WO2012155418A1 - 侧杆控制装置 - Google Patents

侧杆控制装置 Download PDF

Info

Publication number
WO2012155418A1
WO2012155418A1 PCT/CN2011/079643 CN2011079643W WO2012155418A1 WO 2012155418 A1 WO2012155418 A1 WO 2012155418A1 CN 2011079643 W CN2011079643 W CN 2011079643W WO 2012155418 A1 WO2012155418 A1 WO 2012155418A1
Authority
WO
WIPO (PCT)
Prior art keywords
angular displacement
control mechanism
force
front wheel
rotating portion
Prior art date
Application number
PCT/CN2011/079643
Other languages
English (en)
French (fr)
Inventor
吴光辉
田金强
赵京洲
丰立冬
Original Assignee
中国商用飞机有限责任公司
中国商用飞机有限责任公司上海飞机设计研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国商用飞机有限责任公司, 中国商用飞机有限责任公司上海飞机设计研究院 filed Critical 中国商用飞机有限责任公司
Publication of WO2012155418A1 publication Critical patent/WO2012155418A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C19/00Aircraft control not otherwise provided for
    • B64C19/02Conjoint controls
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/04Controlling members for hand actuation by pivoting movement, e.g. levers

Definitions

  • the present invention relates to a sidestick control apparatus for an aircraft, and more particularly to a sidestick control apparatus having a front wheel turning function. Background technique
  • sidebar controls for aircraft pitch and roll motion is a trend in contemporary advanced civil aircraft.
  • the sidebar controls are mounted on the side console, and a handle for controlling the front wheel turning system is also required.
  • the side console is arranged in this way, the pilot needs to turn the handle from the handle to the flight control sidebar during the taxiing and take-off run, which is inconvenient for the pilot to operate.
  • Two-axis passive side-bar control devices have been used in civil aircraft represented by Airbus aircraft, which include pitch control axis control and roll control axis control. Thanks to the use of the sidebars, the pilot is able to achieve greater space and complete control of the aircraft with the aid of a computer. Since the side bar is installed on the side console with limited space, the front wheel turning handle and the side display need to be installed at this position, and it is difficult to find the optimal arrangement point of the front wheel turning handle and the side bar, so if it is slightly careless , may cause the pilot to feel uncomfortable or inconvenient when manipulating the two parts.
  • the side console of the existing aircraft equipped with the sidebar control device has difficulty in arrangement, and the inconvenience and inconvenience that the pilot needs to change hands during take-off and running.
  • the present invention proposes a sidebar control device having a front wheel turning function, that is, adding a rotational control motion freedom on the sidebar.
  • the control part of the front wheel turn is integrated into the side bar control device to meet the requirements of pilot accessibility and easy handling.
  • the front wheel steering force characteristic base On the basis of this three-degree-of-freedom side-drying, not only can the pitch control and the roll control be realized, but also the front wheel turning control can be realized, thereby combining the aircraft control surface control and the turning control function.
  • the sidebar control device with front wheel turning control can effectively solve the technical problems encountered by the above-mentioned aircraft equipped with sidebars and the inconvenience of the pilot.
  • the present invention integrates the front wheel turning control function into the side bar control device by increasing the degree of freedom of the side bars.
  • the invention is easy to implement, and can realize a three-degree-of-freedom side rod control device which integrates pitching, rolling and front wheel turning control.
  • the invention realizes the lateral pole pitching, rolling, front wheel turning manipulation and front wheel turning manipulation logic function by using a limited structure and a limited space, and effectively avoids the coupling control, realizes the integration of the multi-degree of freedom control function, and is convenient.
  • the pilot's manipulation of the aircraft realizes the lateral pole pitching, rolling, front wheel turning manipulation and front wheel turning manipulation logic function by using a limited structure and a limited space, and effectively avoids the coupling control, realizes the integration of the multi-degree of freedom control function, and is convenient.
  • the pilot's manipulation of the aircraft realizes the lateral pole pitching, rolling, front wheel turning manipulation and front wheel turning manipulation logic function by using a limited structure and a limited space, and effectively avoids the coupling control, realizes the integration of the multi-degree of freedom control function, and is convenient.
  • the pilot's manipulation of the aircraft realizes the lateral pole pitching, rolling, front wheel turning manipulation and front wheel turning manipulation logic function by using a limited structure and a limited space, and effectively avoids the
  • the present invention activates a side lever control device with front wheel turning control by pressing down the grip handle to activate a third degree of freedom on the side bar, i.e., rotational freedom, by designing a corresponding pitch, roll, and rotational motion mechanism.
  • the present invention discloses a sidestick control device having an operating portion, a pitch control mechanism, a roll control mechanism, and a front wheel turning control mechanism, one end of the operating portion being coupled to the front wheel turning control mechanism One end is used for manipulation, the front wheel turning control mechanism is arranged along a direction of the first positioning straight line, and one of the pitch control mechanism and the roll control mechanism is arranged along a direction of the second positioning straight line, wherein the other one is along Arranging the direction of the three positioning straight lines; wherein the operating portion can drive the front wheel turning control mechanism to rotate around the first positioning line to perform front wheel turning control, and the operating portion and the front wheel turning control mechanism can be wound together
  • the second positioning linearly rotates to thereby perform one of pitching or rolling control, and the operating portion, the front wheel turning control mechanism, and the control mechanism disposed on the second positioning straight line are rotatable together
  • the third position is linearly rotated to thereby perform another one of pitch or roll control, wherein the first positioning line Positioning a second straight line and third straight
  • control shaft of the control mechanism disposed on the second positioning line rotatably supports the front wheel turning control mechanism on the first fixing portion
  • the control shaft of the control mechanism disposed on the third positioning line may be Rotatingly supporting the first fixing portion to the second On the fixed part.
  • first fixing portion is an inner casing
  • second fixing portion is an outer casing
  • the operating portion is a handle, and the first positioning straight line is in a vertical direction.
  • the front wheel turning control mechanism includes a force transmission portion and an angular displacement transmission portion
  • the force transmission portion has a starting force sensing portion and a direction for providing an operator with a simulated force feeling of a front wheel turning mode activation.
  • the operator provides a bending force sensing transmission sub-portion of the simulated force sense of the front wheel turning mode operation, the angular displacement transmission portion being coupled to the turning force sensing transmission sub-portion, which moves along with the turning force sensing transmission sub-portion and outputs Angular displacement control signal.
  • the starting force sense transmission sub-portion has at least a telescopic resistance element and a first actuator, and the first actuator compresses the telescopic resistance element in a first stroke.
  • the cornering force transmission sub-portion has at least a torsional resistance element and a second actuator, and the second actuator twists the torsional resistance element in a second stroke.
  • the angular displacement transmission portion has at least an angular displacement sensor.
  • the kinetic force transmission sub-portion has a first rotating portion and a first elastic member received in the accommodating portion
  • the turning force sensible transmission sub-portion has a second rotating portion and a second elastic member received in the accommodating portion
  • the accommodating portion is provided with a sliding slot, the sliding slot is divided into a vertical portion and a horizontal portion, and the first rotating portion is convexly provided with a protrusion movable along the sliding slot, and the first elastic component is disposed at Between the first rotating portion and the second rotating portion, one end of the second elastic member is fixed to the receiving portion and the other end is fixed to the second rotating portion; wherein, when the first rotating portion is pressed When the protrusion is moved downward along a vertical portion of the chute, the first elastic member is compressed by the first rotating portion to generate a feeling of activating force until the first rotating portion and the second rotating portion Engaging with each other, when the first rotating portion is pressed such that the protrusion moves along a horizontal portion of the chute, the second rotating portion drives the second elastic member to twist to generate a
  • the angular displacement transmission portion has a vertical shaft, a main gear, a slave gear, and an angular displacement sensor, wherein one end of the vertical shaft is fixed to the second rotating portion, Fixing the main gear at the other end, the slave gear is fixed on the angular displacement sensor, the main gear meshes with the slave gear; and the motion is transmitted to the corner when the second rotating portion rotates Motion detector.
  • the receiving portion is an outer sleeve
  • the first rotating portion is an upper inner sleeve
  • the second rotating portion is a lower inner sleeve.
  • the first elastic element is a compression spring and the second elastic element is a torsion spring.
  • the bottom end of the first rotating portion is provided with a protrusion, and the top end of the second rotating portion is provided with a groove, and the protrusion is disposed corresponding to the groove.
  • the second rotating portion is provided with a protrusion
  • the receiving portion is provided with a guiding groove corresponding to the horizontal portion of the sliding slot, and the protrusion of the second rotating portion is located in the guiding groove, the first rotation
  • the position of the protrusion of the portion corresponds to the position of the protrusion of the second rotating portion with respect to the position of the guide groove with respect to the position of the horizontal portion of the chute.
  • a soft stop groove is provided at a central position of the guide groove.
  • the pitch control mechanism further includes a force transmission portion and an angular displacement transmission portion disposed on the pitch control shaft, wherein the force transmission portion is configured to provide a manipulation feeling feeling of the pitch control mode to the operator, the angle The displacement transmission portion is coupled to the force transmission portion, which moves along with the force transmission portion and outputs an angular displacement control signal.
  • the force transmitting transmission portion has a cam and a sleeve assembly
  • the cam is fixed on the pitch control shaft
  • the sleeve assembly has a sleeve cylinder and is housed in the sleeve cylinder a spring, a sleeve holder for fixing the sleeve cylinder to the inner casing, and a compression rod, wherein one end of the compression rod contacts the spring in the sleeve cylinder and the other end Closely engaging the cam to compress the spring by the compression rod when the pitch control shaft causes the cam to rotate.
  • the angular displacement transmission portion has a main gear, a slave gear and an angular displacement sensor, the main gear is fixed to the pitch control shaft, the slave gear is fixed to the angular displacement sensor, and the angular displacement sensor is fixed to On the inner casing, the main gear and the slave gear mesh.
  • the roll control mechanism further includes a force transmission portion and an angular displacement transmission portion disposed on the roll control shaft, the force transmission portion being used for an operator Providing a force sense for manipulating the roll control mode, the angular displacement transmission portion being coupled to the force transmission portion, which moves along with the force transmission portion and outputs an angular displacement control signal
  • the force transmission portion has a cam and a sleeve assembly, the cam being fixed to the roll control shaft, the sleeve assembly having a sleeve cylinder, a spring housed in the sleeve cylinder, and fixing the sleeve cylinder a sleeve holder to the outer casing and a compression rod, wherein one end of the compression rod is in contact with the spring in the sleeve cylinder and the other end is in close contact with the cam when the roll control The spring is compressed by the compression rod when the shaft rotates the cam.
  • the angular displacement transmission portion has a main gear, a slave gear and an angular displacement sensor, the main gear is fixed to the roll control shaft, the slave gear is fixed to the angular displacement sensor, and the angular displacement sensor is fixed To the inner casing, the main gear and the slave gear mesh.
  • the invention discloses a side rod control device with three degrees of freedom, which has a pitch control mechanism, a roll control mechanism and a front wheel turning control mechanism arranged respectively in the direction of two perpendicular straight lines, wherein the pitching is performed One of a pitch control shaft of the control mechanism and a roll control shaft of the roll control mechanism rotatably positions the front wheel turning control mechanism on the first fixed portion, and the pitch of the pitch control mechanism One of the control shaft and the roll control shaft of the roll control mechanism, one of the first fixed portions is rotatably disposed on the second fixed portion.
  • the first fixing portion is an inner casing
  • the second fixing portion is an outer casing.
  • the front wheel turning control mechanism includes a force transmission portion and an angular displacement transmission portion
  • the force transmission portion generates a reaction force in response to an operator's urging operation to provide a force feeling for simulating front wheel turning control
  • the angular displacement transmission portion generates an angular displacement signal in response to movement of the force transmission portion.
  • the force transmission portion includes a receiving portion, a first rotating portion, a second rotating portion, a first elastic member, and a second elastic member.
  • the receiving portion is provided with a sliding slot, and the sliding slot is divided into two a vertical portion and a horizontal portion, the first rotating portion is convexly provided with a protrusion movable along the sliding slot, and the first rotating portion and the second rotating portion are respectively accommodated in the In the accommodating portion, the first elastic member is disposed between the first rotating portion and the second rotating portion, and the second elastic member is disposed between the receiving portion and the second rotating portion;
  • the angular displacement transmission portion has a vertical shaft, a main gear, a slave gear and an angular displacement sensor, wherein one end of the vertical shaft is fixed to the second rotating portion, and the other end fixes the main gear, The gear is fixed to the angular displacement sensor, the main gear meshes with the slave gear; and the motion is transmitted to the angular displacement sensor when the second rotating portion rotates.
  • the pitch control mechanism and the roll control mechanism respectively further include a force transmission portion and an angular displacement transmission portion disposed on the pitch control axis and the roll control shaft, wherein the force transmission portion responds to the operator
  • the urging operation generates a reaction force to provide a force sensation
  • the angular displacement transmission portion generates an angular displacement signal in response to the rotation of the pitch control axis and the roll control axis.
  • the side bar control device further has an operating portion connected to the front wheel turning control mechanism for operator manipulation.
  • the manipulation portion is a handle.
  • the present invention also discloses a front wheel turning control mechanism, comprising: a force transmission portion and an angular displacement transmission portion, the force transmission portion having a feeling of starting force for providing an operator with a simulated force feeling of a front wheel turning mode activation a transmission sub-portion and a turning force sensing transmission sub-portion that provides an operator with a simulated force sense of the front wheel turning mode operation, the angular displacement transmission portion being coupled to the turning force sensing transmission sub-portion, which is driven along with the turning force sense The sub-portion moves and outputs an angular displacement control signal.
  • the starting force sense transmission sub-portion has at least a telescopic resistance element and a first actuating member, and the first actuating member compresses the telescopic resistance element in a first stroke.
  • the turning force transmission sub-portion has at least a torsional resistance element and a second actuating member, and the second actuating member twists the torsional resistance element in a second stroke.
  • the angular displacement transmission portion has at least an angular displacement sensor.
  • a front wheel turning control mechanism which includes: a receiving portion, a first rotating portion, a second rotating portion, a first elastic member, a second elastic member, and an angular displacement sensor; a sliding slot, the sliding slot is divided into a vertical portion and a horizontal portion, and the first rotating portion is convexly provided with a protrusion movable along the sliding slot, and the first rotating portion and the second rotating portion are respectively accommodated
  • the first elastic member is disposed between the first rotating portion and the second rotating portion, and one end of the second elastic member and the accommodating portion are fixed at the other end and the first portion
  • the second rotating portion is fixed, the second rotating portion is coupled to the angular displacement sensor through a transmission member, wherein when the first rotating portion is pressed such that the protrusion moves downward along a vertical portion of the sliding slot, The first elastic member is compressed by the first rotating portion until the first rotating portion and the second rotating portion are engaged with each other; when the first rotating portion is pressed such that the protru
  • the upper and lower inner sleeves of the front wheel turning control mechanism are engaged by pressing the operating portion, that is, the side lever grip, and the front wheel turning control can be activated by, for example, a micro switch.
  • Front wheel turning mode The rotating side lever grip can simultaneously rotate the front wheel turning mechanism to realize front wheel turning control.
  • the front wheel turning control shaft drives the subsequent gear and the angular displacement sensor, thereby outputting an electrical signal by the angular displacement sensor.
  • the side lever grip drives the entire front wheel turning control mechanism to rotate along the pitch control axis, and drives the subsequent cam mechanism, gear and force spring.
  • the force spring provides an artificial sense of force, and the rotation of the gear is obtained by an angular displacement sensor to obtain an electrical signal for output.
  • the side lever grip drives the entire front wheel turning control mechanism and the pitch control mechanism to rotate along the roll control axis, and drives the subsequent cam mechanism, gear and force spring movement.
  • the force spring provides an artificial sense of force, the gear rotates and causes the angular displacement sensor to output an electrical signal.
  • Figure 1 is a perspective view of the sidestick control device of the present invention
  • Figure 2 shows an axial side view of the front wheel turning control mechanism with the grip portion fixed thereon;
  • Figure 3 is a front elevational view of the front wheel turning control mechanism of Figure 2;
  • Figure 4 is a cross-sectional view taken along line A-A of Figure 3;
  • Figure 5 shows an exploded view of the components of Figure 3
  • Figure 6 shows the pitch control mechanism (having the grip portion and the inner casing) of the sidestick control device of the present invention
  • Figure 7 shows a front view of Figure 6 with the grip portion removed
  • Figure 8 is a cross-sectional view taken along line B-B of Figure 7;
  • Figure 9 shows an assembly view, a front view and a B-B cross-sectional view of the sleeve assembly
  • Figure 10 is a plan view of Figure 1;
  • FIG. 1 shows, in part, an enlarged view of the roll control mechanism.
  • the sidebar control device 10 includes the following parts, namely, a grip portion 100, a front wheel turning control mechanism 200, a pitch control mechanism 300, and a roll control mechanism 400.
  • One end of the grip portion 100 is connected to the front wheel turning control mechanism 200, and the other end is provided for the pilot to perform a force applying operation in a specific direction.
  • FIG. 2 to 5 specifically show a front wheel turning control mechanism 200, wherein FIG. 2 shows an axial side view of the front wheel turning control mechanism 200 to which the grip portion 100 is fixed, wherein the grip portion 100 is 3 is a front view of the front wheel turning control mechanism 200 of FIG. 2, FIG. 4 is a cross-sectional view taken along the line AA of FIG. 3, and FIG. 5 is an exploded view of the components of FIG.
  • Wheel steering control mechanism 200 has an upper inner sleeve 202, the inner sleeve 204, the outer sleeve 206, the outer sleeve 208, compression spring 210, the torsion spring 212, the horizontal axis 2 M, 216 and vertical axis 218 Angular displacement sensor 220.
  • the lower sleeve 208 Inside the outer sleeve 206 is vertically penetrating the lower sleeve 208 has an outer sidewall 2 08a and the end wall 208b, 208a and side walls 208b is connected to the end wall, the end wall 208b has a central The through hole is such that the vertical axis 218 passes therethrough, and the inner side of the end wall 208b is flattened upwardly to form an inner wall 208c which is slightly shorter than the side wall 208a.
  • the upper outer sleeve 206 and the lower outer sleeve 208 protrude outward.
  • the threaded holes in the flange are fixed to each other by bolts.
  • the upper outer sleeve 206 and the lower outer sleeve 208 form an upper inner sleeve 202 and a lower inner sleeve 204 for movement therein. Space.
  • the upper outer sleeve 206 has chutes 222, 224, wherein the chute 222 has a vertical portion and a horizontal portion, and the chute 224 has only a horizontal portion, and the lower central position of the chute 224 A neutral soft stop groove 226 is recessed downward.
  • the horizontal shafts 214 and 216 are respectively attached to the upper inner sleeve 202 and the lower inner sleeve 204 through the centers of the upper inner sleeve 202 and the lower inner sleeve 204, and the two ends of the horizontal shafts 214 and 216 respectively protrude from the upper inner sleeve. 202.
  • the outer surface of the lower inner sleeve 204 is slidably engaged with the aforementioned chute 222 224, respectively.
  • the upper inner sleeve 202 has an H-shaped cross section, and has an intermediate wall portion 202a.
  • the lower inner sleeve 204 has intermediate wall portions 204a, 204b, wherein the intermediate wall portions 202a, 204a form an upper receiving chamber for compression.
  • the spring accommodating chamber, the intermediate wall portion 204b, a portion of the end wall 208b, and the inner wall 208c collectively form a lower accommodating chamber, that is, a torsion spring accommodating chamber.
  • the compression spring 210 is disposed in the upper receiving cavity.
  • One end of the vertical shaft 218 is fixed in the central fixing hole of the intermediate wall portion 204b of the lower inner sleeve 204, and the other end extends out of the through hole of the lower outer sleeve 206 and terminates in the driving gear. 219.
  • the torsion spring 212 is received in the lower receiving chamber around the vertical shaft 218, the bottom end of which is fixed to the lower outer sleeve 206, and the top end is fixed to the intermediate wall portion 204b of the lower inner sleeve 204.
  • the bottom of the upper inner sleeve 202 and the top of the lower inner sleeve 204 are correspondingly provided with a structure as shown in a partial enlarged view C in FIG.
  • the upper inner sleeve 202 is provided with a protrusion 228, and the lower inner sleeve is provided.
  • a card slot 230 is disposed on the barrel 204.
  • the angular displacement sensor 220 is provided with a driven wheel 221, and the driven gear 221 and the driving gear 219 are in mesh with each other.
  • the front wheel turning control mechanism 200 When the front wheel turning control mechanism 200 is applied to control the aircraft, first pressing the side lever handle 100 activates the front wheel turning control mode, and sends a signal to the control system, and then rotates the side lever handle 100 at the level of the chute 222. Turn in the section to control the angle of the front wheel turn.
  • the neutral soft stop groove 226 is used to increase the actuation force of the maneuver and to prompt the pilot to return.
  • the upper inner sleeve 202 drives the horizontal shaft 214 to move downward along the vertical portion of the chute 222, and at the same time, the upper inner sleeve 202 compresses the compression spring 210 downward so that the pilot can feel
  • the reaction force from the compression spring 210 is used to imply that the steering of the front wheel is being turned on.
  • the protrusion 228 at the bottom of the upper inner sleeve 202 is caught in the slot 230 at the top of the lower inner sleeve 204, so that the rotational movement of the upper inner sleeve 202 can be transmitted to the lower inner sleeve.
  • the lower inner sleeve 204 Since the lower inner sleeve 204 is fixed to one end of the vertical shaft 218 and one end of the torsion spring 212 is fixed to the lower inner sleeve 204, the lower inner sleeve 204 drives the vertical shaft 218 to rotate and also drives the torsion spring 212 to twist, thereby The torsion spring 212 provides a simulated sensory force to the pilot for the rotational motion of the front wheel turning maneuver.
  • the driving gear 219 at the other end of the vertical shaft 218 also rotates together, and the driving gear 219 drives the driven gear 221 on the angular displacement sensor 220 to rotate, so that the angular displacement sensor 220 converts the displacement into an electrical signal output.
  • the horizontal axes 214, 216 may be replaced by other protrusions having similar functions.
  • the horizontal portion of the chute 222 and the outer shape of the chute 224 are substantially the same, that is, the strokes are the same, because the outer diameters of the upper inner sleeve 202 and the lower inner sleeve 204 are the same, Therefore, it will be understood by those skilled in the art that if the diameters of the upper inner sleeve 202 and the lower inner sleeve 204 are different, the respective strokes of the horizontal portion of the chute 222 and the chute 224 can be designed proportionally.
  • the chute 224 is located just below the chute 222, it being understood that, except that the stroke is completely uniform
  • the chute 224 does not have to be disposed directly below the chute 222.
  • the upper inner sleeve 202, the lower inner sleeve 204, the upper outer sleeve 206, the lower outer sleeve 208, the compression spring 210, the torsion spring 212, etc. are all force transmission parts, that is, The pilot provides the ability to simulate the turning of the front wheel for easy handling.
  • the vertical axis 218, the driving gear 219, the driven gear 221, and the angular displacement sensor are angular displacement transmission portions, that is, electrical signals that provide accurate turning commands for the aircraft control system (especially the front wheel turning control system).
  • the upper inner sleeve 202, the compression spring 210, and the mutual arrangement thereof are used to enable the pilot to feel the transmission of the force sense that the front wheel turning mode is starting, the lower inner sleeve 204, the torsion spring 212, and the mutual arrangement thereof. Used to make the pilot feel the transmission of the force sensation that the front wheel turning mode has been running.
  • the arrangement between the upper inner sleeve 202, the lower inner sleeve 204, the upper outer sleeve 206, and the lower outer sleeve 208 is only one diagram of the actuator defining the up and down motion and the left and right rotation in the present invention.
  • FIG. 6 shows the pitch control mechanism 300 (having the grip portion 100 and the inner casing 500) of the sidestick control device of the present invention
  • FIG. 7 shows a front view of FIG. 6, in which the grip portion 100 is removed, FIG. A cross-sectional view taken along line BB in Fig. 7 is shown.
  • the inner casing 500 is surrounded by four side walls 501, and the bosses 232 (the bosses have shaft holes) symmetrically disposed on the outer surface of the upper outer sleeve 206 and the bearings on the inner casing 500 are held.
  • the portion 100 and the front wheel turning control mechanism 200 are rotatably provided on the inner casing 500 by a pitch control shaft 301 which is rotatably coupled to the outer casing 600 by a roll control shaft 401 to be described later. on.
  • the pitch control mechanism 300 is symmetrically disposed on the opposite outer surfaces of the both side walls 501 of the inner casing 500.
  • the pitch control mechanism 300 includes a pitch control axis 301, a cam 302, a sleeve assembly 303, a drive gear 304, an angular displacement sensor 305, and a driven gear 306.
  • the pitch control shaft 301 is rotatably coupled to the side wall 501 of the inner casing 500 via a bearing 307, one end of which is fixed to the boss of the upper outer sleeve 206, and the other end is fixed.
  • the driving gear 304 has a cam 302 fixed between the both ends.
  • the sleeve assembly 303 has a sleeve cylinder 303a, a sleeve cover 303b, a compression rod 303c, a spring 303d, and a sleeve holder 303e.
  • the sleeve cover 303b is fixed to one end of the sleeve cylinder 303a having a hole for linearly moving the compression rod 303c; the sleeve holder 303e fixes the other end of the sleeve cylinder 303a to the side by bolts On the wall 501; the spring 303d is housed inside the sleeve cylinder 303a, and one end of the compression rod 303c is in close contact with the spring 3 0 3 d and the other end is in close contact with the surface of the cam 302.
  • the angular displacement sensor 305 One end is fixed to the side wall 501, and the driven gear 306 thereon meshes with the driving gear 304.
  • the side lever handle 100 moves back and forth along the pitch control axis 301, the side lever handle 100 drives the entire front wheel turning control mechanism 200 to rotate along the pitch control axis 301, thereby driving the cam 302 and the driving gear 304 on the pitch control shaft 301.
  • the cam 302 is translated by the compression rod 303c and compresses the spring 303d in the sleeve cylinder 303a to generate a force to give the pilot a sense of force.
  • the drive gear 304 drives the driven gear 306 to rotate so that the angular displacement sensor 305 converts the rotation into an electrical signal output.
  • the pitch control mechanism 300 is symmetrical along the centerline, and the inner casing 500 has the same transmission mechanism and sleeve assembly on both sides to avoid loss of the entire pitching feeling by a single point of failure.
  • the cam 302 and the sleeve assembly 303 are force transmitting portions
  • the driving gear 304 and the driven gear 306 are angular displacement transmission portions
  • the force transmission portion can utilize other mechanisms such as gears.
  • the mechanism, the angular displacement transmission portion can also be realized using, for example, a link mechanism.
  • Figure 10 is a plan view of Figure 1
  • Figure 11 is a partial enlarged view of the roll control mechanism
  • the roll control mechanism 400 includes a roll control shaft 401, a cam 402, a sleeve assembly 403, a drive gear 404, an angular displacement sensor 405, and a driven gear 406.
  • One ends of the two roll control shafts 401 are symmetrically coupled to the other two side walls 501 of the inner casing 500 (the other two side walls 501 are connected to the pitch control shaft), and the other ends are rotatably disposed on the outer casing, respectively.
  • the cam 402 and the driving gear 404 are fixed to the roll control shaft 401.
  • the structure of the sleeve assembly 404 is similar to that of the sleeve assembly 303 described above, and is not described herein.
  • the roll control mechanism 400 is substantially the same as the pitch control mechanism 300 described above.
  • the roll control mechanism 400 may be disposed in the inner casing 500, and accordingly, the pitch control mechanism 300 is disposed between the outer casing 600 and the inner casing 500, in other words, the two control mechanisms There is a design interchangeability between the two.
  • the side lever handle 100 moves left and right along the roll control shaft 401, the side lever handle 100 drives the entire front wheel turning control mechanism 200, the pitch control mechanism 300, and the inner casing 500 to rotate in the outer casing 600 along the roll control shaft 401.
  • the inner casing 500 provides a pivot and mounting surface for the pitch control mechanism 300 and provides support for the front wheel turning control mechanism 200.
  • the outer casing 600 of the sidebar control provides support for the entire mechanism, provides a pivot for the roll control mechanism 400, and provides a mounting surface for the angular displacement sensor 405.
  • the roll control shaft 401 transmits the rotation to the cam 402 and the driving gear 404 respectively, and at the same time, the movement of the sleeve assembly 403 by the cam 402 respectively provides the pilot with the sensory force and the driven gear 404 drives the driven gear 406 to move the angular displacement sensor. 405 converts the displacement into an electrical signal output.
  • the axes of the front wheel turning control mechanism 200, the pitch control mechanism 300, and the roll control mechanism 400 are two-two vertical, that is, the three degrees of freedom motion do not affect each other.
  • the inner casing 500 supports the front wheel turning control mechanism and the pitch control mechanism 300
  • the outer casing 600 functions from the inner casing 500 and the mechanism and the roll control mechanism 400 on the inner casing 500.
  • the support acts to form a three-degree-of-freedom movement.
  • the inner casing 500 and the outer casing 600 may be replaced by other supporting portions that function as supports.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Control Devices (AREA)
  • Transmission Devices (AREA)

Description

侧杆控制装置 技术领域
本发明涉及一种用于飞机的侧杆控制装置, 更具体地说, 本发 明涉及一种具有前轮转弯功能的侧杆控制装置。 背景技术
采用侧杆控制装置实现飞机俯仰和滚转运动是当代先进民用飞 机的发展趋势, 该侧杆控制装置安装于侧操纵台上, 而此处还需布 置一个用于控制前轮转弯系统的手柄。 当侧操纵台这样布置时, 飞 机在滑行、 起飞滑跑过程中, 飞行员需要把手从手柄转到飞行控制 侧杆上, 给飞行员操纵带来不便。
两轴被动侧杆控制装置在以空客飞机为代表的民用飞机上已经 取得了应用, 该类侧杆包括俯仰控制轴控制和滚转控制轴控制。 由 于侧杆的使用, 飞行员能够获得更大的活动空间以及在计算机的辅 助下能够完成对飞机更加优异的控制。 由于侧杆安装于空间较为有 限的侧操纵台上, 而在该位置还需安装前轮转弯手柄和侧显示器, 不易找到前轮转弯手柄和侧杆的最优布置点, 故若稍有不慎, 则可 能令飞行员在操纵这两个部件时感到不适或不便。
因此, 现有的安装有侧杆控制装置的飞机的侧操纵台存在布置 困难, 以及在起飞、 滑跑过程中飞行员需要换手操纵的不便等缺点 和不足。 发明内容
为了解决侧杆类飞机在侧操纵台上的空间布置和人机功效方面 的难点, 本发明提出具有前轮转弯功能的侧杆控制装置, 即在侧杆 上增加一个旋转操控的运动自由度用于控制前轮转弯, 换言之, 将 前轮转弯的操控部件集成到侧杆控制装置上, 从而满足飞行员可达 性, 易操纵等要求。 在考虑不同控制方式, 前轮转弯操纵力特性基 础上, 这种三自由度的侧 干不仅可以实现俯仰控制、 滚转控制亦可 实现前轮转弯控制, 从而使飞机舵面控制与转弯操纵功能相结合。 带有前轮转弯控制的侧杆控制装置可有效地解决上述安装有侧杆的 飞机所遇到的布置困难和飞行员操作不便的技术问题。
本发明通过增加侧杆自由度的方式将前轮转弯控制功能集成到 侧杆控制装置上。 本发明易于实施, 可以实现集俯仰、 滚转及前轮 转弯控制于一体的三自由度侧杆控制装置。
本发明通过独特的结构和装置, 利用有限的空间实现侧杆俯仰、 滚转、 前轮转弯操纵以及前轮转弯操纵逻辑功能, 并且有效地避免 耦合控制, 实现多 自由度控制功能的综合, 方便飞行员对飞机的操 控。
本发明通过向下按压握持手柄激活侧杆上的第三个自由度, 即 旋转自由度, 通过设计相应俯仰、 滚转及旋转运动机构来实现带有 前轮转弯控制的侧杆控制装置。
具体地, 本发明公开一种侧杆控制装置, 其具有操纵部、 俯仰 控制机构、 滚转控制机构和前轮转弯控制机构, 所述操纵部的一端 与所述前轮转弯控制机构相连接另一端用于操纵, 所述前轮转弯控 制机构沿第一定位直线的方向布置, 所述俯仰控制机构和所述滚转 控制机构的其中一个沿第二定位直线的方向布置, 其中另一个沿第 三定位直线的方向布置; 其中, 所述操纵部可带动所述前轮转弯控 制机构绕所述第一定位直线转动从而进行前轮转弯控制, 所述操纵 部和前轮转弯控制机构一起可绕所述第二定位直线转动从而相应地 进行俯仰或滚转控制的其中之一者, 所述操纵部、 前轮转弯控制机 构和在所述第二定位直线上布置的控制机构一起可绕所述第三定位 直线转动从而相应地进行俯仰或滚转控制的另外之一者, 其中, 所 述第一定位直线、 第二定位直线和第三定位直线彼此垂直。
其中, 布置在所述第二定位直线的控制机构的控制轴将所述前 轮转弯控制机构可旋转地支撑在第一固定部上, 布置在所述第三定 位直线的控制机构的控制轴可旋转地将所述第一固定部支撑于第二 固定部上。
进一步地, 所述第一固定部为内壳体, 所述第二固定部为外壳 体。
其中, 所述操纵部为手柄, 所述第一定位直线沿竖直方向。
优选地, 所述前轮转弯控制机构包括力感传动部分和角位移传 动部分, 所述力感传动部分具有向操作者提供前轮转弯模式启动的 模拟力感觉的启动力感传动子部分和向操作者提供前轮转弯模式运 行的模拟力感觉的转弯力感传动子部分, 所述角位移传动部分连接 于所述转弯力感传动子部分, 其随同所述转弯力感传动子部分运动 并输出角位移控制信号。
更优选地, 所述启动力感传动子部分至少具有伸缩阻力元件和 第一致动器, 所述第一致动器在第一行程内压缩所述伸缩阻力元件。
具体地, 所述转弯力感传动子部分至少具有扭转阻力元件和第 二致动器, 所述第二致动器在第二行程内扭转所述扭转阻力元件。
所述角位移传动部分至少具有角位移传感器。
所述启动力感传动子部分具有容纳于容纳部内的第一转动部和 第一弹性元件, 所述转弯力感传动子部分具有容纳于容纳部内的第 二转动部和第二弹性元件, 其中, 所述容纳部上设有滑槽, 所述滑 槽分为相通的垂直部分和水平部分, 所述第一转动部上凸设有可沿 滑槽运动的突起, 所述第一弹性元件设置在所述第一转动部和所述 第二转动部之间, 所述第二弹性元件一端与所述容纳部固定另一端 与所述第二转动部固定; 其中, 当按压所述第一转动部使得所述突 起沿所述滑槽的垂直部分向下运动时, 所述第一弹性元件被所述第 一转动部压缩从而产生启动力感觉直到所述第一转动部与所述第二 转动部彼此接合, 当按压所述第一转动部使得所述突起沿所述滑槽 的水平部分运动时, 所述第二转动部带动所述第二弹性元件扭转从 而产生扭转力感觉。
更具体地, 所述角位移传动部分具有垂直轴、 主齿轮、 从齿轮 和角位移传感器, 其中所述垂直轴的一端与所述第二转动部相固定, 另一端固设所述主齿轮, 所述从齿轮固设在所述角位移传感器上, 所述主齿轮与所述从齿轮啮合; 当所述第二转动部转动时将运动传 递给所述角位移传感器。
其中, 所述容纳部为外套筒, 所述第一转动部为上内套筒, 所 述第二转动部为下内套筒。
所述第一弹性元件为压缩弹簧, 所述第二弹性元件为扭簧。 所述第一转动部的底端设有凸起, 所述第二转动部的顶端设有 凹槽, 所述凸起与所述凹槽对应设置。
所述第二转动部设有突起, 所述容纳部上设有与所述滑槽的水 平部分对应的导槽, 所述第二转动部的突起位于所述导槽中, 所述 第一转动部的突起相对于所述滑槽的水平部分的位置镜像地或成比 例地与所述第二转动部的突起相对于所述导槽的位置对应。
优选地, 所述导槽的中央位置处设有软止动槽。
优选地, 所述俯仰控制机构还包括设置在俯仰控制轴上的力感 传动部分和角位移传动部分, 所述力感传动部分用于向操作者提供 俯仰控制模式的操控力感觉, 所述角位移传动部分连接于所述力感 传动部分, 其随同所述力感传动部分运动并输出角位移控制信号。
更优选地, 所述力感传动部分具有凸轮和套筒组件, 所述凸轮 固定在所述俯仰控制轴上, 所述套筒组件具有套筒缸体、 容纳在所 述套筒缸体内的弹簧、 将所述套筒缸体固定到所述内壳体上的套筒 支座、 以及压缩杆, 其中所述压缩杆的一端在所述套筒缸体内与所 述弹簧相接触另一端与所述凸轮紧密贴合从而当所述俯仰控制轴带 动所述凸轮转动时由所述压缩杆压缩所述弹簧。
所述角位移传动部分具有主齿轮、 从齿轮和角位移传感器, 所 述主齿轮固定到所述俯仰控制轴上, 所述从齿轮固定到所述角位移 传感器上, 所述角位移传感器固定到所述内壳体上, 所述主齿轮和 所述从齿轮啮合。
优选地, 所述滚转控制机构还包括设置在所述滚转控制轴上的 力感传动部分和角位移传动部分, 所述力感传动部分用于向操作者 提供操控滚转控制模式的力感觉, 所述角位移传动部分连接于所述 力感传动部分, 其随同所述力感传动部分运动并输出角位移控制信 具体地, 所述力感传动部分具有凸轮和套筒组件, 所述凸轮固 定在所述滚转控制轴上, 所述套筒组件具有套筒缸体、 容纳在所述 套筒缸体内的弹簧、 将所述套筒缸体固定到外壳体上的套筒支座以 及压缩杆, 其中所述压缩杆的一端在所述套筒缸体内与所述弹簧相 接触另一端与所述凸轮紧密贴合从而当所述滚转控制轴带动所述凸 轮转动时由所述压缩杆压缩所述弹簧。
所述角位移传动部分具有主齿轮、 从齿轮和角位移传感器, 所 述主齿轮固定到所述滚转控制轴上, 所述从齿轮固定到所述角位移 传感器上, 所述角位移传感器固定到所述内壳体上, 所述主齿轮和 所述从齿轮啮合。
本发明公开了一种具有三自由度的侧杆控制装置, 其具有分别 沿两两垂直的直线的方向布置的俯仰控制机构、 滚转控制机构和前 轮转弯控制机构, 其中, 以所述俯仰控制机构的俯仰控制轴和所述 滚转控制机构的滚转控制轴中的其中之一将所述前轮转弯控制机构 可旋转地设置在第一固定部上, 以所述俯仰控制机构的俯仰控制轴 和所述滚转控制机构的滚转控制轴中的另夕 I、一个将所述第一固定部 可旋转地设置在第二固定部上。
其中, 所述第一固定部为内壳体, 所述第二固定部为外壳体。 其中, 所述前轮转弯控制机构包括力感传动部分和角位移传动 部分, 所述力感传动部分响应操作者的施力操作而产生反作用力以 提供模拟前轮转弯操控的力感觉, 所述角位移传动部分响应于所述 力感传动部分的运动而产生角位移信号。
其中, 所述力感传动部分包括容纳部、 第一转动部、 第二转动 部、 第一弹性元件、 第二弹性元件, 所述容纳部上设有滑槽, 所述 滑槽分为相通的垂直部分和水平部分, 所述第一转动部上凸设有可 沿滑槽运动的突起, 所述第一转动部和所述第二转动部均容纳在所 述容纳部内, 所述第一弹性元件设置在所述第一转动部和所述第二 转动部之间, 所述第二弹性元件设置在所述容纳部和所述第二转动 部之间; 其中, 当按压所述第一转动部使得所述突起沿所述滑槽的 垂直部分向下运动时, 所述第一弹性元件被所述第一转动部压缩从 而产生启动力感直到所述第一转动部与所述第二转动部彼此接合, 当按压所述第一转动部使得所述突起沿所述滑槽的水平部分运动 时, 所述第二转动部带动所述第二弹性元件扭转从而产生扭转力感。
其中, 所述角位移传动部分具有垂直轴、 主齿轮、 从齿轮和角 位移传感器, 其中所述垂直轴的一端与所述第二转动部相固定, 另 一端固设所述主齿轮, 所述从齿轮固设在所述角位移传感器上, 所 述主齿轮与所述从齿轮啮合; 当所述第二转动部转动时将运动传递 给所述角位移传感器。
其中, 所述俯仰控制机构、 滚转控制机构分别还包括设置在所 述俯仰控制轴和滚转控制轴上的力感传动部分和角位移传动部分, 其中, 所述力感传动部分响应操作者的施力操作而产生反作用力以 提供力感觉, 所述角位移传动部分响应所述俯仰控制轴和滚转控制 轴的旋转而产生角位移信号。
其中, 所述侧杆控制装置还具有与所述前轮转弯控制机构相连 接的操纵部, 其用于操作者操纵。 所述操纵部为手柄。
本发明还公开了一种前轮转弯控制机构, 其包括: 力感传动部分 和角位移传动部分, 所述力感传动部分具有向操作者提供前轮转弯 模式启动的模拟力感觉的启动力感传动子部分和向操作者提供前轮 转弯模式运行的模拟力感觉的转弯力感传动子部分, 所述角位移传 动部分连接于所述转弯力感传动子部分, 其随同所述转弯力感传动 子部分运动并输出角位移控制信号。
具体地,所述启动力感传动子部分至少具有伸缩阻力元件和第一 致动件, 所述第一致动件在第一行程内压缩所述伸缩阻力元件。
具体地,所述转弯力感传动子部分至少具有扭转阻力元件和第二 致动件, 所述第二致动件在第二行程内扭转所述扭转阻力元件。 具体地, 所述角位移传动部分至少具有角位移传感器。
另外, 本发明公开一种前轮转弯控制机构, 其包括: 容纳部、 第 一转动部、 第二转动部、 第一弹性元件、 第二弹性元件、 角位移传 感器; 所述容纳部上设有滑槽, 所述滑槽分为相通的垂直部分和水 平部分, 所述第一转动部上凸设有可沿滑槽运动的突起, 所述第一 转动部和所述第二转动部均容纳在所述容纳部内, 所述第一弹性元 件设置在所述第一转动部和所述第二转动部之间, 所述第二弹性元 件的一端与所述容纳部固定另一端与所述第二转动部固定, 所述第 二转动部与所述角位移传感器通过传动件连接, 其中, 当按压所述 第一转动部使得所述突起沿所述滑槽的垂直部分向下运动时, 所述 第一弹性元件被所述第一转动部压缩直到所述第一转动部与所述第 二转动部彼此接合; 当按压所述第一转动部使得所述突起沿所述滑 槽的水平部分运动时, 所述第二转动部带动所述第二弹性元件扭转 并将运动传递给所述角位移传感器。
当需要进行前轮转弯控制时, 通过向下按压操纵部, 即侧杆握 柄, 使前轮转弯控制机构的上、 下内套筒啮合, 同时可通过例如微 动开关激活前轮转弯控制进入前轮转弯模式。 旋转侧杆握柄可同时 带动前轮转弯机构旋转, 实现前轮转弯控制。 前轮转弯控制轴带动 后续齿轮和角位移传感器, 从而由角位移传感器输出电信号。
俯仰运动控制时, 侧杆握柄带动整个前轮转弯控制机构沿俯仰 控制轴转动, 带动后续凸轮机构、 齿轮和力感弹簧运动。 力感弹簧 提供人工感觉力, 齿轮的转动通过角位移传感器得到输出的电信号。
滚转运动控制时, 侧杆握柄带动整个前轮转弯控制机构及俯仰 控制机构沿滚转控制轴转动, 并带动后续凸轮机构、 齿轮和力感弹 簧运动。 力感弹簧提供人工感觉力, 齿轮转动并使得角位移传感器 输出电信号。 附图说明
图 1为本发明的侧杆控制装置的轴测图; 图 2 示出了上方固定有握持部分的前轮转弯控制机构的轴侧视 图;
图 3示出了图 2中前轮转弯控制机构的主视图;
图 4示出了图 3中的线 A-A方向的剖面图;
图 5示出了图 3中各组件的爆炸图;
图 6 示出了本发明的侧杆控制装置的俯仰控制机构 (具有握持 部分和内壳体) ;
图 7示出了图 6的主视图, 其中除去了握持部分;
图 8示出了以图 7中线 B-B剖切的剖面图;
图 9示出了套筒组件组装图、 正视图以及 B- B剖面图;
图 10为图 1的俯视图;
图 1 1局部放大地示出了滚转控制机构。 具体实施方式
图 1为本发明的侧杆控制装置的轴测图, 该侧杆控制装置 10包 括以下几部分, 分别为握持部分 100、 前轮转弯控制机构 200、 俯仰 控制机构 300、 滚转控制机构 400、 内壳体 500和外壳体 600。 其中 握持部分 100的一端连接到前轮转弯控制机构 200 ,另一端供飞行员 进行特定方向的施力操纵。
图 2-图 5具体地示出了前轮转弯控制机构 200 , 其中, 图 2示出 了上方固定有握持部分 100的前轮转弯控制机构 200的轴侧视图, 其中, 握持部分 100为手柄, 图 3示出了图 2中前轮转弯控制机构 200的主视图, 图 4示出了图 3 中的线 A-A方向的剖面图, 图 5示 出了图 3中各组件的爆炸图。
前轮转弯控制机构 200具有上内套筒 202、 下内套筒 204、 上外 套筒 206、下外套筒 208、压缩弹簧 210、扭簧 212、水平轴 2 M、 216 垂直轴 218和角位移传感器 220。
上外套筒 206的内部是上下贯通的,下外套筒 208具有侧壁 208a 和端壁 208b , 侧壁 208a和端壁 208b相连接, 端壁 208b的中央具有 通孔以使垂直轴 218 从其中通过, 端壁 208b 内侧向上平^"于侧壁 208a形成有较侧壁 208a稍短的内壁 208c。上外套筒 206与下外套筒 208通过向外突出的法兰盘上的螺纹孔以螺栓相互固定在一起,整体 上, 上外套筒 206、 下外套筒 208形成了容纳上内套筒 202、 下内套 筒 204并供它们在其内运动的空间。
如图 3中的局部放大图所示, 上外套筒 206具有滑槽 222、 224 , 其中, 滑槽 222具有垂直部分和水平部分, 滑槽 224仅具有水平部 分, 滑槽 224的下方中央位置处向下凹设有中立软止动槽 226。 水平 轴 214、 216分别通过上内套筒 202、 下内套筒 204的中心附设在上 内套筒 202、 下内套筒 204上, 水平轴 214、 216的两端分别突出于 上内套筒 202、下内套筒 204的外表面并且分别可滑动地与前述滑槽 222 224相接合。 如图 4所示, 上内套筒 202剖面呈 H形, 其具有 中间壁部 202a, 下内套筒 204具有中间壁部 204a、 204b , 其中, 中 间壁部 202a、 204a形成上容纳腔即压缩弹簧容纳腔,中间壁部 204b、 端壁 208b的一部分和内壁 208c共同地形成了下容纳腔即扭簧容纳 腔。 压缩弹簧 210设置在上容纳腔内, 垂直轴 218的一端固定在下 内套筒 204的中间壁部 204b的中央固定孔内, 其另一端延伸出下外 套筒 206 的通孔并终止于主动齿轮 219。 扭簧 212环绕垂直轴 218 容纳于上述的下容纳腔中, 其底端与下外套筒 206相固定, 顶端与 下内套筒 204的中间壁部 204b相固定。 上内套筒 202的底部和下内 套筒 204的顶部均对应地设有如图 4中的局部放大视图 C所示结构, 即, 在上内套筒 202上设置有凸起 228 , 在下内套筒 204上设置有卡 槽 230。 角位移传感器 220设有从动轮 221, 从动齿轮 221与主动齿 轮 219相互啮合。
当应用上述前轮转弯控制机构 200 对飞机进行控制时, 首先向 下按压侧杆手柄 100 激活前轮转弯控制模式, 并将信号发送至控制 系统, 然后旋转侧杆手柄 100在滑槽 222的水平部分中转动以控制 前轮转弯的角度。 中立软止动槽 226 用于增加操纵的启动力以及给 飞行员回中提示。 具体地, 在向下按压侧杆操纵时, 上内套筒 202带动水平轴 214 沿着滑槽 222的垂直部分向下运动, 同时, 上内套筒 202向下压缩 压缩弹簧 210从而飞行员可以感受到来自压缩弹簧 210的反作用力 以暗示正在启动前轮转弯的操控。 按压侧杆到位后, 上内套筒 202 底部的凸起 228就会卡入到下内套筒 204顶部的卡槽 230中, 这样 保证上内套筒 202的旋转运动能够传递到下内套筒 204上, 然后, 顺时针或逆时针旋转上内套筒 202并带动水平轴 214在滑槽 222的 水平部分中运动, 同时, 水平轴 216在滑槽 224中随同下内套筒 204 一起旋转, 通过软止动槽 226 , 在启动和回中时确保水平轴 216落在 该软止动槽 226 内。 由于下内套筒 204与垂直轴 218的一端固定并 且扭簧 212的一端固定在下内套筒 204上, 故下内套筒 204带动垂 直轴 218旋转同时也带动扭簧 212—起扭转, 从而该扭簧 212提供 给飞行员进行前轮转弯操控的旋转运动的模拟感觉力。 相应地, 垂 直轴 218另一端的主动齿轮 219也一起转动, 主动齿轮 219再带动 角位移传感器 220上的从动齿轮 221 旋转, 从而角位移传感器 220 会将位移转换为电信号输出。
本领域技术人员应当可以理解, 可选择地, 水平轴 214、 216亦 可以由其他具有类似功能的突起来替代。 另外, 在图中可以看出滑 槽 222的水平部分和滑槽 224的外形大体上是相同, 即行程一致, 这是因为上内套筒 202和下内套筒 204的外径相同的原因, 因此, 本领域的技术人员应当可以理解, 若上内套筒 202 和下内套筒 204 的管径不同,则可以成比例地来设计滑槽 222的水平部分和滑槽 224 的各自行程。 至于滑槽 224的位置, 由于在本实施方式中水平轴 214 和水平轴 216在空间上完全平行, 故滑槽 224恰好位于滑槽 222的 正下方, 可以理解, 除了行程上要完全一致之外, 滑槽 224 并不必 要一定设置在滑槽 222的正下方。
本领域的技术人员应当可以理解,上内套筒 202、下内套筒 204、 上外套筒 206、 下外套筒 208、 压缩弹簧 210、 扭簧 212等均为力感 传动部分, 即给飞行员提供模拟前轮转弯的感觉力以便于其操控, 垂直轴 218、 主动齿轮 219、 从动齿轮 221 以及角位移传感器等为角 位移传动部分, 即为飞机控制系统(尤其指的是前轮转弯控制系统) 提供精确的转弯指令的电信号。 更具体地, 上内套筒 202、 压缩弹簧 210 以及其相互设置方式用于使飞行员感受到前轮转弯模式正在启 动的力感觉的传递, 下内套筒 204、 扭簧 212以及其相互设置方式用 于使飞行员感受到前轮转弯模式已经运行的力感觉的传递。 可选择 地, 上内套筒 202、 下内套筒 204、 上外套筒 206、 下外套筒 208之 间的设置仅仅是本发明中限定上下运动和左右转动的致动器的一种 图 6示出了本发明的侧杆控制装置的俯仰控制机构 300 (具有握 持部分 100和内壳体 500 ) , 图 7示出了图 6的主视图, 其中除去了 握持部分 100 , 图 8示出了以图 7中线 B-B剖切的剖面图。
结合图 3 , 内壳体 500 由四个侧壁 501 所围成, 通过上外套筒 206外表面对称设置的凸台 232 (凸台具有轴孔)和内壳体 500上的 轴承, 握持部分 100和前轮转弯控制机构 200以下述的俯仰控制轴 301可旋转地设于内壳体 500上,该内壳体 500又通过下述的滚转控 制轴 401可旋转地连接到外壳体 600上。 俯仰控制机构 300对称地 设置在内壳体 500的两侧壁 501的相对外表面上。俯仰控制机构 300 包括俯仰控制轴 301、 凸轮 302、 套筒组件 303、 主动齿轮 304、 角 位移传感器 305和从动齿轮 306。
如图 8和图 9所示, 俯仰控制轴 301通过轴承 307可旋转地与 内壳体 500的侧壁 501连接, 其一端与前述的上外套筒 206的凸台 相固定, 另一端固定有主动齿轮 304 , 在两端部之间还固定有凸轮 302。 套筒组件 303具有套筒缸体 303a、 套筒盖 303b、 压缩杆 303c、 弹簧 303d、 套筒支座 303e。 更具体地, 套筒盖 303b 固定在套筒缸 体 303a的一端, 其上具有可使压缩杆 303c直线移动的孔; 套筒支 座 303e通过螺栓将套筒缸体 303a的另一端固定到侧壁 501 上; 弹 簧 303d容纳在套筒缸体 303a的内部,压缩杆 303c的一端与弹簧 303d 贴紧, 另一端与上述凸轮 302的表面贴紧。 另外, 角位移传感器 305 一端固定到侧壁 501上, 其上的从动齿轮 306与主动齿轮 304相啮 合。 虽然图示以及说明叙述中并未涉及到具体的密封件、 连接件等, 但是本领域的技术人员可以理解为了密封和连接, 机构可以具有这 些密封件或连接件。
当侧杆手柄 100 沿俯仰控制轴 301 前后运动时, 侧杆手柄 100 带动整个前轮转弯控制机构 200沿着俯仰控制轴 301 转动, 从而带 动俯仰控制轴 301上的凸轮 302和主动齿轮 304—起转动,凸轮 302 通过压缩杆 303c平动并压缩套筒缸体 303a内的弹簧 303d从而产生 作用力以给予飞行员力感提示。 主动齿轮 304带动从动齿轮 306转 动从而使得角位移传感器 305 将转动转换为电信号输出。 俯仰控制 机构 300沿中心线对称, 内壳体 500两侧均有相同的传动机构及套 筒组件, 避免单点故障丧失整个俯仰感觉力。
如上所述, 凸轮 302和套筒组件 303 为力感传动部分, 主动齿 轮 304、从动齿轮 306为角位移传动部分, 本领域技术人员应当可以 理解力感传动部分可以利用其他的机构, 诸如齿轮机构, 角位移传 动部分也可以利用诸如连杆机构来实现。
图 10为图 1 的俯视图, 图 1 1局部放大地示出了滚转控制机构
400。
结合图 1 , 滚转控制机构 400包括滚转控制轴 401、 凸轮 402、 套筒组件 403、 主动齿轮 404、 角位移传感器 405和从动齿轮 406。 两滚转控制轴 401 的一端分别对称地与内壳体 500的另外两个侧壁 501 (其他两个侧壁 501与俯仰控制轴连接)可转动连接, 另一端分 别可转动地设置在外壳体 600上, 凸轮 402、 主动齿轮 404固定在滚 转控制轴 401上。 套筒组件 404的结构与前述套筒组件 303的结构 相类似, 在此不再赘述, 其以套筒支座固定到外壳体 600 的侧壁内 表面上, 另一端以压缩杵与凸轮 402相互紧密贴紧。 另外, 角位移 传感器 405的一端固定在外壳体 600的侧壁上, 从动齿轮 406设于 角位移传感器 405上, 主动齿轮 404与从动齿轮 406相互啮合。 滚 转控制机构 400的传动部分和前述的俯仰控制机构 300基本相同。 可选择地, 也可以将滚转控制机构 400设置在内壳体 500 中, 相应 地, 将俯仰控制机构 300的设置在外壳体 600和内壳体 500之间, 换言之, 这两个控制机构之间具有设计上的可置换性。
当侧杆手柄 100 沿滚转控制轴 401 左右运动时, 侧杆手柄 100 带动整个前轮转弯控制机构 200、 俯仰控制机构 300 和内壳体 500 沿滚转控制轴 401在外壳体 600 内转动。 如前所述, 内壳体 500为 俯仰控制机构 300提供转轴及安装面, 并为前轮转弯控制机构 200 提供支撑。 侧杆控制装置的外壳体 600 为整个机构提供支撑, 为滚 转控制机构 400提供转轴, 并且为角位移传感器 405提供安装面。 滚转控制轴 401将转动分别传递到凸轮 402和主动齿轮 404上, 同 时, 分别由凸轮 402带动套筒组件 403运动为飞行员提供感觉力以 及由主动齿轮 404带动从动齿轮 406运动从而角位移传感器 405将 位移转化为电信号输出。
如图 1和图 10所示,前轮转弯控制机构 200、俯仰控制机构 300 和滚转控制机构 400 的轴线是两两垂直的, 即这三个自由度的运动 不会相互影响。
本领域技术人员应当可以理解, 内壳体 500 对前轮转弯控制机 构和俯仰控制机构 300起支撑作用, 外壳体 600对内壳体 500 以及 内壳体 500上的机构和滚转控制机构 400起支撑作用, 从而可形成 三自由度的运动, 这里, 内壳体 500、 外壳体 600可以由其他的起支 撑作用的固定部来替代。
本发明的技术内容及技术特点已揭示如上, 然而可以理解, 在 本发明的创作思想下, 本领域的技术人员可以对上述结构作各种变 化和改进, 但都属于本发明的保护范围。 上述实施方式的描述是例 示性的而不是限制性的, 本发明的保护范围由权利要求所确定。

Claims

权 利 要 求 书
1. 一种侧杆控制装置, 其具有操纵部、 俯仰控制机构、 滚转控 制机构和前轮转弯控制机构, 所述操纵部的一端与所述前轮转弯控 制机构相连接另一端用于操纵, 所述前轮转弯控制机构沿第一定位 直线的方向布置, 所述俯仰控制机构和所述滚转控制机构的其中一 个沿第二定位直线的方向布置, 其中另一个沿第三定位直线的方向 布置; 其中, 所述操纵部可带动所述前轮转弯控制机构绕所述第一 定位直线转动从而进行前轮转弯控制, 所述操纵部和前轮转弯控制 机构一起可绕所述第二定位直线转动从而相应地进行俯仰或滚转控 制其中之一者, 所述操纵部、 前轮转弯控制机构和在所述第二定位 直线上布置的控制机构一起可绕所述第三定位直线转动从而相应地 进行俯仰或滚转控制另外之一者, 其中, 所述第一定位直线、 第二 定位直线和第三定位直线彼此垂直。
2. 根据权利要求 1所述的侧杆控制装置, 其特征在于, 布置在 所述第二定位直线的控制机构的控制轴将所述前轮转弯控制机构可 旋转地支撑在第一固定部上, 布置在所述第三定位直线的控制机构 的控制轴可旋转地将所述第一固定部支撑于第二固定部上。
3. 根据权利要求 2所述的侧杆控制装置, 所述第一固定部为内 壳体, 所述第二固定部为外壳体。
4. 根据权利要求 1 所述的侧杆控制装置, 其特征在于, 所述操 纵部为手柄, 所述第一定位直线沿竖直方向。
5. 根据权利要求 1 -4任一项所述的侧杆控制装置, 其特征在于, 所述前轮转弯控制机构包括力感传动部分和角位移传动部分, 所述 力感传动部分具有向操作者提供前轮转弯模式启动的模拟力感觉的 启动力感传动子部分和向操作者提供前轮转弯模式运行的模拟力感 觉的转弯力感传动子部分, 所述角位移传动部分连接于所述转弯力 感传动子部分, 其随同所述转弯力感传动子部分运动并输出角位移 控制信号。
6. 根据权利要求 5 所述的前轮转弯控制机构, 其特征在于, 所 述启动力感传动子部分至少具有伸缩阻力元件和第一致动器, 所述 第一致动器在第一行程内压缩所述伸缩阻力元件。
7. 根据权 其特征在于, 所 第二致动 ^在
Figure imgf000017_0001
8. 根据权利要求 5 所述的前轮转弯控制机构, 其特征在于, 所 述角位移传动部分至少具有角位移传感器。
9. 根据权利要求 5 所述的侧杆控制装置, 其特征在于, 所述启 动力感传动子部分具有容纳于容纳部内的第一转动部和第一弹性元 件, 所述转弯力感传动子部分具有容纳于容纳部内的第二转动部和 第二弹性元件, 其中, 所述容纳部上设有滑槽, 所述滑槽分为相通 的垂直部分和水平部分, 所述第一转动部上凸设有可沿滑槽运动的 突起, 所述第一弹性元件设置在所述第一转动部和所述第二转动部 之间, 所述第二弹性元件一端与所述容纳部固定另一端与所述第二 转动部固定; 其中, 当按压所述第一转动部使得所述突起沿所述滑 槽的垂直部分向下运动时, 所述第一弹性元件被所述第一转动部压 缩从而产生启动力感觉直到所述第一转动部与所述第二转动部彼此 接合, 当按压所述第一转动部使得所述突起沿所述滑槽的水平部分 运动时, 所述第二转动部带动所述第二弹性元件扭转从而产生扭转 力感觉。
10. 根据权利要求 9所述的侧杆控制装置, 其特征在于, 所述角 位移传动部分具有垂直轴、 主齿轮、 从齿轮和角位移传感器, 其中 所述垂直轴的一端与所述第二转动部相固定, 另一端固设所述主齿 轮, 所述从齿轮固设在所述角位移传感器上, 所述主齿轮与所述从 齿轮啮合; 当所述第二转动部转动时将运动传递给所述角位移传感 器。
1 1. 根据权利要求 9所述的侧杆控制装置, 其特征在于, 所述容 纳部为外套筒, 所述第一转动部为上内套筒, 所述第二转动部为下 内套筒。
12. 根据权利要求 9所述的侧杆控制装置, 其特征在于, 所述第 一弹性元件为压缩弹簧, 所述第二弹性元件为扭簧。
13. 根据权利要求 9所述的侧杆控制装置, 其特征在于, 所述第 一转动部的底端设有凸起, 所述第二转动部的顶端设有凹槽, 所述 凸起与所述凹槽对应设置。
14. 根据权利要求 9所述的侧杆控制装置, 其特征在于, 所述第 二转动部设有突起, 所述容纳部上设有与所述滑槽的水平部分对应 的导槽, 所述第二转动部的突起位于所述导槽中, 所述第一转动部 的突起相对于所述滑槽的水平部分的位置镜像地或成比例地与所述 第二转动部的突起相对于所述导槽的位置对应。
15. 根据权利要求 14所述的侧杆控制装置, 其特征在于, 所述 导槽的中央位置处设有软止动槽。
16. 根据权利要求 3所述的侧杆控制装置, 其特征在于, 所述俯 仰控制机构还包括设置在控制轴上的力感传动部分和角位移传动部 分, 所述力感传动部分用于向操作者提供操控俯仰控制模式的力感 觉, 所述角位移传动部分连接于所述力感传动部分, 其随同所述力 感传动部分运动并输出角位移控制信号。
17. 根据权利要求 16所述的侧杆控制装置, 其特征在于, 所述 力感传动部分具有凸轮和套筒组件, 所述凸轮固定在所述控制轴上, 所述套筒组件具有套筒缸体、 容纳在所述套筒缸体内的弹簧、 将所 述套筒缸体固定到所述内壳体上的套筒支座、 以及压缩杆, 其中所 述压缩杆的一端在所述套筒缸体内与所述弹簧相接触另一端与所述 凸轮紧密贴合从而当所述俯仰控制轴带动所述凸轮转动时由所述压 缩杆压缩所述弹簧。
1 8. 根据权利要求 16所述的侧杆控制装置, 其特征在于, 所述 角位移传动部分具有主齿轮、 从齿轮和角位移传感器, 所述主齿轮 固定到所述俯仰控制轴上, 所述从齿轮固定到所述角位移传感器上, 所述角位移传感器固定到所述内壳体上, 所述主齿轮和所述从齿轮 啮合。
19. 根据权利要求 3所述的侧杆控制装置, 其特征在于, 所述滚 转控制机构还包括设置在所述滚转控制轴上的力感传动部分和角位 移传动部分, 所述力感传动部分用于向操作者提供操控滚转控制模 式的力感觉, 所述角位移传动部分连接于所述力感传动部分, 其随 同所述力感传动部分运动并输出角位移控制信号。
20. 根据权利要求 19所述的侧杆控制装置, 其特征在于, 所述 力感传动部分具有凸轮和套筒组件, 所述凸轮固定在所述控制轴上, 所述套筒组件具有套筒缸体、 容纳在所述套筒缸体内的弹簧、 将所 述套筒缸体固定到外壳体上的套筒支座以及压缩杆, 其中所述压缩 杆的一端在所述套筒缸体内与所述弹簧相接触另一端与所述凸轮紧 密贴合从而当所述滚转控制轴带动所述凸轮转动时由所述压缩杆压 缩所述弹簧。
21. 根据权利要求 19所述的侧杆控制装置, 其特征在于, 所述 角位移传动部分具有主齿轮、 从齿轮和角位移传感器, 所述主齿轮 固定到所述滚转控制轴上, 所述从齿轮固定到所述角位移传感器上, 所述角位移传感器固定到所述内壳体上, 所述主齿轮和所述从齿轮 啮合。
22. 一种具有三自由度的侧杆控制装置, 其具有分别沿两两垂直 直线的方向布置的俯仰控制机构、 滚转控制机构和前轮转弯控制机 构, 其中, 以所述俯仰控制机构的俯仰控制轴和所述滚转控制机构 的滚转控制轴中的其中之一将所述前轮转弯控制机构可旋转地设置 在第一固定部上, 以所述俯仰控制机构的俯仰控制轴和所述滚转控 制机构的滚转控制轴中的另夕 I、一个将所述第一固定部可旋转地设置 在第二固定部上。
23. 根据权利要求 22所述的侧杆控制装置, 其中, 所述前轮转 弯控制机构包括力感传动部分和角位移传动部分, 所述力感传动部 分响应操作者的施力操作而产生反作用力以提供模拟前轮转弯操控 的力感觉, 所述角位移传动部分响应于所述力感传动部分的运动而 产生角位移信号。
24. 根据权利要求 23 所述的侧杆控制装置, 其中, 所述力感传 动部分包括容纳部、 第一转动部、 第二转动部、 第一弹性元件、 第 二弹性元件, 所述容纳部上设有滑槽, 所述滑槽分为相通的垂直部 分和水平部分, 所述第一转动部上凸设有可沿滑槽运动的突起, 所 述第一转动部和所述第二转动部均容纳在所述容纳部内, 所述第一 弹性元件设置在所述第一转动部和所述第二转动部之间, 所述第二 弹性元件设置在所述容纳部和所述第二转动部之间; 其中, 当按压 所述第一转动部使得所述突起沿所述滑槽的垂直部分向下运动时, 所述第一弹性元件被所述第一转动部压缩从而产生启动力感直到所 述第一转动部与所述第二转动部彼此接合, 当按压所述第一转动部 使得所述突起沿所述滑槽的水平部分运动时, 所述第二转动部带动 所述第二弹性元件扭转从而产生扭转力感。
25. 根据权利要求 24所述的侧杵控制装置, 其中, 所述角位移 传动部分具有垂直轴、 主齿轮、 从齿轮和角位移传感器, 其中所述 垂直轴的一端与所述第二转动部相固定, 另一端固设所述主齿轮, 所述从齿轮固设在所述角位移传感器上, 所述主齿轮与所述从齿轮 啮合; 当所述第二转动部转动时将运动传递给所述角位移传感器。
26. 根据权利要求 22所述的侧杆控制装置, 其中, 所述俯仰控 制机构、 滚转控制机构分别还包括设置在所述俯仰控制轴和滚转控 制轴上的力感传动部分和角位移传动部分, 其中, 所述力感传动部 分响应操作者的施力操作而产生反作用力以提供力感觉, 所述角位 移传动部分响应所述俯仰控制轴和滚转控制轴的旋转而产生角位移 信号。
27. 根据权利要求 22所述的侧杆控制装置, 其中, 所述侧杆控 制装置还具有与所述前轮转弯控制机构相连接的操纵部。
PCT/CN2011/079643 2011-05-17 2011-09-14 侧杆控制装置 WO2012155418A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110127784.0A CN102249003B (zh) 2011-05-17 2011-05-17 侧杆控制装置
CN201110127784.0 2011-05-17

Publications (1)

Publication Number Publication Date
WO2012155418A1 true WO2012155418A1 (zh) 2012-11-22

Family

ID=44976658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079643 WO2012155418A1 (zh) 2011-05-17 2011-09-14 侧杆控制装置

Country Status (2)

Country Link
CN (1) CN102249003B (zh)
WO (1) WO2012155418A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107263444A (zh) * 2017-06-21 2017-10-20 明光现代农业科技合作推广服务中心 一种用于农产品分拣的机械臂
CN108922310A (zh) * 2018-08-31 2018-11-30 珠海高斯科技有限公司 摇杆操纵负荷装置及摇杆模拟装置
CN112520016A (zh) * 2020-12-09 2021-03-19 中国航空工业集团公司沈阳飞机设计研究所 一种驾驶杆解耦结构

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2993065B1 (fr) * 2012-07-09 2014-08-29 Ratier Figeac Soc Dispositif de conjugaison d'effort entre organes de pilotage, organe de pilotage et aeronef
CN103640702A (zh) * 2013-11-28 2014-03-19 江西洪都航空工业集团有限责任公司 一种飞机中央操纵机构
CN104217623B (zh) * 2014-09-19 2017-12-08 中国商用飞机有限责任公司 一种侧杆操纵试验装置
CN105116961B (zh) * 2015-07-21 2017-03-22 东南大学 一种智能化力反馈手柄及其控制方法
CN105292500A (zh) * 2015-11-17 2016-02-03 江西洪都航空工业集团有限责任公司 一种基于人机工效的紧凑型侧杆操纵装置
CN105599894B (zh) * 2016-02-25 2017-08-25 南京航空航天大学 一种飞机主动侧杆系统的杆力控制方法
CN106155175A (zh) * 2016-08-26 2016-11-23 贵州华阳电工有限公司 两轴操纵控制装置
CN107038927A (zh) * 2017-05-27 2017-08-11 合肥磐石自动化科技有限公司 一种飞机飞行姿态演示装置
CN107187582B (zh) * 2017-07-31 2019-10-29 中国商用飞机有限责任公司 一种襟缝翼操纵手柄
CN107719643B (zh) * 2017-09-29 2020-06-16 兰州飞行控制有限责任公司 一种电传飞机侧杆操纵机构
CN107985554B (zh) * 2017-12-05 2021-03-09 贵州华阳电工有限公司 自复位转弯机构
CN109334953A (zh) * 2018-10-26 2019-02-15 中国商用飞机有限责任公司 带有开关功能的侧杆杆柄装置
CN113277067B (zh) * 2021-05-26 2022-11-01 贵州华阳电工有限公司 减速板手柄可调节操纵力机械结构
CN114056549B (zh) * 2021-11-01 2024-05-10 中国商用飞机有限责任公司 侧杆装置、侧杆控制器、侧杆控制方法和飞行器
CN114104268B (zh) * 2021-12-21 2024-03-15 中国商用飞机有限责任公司 飞行器操纵装置
CN114044125B (zh) * 2021-12-21 2024-05-14 中国商用飞机有限责任公司 飞行器操纵控制系统及控制方法
CN115061531B (zh) * 2022-07-19 2023-07-18 连云港杰瑞电子有限公司 一种自复位式双自由度操纵杆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3771037A (en) * 1973-03-15 1973-11-06 Nasa Solid state controller three-axes controller
JPH0651855A (ja) * 1992-07-28 1994-02-25 Mitsubishi Heavy Ind Ltd サイドスティック装置
JPH10187263A (ja) * 1996-12-20 1998-07-14 Commuter Herikoputa Senshin Gijutsu Kenkyusho:Kk サイドスティック型操縦装置
CN201291769Y (zh) * 2008-10-30 2009-08-19 青特集团有限公司 一种可实现油门控制及换向功能的操纵手柄
US20090230252A1 (en) * 2008-03-13 2009-09-17 Eurocopter Aircraft flight control

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB622339A (en) * 1947-03-12 1949-04-29 Napier & Son Ltd Improvements in or relating to control lever mechanism
SE431433B (sv) * 1982-06-01 1984-02-06 Saab Scania Ab Spakenhet med flera funktioner
JPH0895656A (ja) * 1994-09-29 1996-04-12 Sutaatengu Kogyo Kk レバー装置におけるレバーの回り止め機構
JPH10127946A (ja) * 1996-11-05 1998-05-19 Konami Co Ltd 操作レバー装置
JP4764285B2 (ja) * 2006-08-17 2011-08-31 本田技研工業株式会社 操作レバー装置
FR2952448B1 (fr) * 2009-11-06 2012-08-03 Ratier Figeac Soc Dispositif de controle electronique d'un organe de pilotage a microcontroleurs multifonctionnels, dispositif de pilotage et aeronef

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3771037A (en) * 1973-03-15 1973-11-06 Nasa Solid state controller three-axes controller
JPH0651855A (ja) * 1992-07-28 1994-02-25 Mitsubishi Heavy Ind Ltd サイドスティック装置
JPH10187263A (ja) * 1996-12-20 1998-07-14 Commuter Herikoputa Senshin Gijutsu Kenkyusho:Kk サイドスティック型操縦装置
US20090230252A1 (en) * 2008-03-13 2009-09-17 Eurocopter Aircraft flight control
CN201291769Y (zh) * 2008-10-30 2009-08-19 青特集团有限公司 一种可实现油门控制及换向功能的操纵手柄

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107263444A (zh) * 2017-06-21 2017-10-20 明光现代农业科技合作推广服务中心 一种用于农产品分拣的机械臂
CN108922310A (zh) * 2018-08-31 2018-11-30 珠海高斯科技有限公司 摇杆操纵负荷装置及摇杆模拟装置
CN112520016A (zh) * 2020-12-09 2021-03-19 中国航空工业集团公司沈阳飞机设计研究所 一种驾驶杆解耦结构
CN112520016B (zh) * 2020-12-09 2024-05-17 中国航空工业集团公司沈阳飞机设计研究所 一种驾驶杆解耦结构

Also Published As

Publication number Publication date
CN102249003B (zh) 2014-08-20
CN102249003A (zh) 2011-11-23

Similar Documents

Publication Publication Date Title
WO2012155418A1 (zh) 侧杆控制装置
KR101533414B1 (ko) 조종간
US11623157B2 (en) Remote control
KR101124507B1 (ko) 가변 텐션형 조이스틱
US20150031456A1 (en) Dual pivot game controller
CN103133829B (zh) 云台
CN105026673A (zh) 用于家具盖的执行机构
CN106057015A (zh) 一种六自由度并联动感平台
KR101603044B1 (ko) 6자유도 메커니즘 햅틱장치
JP2005332156A (ja) 力覚付与型入力装置
KR20170060904A (ko) 힌지모멘트와 트림탭 동작을 반영한 가역비행 조종 반력 장치
CN100399248C (zh) 计算机用输入外围设备
CA2636150C (en) Mechanical linkage
EP2948368B1 (en) Passive control stick
US11347313B2 (en) Feedback controllers for computing devices
KR20050048902A (ko) 보이스 코일 모터를 이용한 햅틱 시스템
RU60871U1 (ru) Силовое устройство к джойстику для управления виртуальным самолетом
KR101792566B1 (ko) 병렬 링크 구조체 및 이를 구비한 역감 제시 인터페이스 시스템
CN218384303U (zh) 一种模拟飞机调整阻尼力的机构、操纵系统、模拟飞机
JP5458005B2 (ja) 疑似力覚発生装置
CN215494766U (zh) 一种双轴工业操作手柄结构
JP2019097587A (ja) 運動訓練装置
JP2007188414A (ja) 力覚付与型入力装置
CN110196637B (zh) 一种动支点杠杆式变刚度机构和单指力反馈手套
JP5430253B2 (ja) ロボットハンド装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11865610

Country of ref document: EP

Kind code of ref document: A1