WO2012157067A1 - 内燃機関の空燃比インバランス検出装置 - Google Patents

内燃機関の空燃比インバランス検出装置 Download PDF

Info

Publication number
WO2012157067A1
WO2012157067A1 PCT/JP2011/061193 JP2011061193W WO2012157067A1 WO 2012157067 A1 WO2012157067 A1 WO 2012157067A1 JP 2011061193 W JP2011061193 W JP 2011061193W WO 2012157067 A1 WO2012157067 A1 WO 2012157067A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fuel ratio
cylinders
cylinder
injection amount
Prior art date
Application number
PCT/JP2011/061193
Other languages
English (en)
French (fr)
Inventor
慎治 池田
佐野 健
和正 下出
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/061193 priority Critical patent/WO2012157067A1/ja
Priority to CN201180070874.9A priority patent/CN103547783B/zh
Priority to JP2013514906A priority patent/JP5382265B2/ja
Priority to EP11822856.8A priority patent/EP2711527B1/en
Priority to US14/117,489 priority patent/US9518523B2/en
Publication of WO2012157067A1 publication Critical patent/WO2012157067A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry

Definitions

  • the present invention relates to an air-fuel ratio imbalance detection device for an internal combustion engine.
  • the intake air amount varies among cylinders, even if the internal combustion engine as a whole is controlled to the target air-fuel ratio, when viewed for each cylinder, the deviation from the target air-fuel ratio, that is, from the optimal air-fuel ratio. There is a gap.
  • the presence of such air-fuel ratio variation among cylinders tends to adversely affect the exhaust purification performance.
  • the control device for an internal combustion engine sets the parameter value of the Wiebe function for modeling heat generation based on the actual heat generation rate for each cylinder calculated from the actual in-cylinder pressure for each cylinder. It is calculated every time.
  • the actual in-cylinder pressure for each cylinder is calculated based on the output value of the in-cylinder pressure sensor attached to the cylinder.
  • a technique for detecting A / F for each cylinder by the in-cylinder pressure sensor specifically, in-cylinder pressure (maximum in-cylinder pressure, etc.), internal energy, indicated torque (work), combustion speed, which can be acquired from the output of the in-cylinder pressure sensor,
  • a technique for detecting A / F using various numerical values such as the amount of generated heat (hereinafter also referred to as “combustion parameters”) is conceivable.
  • An object of the present invention is to provide an air-fuel ratio imbalance detection device for an internal combustion engine that can accurately detect an air-fuel ratio imbalance between cylinders using an in-cylinder pressure sensor.
  • a first invention is an air-fuel ratio imbalance detection device for an internal combustion engine, Output acquisition means for acquiring output from in-cylinder pressure sensors respectively attached to a plurality of cylinders of the internal combustion engine; Calculation means for calculating a combustion parameter that is a value representing a combustion state of the cylinder based on the output of the in-cylinder pressure sensor acquired by the output acquisition means; An injection amount control means for performing a control to reduce the fuel injection amount and make the air-fuel ratio lean so that the combustion parameter calculated by the calculation means matches a predetermined value for each of the plurality of cylinders; An imbalance detecting means for detecting an air-fuel ratio imbalance among the plurality of cylinders based on a reduction amount of the fuel injection amount according to the control of the injection amount control means for each of the plurality of cylinders; It is characterized by providing.
  • the second invention is the first invention, wherein An air-fuel ratio sensor provided in an exhaust passage where exhaust gases of the plurality of cylinders merge; Based on a ratio between an air-fuel ratio value based on an output of the air-fuel ratio sensor and a predetermined lean air-fuel ratio value, and an average value of the combustion parameters in the plurality of cylinders, the combustion parameter by the injection amount control means Predetermined value calculation means for calculating the predetermined value to be matched, It is characterized by providing.
  • the third invention is the first or second invention, wherein
  • the injection amount control means includes A weight reducing means for reducing the fuel injection amount for each of the plurality of cylinders; A comparison means for comparing the combustion parameter with the predetermined value after starting the weight reduction by the weight reduction means; Ending means for ending the weight reduction by the weight reducing means based on the result of the comparison; It is characterized by including.
  • the injection amount control means includes Means for calculating the air-fuel ratio of the cylinder in which the fuel injection amount is reduced by the reduction means based on the reduction amount of the fuel injection amount from the start of the reduction by the reduction means to the end of the reduction by the end means; It is characterized by including.
  • the fifth invention is the third invention, wherein:
  • the weight loss means is Means for executing the reduction by a predetermined amount when starting the reduction of the fuel injection amount;
  • a weight loss increasing means for increasing the weight loss; It is characterized by including.
  • the injection amount control means includes means for reducing the fuel injection amount of the plurality of cylinders so that the combustion parameter coincides with a predetermined value for a target cylinder that is one cylinder selected from the plurality of cylinders,
  • the imbalance detection means Means for designating the target cylinder from the plurality of cylinders such that the plurality of cylinders are selected as the target cylinder at least once each; Means for calculating a reduction amount of the fuel injection amount of the target cylinder before and after the control of the injection amount control means for the target cylinder; Means for obtaining a calculated value of the air-fuel ratio of the target cylinder before executing the injection amount control means in the target cylinder based on the reduction amount; Means for detecting an air-fuel ratio imbalance among the plurality of cylinders based on a comparison of the calculated values of the air-fuel ratio for each of the plurality of cylinders; It is characterized by including.
  • the combustion parameter is at least one quantity selected from the group of in-cylinder pressure, internal energy, indicated torque, indicated work, combustion speed, and generated heat quantity, or a physical quantity correlated with the at least one quantity.
  • the air-fuel ratio imbalance can be detected based on the amount of decrease in the fuel injection amount in the process of air-fuel ratio control to the lean side. Therefore, the air-fuel ratio imbalance detection between cylinders using an in-cylinder pressure sensor can be accurately performed.
  • the predetermined lean is used by using “the average air-fuel ratio detected from the exhaust gas of the plurality of cylinders” and “the average value of the combustion parameters of the plurality of cylinders”.
  • a target value of the combustion parameter according to the air-fuel ratio can be calculated.
  • the third aspect of the present invention it is possible to accurately determine whether or not the combustion parameter matches the predetermined value in each cylinder, and to perform leaning reliably to a desired lean air-fuel ratio.
  • the fourth aspect of the present invention it is possible to accurately specify a reduction amount (change amount) of the fuel injection amount and accurately calculate air-fuel ratio information used for air-fuel ratio imbalance detection for each cylinder.
  • the comparison result between the combustion parameter and the predetermined value can be appropriately fed back to the fuel injection amount reduction control.
  • the sixth aspect of the invention it is possible to acquire air-fuel ratio information used for air-fuel ratio imbalance detection for each cylinder while changing the target cylinder.
  • various general combustion parameters representing the combustion state of the internal combustion engine or physical quantities correlated therewith can be used for air-fuel ratio imbalance detection.
  • FIG. 1 shows schematic structure of the air-fuel ratio imbalance detection apparatus of the internal combustion engine concerning Embodiment 1 of this invention with schematic structure of the internal combustion engine system to which this is applied. It is a figure for demonstrating the control action in the air fuel ratio imbalance detection apparatus of the internal combustion engine concerning Embodiment 1 of this invention. It is a figure for demonstrating the control action in the air fuel ratio imbalance detection apparatus of the internal combustion engine concerning Embodiment 1 of this invention. It is a figure for demonstrating the control action in the air fuel ratio imbalance detection apparatus of the internal combustion engine concerning Embodiment 1 of this invention.
  • 3 is a flowchart of a routine executed by the ECU in the air-fuel ratio imbalance detection apparatus for an internal combustion engine according to the first embodiment of the present invention.
  • FIG. 7 is a flowchart of a routine executed by an ECU in an air-fuel ratio imbalance detection apparatus for an internal combustion engine according to a second embodiment of the present invention.
  • FIG. 1 is a diagram showing a schematic configuration of an air-fuel ratio imbalance detection device for an internal combustion engine according to a first embodiment of the present invention, together with a schematic configuration of an internal combustion engine system to which this is applied.
  • the system shown in FIG. 1 includes an internal combustion engine (hereinafter simply referred to as an engine) 10.
  • An engine 10 shown in FIG. 1 is a spark ignition type four-stroke engine provided with a spark plug 12.
  • the engine 10 is also an in-cylinder direct injection engine including a direct injection injector 14 that directly injects fuel into a cylinder.
  • the air-fuel ratio imbalance detection apparatus for an internal combustion engine according to the first embodiment is realized as one function of an ECU (Electronic Control Unit) that comprehensively controls the operation of the engine 10.
  • ECU Electronic Control Unit
  • FIG. 1 shows only one cylinder, but the engine 10 in the embodiment is an in-line four-cylinder engine having four cylinders (# 1 to # 4 cylinders).
  • the engine for vehicles is generally composed of a plurality of cylinders, and the engine 10 has a plurality of cylinders in the same manner.
  • a common delivery pipe (not shown) is connected to the direct injection injector 14 of each cylinder.
  • a fuel tank (not shown) is connected to the delivery pipe.
  • Each cylinder is provided with a cylinder pressure sensor (CPS: Combustion Pressure Sensor) 16 for detecting the cylinder pressure (combustion pressure). Further, the engine 10 is provided with a crank angle sensor 18 that outputs a signal CA according to the crank angle ⁇ .
  • CPS Combustion Pressure Sensor
  • the intake system of the engine 10 is provided with an intake passage 20 connected to each cylinder.
  • An air cleaner 22 is provided at the inlet of the intake passage 20.
  • An air flow meter 24 that outputs a signal GA corresponding to the flow rate of air sucked into the intake passage 20 is attached downstream of the air cleaner 22.
  • An electronically controlled throttle valve 26 is provided downstream of the air flow meter 24. In the vicinity of the throttle valve 26, a throttle opening sensor 27 for outputting a signal TA corresponding to the opening of the throttle valve 26 is attached.
  • a surge tank 28 is provided downstream of the throttle valve 26.
  • An intake pressure sensor 30 for measuring intake pressure is attached in the vicinity of the surge tank 28.
  • the exhaust system of the engine 10 is provided with an exhaust passage 32 connected to each cylinder.
  • the exhaust passage 32 includes an exhaust manifold where the exhaust ports of the # 1 to # 4 cylinders merge and an exhaust pipe connected to the exhaust manifold.
  • Catalysts 34 and 36 are provided in the exhaust passage 32.
  • the catalyst for example, a three-way catalyst, a NOx catalyst, or the like is used according to a specific system.
  • a catalyst upstream exhaust sensor 33 and a catalyst downstream exhaust sensor 35 are provided in the exhaust passage 32.
  • the catalyst upstream exhaust sensor 33 is a so-called air / fuel ratio (A / F) sensor capable of linearly detecting the oxygen concentration.
  • various types of air-fuel ratio sensors such as a limiting current air-fuel ratio sensor can be used as the catalyst upstream exhaust sensor 33.
  • a system that performs sub-feedback A / F control using a so-called sub oxygen sensor is known, and in this embodiment, the catalyst downstream exhaust sensor 35 is used as a sub oxygen sensor in the same manner.
  • the system configuration of the exhaust system to which the present invention is applied is not limited to the configuration according to the above embodiment, but a system having only one catalyst in the exhaust passage, a system having only one exhaust gas sensor, or the like. It may be.
  • An ECU (Electronic Control Unit) 50 is provided in the control system of the engine 10.
  • Various sensors such as the in-cylinder pressure sensor 16, the crank angle sensor 18, the air flow meter 24, the throttle opening sensor 27, and the intake pressure sensor 30 are connected to the input unit of the ECU 50.
  • various actuators such as the ignition plug 12, the direct injection injector 14, and the throttle valve 26 described above are connected to the output portion of the ECU 50.
  • the ECU 50 controls the operating state of the engine 10 based on various input information. Further, the ECU 50 can calculate the in-cylinder volume V determined by the engine rotational speed (the rotational speed per unit time) and the piston position from the signal CA of the crank angle sensor 18.
  • the ECU 50 calculates an appropriate fuel injection amount that satisfies the target A / F according to the operating state based on the engine speed, load, intake air amount, and the like, and causes the direct injection injector 14 to inject the fuel injection amount.
  • the ECU 50 stores a calculation program for calculating a combustion parameter, which is a value representing the state of combustion in the cylinder, based on the output of the in-cylinder pressure sensor 16.
  • the output of the in-cylinder pressure sensor 16 is sampled every predetermined period (predetermined crank angle), and measurement data based on this sampling value can be used as an input value for the calculation program.
  • the ECU 50 executes a program for calculating the amount of generated heat Q based on the output of the in-cylinder pressure sensor 16 as a combustion parameter.
  • the combustion parameter calculation program may be created, stored, and executed using various known techniques so that the calculation is performed according to various known calculation formulas, and the technology for its realization is not a new matter. Detailed description is omitted.
  • FIGS. 2 to 4 are diagrams for explaining a control operation (ie, “air-fuel ratio imbalance detection control according to the first embodiment”) in the air-fuel ratio imbalance detection apparatus for an internal combustion engine according to the first embodiment of the present invention. It is.
  • FIG. 2 is a diagram for explaining a problem to be solved by the air-fuel ratio imbalance detection apparatus for an internal combustion engine according to the first embodiment, and is a diagram for explaining a problem and a reason why the problem occurs. is there.
  • a specific rich region specifically, A / F
  • combustion parameters representing combustion states other than the combustion speed that can be acquired from the output of the in-cylinder pressure sensor.
  • combustion parameters such as in-cylinder pressure (maximum in-cylinder pressure, etc.), internal energy, indicated torque (work), combustion speed, and generated heat quantity that can be acquired from the output of the in-cylinder pressure sensor. I find that there is a tendency.
  • the air-fuel ratio imbalance detection apparatus for an internal combustion engine performs the following control so as to avoid the influence of the sensitivity reduction of the combustion parameter in the rich region as described above. That is, first, during the operation of the engine 10, leaning is performed for each cylinder.
  • the # 1 cylinder is selected from among a plurality of cylinders of the engine 10 and the leaning is first performed on the # 1 cylinder.
  • the cylinder to be subjected to lean control according to the first embodiment is also referred to as “target cylinder”.
  • the # 1 cylinder is the target cylinder.
  • This leaning is performed by reducing the fuel injection amount in the direct injection injector 14, and the reduction is performed by reducing the combustion parameter based on the output of the in-cylinder pressure sensor 16 (the amount of generated heat in the first embodiment) to a predetermined threshold value. Do as follows.
  • FIG. 3 is a view showing a state in which the fuel injection amount is reduced performed by the air-fuel ratio imbalance detection apparatus for an internal combustion engine according to the first embodiment.
  • FIG. 3 shows a curve schematically showing the relationship between A / F and the amount of generated heat Q.
  • the value of the amount of generated heat Q when the leaning to “predetermined lean A / F” is performed is set as the “threshold value ⁇ ”.
  • This “predetermined lean A / F” is an A value set on the lean side sufficiently to eliminate the influence of these measurement obstructing elements in consideration of sensitivity tolerance and machine difference variation of the in-cylinder pressure sensor 16. / F.
  • the predetermined lean A / F and the threshold value ⁇ are examined in this way is that, when the A / F change to the lean side is too small, it is sufficient due to the sensitivity tolerance and the machine difference variation that the in-cylinder pressure sensor 16 has. This is because the air-fuel ratio imbalance detection control according to the first embodiment may not be performed with high accuracy.
  • the predetermined lean A / F is also referred to as “lean side A / F that enables A / F detection”.
  • the threshold value ⁇ is determined according to the “lean side A / F at which A / F detection is possible” as described above, when the amount of generated heat Q is reduced to the threshold value ⁇ during leaning, Leaning can be performed to the extent that sufficient detection accuracy can be ensured.
  • the A / F of the # 1 cylinder before the weight reduction is calculated.
  • This calculation may be realized by causing the ECU 50 to store a “predetermined function for specifying A / F from the injection reduction A (a mathematical expression or a map that defines a correlation)” and appropriately executing it.
  • This “predetermined function” is adjusted according to the operating conditions, the intake air temperature, the intake pressure, the intake air amount, and other various environments when the air-fuel ratio imbalance detection control according to the first embodiment is executed (in consideration of them). ) Just create it.
  • FIG. 4 shows an example of a map created for calculating the A / F of the target cylinder (# 1 cylinder in this case) from the injection reduction A up to the threshold value ⁇ .
  • the fuel injection amount is reduced so that the generated heat amount Q coincides with the threshold value ⁇ for the # 1 cylinder.
  • the A / F of the # 1 cylinder to be used in the air-fuel ratio imbalance detection control according to the first embodiment is calculated from the total value of the injection amounts reduced by this reduction (injection reduction amount A in FIG. 3).
  • the above series of processing is performed for the remaining # 2 to # 4 cylinders other than the # 1 cylinder.
  • the A / F is calculated for each of the # 1 to # 4 cylinders.
  • the engine heat quantity Q calculated from the output of the in-cylinder pressure sensor 16 matches the predetermined threshold value ⁇ .
  • the fuel injection amount of each of the 10 cylinders can be reduced. That is, when the air-fuel ratio imbalance is large between the cylinders, the fuel injection amount that is reduced in each cylinder until the generated heat quantity Q coincides with the threshold value ⁇ according to the magnitude of the imbalance. It should vary. From this premise, the air-fuel ratio imbalance can be detected based on the fuel injection amount reduction amount (injection reduction amount A) in the process of lean air-fuel ratio control. Thereby, the air-fuel ratio imbalance detection between cylinders using the in-cylinder pressure sensor 16 can be accurately performed.
  • the A / F is changed to the lean side, and the A / F before the leaning is calculated based on the amount of reduction in the fuel injection amount accompanying the change,
  • the calculated A / F can be compared between the cylinders to determine imbalance.
  • FIG. 5 is a flowchart of a routine executed by the ECU 50 in the air-fuel ratio imbalance detection apparatus for an internal combustion engine according to the first embodiment of the present invention. This routine is executed at a predetermined cycle during operation of the engine 10.
  • the ECU 50 executes a process (execution condition determination process) for determining whether or not a condition capable of executing the air-fuel ratio imbalance detection is established (step S100). .
  • execution condition determination process for determining whether or not a condition capable of executing the air-fuel ratio imbalance detection is established.
  • the ECU 50 executes a process of determining whether or not the engine 10 is currently in an idle state or a steady operation. If this step condition is not satisfied, the current routine is terminated.
  • step S102 the ECU 50 next executes a process of reducing the fuel injection amount of the target cylinder.
  • the number of the current target cylinder is set.
  • the # 1 cylinder is first set as the target cylinder.
  • the fuel injection amount of the # 1 cylinder is reduced by a predetermined amount.
  • the ECU 50 continuously executes a calculation program for the generated heat quantity Q based on the output of the in-cylinder pressure sensor 16.
  • the ECU 50 calculates the amount of generated heat Q as a result of combustion in accordance with the fuel injection amount reduction in step S102 (step S104).
  • the ECU 50 executes a process of determining whether or not the generated heat quantity Q calculated in step S104 is equal to or less than the threshold value ⁇ (step S106).
  • the lean quantity is not achieved so that the generated heat quantity Q reaches the threshold value ⁇ although the fuel injection quantity is reduced. Therefore, in this case, the process loops and returns to step S102, and the fuel injection amount is further reduced.
  • the ECU 50 increases the amount of decrease in the fuel injection amount by a predetermined amount in addition to the previous amount in the processing of step S102 after the second loop (step of increasing the amount of decrease). Shall be executed.
  • the fuel injection amount can be reduced until the generated heat amount Q of the target cylinder matches the threshold value ⁇ . If the condition of step S106 is satisfied, the ECU 50 ends the reduction of the fuel injection amount for the # 1 cylinder.
  • the ECU 50 describes the operation of the first embodiment described above.
  • the fuel injection amount is reduced in steps S102 to S106 for each cylinder, the coincidence between the generated heat quantity Q and the threshold value ⁇ , and the A / F calculation of the target cylinder. That is, the ECU 50 executes steps S102, S104, S106, and S108 of FIG. 5 at least once for each of the # 1 to # 4 cylinders while changing the “target cylinder” one by one in a predetermined order. .
  • a plurality of cylinders may be designated as target cylinders, and the processing may be performed in parallel for the plurality of target cylinders.
  • “a reduction amount of the fuel injection amount until the generated heat amount Q coincides with the threshold value ⁇ ” is obtained. The process proceeds to step S108.
  • step S108 the fuel injection amount reduction amount (injection reduction amount A in FIG. 3) is obtained for each cylinder.
  • the ECU 50 executes a process for calculating the A / F of the target cylinder based on the total injection reduction A (step S108).
  • the ECU 50 stores a map, a mathematical expression, and other functions created for calculating the A / F of the target cylinder from the injection reduction A up to the threshold value ⁇ as described with reference to FIG. is doing.
  • the ECU 50 calculates A / F for each of the # 1 to # 4 cylinders according to the stored function. Thereby, the A / F information of each cylinder required for imbalance determination can be obtained.
  • the ECU 50 executes a process for making an imbalance determination (step S110).
  • the ECU 50 compares the A / F values of the # 1 to # 4 cylinders calculated in step S108 to evaluate a plurality of A / F value variations (for example, the variation). Is stored within a predetermined range, etc.).
  • This determination process may be created in advance according to a determination criterion for the presence or absence of the occurrence of an inter-cylinder air-fuel ratio imbalance. Thereafter, the current routine ends.
  • the fuel injection amount of each cylinder of the engine 10 can be reduced so that the generated heat amount Q calculated from the output of the in-cylinder pressure sensor 16 matches the predetermined threshold value ⁇ . Thereby, the air-fuel ratio imbalance detection between cylinders using the in-cylinder pressure sensor 16 can be accurately performed.
  • the ECU 50 reduces the fuel injection amount of the direct injection injector 14 for each of a plurality of cylinders of the engine 10 by performing the processing of steps S102 to S106 for each cylinder. Then, after starting the reduction of the fuel injection amount, the ECU 50 executes the determination process of step S106 for comparing the combustion parameter (generated heat amount Q) with the threshold value ⁇ . In step S106, the ECU 50 ends the fuel injection amount reduction control based on the result of the comparison determination between the generated heat amount Q and the threshold value ⁇ .
  • each cylinder it is accurately determined whether or not the combustion parameter (generated heat quantity Q) matches the threshold value ⁇ , and the lean air-fuel ratio corresponding to the threshold value ⁇ is reliably made lean. It can be performed.
  • the fuel injection amount starts to be reduced in the first step S102, and thereafter, the generated heat amount Q coincides with the threshold value ⁇ and the reduction is stopped in step S106.
  • the combustion parameter generated heat quantity Q
  • the amount of decrease (change amount) in the fuel injection amount can be accurately specified, and the A / F information used for air-fuel ratio imbalance detection can be accurately calculated for each cylinder.
  • step S106 when the process of step S106 is not established (that is, when the amount of generated heat Q> the threshold value ⁇ ), the ECU 50 loops and the second process of step S102 is executed.
  • a process of increasing by a predetermined amount in addition to the previous amount (decreasing amount increasing process) can be executed.
  • the comparison result between the combustion parameter (generated heat quantity Q) and the threshold value ⁇ can be appropriately fed back to the fuel injection quantity reduction control.
  • one of the # 1 to # 4 cylinders of the engine 10 is selected as the target cylinder, and the processing of steps S102, S104, and S106 is performed for the selected target cylinder. be able to. Then, A / F information used for air-fuel ratio imbalance detection can be acquired for each cylinder while changing the target cylinder.
  • the calculation program for the generated heat quantity Q stored in the ECU 50 by the in-cylinder pressure sensor 16 in the “in-cylinder pressure sensor” in the first invention is the “calculation means” in the first invention. Respectively. Further, in the first embodiment described above, the ECU 50 executes the processes of steps S102, S104, and S106, whereby the “injection amount control means” in the first aspect of the invention is changed to the ECU 50 of steps S108 and S110. By executing the processing, the “imbalance detection means” in the first invention is realized. In the first embodiment described above, the amount of generated heat Q corresponds to the “combustion parameter” in the first invention, and the threshold value ⁇ corresponds to the “predetermined value” in the first invention.
  • the ECU 50 executes a program for calculating the amount of generated heat Q based on the output of the in-cylinder pressure sensor 16 as a combustion parameter.
  • the ECU 50 may store a calculation program for calculating other combustion parameters based on the output of the in-cylinder pressure sensor 16.
  • a calculation program for calculating one or more of in-cylinder pressure, maximum in-cylinder pressure, internal energy, illustrated torque, illustrated work, or combustion speed may be stored in the ECU 50 as the combustion parameter.
  • the program which calculates the physical quantity which has a correlation with these quantity may be sufficient.
  • the configuration of the internal combustion engine system according to the first embodiment is a system that uses the catalyst downstream exhaust sensor 35 as a sub oxygen sensor and performs sub feedback A / F control using a so-called sub oxygen sensor.
  • the system configuration of the exhaust system may be other than the configuration according to the first embodiment, for example, a system having only one exhaust passage catalyst or a system having only one exhaust gas sensor.
  • the system for directly injecting gasoline into the combustion chamber from the fuel injection valve has been described.
  • a system for injecting gasoline into the intake port of the intake passage may be used.
  • a system capable of port injection and in-cylinder injection may be used.
  • Embodiment 2 The configuration of the air-fuel ratio imbalance detection device for an internal combustion engine according to the second embodiment of the present invention and the configuration of the internal combustion engine system to which the device is applied include the same hardware configuration as the configuration of the first embodiment. In order to avoid redundant description, the description of the hardware configuration will be omitted or simplified as appropriate.
  • the second embodiment described below based on the idea that the average value of the amount of heat generated by all cylinders corresponds to the exhaust A / F (A / F based on the output of the catalyst upstream exhaust sensor 33 which is an air-fuel ratio sensor).
  • the ECU 50 executes a process of calculating a threshold value ⁇ when performing leaning from the detectable lean A / F. As a result, even when an appropriate value of the generated heat amount threshold value ⁇ changes in accordance with changes in operating conditions, it is possible to secure the air-fuel ratio imbalance detection system in response to such changes.
  • FIG. 6 and 7 are diagrams for explaining the control operation in the air-fuel ratio imbalance detection apparatus for an internal combustion engine according to the second embodiment of the present invention.
  • FIG. 6 is a diagram for explaining a threshold value calculation method according to the second embodiment.
  • a broken line with a character “threshold ⁇ ” indicates the threshold ⁇ calculated according to the threshold calculation method according to the second embodiment.
  • the calculated threshold value ⁇ is commonly applied to the # 1 to # 4 cylinders.
  • the threshold value ⁇ is set based on “lean side A / F at which A / F detection is possible”, and the ECU 50 executes the flowchart shown in FIG. 5 using the set threshold value ⁇ . .
  • the threshold value ⁇ is set (updated) to an appropriate value every time the control flowchart is executed according to the following equation (1).
  • Threshold value ⁇ generated heat amount average value ⁇ (exhaust air / fuel ratio / predetermined lean air / fuel ratio) ... (1)
  • the “generated heat amount average value” is an average value of the generated heat amount Q calculated from the in-cylinder pressure sensors 16 of the # 1 to # 4 cylinders.
  • the generated heat amount is an average value.
  • the “exhaust air / fuel ratio” is an air / fuel ratio detected from the exhaust gas collected in the exhaust passage 32. Since the catalyst upstream exhaust sensor 33 (air-fuel ratio sensor) is provided in the exhaust passage 32 where the exhaust gases of the # 1 to # 4 cylinders merge, the air-fuel ratio detected from the output of the catalyst upstream exhaust sensor 33 is expressed as “ It can be used as an “exhaust air-fuel ratio”.
  • the “predetermined lean air-fuel ratio” is, as described in the first embodiment, the degree to which the influence of these measurement hindering factors can be eliminated in consideration of sensitivity tolerance and machine difference variation that the in-cylinder pressure sensor 16 has.
  • the A / F is sufficiently set on the lean side.
  • the value of the predetermined lean air-fuel ratio is set in advance. According to the equation (1), the threshold value ⁇ as the target value of the generated heat quantity Q is calculated from the average value of the generated heat quantity so that the current exhaust air / fuel ratio can be leaned to a predetermined lean air / fuel ratio. can do.
  • the A / F of the target cylinder is calculated according to the following equation (2).
  • FIG. 7 shows that the A / F of the target cylinder is calculated from the injection reduction A on the basis of the relationship defined by the equation (2), that is, the lean air-fuel ratio (predetermined lean air-fuel ratio B) capable of detecting A / F. Showing the relationship.
  • Target cylinder A / F A / a + B (2)
  • A is the same as “injection reduction A” in step S108 of the first embodiment, and is a total reduction amount due to the reduction in the fuel injection amount at the time of leaning.
  • “A” is the inclination of the correlation between the preset injection amount and A / F.
  • “B” is a preset detectable lean A / F, that is, a predetermined lean air-fuel ratio.
  • FIG. 8 is a flowchart of a routine executed by the ECU 50 in the air-fuel ratio imbalance detection apparatus for an internal combustion engine according to the second embodiment of the present invention.
  • This routine is executed at a predetermined cycle during operation of the engine 10.
  • the ECU 50 executes the calculation process of the threshold value ⁇ according to the above formula (1) in step S200, and executes the calculation process of the target cylinder A / F according to the above formula (2) in step S208.
  • the other contents are the same as the flowchart of the routine according to the first embodiment shown in FIG.
  • the average air-fuel ratio detected for the exhaust gas merged from the # 1 to # 4 cylinders can be calculated using “the average value of the combustion parameters (generated heat quantity Q) of the cylinders # 1 to # 4”.
  • various parameters other than the amount of generated heat may be used. Various modifications similar to those of the first embodiment may be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 筒内圧センサがそれぞれ取り付けられた複数の気筒を備える。筒内圧センサの出力から燃焼パラメータ(例えば発生熱量)を計算する。燃焼パラメータが所定値と一致するように燃料噴射量を減量し、その気筒の空燃比をリーン空燃比とする。各気筒について、燃焼パラメータが所定値と一致するように燃料噴射量の減量の制御を行ったときの、燃料噴射量の減少量に基づいて、各気筒それぞれの空燃比を算出する。算出した空燃比を比較して、気筒間の空燃比インバランス検出を行う。

Description

内燃機関の空燃比インバランス検出装置
 この発明は、内燃機関の空燃比インバランス検出装置に関する。
 従来、例えば、特開2007-255237号公報に開示されているように、複数の気筒を有する内燃機関において、空燃比(A/F)の気筒間ばらつきに対処するための制御装置を備えた内燃機関が知られている。複数気筒を有する内燃機関の場合には、実際の気筒毎の吸入空気量は必ずしも均等ではなく、気筒間でばらつきが存在する。この原因は、吸気マニホールドの吸気管形状や吸気管長さが気筒毎に異なることなどにあると考えられる。
 気筒間で吸入空気量にばらつきが存在することから、内燃機関全体としては目標空燃比に制御されていたとしても、気筒毎に見ると、目標空燃比からのずれ、つまり最適な空燃比からのずれが存在している。このような空燃比の気筒間ばらつきの存在は、排気浄化性能に悪影響を及ぼし易い。また、燃費の改善という観点からは、点火時期を、トルクが最大となる最適な点火時期つまりMBT(Minimum advance for the Best Torque)に精度良く制御することが求められる。MBTは、吸入空気量や空燃比に応じて変化するため、吸入空気量や空燃比の気筒間ばらつきの存在は、燃費性能にも悪影響を及ぼし易い。こういった事情があることから、空燃比の気筒間ばらつき(インバランス)を正確に把握することが好ましい。
 そこで、上記従来の技術にかかる内燃機関の制御装置は、気筒毎の実筒内圧から算出される気筒毎の実熱発生率に基づいて、熱発生をモデル化するWiebe関数のパラメータの値を気筒毎に算出している。気筒毎の実筒内圧は、気筒に取り付けられた筒内圧センサの出力値に基づいて算出される。Wiebe関数パラメータの値と、筒内吸入空気量の指標となる空気量指標値との対応関係に基づいて、吸入空気量の気筒間ばらつきの状態を高精度に推定することができる。
特開2007-255237号公報
 上述したような気筒間における空燃比(A/F)のインバランス(ばらつき)を正確に評価するためには、気筒毎のA/Fを個別且つ正確に計測できることが好ましい。この要望を満たす技術として、近年では筒内圧センサに対する期待が高まってきている。筒内圧センサを気筒毎に取り付けた構成によれば、気筒毎の燃焼状態を個別かつ高精度に検知できるからである。
 筒内圧センサにより気筒ごとにA/Fを検出する技術として、具体的には、筒内圧センサの出力から取得できる筒内圧(最大筒内圧など)、内部エネルギ、図示トルク(仕事)、燃焼速度、発生熱量など様々な数値(以下、「燃焼パラメータ」とも称す)を用いてA/Fを検出する技術が考えられる。しかしながら、本願発明者が鋭意研究により見出した知見によれば、これらの各パラメータは、ある程度のリッチA/F領域(具体的にはA/F=13近傍)においてはA/F変化に対する感度が低下するという傾向を持っている。このような傾向の存在を考慮に入れずに、リッチ側A/F領域で得た比較的精度が良好でない燃焼パラメータに依拠してA/Fインバランス検出を行おうとしても、高精度なA/Fインバランス検出は困難である。このような問題点に鑑みて鋭意研究を進めた結果、本願発明者は、筒内圧センサを用いた気筒間の空燃比インバランス検出を精度良く行なうことのできる新規な着想を得た。
 この発明は、筒内圧センサを用いた気筒間の空燃比インバランス検出を精度良く行うことのできる内燃機関の空燃比インバランス検出装置を提供することを目的とする。
 第1の発明は、上記の目的を達成するため、内燃機関の空燃比インバランス検出装置であって、
 内燃機関の複数の気筒にそれぞれ取り付けられた筒内圧センサから出力を取得する出力取得手段と、
 前記出力取得手段で取得した筒内圧センサの出力に基づいて前記気筒の燃焼の状態を表す値である燃焼パラメータを算出する算出手段と、
 前記複数の気筒それぞれについて、前記算出手段で算出される燃焼パラメータが所定値と一致するように、燃料噴射量を減量して空燃比をリーンにする制御を行う噴射量制御手段と、
 前記複数の気筒それぞれについての前記噴射量制御手段の制御に応じた燃料噴射量の減少量に基づいて、前記複数の気筒の間の空燃比のインバランスを検出するインバランス検出手段と、
 を備えることを特徴とする。
 また、第2の発明は、第1の発明において、
 前記複数の気筒の排気ガスが合流する排気通路に設けられた空燃比センサと、
 前記空燃比センサの出力に基づく空燃比の値および所定のリーン空燃比の値の比と、前記複数の気筒における前記燃焼パラメータの平均値と、に基づいて、前記噴射量制御手段による前記燃焼パラメータを一致させるべき前記所定値を算出する所定値算出手段と、
 を備えることを特徴とする。
 また、第3の発明は、第1または第2の発明において、
 前記噴射量制御手段は、
 前記複数の気筒ごとに、燃料噴射量について減量を行う減量手段と、
 前記減量手段による減量を開始した後に、前記燃焼パラメータと前記所定値との比較を行う比較手段と、
 前記比較の結果に基づいて、前記減量手段による減量を終了する終了手段と、
 を含むことを特徴とする。
 また、第4の発明は、前記第3の発明において、
 前記噴射量制御手段は、
 前記減量手段による減量の開始から前記終了手段による減量の終了までの燃料噴射量の減少量に基づいて、前記減量手段で燃料噴射量の減量を行った気筒の空燃比を算出する手段を、
含むことを特徴とする。
 また、第5の発明は、前記第3の発明において、
 前記減量手段は、
 燃料噴射量の減量を開始するときに、所定の量だけ当該減量を実行する手段と、
 前記比較手段での比較の結果において前記燃焼パラメータが前記所定値を上回っている場合に、前記減量の量を増加する減量分増加手段と、
 を含むことを特徴とする。
 また、第6の発明は、第1乃至第5の発明の何れか1つにおいて、
 前記噴射量制御手段は、前記複数の気筒から選択された1つの気筒である対象気筒について前記燃焼パラメータが所定値と一致するように前記複数の気筒の燃料噴射量を減量する手段を含み、
 前記インバランス検出手段は、
 前記複数の気筒が少なくとも一度ずつ前記対象気筒として選択されるように、前記複数の気筒から前記対象気筒を指定する手段と、
 前記対象気筒について前記噴射量制御手段の制御を行う前後での、前記対象気筒の燃料噴射量の減少量を計算する手段と、
 前記減少量に基づいて、前記対象気筒における前記噴射量制御手段を実行する前の前記対象気筒の空燃比の計算値を求める手段と、
 前記複数の気筒それぞれについての空燃比の前記計算値の比較に基づいて、前記複数の気筒の間の空燃比のインバランスを検出する手段と、
 を含むことを特徴とする。
 また、第7の発明は、第1乃至第6の発明の何れか1つにおいて、
 前記燃焼パラメータは、筒内圧、内部エネルギ、図示トルク、図示仕事、燃焼速度および発生熱量の群から選択した少なくとも1つの量、又は前記少なくとも1つの量と相関を有する物理量であることを特徴とする。
 第1の発明によれば、空燃比インバランスを、リーン側への空燃比制御の過程での燃料噴射量の減少量に基づいて検出することができる。これにより、筒内圧センサを用いた気筒間の空燃比インバランス検出を精度良く行うことができる。
 第2の発明によれば、内燃機関の運転中に、「複数の気筒の排気ガスから検出される平均の空燃比」および「複数の気筒の燃焼パラメータの平均値」を用いて、所定のリーン空燃比に応じた燃焼パラメータの目標値を算出することができる。
 第3の発明によれば、各気筒において、燃焼パラメータが所定値と一致しているかを正確に判定し、所望のリーン空燃比まで確実にリーン化を行うことができる。
 第4の発明によれば、燃料噴射量の減少量(変化量)を正確に特定し、空燃比インバランス検出に用いる空燃比情報を、気筒ごとに精度よく算出することができる。
 第5の発明によれば、燃焼パラメータと所定値との比較結果を、燃料噴射量の減量制御に適切にフィードバックすることができる。
 第6の発明によれば、対象気筒を変更しながら、各気筒について、空燃比インバランス検出に用いる空燃比情報を取得することができる。
 第7の発明によれば、内燃機関の燃焼状態を表す一般的な各種燃焼パラメータ又はこれと相関を有する物理量を、空燃比インバランス検出に用いることができる。
本発明の実施の形態1にかかる内燃機関の空燃比インバランス検出装置の概略構成を、これが適用される内燃機関システムの概略構成とともに示す図である。 本発明の実施の形態1にかかる内燃機関の空燃比インバランス検出装置における制御動作について説明するための図である。 本発明の実施の形態1にかかる内燃機関の空燃比インバランス検出装置における制御動作について説明するための図である。 本発明の実施の形態1にかかる内燃機関の空燃比インバランス検出装置における制御動作について説明するための図である。 本発明の実施の形態1にかかる内燃機関の空燃比インバランス検出装置おいてECUが実行するルーチンのフローチャートである。 本発明の実施の形態2にかかる内燃機関の空燃比インバランス検出装置における制御動作について説明するための図である。 本発明の実施の形態2にかかる内燃機関の空燃比インバランス検出装置における制御動作について説明するための図である。 本発明の実施の形態2にかかる内燃機関の空燃比インバランス検出装置おいてECUが実行するルーチンのフローチャートである。
実施の形態1. 
 図1は、本発明の実施の形態1にかかる内燃機関の空燃比インバランス検出装置の概略構成を、これが適用される内燃機関システムの概略構成とともに示す図である。図1に示すシステムは、内燃機関(以下、単にエンジンという。)10を備えている。図1に示すエンジン10は、点火プラグ12を備えた火花点火式の4ストロークエンジンである。エンジン10は、気筒内に燃料を直接噴射する直噴インジェクタ14を備えた筒内直噴エンジンでもある。実施の形態1にかかる内燃機関の空燃比インバランス検出装置は、エンジン10の運転を総合制御するECU(Electronic Control Unit)の一つの機能として実現される。
 図1では1つの気筒のみが描かれているが、実施の形態におけるエンジン10は4つの気筒(#1~#4気筒)を有する直列4気筒式エンジンである。車両用のエンジンは一般的に複数の気筒から構成されており、エンジン10もこれと同様に複数の気筒を有するものである。各気筒の直噴インジェクタ14には、図示省略する共通のデリバリーパイプが接続されている。デリバリーパイプには、図示省略する燃料タンクが接続されている。
 また、各気筒には筒内圧(燃焼圧)を検出するための筒内圧センサ(CPS:Combustion Pressure Sensor)16が取り付けられている。また、エンジン10には、クランク角θに応じて信号CAを出力するクランク角センサ18が取り付けられている。
 エンジン10の吸気系には、各気筒に接続された吸気通路20が設けられている。吸気通路20の入口には、エアクリーナ22が設けられている。エアクリーナ22の下流には、吸気通路20に吸入される空気の流量に応じた信号GAを出力するエアフローメータ24が取り付けられている。エアフローメータ24の下流には、電子制御式のスロットルバルブ26が設けられている。スロットルバルブ26の近傍には、スロットルバルブ26の開度に応じた信号TAを出力するスロットル開度センサ27が取り付けられている。スロットルバルブ26の下流には、サージタンク28が設けられている。サージタンク28の近傍には、吸気圧を測定するための吸気圧センサ30が取り付けられている。
 エンジン10の排気系には、各気筒に接続された排気通路32が設けられている。排気通路32は、具体的には、#1~#4気筒の排気ポートが合流する排気マニホールドと、この排気マニホールドと接続する排気管とを含んでいる。排気通路32には、触媒34、36が設けられている。なお、触媒としては、例えば、三元触媒、NOx触媒等が具体的なシステムに応じて用いられる。排気通路32には、触媒上流排気センサ33および触媒下流排気センサ35が設けられている。触媒上流排気センサ33は、酸素濃度を直線的に検出可能ないわゆる空燃比(A/F)センサである。具体的には、触媒上流排気センサ33としては、限界電流式空燃比センサ等の各種方式の空燃比センサを用いることができる。また、いわゆるサブ酸素センサを用いてサブフィードバックA/F制御を行うシステムが知られており、本実施形態ではこれと同様に触媒下流排気センサ35をサブ酸素センサとする。ただし、本発明の適用対象となる排気系のシステム構成は上記の実施形態にかかる構成のみに限られるものではなく、排気通路の触媒が1つのみのシステムや排気ガスセンサが1つのみのシステム等であってもよい。
 エンジン10の制御系には、ECU(Electronic Control Unit)50が設けられている。ECU50の入力部には、上述した筒内圧センサ16、クランク角センサ18、エアフローメータ24、スロットル開度センサ27、吸気圧センサ30等の各種センサが接続されている。また、ECU50の出力部には、上述した点火プラグ12、直噴インジェクタ14、スロットルバルブ26等の各種アクチュエータが接続されている。ECU50は、入力された各種の情報に基づいて、エンジン10の運転状態を制御する。また、ECU50は、クランク角センサ18の信号CAから、エンジン回転数(単位時間当たり回転数)や、ピストンの位置によって決まる筒内容積Vを計算することができる。ECU50は、エンジン回転数、負荷、吸入空気量等に基づいて、運転状態に応じた目標A/Fを満たす適正な燃料噴射量を算出し、直噴インジェクタ14に噴射させる。
 ECU50は、筒内圧センサ16の出力に基づいて、気筒内の燃焼の状態を表す値である燃焼パラメータを算出する計算プログラムを記憶している。なお、筒内圧センサ16の出力は所定周期(所定クランク角)ごとにサンプリングされており、このサンプリング値に基づく測定データを計算プログラムの入力値として用いることができる。本実施形態においては、燃焼パラメータとして、筒内圧センサ16の出力に基づいて発生熱量Qを計算するプログラムをECU50が実行するものとする。なお、燃焼パラメータの計算プログラムは公知の各種計算式に従って計算が実施されるように各種公知技術を用いて作成、記憶、実行すればよく、その実現のための技術は新規な事項ではないため、具体的な説明は省略する。
[実施の形態1の動作]
 図2~4は、本発明の実施の形態1にかかる内燃機関の空燃比インバランス検出装置における制御動作(すなわち「実施の形態1にかかる空燃比インバランス検出制御」)について説明するための図である。
 図2は、実施の形態1にかかる内燃機関の空燃比インバランス検出装置が解決しようとする課題を説明するために示す図であり、問題点、課題が発生する理由を説明するための図である。図2に「リッチ検出困難」と示しているように、リーン側へのA/F変化についての燃焼速度の感度(変化率)に比較して、特定のリッチ領域(具体的にはA/F=13近傍)においてはA/F変化についての燃焼速度の感度(変化率)が小さい。本願発明者は、このような傾向を、燃焼速度以外の、筒内圧センサの出力から取得できる燃焼状態を表すパラメータ(以下、「燃焼パラメータ」とも称す)においても見出している。具体的には、本願発明者は、筒内圧センサの出力から取得できる筒内圧(最大筒内圧など)、内部エネルギ、図示トルク(仕事)、燃焼速度、発生熱量など様々な燃焼パラメータについても同様の傾向があることを見出している。
 そこで、実施の形態1にかかる内燃機関の空燃比インバランス検出装置は、上記のようなリッチ領域における燃焼パラメータの感度低下という影響を避けるように、次のような制御を実施する。すなわち、まず、エンジン10の運転中に、気筒毎にリーン化を行う。ここでは、一例としてエンジン10の有する複数の気筒のなかから#1気筒を選択して先ず#1気筒にリーン化を行うものとする。以下、実施の形態1にかかるリーン化制御の対象とする気筒を「対象気筒」とも称す。現時点では、#1気筒が対象気筒ということになる。このリーン化は直噴インジェクタ14における燃料噴射量の減量により行い、その減量は、筒内圧センサ16の出力に基づく燃焼パラメータ(実施の形態1では、発生熱量とする)が所定の閾値まで低下するように行う。
 図3は、実施の形態1にかかる内燃機関の空燃比インバランス検出装置で行われる燃料噴射量の減量の様子を示す図である。図3には、A/Fと発生熱量Qとの関係を模式的に示す曲線が記載されている。実施の形態1では、図3に矢印で示すように、「所定リーンA/F」となるようなリーン化が実施されたときの発生熱量Qの値を「閾値α」として設定する。この「所定リーンA/F」は、筒内圧センサ16が有している感度公差や機差ばらつきを考慮して、それらの計測阻害要素の影響を排除できる程度に十分にリーン側に設定したA/Fとする。
 このように所定リーンA/Fおよび閾値αを検討する理由は、リーン側へのA/F変化が小さ過ぎる場合には、筒内圧センサ16が有している感度公差や機差ばらつきによって、十分な精度で実施の形態1にかかる空燃比インバランス検出制御を実施できないおそれがあるからである。以下、この所定リーンA/Fを、「A/F検出が可能となるリーン側A/F」とも称す。以上のような「A/F検出が可能となるリーン側A/F」に応じて閾値αを定めておくことによって、リーン化の際に、発生熱量Qを閾値αまで低下させたときに、十分な検出精度を確保できる程度のリーン化を行うことができる。
 図3に示す如く発生熱量Qが閾値αと一致するまで燃料噴射量が減量されたら、その一致のときまでに減量された燃料噴射量の合計値(図3では噴射減量Aと記載)から、その減量を行う前の#1気筒のA/Fを計算する。この計算は、ECU50に「噴射減量AからA/Fを特定する所定の関数(相関を定めた数式やマップ)」を記憶させ、適宜に実行させることで実現すればよい。この「所定の関数」は、実施の形態1にかかる空燃比インバランス検出制御を実行させるときの運転条件、吸気温度、吸気圧、吸入空気量その他の各種環境に合わせて(それらを考慮して)作成しておけばよい。
 図4は、閾値αまでの噴射減量Aから対象気筒(ここでは#1気筒)のA/Fを算出するために作成したマップの一例を示す。このマップ等を利用した計算の結果、#1気筒について、発生熱量Qが閾値αに一致するように燃料噴射量の減量が実施される。この減量により減少した噴射量の合計値(図3の噴射減量A)から、実施の形態1にかかる空燃比インバランス検出制御で使用すべき#1気筒のA/Fが算出される。
 以上の一連の処理を、#1気筒以外の残りの#2~#4気筒に対しても実施する。その結果、#1~#4気筒のそれぞれについてA/Fが算出される。算出されたA/Fの値を相対的に比較することにより、燃料噴射量の減量の実施前において気筒間の空燃比インバランスが生じていたか否かを判断することができる。
 以上説明したように、実施の形態1にかかる内燃機関の空燃比インバランス検出装置によれば、筒内圧センサ16の出力から算出される発生熱量Qが所定の閾値αと一致するように、エンジン10の各気筒の燃料噴射量を減量することができる。すなわち、気筒間で空燃比インバランスが大きい場合には、そのインバランスの大きさに応じて、発生熱量Qが閾値αと一致するまでにそれぞれの気筒で減量される燃料噴射量も相当の大きさでばらつくはずである。この前提から、空燃比インバランスを、リーン側への空燃比制御の過程での燃料噴射量の減少量(噴射減量A)に基づいて検出することができる。これにより、筒内圧センサ16を用いた気筒間の空燃比インバランス検出を精度良く行うことができる。
 実施の形態1によれば、前述したリッチA/Fでの燃焼パラメータの感度低下の影響を避けつつ、A/Fリッチ側のインバランス検出を、良好な精度で行うことができる。すなわち、図2を用いて説明したように、燃焼速度や発生熱量といった各種の燃焼パラメータは、ある程度のリッチA/F領域(具体的にはA/F=13近傍)においてはA/F変化に対する感度が低下するという傾向を持っている。このような傾向があるため、リッチ側A/F領域で得た比較的精度が良好でない燃焼パラメータに依拠して、リッチA/FにおけるA/Fインバランス検出を行おうとしても、高精度なA/Fインバランス検出は困難である。この点、実施の形態1によれば、リーン側へとA/Fを変化させ、その変化に伴う燃料噴射量の減量の量に基づいてリーン化を実施する前のA/Fを算出し、その算出したA/Fを各気筒間で比較してインバランスの判定を行うことができる。これにより、リーン化前(つまり燃料噴射量の減量の実施前)においてエンジン10がストイキ、リッチ、リーンのいずれの空燃比領域で運転されていても、リッチ空燃比における燃焼パラメータの感度低下の影響を避けつつ、空燃比インバランス検出を行うことができる。
[実施の形態1の具体的処理]
 図5は、本発明の実施の形態1にかかる内燃機関の空燃比インバランス検出装置おいてECU50が実行するルーチンのフローチャートである。本ルーチンは、エンジン10の運転中に所定の周期で実行される。
 図5に示すルーチンでは、先ず、ECU50が、空燃比インバランス検出を実行することができる条件が成立しているか否かを判定するための処理(実行条件判定処理)を実行する(ステップS100)。このステップでは、実施の形態1では、具体的には、ECU50が、現時点においてエンジン10がアイドル時あるいは定常運転時に該当しているかどうかを判定する処理を実行する。このステップの条件が成立しない場合には、今回のルーチンが終了する。
 ステップS100の条件が成立した場合には、次に、ECU50が、対象気筒の燃料噴射量を減量する処理を実行する(ステップS102)。なお、このステップにおいては現在の対象気筒が何番気筒であるか設定されており、実施の形態1ではまず#1気筒が対象気筒として設定されている。本ステップでは、#1気筒の燃料噴射量が所定の量だけ減量される。
 一方、ECU50は、筒内圧センサ16の出力に基づく発生熱量Qの算出プログラムを継続的に実施している。ステップS102の処理に応じて、ECU50は、ステップS102の燃料噴射量減量に応じた燃焼の結果としての発生熱量Qを算出する(ステップS104)。
 次には、ECU50は、ステップS104で算出された発生熱量Qが閾値α以下であるか否かを判定する処理を実行する(ステップS106)。このステップの条件が成立していない場合には、燃料噴射量を減量したものの、発生熱量Qが閾値αに達するほどのリーン化は達成されていない。そこで、この場合には、処理がループしてステップS102へと戻り、さらに燃料噴射量の減量が行われる。実施の形態1では、ECU50は、ループ後の2回目以降のステップS102の処理において、燃料噴射量の減量の大きさを、前回の分に加えて所定量だけ増加する処理(減量分増加処理)を実行するものとする。このようなステップS102、S104、S106の一連の処理により、対象気筒の発生熱量Qが閾値αに一致するまで、燃料噴射量を減量することができる。ステップS106の条件が成立した場合には、ECU50は、#1気筒についての燃料噴射量の減量を終了する。
 なお、図5では、説明の便宜上、「対象気筒の変更」についての記載を省略しているが、実施の形態1の具体的処理においては、ECU50が、上述した実施の形態1の動作の記載内容に従って、各気筒ごとにステップS102~S106の燃料噴射量の減量、発生熱量Qと閾値αの一致、および対象気筒のA/F算出を行うものとする。つまり、ECU50が、「対象気筒」を1つずつ所定の順番で変更しながら、図5のステップS102、S104、S106、S108を#1~#4気筒のそれぞれについて少なくとも一度ずつ実行するものとする。或いは、複数の気筒を対象気筒に指定して、複数の対象気筒について並行して処理を進めてもよい。これにより、必要な気筒(実施の形態1では#1~#4気筒の全て)について、それぞれ、「発生熱量Qが閾値αと一致するまでの燃料噴射量の減少量」が得られた段階で、処理はステップS108に進むものとする。
 上記の処理の結果、ステップS108に処理が進んだ時点で、気筒ごとに、燃料噴射量の減少量(図3の噴射減量A)が得られている。次に、ECU50は、トータル噴射減量Aに基づいて、対象気筒のA/Fを算出するための処理を実行する(ステップS108)。このステップの処理の前提として、ECU50は、図4を用いて説明したような、閾値αまでの噴射減量Aから対象気筒のA/Fを算出するために作成したマップ、数式その他の関数を記憶している。ECU50は、この記憶した関数に従って、#1~#4気筒のそれぞれについて、A/Fを算出する。これにより、インバランス判定に必要な各気筒のA/F情報を得ることができる。
 次に、ECU50は、インバランス判定を行うための処理を実行する(ステップS110)。このステップの処理の前提として、ECU50が、ステップS108で算出された#1~#4気筒それぞれのA/Fの値を比較することにより、複数のA/F値のばらつきの評価(例えば、ばらつきが所定範囲内に収まっているか等)を判定する処理を記憶しているものとする。この判定処理は、気筒間空燃比インバランスの発生の有無の判定基準に応じて予め作成しておけばよい。その後、今回のルーチンが終了する。
 以上の処理によれば、筒内圧センサ16の出力から算出される発生熱量Qが所定の閾値αと一致するように、エンジン10の各気筒の燃料噴射量を減量することができる。これにより、筒内圧センサ16を用いた気筒間の空燃比インバランス検出を精度良く行うことができる。
 また、上記の処理によれば、ステップS102~S106の処理を気筒ごとに行うことにより、ECU50が、エンジン10の複数の気筒ごとに、直噴インジェクタ14の燃料噴射量を減量する。そして、ECU50は、この燃料噴射量の減量を開始した後に、燃焼パラメータ(発生熱量Q)と閾値αとの比較を行うステップS106の判定処理を実行する。ECU50は、ステップS106において、発生熱量Qと閾値αの比較判定の結果に基づいて燃料噴射量の減量制御を終了する。このような一連の処理によれば、各気筒において、燃焼パラメータ(発生熱量Q)が閾値αと一致しているかを正確に判定し、閾値αに応じた所望のリーン空燃比まで確実にリーン化を行うことができる。
 また、上記の処理によれば、初回のステップS102の処理で燃料噴射量の減量を開始するとともに、その後、発生熱量Qが閾値αと一致してステップS106において減量を停止する。このように、燃焼パラメータ(発生熱量Q)を筒内圧センサ16の出力に基づき継続的に計算、モニタリングすることにより、減量の開始時点および終了時点を明確に特定することができる。これにより、燃料噴射量の減少量(変化量)を正確に特定し、空燃比インバランス検出に用いるA/F情報を、気筒ごとに精度よく算出することができる。
 また、上記の処理によれば、ECU50が、ステップS106の処理が不成立(つまり、発生熱量Q>閾値α)のときに処理がループして、第2回目のステップS102の処理が実行されるときに、前回の分に加えて所定量だけ増加する処理(減量分増加処理)を実行することができる。これにより、燃焼パラメータ(発生熱量Q)と閾値αの比較結果を、燃料噴射量の減量制御に適切にフィードバックすることができる。
 また、上記の処理によれば、エンジン10が有する#1~#4気筒のうち1つの気筒を対象気筒として選択したうえで、選択した対象気筒についてステップS102、S104およびS106の処理をそれぞれ実施することができる。そして、対象気筒を変更しながら、各気筒について、空燃比インバランス検出に用いるA/F情報を取得することができる。
 なお、上述した実施の形態1においては、筒内圧センサ16が前記第1の発明における「筒内圧センサ」に、ECU50に記憶した発生熱量Qの計算プログラムが、前記第1の発明における「算出手段」に、それぞれ相当している。また、上述した実施の形態1においては、ECU50が上記ステップS102、S104およびS106の処理を実行することにより、前記第1の発明における「噴射量制御手段」が、ECU50が上記ステップS108およびS110の処理を実行することにより、前記第1の発明における「インバランス検出手段」が、それぞれ実現されている。そして、上述した実施の形態1では、発生熱量Qが、前記第1の発明における「燃焼パラメータ」に、閾値αが、前記第1の発明における「所定値」に、それぞれ相当している。
[実施の形態1の変形例]
 実施の形態1においては、燃焼パラメータとして、筒内圧センサ16の出力に基づいて発生熱量Qを計算するプログラムをECU50が実行する。しかしながら、本発明はこれに限られるものではない。ECU50が、筒内圧センサ16の出力に基づいて他の燃焼パラメータを算出する計算プログラムを記憶してもよい。具体的には、燃焼パラメータとして、筒内圧、最大筒内圧、内部エネルギ、図示トルク、図示仕事または燃焼速度の1つ又は複数を計算するための計算プログラムをECU50に記憶させてもよい。また、これらの量と相関を有する物理量を計算するプログラムであってもよい。
 なお、実施の形態1にかかる内燃機関システムの構成は、触媒下流排気センサ35をサブ酸素センサとし、いわゆるサブ酸素センサを用いてサブフィードバックA/F制御を行うシステムである。しかしながら、本発明はこれに限られない。排気系のシステム構成は、実施の形態1にかかる構成以外の、たとえば排気通路の触媒が1つのみのシステムや排気ガスセンサが1つのみのシステム等であってもよい。なお、実施の形態1では、ガソリンを燃料噴射弁から燃焼室内に直接噴射するシステムについて説明したが、ガソリンを吸気通路の吸気ポートに噴射するシステムを用いてもよい。さらに、ポート噴射および筒内噴射可能なシステムを用いてもよい。
実施の形態2.
 本発明の実施の形態2にかかる内燃機関の空燃比インバランス検出装置の構成およびこれが適用される内燃機関システムの構成は、実施の形態1の構成と同様のハードウェア構成を含んでいる。重複説明を避けるため、以下、ハードウェア構成については説明を適宜省略ないしは簡略する。以下に述べる実施の形態2においては、全気筒の発生熱量平均値と排気A/F(空燃比センサである触媒上流排気センサ33の出力に基づくA/F)が対応するという考え方に基づいて、ECU50が検出可能リーンA/Fからリーン化を行う際の閾値αを算出する処理を実行する。これにより、運転条件の変化に応じて発生熱量の閾値αの適切な値が変化する場合にも、その変化に対処して空燃比インバランス検出制度を確保することができる。
 図6および7は、本発明の実施の形態2にかかる内燃機関の空燃比インバランス検出装置における制御動作について説明するための図である。図6は、具体的には、実施の形態2にかかる閾値算出手法について説明するための図である。図6において、「平均値=排気A/F」の文字を付した破線(図6の紙面上側の破線)は、触媒上流排気センサ33においてセンシングされた空燃比の値を模式的に示している。一方、図6において、「閾値α」の文字を付した破線(図6の紙面下側の破線)は、実施の形態2にかかる閾値算出手法に従って算出された閾値αを示している。算出された閾値αは、#1~#4気筒に対して共通に適用される。
 実施の形態1では、「A/F検出が可能となるリーン側A/F」に基づいて閾値αを設定し、ECU50がこの設定した閾値αを用いて図5に示すフローチャートを実行している。これに対し、実施の形態2においては、この閾値αを、下記の式(1)に従って、制御フローチャートを実行する度に適切な値に設定(更新)する。
 閾値α = 発生熱量平均値 × (排気空燃比/所定リーン空燃比)
                            ・・・(1)
式(1)において、「発生熱量平均値」とは、#1~#4気筒のそれぞれの筒内圧センサ16から計算した発生熱量Qの平均値である。つまり、#1気筒の発生熱量をQ1、#2気筒の発生熱量をQ2、#3気筒の発生熱量をQ3、#4気筒の発生熱量をQ4とした場合に、これらQ1~Q4の平均値が、発生熱量平均値である。
 「排気空燃比」とは、排気通路32に集合した排気ガスから検出される空燃比である。触媒上流排気センサ33(空燃比センサ)が#1~#4気筒の排気ガスが合流する排気通路32に備えられているので、この触媒上流排気センサ33の出力から検出される空燃比を、「排気空燃比」として利用することができる。
 「所定リーン空燃比」とは、実施の形態1でも説明したように、筒内圧センサ16が有している感度公差や機差ばらつきを考慮して、それらの計測阻害要素の影響を排除できる程度に十分にリーン側に設定したA/Fである。所定リーン空燃比の値は、予め設定しておく。
 式(1)によれば、現在の排気空燃比から所定リーン空燃比へとリーン化を行うことができるように、現在の発生熱量平均値から、発生熱量Qの目標値としての閾値αを算出することができる。
 実施の形態2では、下記の式(2)に従って、対象気筒のA/Fを算出する。図7は、この式(2)で規定される関係、つまりA/F検出の可能なリーン空燃比(所定リーン空燃比B)を基準として噴射減量Aから対象気筒のA/Fを算出するという関係を示している。
 対象気筒A/F = A/a+B  ・・・(2)
 式(2)において、Aは、実施の形態1のステップS108における「噴射減量A」と同じであり、リーン化の際の燃料噴射量の減量によるトータルの減少量である。「a」は、予め設定した噴射量とA/Fの相関の傾きである。「B」は、予め設定した検出可能リーンA/F、つまり所定リーン空燃比である。
 図8は、本発明の実施の形態2にかかる内燃機関の空燃比インバランス検出装置においてECU50が実行するルーチンのフローチャートである。本ルーチンは、エンジン10の運転中に所定の周期で実行される。図8のルーチンでは、ECU50が、ステップS200において上記の式(1)に従って閾値αの算出処理を実行し、ステップS208において、上記の式(2)に従って対象気筒A/Fの算出処理を実行する。その他の内容は、図5に示した実施の形態1にかかるルーチンのフローチャートと同様の内容である。
 以上説明した実施の形態2にかかる内燃機関の空燃比インバランス検出装置によれば、エンジン10の運転中に、「#1~#4気筒から合流した排気ガスについて検出される平均の空燃比」および「#1~#4気筒の燃焼パラメータ(発生熱量Q)の平均値」を用いて、所定のリーン空燃比に応じた燃焼パラメータの目標値(閾値α)を算出することができる。なお、実施の形態2においても、実施の形態1と同様に、発生熱量以外の種々のパラメータを用いても良い。また、実施の形態1と同様の各種変形を行ってもよい。
10 エンジン
12 点火プラグ
14 直噴インジェクタ
16 筒内圧センサ
18 クランク角センサ
20 吸気通路
22 エアクリーナ
24 エアフローメータ
26 スロットルバルブ
27 スロットル開度センサ
28 サージタンク
30 吸気圧センサ
32 排気通路
33 触媒上流排気センサ
34、36 触媒
35 触媒下流排気センサ
50 ECU(Electronic Control Unit)

Claims (7)

  1.  内燃機関の複数の気筒にそれぞれ取り付けられた筒内圧センサから出力を取得する出力取得手段と、
     前記出力取得手段で取得した筒内圧センサの出力に基づいて前記気筒の燃焼の状態を表す値である燃焼パラメータを算出する算出手段と、
     前記複数の気筒それぞれについて、前記算出手段で算出される燃焼パラメータが所定値と一致するように、燃料噴射量を減量して空燃比をリーンにする制御を行う噴射量制御手段と、
     前記複数の気筒それぞれについての前記噴射量制御手段の制御に応じた燃料噴射量の減少量に基づいて、前記複数の気筒の間の空燃比のインバランスを検出するインバランス検出手段と、
     を備えることを特徴とする内燃機関の空燃比インバランス検出装置。
  2.  前記複数の気筒の排気ガスが合流する排気通路に設けられた空燃比センサと、
     前記空燃比センサの出力に基づく空燃比の値および所定のリーン空燃比の値の比と、前記複数の気筒における前記燃焼パラメータの平均値と、に基づいて、前記噴射量制御手段による前記燃焼パラメータを一致させるべき前記所定値を算出する所定値算出手段と、
     を備えることを特徴とする請求項1に記載の内燃機関の空燃比インバランス検出装置。
  3.  前記噴射量制御手段は、
     前記複数の気筒ごとに、燃料噴射量について減量を行う減量手段と、
     前記減量手段による減量を開始した後に、前記燃焼パラメータと前記所定値との比較を行う比較手段と、
     前記比較の結果に基づいて、前記減量手段による減量を終了する終了手段と、
     を含むことを特徴とする請求項1または2に記載の内燃機関の空燃比インバランス検出装置。
  4.  前記噴射量制御手段は、
     前記減量手段による減量の開始から前記終了手段による減量の終了までの燃料噴射量の減少量に基づいて、前記減量手段で燃料噴射量の減量を行った気筒の空燃比を算出する手段を、
    含むことを特徴とする請求項3に記載の内燃機関の空燃比インバランス検出装置。
  5.  前記減量手段は、
     燃料噴射量の減量を開始するときに、所定の量だけ当該減量を実行する手段と、
     前記比較手段での比較の結果において前記燃焼パラメータが前記所定値を上回っている場合に、前記減量の量を増加する減量分増加手段と、
     を含むことを特徴とする請求項3に記載の内燃機関の空燃比インバランス検出装置。
  6.  前記噴射量制御手段は、前記複数の気筒から選択された1つの気筒である対象気筒について前記燃焼パラメータが所定値と一致するように前記複数の気筒の燃料噴射量を減量する手段を含み、
     前記インバランス検出手段は、
     前記複数の気筒が少なくとも一度ずつ前記対象気筒として選択されるように、前記複数の気筒から前記対象気筒を指定する手段と、
     前記対象気筒について前記噴射量制御手段の制御を行う前後での、前記対象気筒の燃料噴射量の減少量を計算する手段と、
     前記減少量に基づいて、前記対象気筒における前記噴射量制御手段を実行する前の前記対象気筒の空燃比の計算値を求める手段と、
     前記複数の気筒それぞれについての空燃比の前記計算値の比較に基づいて、前記複数の気筒の間の空燃比のインバランスを検出する手段と、
     を含むことを特徴とする請求項1乃至5の何れか1項記載の内燃機関の空燃比インバランス検出装置。
  7.  前記燃焼パラメータは、筒内圧、内部エネルギ、図示トルク、図示仕事、燃焼速度および発生熱量の群から選択した少なくとも1つの量、又は前記少なくとも1つの量と相関を有する物理量であることを特徴とする請求項1乃至6の何れか1項記載の内燃機関の空燃比インバランス検出装置。
PCT/JP2011/061193 2011-05-16 2011-05-16 内燃機関の空燃比インバランス検出装置 WO2012157067A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2011/061193 WO2012157067A1 (ja) 2011-05-16 2011-05-16 内燃機関の空燃比インバランス検出装置
CN201180070874.9A CN103547783B (zh) 2011-05-16 2011-05-16 内燃机的空燃比失衡检测装置
JP2013514906A JP5382265B2 (ja) 2011-05-16 2011-05-16 内燃機関の空燃比インバランス検出装置
EP11822856.8A EP2711527B1 (en) 2011-05-16 2011-05-16 Air/fuel ratio imbalance detection device for internal combustion engine
US14/117,489 US9518523B2 (en) 2011-05-16 2011-05-16 Air-fuel ratio imbalance detection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/061193 WO2012157067A1 (ja) 2011-05-16 2011-05-16 内燃機関の空燃比インバランス検出装置

Publications (1)

Publication Number Publication Date
WO2012157067A1 true WO2012157067A1 (ja) 2012-11-22

Family

ID=47176436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061193 WO2012157067A1 (ja) 2011-05-16 2011-05-16 内燃機関の空燃比インバランス検出装置

Country Status (5)

Country Link
US (1) US9518523B2 (ja)
EP (1) EP2711527B1 (ja)
JP (1) JP5382265B2 (ja)
CN (1) CN103547783B (ja)
WO (1) WO2012157067A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104420990A (zh) * 2013-08-29 2015-03-18 科勒公司 内燃机中基于位置的空气/燃料比计算
CN106257026A (zh) * 2015-06-22 2016-12-28 福特环球技术公司 用于扭矩控制的方法和系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013213405A1 (de) * 2013-07-09 2015-01-15 Robert Bosch Gmbh Verfahren zur Trennung von Mengenfehlern einer wenigstens einem Zylinder eines Verbrennungsmotors zugeführten Kraftstoffmenge und Luftmenge
US9657674B2 (en) * 2015-03-06 2017-05-23 Ford Global Technologies, Llc Method and system for determining air-fuel ratio imbalance
US9683506B2 (en) 2015-03-06 2017-06-20 Ford Global Technologies, Llc Method and system for determining air-fuel ratio imbalance
US9759148B2 (en) * 2015-05-14 2017-09-12 Ford Global Technologies, Llc Method and system for determining air-fuel ratio imbalance via engine torque
US10337430B2 (en) 2016-06-14 2019-07-02 Ford Global Technologies, Llc Method and system for determining air-fuel ratio imbalance
US10330040B2 (en) 2016-06-14 2019-06-25 Ford Global Technologies, Llc Method and system for air-fuel ratio control
WO2018102583A1 (en) * 2016-12-01 2018-06-07 Cummins Inc. Internal combustion engine cylinder air-fuel ratio imbalance detection and controls
SG11202109057XA (en) 2019-03-05 2021-09-29 Nkarta Inc Cd19-directed chimeric antigen receptors and uses thereof in immunotherapy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0495838A (ja) * 1990-08-13 1992-03-27 Japan Electron Control Syst Co Ltd 内燃機関の筒内圧検出装置
JP2006220133A (ja) * 2005-01-11 2006-08-24 Toyota Motor Corp 吸入空気量ばらつき検出装置
JP2007255237A (ja) 2006-03-22 2007-10-04 Toyota Motor Corp 内燃機関の制御装置
JP2009203881A (ja) * 2008-02-27 2009-09-10 Toyota Motor Corp 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP2011043125A (ja) * 2009-08-21 2011-03-03 Honda Motor Co Ltd 内燃機関の筒内ガス量推定装置
JP2011047332A (ja) * 2009-08-27 2011-03-10 Toyota Motor Corp 内燃機関の空燃比気筒間インバランス判定装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219441A (ja) * 1990-12-18 1992-08-10 Japan Electron Control Syst Co Ltd 内燃機関の空燃比制御装置
JP4036906B2 (ja) * 1996-05-15 2008-01-23 三菱電機株式会社 筒内噴射内燃機関の制御装置
DE10006161A1 (de) * 2000-02-11 2001-08-23 Bosch Gmbh Robert Verfahren und Einrichtung zur Bestimmung zylinderindividueller Unterschiede einer Steuergröße bei einer mehrzylindrigen Brennkraftmaschine
JP4086602B2 (ja) * 2002-09-17 2008-05-14 株式会社日立製作所 多気筒エンジンの制御装置及び制御方法
US7055492B2 (en) * 2002-09-17 2006-06-06 Hitachi, Ltd. Control apparatus and control method for multi-cylinder engine
JP4281445B2 (ja) * 2003-07-08 2009-06-17 トヨタ自動車株式会社 内燃機関の制御装置および内燃機関の制御方法
DE10339251B4 (de) * 2003-08-26 2015-06-25 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102004044808B4 (de) * 2004-09-16 2015-12-17 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erkennen zylinderindividueller Füllungsunterschiede
JP4362826B2 (ja) * 2004-11-18 2009-11-11 トヨタ自動車株式会社 内燃機関の制御装置および空燃比算出方法
CN100445543C (zh) * 2005-01-11 2008-12-24 丰田自动车株式会社 吸入空气量偏差检测装置
JP4380604B2 (ja) * 2005-07-29 2009-12-09 トヨタ自動車株式会社 内燃機関の制御装置
JP4716283B2 (ja) * 2006-02-08 2011-07-06 本田技研工業株式会社 内燃機関の空燃比制御装置
US20080178843A1 (en) * 2007-01-25 2008-07-31 Duffy Kevin P Combustion balancing in a homogeneous charge compression ignition engine
US7380540B1 (en) * 2007-01-29 2008-06-03 Caterpillar Inc. Dynamic control of a homogeneous charge compression ignition engine
US7469181B2 (en) * 2007-01-29 2008-12-23 Caterpillar Inc. High load operation in a homogeneous charge compression ignition engine
JP2011052670A (ja) * 2009-09-04 2011-03-17 Denso Corp 内燃機関の燃料噴射装置
JP4962656B2 (ja) * 2009-12-09 2012-06-27 トヨタ自動車株式会社 内燃機関の空燃比気筒間インバランス判定装置
JP2011157852A (ja) 2010-01-29 2011-08-18 Toyota Motor Corp 内燃機関の制御装置
JP2011185159A (ja) * 2010-03-09 2011-09-22 Denso Corp 過給機付き内燃機関の異常診断装置
US8316821B2 (en) * 2010-04-01 2012-11-27 GM Global Technology Operations LLC Method and system for enabling cylinder balancing at low idle speed using crankshaft speed sensor
JP5494317B2 (ja) * 2010-07-20 2014-05-14 トヨタ自動車株式会社 多気筒内燃機関の異常判定装置
DE102010051034A1 (de) * 2010-11-11 2012-05-16 Daimler Ag Verfahren zur Bestimmung einer Art eines Luft-Kraftstoff-Gemisch-Fehlers
US8899212B2 (en) * 2011-12-14 2014-12-02 Ford Global Technologies, Llc Method and system for improving engine starting
CA2855129A1 (en) * 2012-01-30 2013-08-08 Sem Ab Method of monitoring combustion processes in an engine by extracting characterizing features from ion current signals
JP5790523B2 (ja) * 2012-02-01 2015-10-07 トヨタ自動車株式会社 空燃比インバランス判定装置
JP2013253593A (ja) * 2012-05-11 2013-12-19 Denso Corp 内燃機関の気筒別空燃比制御装置
US9127601B2 (en) * 2012-08-07 2015-09-08 Joel Cowgill Cylinder to cylinder balancing using fully flexible valve actuation and cylinder pressure feedback
JP6213085B2 (ja) * 2013-09-17 2017-10-18 株式会社デンソー 内燃機関の気筒別空燃比制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0495838A (ja) * 1990-08-13 1992-03-27 Japan Electron Control Syst Co Ltd 内燃機関の筒内圧検出装置
JP2006220133A (ja) * 2005-01-11 2006-08-24 Toyota Motor Corp 吸入空気量ばらつき検出装置
JP2007255237A (ja) 2006-03-22 2007-10-04 Toyota Motor Corp 内燃機関の制御装置
JP2009203881A (ja) * 2008-02-27 2009-09-10 Toyota Motor Corp 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP2011043125A (ja) * 2009-08-21 2011-03-03 Honda Motor Co Ltd 内燃機関の筒内ガス量推定装置
JP2011047332A (ja) * 2009-08-27 2011-03-10 Toyota Motor Corp 内燃機関の空燃比気筒間インバランス判定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2711527A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104420990A (zh) * 2013-08-29 2015-03-18 科勒公司 内燃机中基于位置的空气/燃料比计算
EP2843218A3 (en) * 2013-08-29 2015-09-30 Kohler Co. Position based air/fuel ratio calculation in an internal combustion engine
US9279379B2 (en) 2013-08-29 2016-03-08 Kohler Co. Position based air/fuel ratio calculation in an internal combustion engine
US9869261B2 (en) 2013-08-29 2018-01-16 Kohler, Co. Position based air/fuel ratio calculation in an internal combustion engine
CN106257026A (zh) * 2015-06-22 2016-12-28 福特环球技术公司 用于扭矩控制的方法和系统
CN106257026B (zh) * 2015-06-22 2021-04-30 福特环球技术公司 用于扭矩控制的方法和系统

Also Published As

Publication number Publication date
EP2711527A1 (en) 2014-03-26
US20140290622A1 (en) 2014-10-02
JP5382265B2 (ja) 2014-01-08
CN103547783B (zh) 2016-04-27
EP2711527B1 (en) 2017-01-25
CN103547783A (zh) 2014-01-29
US9518523B2 (en) 2016-12-13
JPWO2012157067A1 (ja) 2014-07-31
EP2711527A4 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5382265B2 (ja) 内燃機関の空燃比インバランス検出装置
JP4276241B2 (ja) エンジンの制御装置
US8805609B2 (en) Apparatus and method for detecting abnormal air-fuel ratio variation
JP4930347B2 (ja) 内燃機関の異常診断装置
JP4581993B2 (ja) 内燃機関の燃焼異常検出装置
US20070084442A1 (en) Engine combustion state determining apparatus and method
JPWO2011141989A1 (ja) 内燃機関の制御装置
US20120109497A1 (en) Abnormal inter-cylinder air-fuel ratio imbalance detection apparatus for multi-cylinder internal combustion engine
JP5741499B2 (ja) 空燃比ばらつき異常検出装置
JP5397454B2 (ja) 気筒間空燃比ばらつき異常検出装置
JP5853709B2 (ja) 内燃機関の空燃比検出装置および空燃比インバランス検出装置
US9903293B2 (en) Diagnostic system for internal combustion engine
JP5640967B2 (ja) 気筒間空燃比ばらつき異常検出装置
JP5910651B2 (ja) 内燃機関の空燃比検出装置
JP5459235B2 (ja) 内燃機関の制御装置
JP5461373B2 (ja) 気筒間空燃比ばらつき異常検出装置
JP2012007566A (ja) 内燃機関の燃料噴射制御装置
JP5488520B2 (ja) 内燃機関の制御装置
JP5287458B2 (ja) 酸素センサの応答性判定装置
US20140007856A1 (en) Inter-cylinder air/fuel ratio variation abnormality detection apparatus and method for multicylinder internal combustion engine
JP2011247097A (ja) 筒内噴射式内燃機関の制御装置
JP4385542B2 (ja) 内燃機関の空燃比制御装置
JP4186350B2 (ja) 内燃機関の燃焼状態検出装置
JPS61157741A (ja) 吸入空気量検出装置
JP2013019314A (ja) 多気筒内燃機関の異常判定装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180070874.9

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2011822856

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011822856

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11822856

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013514906

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14117489

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE