御し、前記太陽電池の動作点電圧が、前記直流バスの予め設定された目標電圧より高い場合、前記直流バスの目標電圧として前記動作点電圧を使用する、前記第2電力変換装置の第2制御部と通信線で接続されることを特徴とする電力変換装置。
  11.  太陽電池から供給される直流電力を別の電圧の直流電力に変換し、当該直流電力を直流バスに出力するDC-DCコンバータと、前記太陽電池の出力電力が最大になるよう前記DC-DCコンバータを制御する第1制御部と、を有する第1電力変換装置に接続される第2電力変換装置であって、
     前記直流バスから入力される直流電力を交流電力に変換し、当該交流電力を系統に出力するインバータと、
     前記直流バスの電圧が目標電圧を維持するよう前記インバータを制御する第2制御部と、を備え、
     前記第2電力変換装置の第2制御部は、前記第1電力変換装置の第1制御部と通信線で接続され、
     前記第2制御部は、前記太陽電池の動作点電圧が、前記直流バスの予め設定された目標電圧より高い場合、前記直流バスの目標電圧として前記動作点電圧を使用することを特徴とする電力変換装置。
PCT/JP2017/005923 2016-03-25 2017-02-17 電力変換システム、電力変換装置 WO2017163690A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-061287 2016-03-25
JP2016061287A JP2017175826A (ja) 2016-03-25 2016-03-25 電力変換システム、電力変換装置

Publications (1)

Publication Number Publication Date
WO2017163690A1 true WO2017163690A1 (ja) 2017-09-28

Family

ID=59899992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005923 WO2017163690A1 (ja) 2016-03-25 2017-02-17 電力変換システム、電力変換装置

Country Status (2)

Country Link
JP (1) JP2017175826A (ja)
WO (1) WO2017163690A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110071497A (zh) * 2019-05-14 2019-07-30 电子科技大学 一种带储能设备的光伏直流发电系统及其控制方法
WO2023230688A1 (pt) * 2022-06-03 2023-12-07 Lugpe Tech Ltda Método híbrido para rastreamento da máxima potência de geradores de energia solar fotovoltaica

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6952245B2 (ja) * 2016-09-30 2021-10-20 パナソニックIpマネジメント株式会社 電力変換システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157329A1 (ja) * 2011-05-17 2012-11-22 三洋電機株式会社 集電箱
JP2013090364A (ja) * 2011-10-13 2013-05-13 Gs Yuasa Corp 直流電源のパワーコンディショナ、及び、電力変換用プログラム
JP2014054025A (ja) * 2012-09-05 2014-03-20 Nippon Soken Inc 電力変換装置
JP2014130416A (ja) * 2012-12-28 2014-07-10 Noritz Corp 系統連系装置
JP2015008559A (ja) * 2013-06-24 2015-01-15 株式会社ノーリツ 接続箱および太陽光発電システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157329A1 (ja) * 2011-05-17 2012-11-22 三洋電機株式会社 集電箱
JP2013090364A (ja) * 2011-10-13 2013-05-13 Gs Yuasa Corp 直流電源のパワーコンディショナ、及び、電力変換用プログラム
JP2014054025A (ja) * 2012-09-05 2014-03-20 Nippon Soken Inc 電力変換装置
JP2014130416A (ja) * 2012-12-28 2014-07-10 Noritz Corp 系統連系装置
JP2015008559A (ja) * 2013-06-24 2015-01-15 株式会社ノーリツ 接続箱および太陽光発電システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110071497A (zh) * 2019-05-14 2019-07-30 电子科技大学 一种带储能设备的光伏直流发电系统及其控制方法
WO2023230688A1 (pt) * 2022-06-03 2023-12-07 Lugpe Tech Ltda Método híbrido para rastreamento da máxima potência de geradores de energia solar fotovoltaica

Also Published As

Publication number Publication date
JP2017175826A (ja) 2017-09-28

Similar Documents

Publication Publication Date Title
US8842451B2 (en) Power systems for photovoltaic and DC input sources
AU2018269774B2 (en) Energy storage system for photovoltaic energy and method of storing photovoltaic energy
EP2899606B1 (en) Power conditioner, and method for controlling same
JP6731607B2 (ja) 電力変換システム
EP2362517A2 (en) Power storage system
EP2365606A1 (en) A battery system
JP2012175801A (ja) 蓄電システム
JP2015027210A (ja) 並列型電源装置
WO2012014182A1 (en) Method and device for maximizing the electrical power produced by a generator, particularly a generator based on a renewable power source
WO2017163690A1 (ja) 電力変換システム、電力変換装置
JP2019198223A (ja) 電力変換システム
WO2018061424A1 (ja) 電力変換システム、電力変換装置
JP2017135888A (ja) 電力変換システム
JP6646852B2 (ja) 電力変換装置、及び電力変換システム
JP7022942B2 (ja) 電力変換システム、電力変換装置
WO2018138710A1 (ja) 直流給電システム
JP2011193704A (ja) 直流−交流電力変換装置
JP6726901B2 (ja) 電力変換装置、及び電力変換システム
JP2018170931A (ja) 電力変換装置、電力変換システム
JP2023007757A (ja) Dc/dcコンバータ、電力変換システム
JP2006345679A (ja) 太陽光発電システム
KR101305634B1 (ko) 태양광 발전 장치 및 그 제어방법
JP7491270B2 (ja) パワーコンディショナ
JP2015154517A (ja) Pvパワーコンディショナ
JP2013206352A (ja) 最大電力点検出方法、および最大電力点検出装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769736

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769736

Country of ref document: EP

Kind code of ref document: A1