CN106452137A - 一种提高多路mppt逆变器转换效率的控制方法 - Google Patents

一种提高多路mppt逆变器转换效率的控制方法 Download PDF

Info

Publication number
CN106452137A
CN106452137A CN201610545620.2A CN201610545620A CN106452137A CN 106452137 A CN106452137 A CN 106452137A CN 201610545620 A CN201610545620 A CN 201610545620A CN 106452137 A CN106452137 A CN 106452137A
Authority
CN
China
Prior art keywords
boost
road
voltage
input
voltage reference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610545620.2A
Other languages
English (en)
Other versions
CN106452137B (zh
Inventor
李小龙
廖小俊
舒成维
程进
蔡晓杰
姚佳雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elsevier Technology Co ltd
Esway Technology Shanghai Co ltd
Original Assignee
Jiangsu Zeversolar New Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Zeversolar New Energy Co Ltd filed Critical Jiangsu Zeversolar New Energy Co Ltd
Priority to CN201610545620.2A priority Critical patent/CN106452137B/zh
Publication of CN106452137A publication Critical patent/CN106452137A/zh
Priority to PCT/EP2017/066206 priority patent/WO2018010972A1/en
Priority to EP17742655.8A priority patent/EP3485340B1/en
Application granted granted Critical
Publication of CN106452137B publication Critical patent/CN106452137B/zh
Priority to US16/244,429 priority patent/US10488880B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/106Parallel operation of dc sources for load balancing, symmetrisation, or sharing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明提出了一种能提高多路MPPT输入逆变器转换效率的控制方法,实现逆变器的高效率运行。包括如下步骤:S1、采集每路光伏面板输入电压及输入电流、直流母线电压,得到每路光伏面板输入功率;取至少两路的输入电压差;其中,m=1,2,…,M,M为光伏逆变器MPPT的输入路数;S2、将电压差代入boost启停控制逻辑,得到每路boost升压电路的启停状态,boost启停控制逻辑如下,S21、,关断最高输入电压所对应一路中的boost升压电路,导通剩余路的升压电路;其中为boost通断控制判断阈值1;S22、,导通所有boost升压电路;其中为boost通断控制判断阈值2,且;S23、,首次进入该步骤时,获取VLMPP点的电压,关断所有boost升压电路;监测间的压差,当超过时,导通所有boost升压电路。

Description

一种提高多路MPPT逆变器转换效率的控制方法
技术领域
本发明涉及一种多路MPPT逆变器的控制方法,具体是一种提高多路MPPT逆变器转换效率的控制方法。
背景技术
光伏发电系统通常由光伏面板阵列、直流升压变换器和并网功率变换器三部分组成,其中,直流升压变换器和并网功率变换器由中间直流母线互联隔离,通常作为一个整体,统称为光伏逆变器。其主要工作原理是直流升压变换器将光伏面板阵列输出的低压直流电升压成高压稳定的直流电,以供后级并网功率变换器转换成交流电,进而馈入电网。随着光伏发电系统并网功率的增加和光伏面板(以下简称PV)最大功率点(MPP,MaximumPower Point)的下探,单路直流升压电路难以兼顾如此高功率和高升压比的应用场合,因此运用多路MPPT输入以提高光伏逆变器并网发电量是各个厂家研究的热点。
不失一般性,现以应用较多的双路MPPT输入光伏逆变器为例,介绍现有多路MPPT控制逻辑。图1所示为一种双路PV输入光伏逆变器结构图,包括光伏面板PV1、PV2,输入电容,输入升压电路,直流母线电容,H桥逆变器,控制器DSC。其中,升压电路的输出接入公共直流母线,并通过母线电容和H桥逆变器向电网馈入能量;PWM1和PWM2分别为电路的驱动信号;控制器DSC一般采用数字信号处理器(DSP),通过采集双路PV输入电压,双路PV输入电流以及直流母线电压信息实现双路MPPT控制,其简要控制流程图如图2所示。图2中,分别为两路PV电压和直流母线电压的参考信号;为两路PV电压差,其运算公式为为两路PV电压差判断阈值。控制器DSC通过采样双路PV输入电压,双路PV输入电流得到双路PV输入功率信号,经过各自的MPPT模块运算得到PV电压参考信号;与此同时,控制器DSC计算两路PV电压差,代入boost启停控制逻辑,与预先设定好的阈值进行比较,有以下三种情况:
(1),控制器DSC关闭控制器,封锁的驱动信号PWM1电路被关断;使能控制器并得到电路的驱动信号PWM2,直流母线电压参考信号
(2),控制器DSC关闭控制器,封锁的驱动信号PWM2电路被关断;使能控制器并得到电路的驱动信号PWM1,直流母线电压参考信号
(3),控制器DSC同时使能控制器并得到电路的驱动信号PWM1和PWM2,直流母线电压参考信号取两路PV电压参考最大值,即
实际应用中,综合考虑逆变器直流升压电路热平衡、整机转换效率以及元器件使用寿命等,对于多路MPPT输入逆变器,通常将各路光伏面板配置近似一致,因而逆变器每路输入的的PV曲线近似一致。从图2可知,采用现有多路MPPT控制方法时,稳态工作点处各boost电路均处于工作状态,逆变器转换效率较低,并网发电量较小。
发明内容
本发明的目的是解决上述现有技术中存在的不足和问题,提出了一种能提高多路MPPT输入逆变器转换效率的控制方法,通过构造一种新的boost启停控制逻辑和虚拟局部最大功率点(VLMPP,Virtual Local Maximum Power Point), 实时检测多路输入PV电压与VLMPP点的电压差按照一定的逻辑关系处理后控制每路PV输入boost电路的关断与导通,实现逆变器的高效率运行。
本发明采用的技术方案如下:
一种提高多路MPPT逆变器转换效率的控制方法,包括如下步骤:
S1、采集每路光伏面板输入电压、每路光伏面板输入电流和和直流母线电压,得到每路光伏面板输入功率;取至少两路的输入电压,得到电压差;其中,m=1,2,…,M,M为光伏逆变器MPPT的输入路数;
S2、将电压差代入boost启停控制逻辑与预设的通断控制判断阈值比较,得到每路boost升压电路的启停状态、每路的电压参考信号和直流母线电压参考信号,boost启停控制逻辑如下,
S21、,关断最高输入电压所对应一路中的boost升压电路,导通剩余路的升压电路;其中为boost通断控制判断阈值1;将每路输入功率带入各路MPPT模块,得到每路电压参考信号,直流母线电压参考取最高电压参考信号
S22、,导通所有boost升压电路;其中为boost通断控制判断阈值2,且;将每路输入功率带入各路MPPT模块,得到每路电压参考信号,直流母线电压参考取最高电压参考信号
S23、,首次进入该步骤时,获取VLMPP点的电压,关断所有boost升压电路,将逆变器输入总功率带入基于的MPPT模块得到直流母线电压参考;监测间的压差,当两者间的压差超过时,导通所有boost升压电路。
优选地,
步骤S1中,取最大输入电压和略小于的PV输入电压以及最小PV输入电压,得到间的电压差以及间的电压差
步骤S2中,将电压差代入boost启停控制逻辑与预设的通断控制判断阈值比较,得到每路boost升压电路的启停状态,boost启停控制逻辑如下,
S21、,关断最高输入电压所对应一路中的boost升压电路,导通剩余路的升压电路;
S22、,导通所有boost升压电路;
S23、,首次进入该步骤时,获取VLMPP点的电压,关断所有boost升压电路;监测间的压差,当两者间的压差超过时,导通所有boost升压电路。
优选地,
步骤S23还包括:
S231、,关断所有boost升压电路,并将逆变器输入总功率带入基于的MPPT模块得到直流母线电压参考
S232、,导通所有boost升压电路,并将每路输入功率带入各路MPPT模块,得到各路电压参考信号,直流母线电压参考取最高电压参考信号
优选地,
步骤S23中,VLMPP点的电压通过下式获取:
优选地,
步骤S1中,至少取最大输入电压和最小输入电压二者间的电压差。
优选地,
步骤S1中,取最大输入电压和最小输入电压,得到二者的电压差。
在一特定的实施例中,具体包括以下步骤:
S1、控制器DSC采集每路PV输入电压,每路PV输入电流和直流母线电压信息,计算得到每路输入功率和逆变器总输入功率;排序得到最大PV输入电压和略小于的PV输入电压以及最小PV输入电压;计算得到间的电压差;计算得到间的电压差
其中,m=1,2,…,M,M为光伏逆变器MPPT的输入路数,
S2、将电压差代入boost启停控制逻辑,得到每路boost电路启停状态和每路PV电压参考信号和直流母线电压参考信号,具体如下:
S21、当,控制器DSC关闭最高PV输入电压的boost控制器,封锁该路的驱动信号,该路的boost电路即被关断;使能剩余路控制器并得到该路电路的驱动信号PWMm;与此同时DSC控制器将每路输入功率带入各路MPPT模块,得到每路PV电压参考信号,同时直流母线电压参考信号可以取最高PV输入路电压参考信号,即;式中为boost通断控制判断阈值1;
S22、,控制器DSC同时每路boost控制器并得到每boost电路的驱动信号PWMm;与此同时DSC控制器将每路输入功率带入各路MPPT模块,得到每路PV电压参考信号,直流母线电压参考信号取PV电压参考信号中的最大值,即;式中为boost通断控制判断阈值2,且满足
S23、, 控制器DSC在此阶段内构造VLMPP点电压信息,关闭所有boost控制器并封锁每路boost电路路的驱动信号PWMm,同时将逆变器输入总功率带入基于的MPPT模块得到直流母线电压参考
在步骤S23中,控制器DSC实时监测间电压差,当两者间压差超过时,强制开启每路boost控制器,启动所有boost电路;与此同时DSC控制器将每路输入功率带入各路MPPT模块,得到每路PV电压参考信号,直流母线电压参考信号取PV电压参考信号中的最大值,即
其中,若M=2,即在两路MPPT逆变器中,略小于的PV输入电压和最小PV输入电压为同一个值,=
本发明采用以上方案,相比现有技术具有如下优点:构造一种新的boost启停控制逻辑和虚拟局部最大功率点(VLMPP,Virtual Local Maximum Power Point), 实时检测多路输入PV电压与VLMPP点的电压差按照一定的逻辑关系处理后控制每路PV输入boost电路的关断与导通,可以减小逆变器稳态时的功率损耗,提高逆变器转换效率,实现逆变器的经济和高效率运行。
附图说明
图1为双路MPPT光伏逆变器的控制系统的结构示意图;
图2为现有技术中的双路MPPT光伏逆变器的控制流程图;
图3为本发明的双路MPPT光伏逆变器的控制流程图。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域的技术人员理解。
不失一般性,现以应用较多的双路MPPT输入光伏逆变器为例,介绍本发明的多路MPPT控制逻辑以及控制方法。
本次发明所采用的硬件电路如图1所示,包括光伏面板PV1、PV2,输入电容,输入升压电路,直流母线电容,H桥逆变器,控制器DSC。其中,升压电路的输出接入公共直流母线,并通过母线电容和H桥逆变器向电网馈入能量;PWM1和PWM2分别为电路的驱动信号;控制器DSC采用数字信号处理器(DSP)实现,通过相应的硬件信号处理,采集双路PV输入电压,双路PV输入电流以及直流母线电压等信息。
与现有双路MPPT控制方法相比,本发明的控制方法重新设计了双路PV输入boost电路的启停控制逻辑,构造了虚拟局部最大功率点(VLMMP)以用于双boost重新启动时的判断,采用本发明所述的控制方法,可以减小逆变器稳态时的功率损耗,提高逆变器转换效率,实现逆变器的经济运行。
本发明的控制方法如图3所示,包括以下步骤:
S1、控制器DSC采集并获取两路PV输入电压,双路PV输入电流和直流母线电压信息;
计算得到PV1路输入功率,PV2路输入功率和逆变器总输入功率,同时得到两路PV输入电压差,表达式分别为:
S2、将电压差代入boost启停控制逻辑,得到每路boost电路启停状态和每路PV电压参考信号和直流母线电压参考信号,具体如下:
S21、当时,控制器DSC关闭控制器,封锁的驱动信号PWM1电路被关断;使能控制器并得到电路的驱动信号PWM2。同时DSC控制器将PV1路输入功率,PV2路输入功率带入MPPT模块,得到两路PV电压参考信号,同时直流母线电压参考信号将由PV1路电压参考信号给出,即
时,控制器DSC关闭控制器,封锁的驱动信号PWM2电路被关断;使能控制器并得到电路的驱动信号PWM1。与此同时DSC控制器将PV1路输入功率,PV2路输入功率带入MPPT模块,得到两路PV电压参考信号,同时直流母线电压参考信号将由PV2路电压参考信号给出,即
S22、当时,控制器DSC同时使能控制器并得到电路的驱动信号PWM1和PWM2。与此同时DSC控制器将PV1路输入功率,PV2路输入功率带入MPPT模块,得到两路PV电压参考信号,直流母线电压参考信号取两路PV电压参考信号的最大值,即
S23、当, DSC控制器在首次进入该模式时,通过式Ⅴ构造VLMPP点电压,同时根据采集到的直流母线电压的信息,具体可以分为如下两个步骤:
S231、, 控制器DSC同时关闭控制器并封锁电路的驱动信号PWM1和PWM2,并将逆变器输入总功率带入基于的MPPT模块得到直流母线电压参考,此时两路PV电压参考信号将不起任何作用;
S232、, 控制器DSC强制使能控制器并得到电路的驱动信号PWM1和PWM2,并将PV1路输入功率,PV2路输入功率带入MPPT模块,得到两路PV电压参考信号,直流母线电压参考信号取两路PV电压参考信号的最大值,即
本发明主要针对多路MPPT进行逻辑控制,具体实施时,还需结合boost电压、电流双闭环控制器、现有单路MPPT控制器等才能达到预期的效果。同时,为了减小功率采样与计算误差,控制器DSC将采用0.2s内的电压、电流采样平均值进行功率计算;MPPT模块运行周期为1s以减小误判现象。
上述实施例只为说明本发明的技术构思及特点,是一种优选的实施例,其目的在于熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限定本发明的保护范围。凡根据本发明的精神实质所作的等效变换或修饰,都应涵盖在本发明的保护范围之内。

Claims (6)

1.一种提高多路MPPT逆变器转换效率的控制方法,其特征在于,包括如下步骤:
S1、采集每路光伏面板输入电压、每路光伏面板输入电流和和直流母线电压,得到每路光伏面板输入功率;取至少两路的输入电压,得到电压差;其中,m=1,2,…,M,M为光伏逆变器MPPT的输入路数;
S2、将电压差代入boost启停控制逻辑与预设的通断控制判断阈值比较,得到每路boost升压电路的启停状态、每路的电压参考信号和直流母线电压参考信号,boost启停控制逻辑如下,
S21、,关断最高输入电压所对应一路中的boost升压电路,导通剩余路的升压电路;其中为boost通断控制判断阈值1;将每路输入功率带入各路MPPT模块,得到每路电压参考信号,直流母线电压参考取最高电压参考信号
S22、,导通所有boost升压电路;其中为boost通断控制判断阈值2,且;将每路输入功率带入各路MPPT模块,得到每路电压参考信号,直流母线电压参考取最高电压参考信号
S23、,首次进入该步骤时,获取VLMPP点的电压,关断所有boost升压电路,将逆变器输入总功率带入基于的MPPT模块得到直流母线电压参考;监测间的压差,当两者间的压差超过时,导通所有boost升压电路。
2.根据权利要求1所述的控制方法,其特征在于,
步骤S1中,取最大输入电压和略小于的PV输入电压以及最小PV输入电压,得到间的电压差以及间的电压差
步骤S2中,将电压差代入boost启停控制逻辑与预设的通断控制判断阈值比较,得到每路boost升压电路的启停状态,boost启停控制逻辑如下,
S21、,关断最高输入电压所对应一路中的boost升压电路,导通剩余路的升压电路;
S22、,导通所有boost升压电路;
S23、,首次进入该步骤时,获取VLMPP点的电压,关断所有boost升压电路;监测间的压差,当两者间的压差超过时,导通所有boost升压电路。
3.根据权利要求1或2所述的控制方法,其特征在于,
步骤S23还包括:
S231、,关断所有boost升压电路,并将逆变器输入总功率带入基于的MPPT模块得到直流母线电压参考
S232、,导通所有boost升压电路,并将每路输入功率带入各路MPPT模块,得到各路电压参考信号,直流母线电压参考取最高电压参考信号
4.根据权利要求1或2所述的控制方法,其特征在于,
步骤S23中,VLMPP点的电压通过下式获取:
5.根据权利要求1所述的控制方法,其特征在于,
步骤S1中,至少取最大输入电压和最小输入电压二者间的电压差。
6.根据权利要求1所述的控制方法,其特征在于,
步骤S1中,取最大输入电压和最小输入电压,得到二者的电压差。
CN201610545620.2A 2016-07-12 2016-07-12 一种提高多路mppt逆变器转换效率的控制方法 Active CN106452137B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201610545620.2A CN106452137B (zh) 2016-07-12 2016-07-12 一种提高多路mppt逆变器转换效率的控制方法
PCT/EP2017/066206 WO2018010972A1 (en) 2016-07-12 2017-06-29 A control method for improving conversion efficiency of a multi-channel mppt inverter
EP17742655.8A EP3485340B1 (en) 2016-07-12 2017-06-29 A control method for improving conversion efficiency of a multi-channel mppt inverter
US16/244,429 US10488880B2 (en) 2016-07-12 2019-01-10 Control method for improving conversion efficiency of a multi-channel MPPT inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610545620.2A CN106452137B (zh) 2016-07-12 2016-07-12 一种提高多路mppt逆变器转换效率的控制方法

Publications (2)

Publication Number Publication Date
CN106452137A true CN106452137A (zh) 2017-02-22
CN106452137B CN106452137B (zh) 2018-08-07

Family

ID=58183503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610545620.2A Active CN106452137B (zh) 2016-07-12 2016-07-12 一种提高多路mppt逆变器转换效率的控制方法

Country Status (4)

Country Link
US (1) US10488880B2 (zh)
EP (1) EP3485340B1 (zh)
CN (1) CN106452137B (zh)
WO (1) WO2018010972A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107154780A (zh) * 2017-06-08 2017-09-12 阳光电源股份有限公司 一种光伏发电系统及其功率控制方法与功率优化器
CN108471138A (zh) * 2018-04-23 2018-08-31 深圳鹏城新能科技有限公司 一种多路最大功率点追踪方法
CN109213261A (zh) * 2018-09-01 2019-01-15 哈尔滨工程大学 一种应用于mppt防止太阳能电池板电压崩溃的控制方法
CN110112768A (zh) * 2019-04-04 2019-08-09 华南理工大学 一种并联使用多个波动功率电源的系统及其方法
CN110880741A (zh) * 2019-12-02 2020-03-13 阳光电源股份有限公司 逆变系统及其对称三电平升压电路的输入错接检测方法
CN114325306A (zh) * 2021-12-03 2022-04-12 广东友电新能源科技有限公司 逆变系统连通性检测方法、装置、电子设备及介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11264948B2 (en) 2018-09-20 2022-03-01 Itron, Inc. Techniques for forecasting solar power generation
US11651311B2 (en) * 2018-09-20 2023-05-16 Itron Inc. Techniques for forecasting solar power generation
CN115441496A (zh) * 2022-08-23 2022-12-06 昱能科技股份有限公司 一种光伏逆变器及其控制方法、装置及可读存储介质
CN115642934A (zh) * 2022-09-20 2023-01-24 华为数字能源技术有限公司 一种通信方法及装置
CN115912882A (zh) * 2023-01-04 2023-04-04 华为数字能源技术有限公司 光伏逆变器及功率控制方法
CN117240057B (zh) * 2023-11-09 2024-03-26 杭州禾迈电力电子股份有限公司 功率变换器及其控制方法、光伏发电系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157329A1 (ja) * 2011-05-17 2012-11-22 三洋電機株式会社 集電箱
CN103973146A (zh) * 2014-05-22 2014-08-06 阳光电源股份有限公司 一种电池板接入模式的判断方法及逆变器
WO2015059516A1 (en) * 2013-10-21 2015-04-30 Abb Technology Ag Double-stage inverter apparatus for energy conversion systems and control method thereof
WO2016008093A1 (zh) * 2014-07-15 2016-01-21 阳光电源股份有限公司 一种mppt集中模式退出、切换方法及其相关应用
CN105324922A (zh) * 2013-07-19 2016-02-10 艾思玛太阳能技术股份公司 带有至少两个直流输入端的逆变器,带有逆变器的光伏设备和控制逆变器的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2953996B1 (fr) * 2009-12-11 2012-01-20 Centre Nat Rech Scient Systeme de gestion electronique de cellules photovoltaiques fonction de la meteorologie
US9035626B2 (en) * 2010-08-18 2015-05-19 Volterra Semiconductor Corporation Switching circuits for extracting power from an electric power source and associated methods
US8842454B2 (en) * 2010-11-29 2014-09-23 Solarbridge Technologies, Inc. Inverter array with localized inverter control
US8716999B2 (en) * 2011-02-10 2014-05-06 Draker, Inc. Dynamic frequency and pulse-width modulation of dual-mode switching power controllers in photovoltaic arrays
US20120319489A1 (en) * 2011-06-15 2012-12-20 Mccaslin Shawn R Power Shuffling Solar String Equalization System
US9331489B2 (en) * 2013-03-07 2016-05-03 Cyboenergy, Inc. Maximizing power production at low sunlight by solar power mini-inverters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157329A1 (ja) * 2011-05-17 2012-11-22 三洋電機株式会社 集電箱
CN105324922A (zh) * 2013-07-19 2016-02-10 艾思玛太阳能技术股份公司 带有至少两个直流输入端的逆变器,带有逆变器的光伏设备和控制逆变器的方法
WO2015059516A1 (en) * 2013-10-21 2015-04-30 Abb Technology Ag Double-stage inverter apparatus for energy conversion systems and control method thereof
CN103973146A (zh) * 2014-05-22 2014-08-06 阳光电源股份有限公司 一种电池板接入模式的判断方法及逆变器
WO2016008093A1 (zh) * 2014-07-15 2016-01-21 阳光电源股份有限公司 一种mppt集中模式退出、切换方法及其相关应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
T.-F.WU: "A-Design and implementation of multiple maximum power point trackers for multi-string PV panels in DC distribution systems", 《2012 TWENTY-SEVENTH ANNUAL IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION》 *
聂静: "多支路最大功率跟踪的光伏并网研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107154780A (zh) * 2017-06-08 2017-09-12 阳光电源股份有限公司 一种光伏发电系统及其功率控制方法与功率优化器
CN107154780B (zh) * 2017-06-08 2019-04-09 阳光电源股份有限公司 一种光伏发电系统及其功率控制方法与功率优化器
CN108471138A (zh) * 2018-04-23 2018-08-31 深圳鹏城新能科技有限公司 一种多路最大功率点追踪方法
CN109213261A (zh) * 2018-09-01 2019-01-15 哈尔滨工程大学 一种应用于mppt防止太阳能电池板电压崩溃的控制方法
CN110112768A (zh) * 2019-04-04 2019-08-09 华南理工大学 一种并联使用多个波动功率电源的系统及其方法
CN110880741A (zh) * 2019-12-02 2020-03-13 阳光电源股份有限公司 逆变系统及其对称三电平升压电路的输入错接检测方法
CN114325306A (zh) * 2021-12-03 2022-04-12 广东友电新能源科技有限公司 逆变系统连通性检测方法、装置、电子设备及介质
CN114325306B (zh) * 2021-12-03 2024-03-22 深圳科士达科技股份有限公司 逆变系统连通性检测方法、装置、电子设备及介质

Also Published As

Publication number Publication date
WO2018010972A1 (en) 2018-01-18
EP3485340B1 (en) 2020-09-02
EP3485340A1 (en) 2019-05-22
CN106452137B (zh) 2018-08-07
US20190146540A1 (en) 2019-05-16
US10488880B2 (en) 2019-11-26

Similar Documents

Publication Publication Date Title
CN106452137A (zh) 一种提高多路mppt逆变器转换效率的控制方法
Jamshidpour et al. Photovoltaic systems reliability improvement by real-time FPGA-based switch failure diagnosis and fault-tolerant DC–DC converter
Kumar et al. Design and analysis of an integrated Cuk-SEPIC converter with MPPT for standalone wind/PV hybrid system
EP2317623B1 (en) Hybrid wind-solar inverters
KR101830666B1 (ko) 전력 변환 장치
CN105871324A (zh) 一种多路输入光伏逆变系统的独立mppt跟踪方法
CN102403737A (zh) 一种风光互补发电储能控制方法及系统
CN104348377B (zh) 用于功率转换器的系统和方法
CN108258717B (zh) 逆变器、集散式汇流箱、限功率控制系统和方法
CN106340895A (zh) 一种两级式光伏并网逆变器控制系统及方法
Palanisamy et al. A Proposed SVM for 3-level Transformer-less Dual Inverter Scheme for Grid Connected PV System
KR101351067B1 (ko) 기수 고조파 저감 방식을 이용한 계통 연계 인버터 전류제어 시스템 및 장치
CN202405798U (zh) 一种风光互补发电储能控制器
CN105518965B (zh) 一种光伏并网控制方法及光伏并网系统
CN106981882A (zh) 一种光伏发电系统mppt扰动方法
CN103606955B (zh) 一种基于正弦半波的微网电源
Oliveira et al. Analysis of grid-tied single phase multilevel inverters powered by photovoltaic panels under partial shading conditions
Jeon et al. Differential Power Processing converter with cell balancing operation of multiple photovoltaic module systems
CN102655381A (zh) 一种新型的光伏系统
CN104113076A (zh) 一种分布式光伏发电并网接口装置
CN111711225A (zh) 三相逆变电源平滑切换单相供电的方法及系统
Dong et al. Open-circuit fault detection for inverter fed by non-communication series-connected power optimizer
CN218300949U (zh) 一种厂内光伏和综合能源负载系统
CN208597060U (zh) 一种最大优化能量的智能光伏模块
CN111969581B (zh) 一种单功率输入接口兼容光伏与风电的供电系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Suzhou City, Jiangsu province 215011 Suzhou New District kolding Road No. 78

Applicant after: Esma new energy technology (Jiangsu) Co.,Ltd.

Address before: Suzhou City, Jiangsu province 215011 Suzhou New District kolding Road No. 78

Applicant before: Jiangsu Zhaofu Aisuo New Energy Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 215000 Factory Building No. 1989 Xiangyang Road, Suzhou High-tech Zone, Jiangsu Province

Patentee after: Esway new energy technology (Jiangsu) Co.,Ltd.

Address before: 215011 No. 78 Keling Road, Suzhou High-tech Zone, Suzhou City, Jiangsu Province

Patentee before: Esma new energy technology (Jiangsu) Co.,Ltd.

CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 200000 room 905b, 757 Mengzi Road, Huangpu District, Shanghai

Patentee after: Asway Technology (Shanghai) Co.,Ltd.

Address before: 215000 Factory Building No. 1989 Xiangyang Road, Suzhou High-tech Zone, Jiangsu Province

Patentee before: Esway new energy technology (Jiangsu) Co.,Ltd.

CP03 Change of name, title or address
CP01 Change in the name or title of a patent holder

Address after: 200000 room 905b, 757 Mengzi Road, Huangpu District, Shanghai

Patentee after: Elsevier Technology Co.,Ltd.

Address before: 200000 room 905b, 757 Mengzi Road, Huangpu District, Shanghai

Patentee before: Esway Technology (Shanghai) Co.,Ltd.

Address after: 200000 room 905b, 757 Mengzi Road, Huangpu District, Shanghai

Patentee after: Esway Technology (Shanghai) Co.,Ltd.

Address before: 200000 room 905b, 757 Mengzi Road, Huangpu District, Shanghai

Patentee before: Asway Technology (Shanghai) Co.,Ltd.

CP01 Change in the name or title of a patent holder