WO2012153842A1 - 貫通配線基板、電子デバイスパッケージ、及び電子部品 - Google Patents

貫通配線基板、電子デバイスパッケージ、及び電子部品 Download PDF

Info

Publication number
WO2012153842A1
WO2012153842A1 PCT/JP2012/062157 JP2012062157W WO2012153842A1 WO 2012153842 A1 WO2012153842 A1 WO 2012153842A1 JP 2012062157 W JP2012062157 W JP 2012062157W WO 2012153842 A1 WO2012153842 A1 WO 2012153842A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
substrate
main surface
electronic device
wiring board
Prior art date
Application number
PCT/JP2012/062157
Other languages
English (en)
French (fr)
Inventor
山本 敏
寛之 脇岡
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to CN201280012422XA priority Critical patent/CN103430636A/zh
Priority to JP2013514072A priority patent/JPWO2012153842A1/ja
Publication of WO2012153842A1 publication Critical patent/WO2012153842A1/ja
Priority to US13/968,886 priority patent/US20130335936A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/005Constructional details common to different types of electric apparatus arrangements of circuit components without supporting structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06572Auxiliary carrier between devices, the carrier having an electrical connection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15182Fan-in arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/1579Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy

Definitions

  • the present invention relates to a through wiring board having through wiring that enables high-density mounting of electronic devices, optical devices, MEMS devices, etc., or SiP (system in package) for systematizing these devices in one package,
  • the present invention relates to an electronic device package and an electronic component using the same.
  • Patent Document 1 discloses a through wiring substrate including a through wiring formed to be inclined with respect to a direction perpendicular to the main surface of the substrate.
  • FIG. 13 is a plan view showing a state in which a plurality of terminal groups are arranged side by side on the surface of a conventional through wiring board.
  • 14 is a cross-sectional view taken along line M4-M4 in FIG. 13
  • FIG. 15 is a cross-sectional view taken along line N4-N4 in FIG.
  • a plurality of terminals 130A ′, 130B ′, 130C ′,... Arranged in are electrically connected by through wirings 120A ′, 120B ′, 120C ′, so that terminal numbers correspond to each other.
  • the plurality of terminals 130A ′, 130B ′, 130C ′ are electrically connected by through wirings 120A ′, 120B ′, 120C ′.
  • the terminals 130A, 130B, 130C are arranged in the same layout as the terminals 130A, 130B, 130C.
  • the positions of the plurality of terminals 130A ', 130B', 130C '... on the second main surface 110b are different from the positions of the terminals 130A, 130B, 130C ... in the X direction.
  • the diameter R of the through wiring is constant, and the distance between adjacent through wirings (the distance between the edges of the through wiring) L is also constant.
  • the through-wirings 120A, 120B, and 120C are arranged in a straight line at equal intervals in the thickness direction of the substrate.
  • the thickness will also increase.
  • the distance L at which the through wirings are separated cannot be reduced without limitation. Therefore, when the number of through wirings increases with the increase in the number of terminals of a device to be mounted, the thickness of the substrate increases with it. Such an increase in the substrate thickness is not preferable from the viewpoint of miniaturization and thinning of high-density mounting.
  • the through wiring board according to the first aspect of the present invention includes a single substrate having a first main surface and a second main surface, and a first portion extending in parallel with each other.
  • a plurality of through-wirings connecting the first main surface and the second main surface, and extending perpendicularly to at least one of the first main surface and the second main surface and the center of the first portion The penetrating wirings adjacent to each other are provided such that virtual axes passing through the wirings are parallel and spaced apart from each other.
  • the through wiring substrate of the first aspect of the present invention when an axis (virtual axis) that is perpendicular to the main surface of the substrate and penetrates the center of the cross section of the first portion is assumed, The penetrating wirings adjacent to each other are shifted so that the axes are parallel to and spaced from each other. For this reason, compared with the structure in which the same number of through wires as in the first aspect of the present invention are separated at the same interval and the through wires are arranged without shifting from the direction perpendicular to the main surface, In the through wiring substrate according to the first aspect of the invention, an increase in the thickness of the through wiring substrate can be suppressed.
  • the present invention even if the number of through wirings increases, the increase in the thickness of the substrate can be suppressed, the degree of freedom in the design of the wiring structure is increased, and thus small and high density three-dimensional mounting is possible. It is possible to provide a through wiring substrate having a through wiring.
  • the first portion is disposed substantially parallel to at least one of the first main surface and the second main surface.
  • the through wiring has a second part and a third part that form both ends of the first part, and the longitudinal direction of the second part is the first part.
  • the longitudinal direction of the third portion is substantially perpendicular to the main surface, and the longitudinal direction of the third portion is substantially perpendicular to the second main surface.
  • the plurality of through wirings have substantially the same length.
  • the electrical resistance of the plurality of through wirings can be made substantially uniform. That is, variations in the wiring resistance between the through wirings can be suppressed, and the present invention stabilizes the electrical characteristics of the device mounted on the through wiring board.
  • the first main surface is provided with a pad so as to be electrically connected to the second part constituting the through wiring, and the second main surface. It is preferable that a pad is provided on the surface so as to be electrically connected to the third portion constituting the through wiring.
  • the design of the pad can be freely changed to match the electrode position of the device. Therefore, a small device can be mounted on the through wiring board.
  • the substrate has a cooling unit for cooling the substrate.
  • An electronic device package includes the through wiring substrate according to the first aspect described above, and an electronic device mounted on at least one of the first main surface and the second main surface of the through wiring substrate. Is provided. This makes it possible to reduce the thickness, size, and speed of an electronic device that includes the electronic device package.
  • the through wiring of the through wiring substrate has a second part and a third part that form both ends of the first part, and an end of the second part. And at least one of the end portions of the third part is disposed at a position facing the terminal of the electronic device, the terminal of the electronic device, the end part of the second part, and the third part. It is preferable that at least one of the end portions is electrically connected.
  • the electrode of the device mounted on the through wiring board and the pad are electrically connected without interposing the surface wiring, so even if the device is a small device with a high density arranged in any layout The electrode of the device and the pad can be freely connected.
  • the end portions of the second part and the third part are arranged so as to face the terminals of the respective devices, and they can be electrically connected.
  • the electrodes of both devices can be connected in the shortest time, and a small and high performance electronic device package can be provided.
  • the electronic component according to the third aspect of the present invention includes at least the electronic device package according to the second aspect described above. This makes it possible to reduce the thickness, size, speed, etc. of an electronic device (electronic component) provided with an electronic device package.
  • an increase in the thickness of a substrate can be suppressed even when the number of through wirings increases, and the degree of freedom in designing a wiring structure is high, resulting in a small and high density three-dimensional mounting.
  • FIG. 1 is a plan view schematically showing a first embodiment of a through wiring board of the present invention.
  • FIG. 2 is a cross-sectional view taken along line M1-M1 of FIG.
  • FIG. 2 is a cross-sectional view taken along line N1-N1 of FIG.
  • In the first embodiment of the through wiring board of the present invention it is an enlarged sectional view for explaining the arrangement of the through wiring.
  • It is sectional drawing which shows typically 2nd Embodiment of the penetration wiring board of this invention.
  • It is a top view which shows typically 4th Embodiment of the penetration wiring board of this invention.
  • FIG. 7 is a cross-sectional view taken along line M2-M2 of FIG.
  • FIG. 7 is a cross-sectional view taken along line N2-N2 of FIG.
  • FIG. 1 to FIG. 4 are diagrams schematically showing an example of the configuration that is the first embodiment of the through wiring board of the present invention.
  • FIG. 1 is a plan view showing a state in which a plurality of terminal groups are arranged side by side on the surface in the first embodiment of the through wiring board of the present invention.
  • 2 is a cross-sectional view taken along line M1-M1 in FIG. 1
  • FIGS. 3 and 4 are cross-sectional views taken along line N1-N1 in FIG.
  • the through wiring substrate 1A (1) has a plurality of through wirings 20A, 20B, 20C (20) so as to connect the main surfaces (the first main surface 10a and the second main surface 10b) constituting the single substrate 10. ).
  • the material of the substrate 10 examples include insulators such as glass, plastic, and ceramics, and semiconductors such as silicon (Si).
  • insulators such as glass, plastic, and ceramics
  • semiconductors such as silicon (Si).
  • Si silicon
  • an insulating substrate is used as the material of the substrate 10
  • a conductor 22 is arranged inside the through-hole 21 having the same.
  • the conductor 22 constitutes the through wiring 20.
  • the through wiring 20 includes a first part 24 (part ⁇ ), a second part 25 (part ⁇ ), and a third part 26 (part ⁇ ).
  • the first portion 24 extends inside the substrate 10 so that the longitudinal direction of the first portion 24 is substantially parallel to the main surface of the substrate 10.
  • the second part 25 and the third part 26 are located at both ends of the first part 24.
  • the second portion 25 constitutes the first end portion (one end portion) of the through wiring 20, and the third portion 26 serves as the second end portion (the other end portion) of the through wiring 20. It is composed. That is, the end portion (first end portion) of the second portion 25 is located on the first main surface 10a (exposed to the space facing the first main surface 10a), and the end portion (first portion) of the third portion 26 The two end portions are located on the second main surface 10b (exposed to the space facing the second main surface 10b).
  • the first part 24 and the second part 25 are connected by a bent portion 28.
  • the first part 24 and the third part 26 are connected by a bent portion 29.
  • the shape of the bent portions 28 and 29 is not particularly limited. In the longitudinal section, the bent portion may have a corner shape. Alternatively, a substantially arc having no corners may be used. From the viewpoint of high-speed transmission, it is more preferable to use a substantially arc-shaped bent portion having no corners.
  • the longitudinal direction of the second portion 25 and the third portion 26 is substantially perpendicular to each of the main surfaces 10a and 10b.
  • the longitudinal direction of the second part 25 is substantially perpendicular to the first major surface 10a
  • the longitudinal direction of the third part 26 is substantially perpendicular to the second major surface 10b.
  • Examples of the conductor 22 used for the through wiring 20 include a metal such as copper (Cu) or tungsten (W), an alloy such as gold tin (Au—Sn), or a non-metallic conductor such as polysilicon.
  • a method for filling the through hole 21 with a conductor or a method for forming a conductor film a plating method, a sputtering method, a molten metal filling method, CVD, a supercritical film formation method, or the like can be used as appropriate.
  • a plurality of terminal groups are arranged side by side on the surface.
  • a plurality of terminals arranged on the first main surface 10a (first main surface 10a side) of the substrate 10 and a plurality of terminals arranged on the other second main surface 10b (second main surface 10b side) of the substrate 10. Are electrically connected through a plurality of through wires 20.
  • Arranged at equal intervals are arranged on the first main surface 10 a of the substrate 10.
  • the first terminal groups 30A, 30B, 30C,... And the second terminal groups 30A ′, 30B ′, 30C ′, etc. are electrically connected by through-wires 20A, 20B, 20C,. It is connected to the. That is, the first terminal 30A and the second terminal 30A ′ are electrically connected by the through wiring 20A. Further, the first terminal 30B and the second terminal 30B ′ are electrically connected by the through wiring 20B. Further, the first terminal 30C and the second terminal 30C ′ are electrically connected by the through wiring 20C.
  • FIG. 3 shows a cross section of the first portion 24, and the virtual axes S ⁇ b> 1 and S ⁇ b> 2 penetrate the center of the cross section of the first portion 24.
  • the axis S1 (virtual axis) of the through wiring 20A and the axis S2 (virtual axis) of the through wiring 20B are parallel to each other and separated from each other. That is, in the through wiring substrate 1 of the first embodiment of the present invention, the through wirings 20A and 20B are arranged so that the positions of the through wirings 20A and 20B that are at least adjacent wirings are shifted from each other.
  • one through wiring (20B) of the adjacent through wirings 20A and 20B is arranged so as to be shifted from the direction perpendicular to the main surface by an angle ⁇ .
  • the diameter R of the through wiring 20A, 20B is constant.
  • the distance that the adjacent through wirings 20A and 20B are separated is indicated by L, and this distance is constant.
  • the through wiring 20B is provided at a position shifted by an angle ⁇ from the direction perpendicular to the main surface while maintaining the distance L between the adjacent through wirings 20A and 20B.
  • the length of the substrate 10 in the thickness direction (perpendicular to the main surface) is apparently reduced by (1 ⁇ cos ⁇ ) L.
  • the same number of through-wirings 20 as in the present embodiment are separated by the same distance L and the through-wirings are arranged without shifting from the direction perpendicular to the main surface (adjacent through-wiring 20A, As compared with the structure in which 20B is arranged in the vertical direction, an increase in the thickness of the substrate 10 can be suppressed.
  • an increase in the thickness of the substrate can be suppressed even if the number of through wirings is increased, and a high-density three-dimensional mounting or an electronic device package can be thinned.
  • the main surfaces 10 a and 10 b of the substrate 10 are respectively provided with the second portion 25 and the second portion 25 constituting the through wiring 20.
  • Pads 2 and 3 may be provided so as to be electrically connected to the third portion 26.
  • the lengths of the through wirings 20A, 20B, 20C,... are preferably substantially the same.
  • the electrical resistance of the plurality of through wirings 20A, 20B, 20C... Can be made substantially uniform, and the electrical characteristics of the device mounted on the through wiring board 1A (1) can be improved. Further, in high-speed signal transmission, it is possible to suppress a problem that wiring delay varies among a plurality of through wirings.
  • the substrate 10 may have a cooling unit that cools the substrate 10.
  • a cooling unit for cooling the substrate 10 for example, as shown in FIG. 5, there is a flow path 40 through which a cooling fluid flows.
  • the flow path 40 has inlets / outlets 40 a and 40 b through which cooling fluid flows in and out at both ends of the flow path 40.
  • a plurality of flow paths 40 may be provided.
  • the channel 40 may be provided so as to meander so that the single channel 40 can cool the entire substrate 10.
  • the entrances 40 a and 40 b of the flow path 40 may be opened on the main surface of the substrate 10.
  • route) or cross-sectional shape of the flow path 40 is not limited to the structure mentioned above, It can design suitably.
  • the flow path 40 is preferably maintained at a predetermined interval in a three-dimensionally parallel direction or a thickness direction so as not to communicate with the through hole 21 having the through wiring 20.
  • the flow path 40 can be formed by a method similar to the method of forming the through hole 21 in which the through wiring 20 is disposed. At this time, when forming the through hole 21 in which the through wiring 20 is formed, it is preferable to simultaneously form the through hole used as the flow path 40 in parallel. If the through hole 21 of the through wiring 20 and the through hole used as the flow path 40 are simultaneously formed, the manufacturing process can be simplified and the cost can be reduced. Moreover, the positional relationship between the through hole 21 and the flow path 40 can be easily controlled, and the through hole 21 and the flow path 40 can be prevented from being erroneously connected.
  • FIG. 6 is a plan view showing a state in which a plurality of terminal groups are arranged side by side on the surface of the through wiring board 1B (1) of the fourth embodiment of the present invention.
  • 7 is a cross-sectional view taken along line M2-M2 of FIG. 6, and
  • FIG. 8 is a cross-sectional view taken along line N2-N2 of FIG.
  • the through wiring substrate 1B (1) of the fourth embodiment is arranged such that one through wiring is viewed from the first main surface and the second main surface from the vertical direction. It is not an arrangement (see FIG. 1) that bypasses the other through wiring. Specifically, adjacent through wirings 20A, 20B, and 20C extend so as to be inclined with respect to the X-axis direction and the Y-axis direction. As a result, the adjacent through wirings 20A, 20B, and 20C are arranged so as to be shifted from each other (inevitably). Therefore, as shown in FIG. 8, the through wiring substrate 1B (1) of the fourth embodiment of the present invention can be realized only by forming the through wiring in the substrate 10 in the vertical direction to a desired depth. In addition, since the structure in which the other through wiring is arranged so as to bypass one through wiring as shown in FIG. 1 is not used, the first main surface and the second main surface are connected to the through wiring in FIG. It is possible to tie at a shorter distance.
  • 9A to 9D are cross-sectional views schematically showing a method of manufacturing the through wiring substrate 1A (1) in the order of steps.
  • a glass (quartz) substrate having a thickness of 500 ⁇ m is used as the base material.
  • the modified part is removed by etching.
  • a modified portion 82 is formed in the substrate 10 by irradiating the substrate 10 formed of quartz with a laser beam 80 at a position where at least a fine hole is formed in a later step.
  • a femtosecond laser is used as the light source of the laser beam 80, and a laser beam is irradiated so as to form a focal point 81 inside the substrate 10 to obtain a modified portion having a diameter of, for example, several ⁇ m to several tens of ⁇ m. .
  • the modified portion 82 having various shapes can be formed by controlling the focal point 81 and the substrate position.
  • substrate 10 in which a micropore is formed is not limited to a quartz substrate,
  • the glass substrate which has other components containing the insulating substrate 10 or an alkali component etc., such as a sapphire, can be used.
  • the thickness of the glass substrate can also be appropriately set to about 150 ⁇ m to 1 mm.
  • the substrate 10 on which the modified portion 82 is formed is immersed in a predetermined chemical solution 91 placed in the container 90.
  • the modified portion 82 is wet-etched with the chemical solution and removed from the substrate 10.
  • the micro hole 83 (through hole 21) is formed in the portion where the reforming portion 82 exists.
  • an acid solution containing hydrofluoric acid as a main component is used as the chemical solution.
  • the etching used in the present embodiment utilizes a phenomenon that the modified portion 82 is etched much faster than a portion where the modified portion 82 is not modified, and the fine hole 83 having a shape caused by the modified portion 82 is formed. Finally it can be formed.
  • the hole diameter of the fine hole 83 is 50 ⁇ m.
  • the chemical solution is not limited to hydrofluoric acid, and for example, a hydrofluoric acid-based mixed acid obtained by adding an appropriate amount of nitric acid or the like to hydrofluoric acid or an alkaline solution such as a potassium hydroxide solution can be used.
  • the hole diameter of the fine hole can be appropriately set from about 10 ⁇ m to about 300 ⁇ m depending on the use of the through wiring.
  • the fine hole 83 formed by the method as described above is not limited to the through hole penetrating the substrate 10, and may be a non-through hole that does not penetrate the substrate 10.
  • the fine hole 83 having a three-dimensional free structure can be formed inside the substrate 10 made of quartz.
  • the inside of the fine holes 83 is filled with a conductive substance 84 (conductor 22).
  • gold tin (Au—Sn) is used as the conductive material 84 (conductor 22), and the inside of the fine holes is filled by a molten metal filling method.
  • the molten metal filling method is a method in which the inside of a fine hole can be filled with good airtightness in a short time using a pressure difference.
  • gold tin (Au—Sn) is used as the filling metal, but the present invention is not limited to this.
  • Gold-tin alloys having different compositions or metals such as tin (Sn), indium (In), tin-lead (Sn—Pb), tin (Sn) group, lead (Pb) group, gold (Au) group, A solder such as an indium (In) group or an aluminum (Al) group can be used.
  • the molten metal suction method is used as the filling method, the present invention is not limited to this, and metal filling by plating, metal film formation by CVD, supercritical fluid film formation, filling of conductive paste by printing method, or these A method in which these methods are combined can be used as appropriate.
  • the through wiring substrate 1A (1) having the plurality of through wirings 20 can be provided.
  • the structure in which the fine hole 83 penetrates the main surface of the substrate 10 is employed, but the present invention is not limited to this structure.
  • FIG. 11 is a cross-sectional view taken along line M3-M3 of FIG. 12 is a cross-sectional view taken along line N3-N3 in FIG.
  • an electronic device is mounted on at least one main surface of the through wiring substrate 1.
  • the through wiring substrate 1 at least the adjacent through wirings 20 are arranged so as to be displaced from each other, so that an increase in the thickness of the substrate 10 can be suppressed even if the number of through wirings increases. .
  • the electronic device package 50 includes a through wiring substrate 1 having a through wiring 20 in which a through hole 21 formed in the substrate 10 is filled or formed with a conductor, and a first main surface 10 a of the substrate 10.
  • the plurality of electrodes 54A, 54B, 54C,... Of the device 53 are electrically connected via the plurality of through wirings 20A, 20B, 20C,.
  • Examples of the devices 51 and 53 include an integrated circuit (IC) such as a memory (memory element) and a logic (logic element), a MEMS device such as a sensor, and an optical device such as a light emitting element and a light receiving element.
  • IC integrated circuit
  • MEMS device such as a sensor
  • optical device such as a light emitting element and a light receiving element.
  • the electrode arrangements of the devices 51 and 53 are different, the functions of the devices 51 and 53 may be different or the functions may be the same.
  • SiP three-dimensional system in package
  • 54 is disposed at a position facing 54. It is preferable that the electrodes of the devices 51 and 53 are electrically connected to at least one of the end of the second part 25 and the end of the third part 26.
  • the electrode 52 (52A, 52B, 52C) of the device 51 and the electrode 54 (54A, 54B, 54C) of the device 53 mounted on both surfaces of the through wiring board 1 are electrically connected without passing through the surface wiring. Therefore, the electrode 52 and the electrode 54 can be freely connected to each other even in a small device in which the electrodes are arranged at a high density in any layout.
  • the electronic component according to the present invention includes at least the electronic device package 50 of the present invention as described above. This makes it possible to reduce the thickness, size, speed, etc. of an electronic device (electronic component) provided with an electronic device package.
  • the present invention can be widely applied to a through wiring substrate having a through wiring, an electronic device package using the through wiring substrate, and an electronic component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 本発明の貫通配線基板は、第一主面及び第二主面を有する単一の基板と、互いに平行に延設された第一部位を有するとともに前記第一主面及び前記第二主面を結ぶ複数の貫通配線とを備え、前記第一主面及び前記第二主面の少なくとも一方に対して垂直に延在して前記第一部位の中心を貫く仮想軸が、互いに平行かつ離間するように、互いに隣り合う前記貫通配線が設けられている。

Description

貫通配線基板、電子デバイスパッケージ、及び電子部品
 本発明は、電子デバイス、光学デバイス、MEMSデバイス等の高密度実装、またはそれらのデバイスを一つのパッケージ内でシステム化するSiP(システムインパッケージ)を可能にする貫通配線を備えた貫通配線基板、これを用いた電子デバイスパッケージ、及び電子部品に関する。
 本願は、2011年5月12日に出願された特願2011-107580号に基づき優先権を主張し、その内容をここに援用する。
 近年、携帯電話等の電子機器の高機能化に伴い、それらに使われる電子デバイス等にも更なる高速化、高機能化が要求されている。これを実現するためには、デバイス自体の高速化、高機能化だけではなく、デバイスのパッケージにも配線パターンの微細化等による配線の高密度化に向けた技術開発が必須となっている。高密度実装を実現する技術として、微細な貫通配線を用いてチップを積層実装する三次元実装又は貫通配線が形成された貫通配線基板を用いたSiPが提案されている。三次元実装やSiPを実現するために使用される貫通配線又は貫通配線基板の形成技術が活発に研究、開発されている。
 基板の主面と垂直な方向に形成されている従来の貫通配線を備えた貫通配線基板では、複数個の基板を積層するように配置した場合に、接合外力によるダメージによって貫通配線電極の抜け落ち又は界面の剥離が起こることがある。
 この問題を解決するために、基板の主面と垂直な方向に対して傾けて形成されている貫通配線を備えた貫通配線基板が特許文献1に開示されている。
 このような貫通配線基板において、複数の貫通配線を用い、より高密度な三次元実装を行う際には技術的な問題があった。
 従来の貫通配線基板の一構成例を模式的に示す図13~図15を用いて説明する。ここで、図13は、従来の貫通配線基板において、表面に複数の端子群が並んで配置された状態を示す平面図である。また、図14は、図13のM4-M4線における断面図であり、図15は、図13のN4-N4線における断面図である。
 例えば、図13及び図14に示すように、基板110の第一主面110aに等間隔で並んで配置された複数の端子130A、130B、130C…と、基板110の第二主面110bに並んで配置された複数の端子130A’、130B’、130C’…とが、端子番号が対応するように、貫通配線120A’、120B’、120C’…で、電気的に接続された構造を考える。具体的に、基板110の第二主面110bにおいて、複数の端子130A’、130B’、130C’…は、端子130A、130B、130C…と同様のレイアウトで配置されている。第二主面110bにおける複数の端子130A’、130B’、130C’…の位置は、X方向において、端子130A、130B、130C…の位置とは異なっている。ここで、図15に示すように貫通配線の径Rは一定とし、また、隣り合う貫通配線間の距離(貫通配線のエッジ間の距離)Lも一定とする。
 このとき、図15から明らかなように、基板110内部においては、貫通配線120A、120B、120Cは基板の厚さ方向に直線状に等間隔で並び、貫通配線の数が増加すると共に基板110の厚さも増加していくことになる。しかしながら、隣り合う貫通配線間の電気絶縁性を保ち、相互干渉による不具合を避けるためにも、貫通配線が離間している距離Lを無制限に減少させることはできない。そのため、実装するデバイスの端子数の増加に伴い、貫通配線の本数も増えた際には、それと共に基板の厚さが増大してしまう。このような基板厚さの増大は、高密度実装の小型化、薄型化という観点から好ましくない。
日本国特許第3896038号公報
 本発明は、上記の従来の課題を解決するためになされたものであって、貫通配線の本数が増えても基板の厚さの増大を抑制でき、ひいては、配線構造の設計における自由度が高く、ひいては小型で高密度な三次元実装を可能とする貫通配線基板を提供することを第一の目的とする。
 また、本発明は、配線構造の設計における自由度が高く、小型で高密度な三次元実装を可能とした電子デバイスパッケージを提供することを第二の目的とする。
 また、本発明は、配線構造の設計における自由度が高く、小型で高密度な三次元実装を可能とした電子部品を提供することを第三の目的とする。
 前記目的を達成するために、本発明の第1態様の貫通配線基板は、第一主面及び第二主面を有する単一の基板と、互いに平行に延設された第一部位を有するとともに前記第一主面及び前記第二主面を結ぶ複数の貫通配線とを備え、前記第一主面及び前記第二主面の少なくとも一方に対して垂直に延在して前記第一部位の中心を貫く仮想軸が、互いに平行かつ離間するように、互いに隣り合う前記貫通配線が設けられている。
 本発明の第1態様の貫通配線基板によれば、前記基板の主面に対して垂直をなすとともに前記第一部位の横断面の中心を貫く軸(仮想軸)を仮定した際に、両者の軸が、互いに平行、かつ、離間するように、互いに隣り合う前記貫通配線がずらして配置されている。このため、本発明の第1態様と同じ数の貫通配線を同じ間隔で離間するように、かつ、主面に対して垂直な方向からずらさずに貫通配線を並べた構造と比較して、本発明の第1態様の貫通配線基板においては、貫通配線の基板の厚みの増大を抑制することができる。その結果、本発明によれば、貫通配線の本数が増えても、基板の厚さの増大を抑制でき、配線構造の設計における自由度が高くなり、ひいては小型で高密度な三次元実装が可能な貫通配線を備えた貫通配線基板を提供することができる。
 本発明の第1態様の貫通配線基板においては、前記第一部位は、前記第一主面及び前記第二主面の少なくとも一方に対して略平行に配置されていることが好ましい。
 これにより、第一部位の位置が基板の深さ方向に対して常に一定となるため、基板の厚さ方向の増大を効果的に抑制することができる。
 本発明の第1態様の貫通配線基板においては、前記貫通配線は、前記第一部位の両端を形成する第二部位及び第三部位を有し、前記第二部位の長手方向は、前記第一主面に対して略垂直であり、前記第三部位の長手方向は、前記第二主面に対して略垂直であることが好ましい。
 これにより、基板の元の厚さにばらつきがある場合、又は、前記基板の研磨工程における加工精度による厚さのばらつきが生じた場合でも、前記貫通配線基板の主面に設けられた開口部の位置は変動しないので、前記貫通配線を精度よく確実に形成することができる。
 本発明の第1態様の貫通配線基板においては、前記複数の貫通配線の長さは、互いに略同じであることが好ましい。
 これにより、複数の貫通配線の電気抵抗を略均一にすることができる。すなわち、貫通配線間の配線抵抗のバラツキを抑えることができるので、本発明は貫通配線基板に実装されたデバイスの電気特性の安定化をもたらす。
 本発明の第1態様の貫通配線基板においては、前記第一主面には、前記貫通配線を構成する前記第二部位と電気的に接続するようにパッドが設けられており、前記第二主面には、前記貫通配線を構成する前記第三部位と電気的に接続するようにパッドが設けられていることが好ましい。
 これにより、例えば、貫通配線基板の両面にデバイスを実装する際に、前記デバイスの電極と前記パッドが、表面配線を介することなく電気的に接続されるので、基板とデバイス(電子部品)との接続を容易にし、かつ、両デバイスの電極間をほぼ最短で結ぶことが可能となる。また、本発明によれば、例えば、電極が如何なるレイアウトで高密度に配置された小型のデバイスが用いられる場合であっても、前記パッドをデバイスの電極位置に合うように自由自在に設計変更できるので、小型のデバイスを貫通配線基板に実装することが可能となる。
 本発明の第1態様の貫通配線基板においては、前記基板は、前記基板を冷却する冷却部を有していることが好ましい。
 これにより、例えば、電極が高密度に配置され、発熱量の大きいデバイスが貫通配線基板に実装される場合であっても、温度上昇を効果的に低減することが可能になる。
 本発明の第2態様の電子デバイスパッケージは、上述した第1態様の貫通配線基板と、前記貫通配線基板の前記第一主面及び前記第二主面のうち少なくとも一方に実装された電子デバイスとを備える。
 これにより、電子デバイスパッケージを備えた電子装置の薄型化、小型化、高速化などを図ることが可能となる。
 本発明の第2態様の電子デバイスパッケージにおいては、前記貫通配線基板の前記貫通配線は、前記第一部位の両端を形成する第二部位及び第三部位を有し、前記第二部位の端部及び前記第三部位の端部の少なくとも一方は、前記電子デバイスの端子に対向する位置に配置されており、前記電子デバイスの前記端子と、前記第二部位の前記端部及び前記第三部位の前記端部の少なくとも一方とは、電気的に接続していることが好ましい。
 これにより、貫通配線基板に実装したデバイスの電極と前記パッドとが、表面配線を介することなく電気的に接続されるので、電極が如何なるレイアウトで高密度に配置された小型のデバイスであっても、デバイスの電極と前記パッドとを自由自在に接続することができる。また、基板の両面にデバイスを実装したパッケージの場合には、前記第二部位及び第三部位の端部を、それぞれのデバイスの端子に対向するように配置し、それらを電気的に接続できるので、両デバイスの電極間をほぼ最短で接続することが可能となり、小型で高性能の電子デバイスパッケージを提供できる。
 本発明の第3態様の電子部品は、上述した第2態様の電子デバイスパッケージを少なくとも備える。
 これにより、電子デバイスパッケージを備えた電子装置(電子部品)の薄型化、小型化、高速化などを図ることが可能となる。
 本発明によれば、貫通配線の本数が増えても基板の厚さの増大を抑制でき、配線構造の設計における自由度が高く、小型で高密度な三次元実装をもたらす。
 また、本発明によれば、配線構造の設計における自由度が高く、小型で高密度な三次元実装を可能とした電子デバイスパッケージを提供することができる。
 また、本発明によれば、配線構造の設計における自由度が高く、小型で高密度な三次元実装を可能とした電子部品を提供することができる。
本発明の貫通配線基板の第1実施形態を模式的に示す平面図である。 図1のM1-M1線における断面図である。 図1のN1-N1線における断面図である。 本発明の貫通配線基板の第1実施形態において、貫通配線の配置を説明するための拡大断面図である。 本発明の貫通配線基板の第2実施形態を模式的に示す断面図である。 本発明の貫通配線基板の第4実施形態を模式的に示す平面図である。 図6のM2-M2線における断面図である。 図6のN2-N2線における断面図である。 貫通配線基板の作製方法の工程を模式的に示した断面図である。 貫通配線基板の作製方法の工程を模式的に示した断面図である。 貫通配線基板の作製方法の工程を模式的に示した断面図である。 貫通配線基板の作製方法の工程を模式的に示した断面図である。 本発明の電子デバイスパッケージの一例を模式的に示す平面図である。 図10のM3-M3線における断面図である。 図10のN3-N3線における断面図である。 従来の貫通配線基板の一例を模式的に示す平面図である。 図13のM4-M4線における断面図である。 図13のN4-N4線における断面図である。
 以下、本発明の貫通配線基板の好適な実施形態について、図面を参照して説明する。
(第1実施形態)
 図1~図4は、本発明の貫通配線基板の第1実施形態である一構成例を模式的に示す図である。ここで、図1は、本発明の貫通配線基板の第1実施形態において、表面に複数の端子群が並んで配置された状態を示す平面図である。また、図2は、図1のM1-M1線における断面図、図3及び図4は、図1のN1-N1線における断面図である。
 この貫通配線基板1A(1)は、単一の基板10を構成する主面(第一主面10a及び第二主面10b)を結ぶように、複数の貫通配線20A,20B,20C…(20)を備える。
 基板10の材料は、ガラス、プラスチック、セラミックス等の絶縁体又はシリコン(Si)等の半導体が挙げられる。半導体基板が基板10の材料として用いられている場合は、貫通孔21の内壁又は主面等に絶縁層を形成し、貫通配線20と基板10との電気的な絶縁性を確保することが望ましい。絶縁性基板が基板10の材料として用いられている場合は、貫通孔21の内壁にさらに絶縁層を形成する必要がないので、好適である。
 基板10の一方の主面(第一主面)10aに開口した第一の開口部21aと、基板10の他方の主面(第二主面)10bに開口した第二の開口部21bとを有する貫通孔21の内部に、導体22が配置されている。この導体22によって、貫通配線20が構成されている。貫通配線20は、第一部位24(部位α)と、第二部位25(部位β)と、第三部位26(部位γ)とによって構成されている。第一部位24は、第一部位24の長手方向が前記基板10の主面に対して略平行となるように、前記基板10の内部に延設されている。第二部位25及び第三部位26は、第一部位24の両端に位置している。換言すると、第二部位25は、貫通配線20の第一端部(一方の端部)を構成しており、第三部位26は、貫通配線20の第二端部(他方の端部)を構成している。即ち、第二部位25の端部(第一端部)は、第一主面10aに位置しており(第一主面10aに面する空間に露出)、第三部位26の端部(第二端部)は、第二主面10bに位置している(第二主面10bに面する空間に露出)。
 第一部位24と第二部位25とは屈曲部28で接続されている。第一部位24と第三部位26とは屈曲部29で接続されている。屈曲部28,29の形状は、特に限定されない。その縦断面において、屈曲部は、角を有する形状であってもよい。或いは、角を有さない略円弧が用いられてもよい。高速伝送の観点から角を有さない略円弧状の屈曲部が用いられることがより好ましい。
 また、第二部位25及び第三部位26の長手方向は、前記主面10a,10bの各々に対して略垂直であることが好ましい。第二部位25の長手方向は、第一主面10aに対して略垂直であり、第三部位26の長手方向は、第二主面10bに対して略垂直である。これにより、基板10の元の厚さにばらつきがある場合、又は、前記基板10の研磨工程における加工精度による厚さのばらつきが生じた場合でも、基板10の主面に設けられた開口部21a,21bの位置は変動しない。このため、貫通配線20を精度よく確実に形成することができる。
 貫通配線20に用いる導体22としては、銅(Cu)又はタングステン(W)等の金属、金錫(Au一Sn)等の合金、或いは、ポリシリコン等の非金属の導体が挙げられる。貫通孔21へ導体を充填する方法又は導体を成膜する方法としては、めっき法、スパッタ法、溶融金属充填法、CVD、超臨界成膜法などを、適宜用いることができる。
 貫通配線基板1A(1)においては、表面に複数の端子群が並んで配置されている。基板10の第一主面10a(第一主面10a側)に配置された複数の端子と、基板10の他方の第二主面10b(第二主面10b側)に配置された複数の端子とが、複数の貫通配線20を介して電気的に接続される。
 例えば、図1及び図2に示すように、基板10の第一主面10aには等間隔で並ぶ第一端子群30A、30B、30C…が配置されている。基板10の第二主面10bには、第一端子群と同様のレイアウトで、第二主面10bでの位置がX方向で異なるように並ぶ第二端子群30A’、30B’、30C’…が配置されている。そして、第一端子群30A、30B、30C…と、第二端子群30A’、30B’、30C’…とは、それぞれの端子番号が対応するように貫通配線20A、20B、20C…で電気的に接続されている。
 即ち、第一端子30Aと第二端子30A’とが、貫通配線20Aによって電気的に接続されている。また、第一端子30Bと第二端子30B’とが、貫通配線20Bによって電気的に接続されている。また、第一端子30Cと第二端子30C’とが、貫通配線20Cによって電気的に接続されている。
 そして、図3に示すように、本発明の第1実施形態の貫通配線基板1A(1)においては、前記基板10の主面(第一主面10a及び第二主面10b)に対して垂直に延在して前記第一部位24の中心を貫く仮想軸S1、S2が、互いに平行かつ離間するように、互いに隣り合う貫通配線20A,20B,20C…(20)が設けられている。ここで、複数の軸S1,S2は、貫通配線基板1A(1)において仮定された軸である。また、図3は、第一部位24の横断面を示しており、仮想軸S1,S2は、第一部位24の横断面における中心を貫いている。
 以下においては、隣り合う貫通配線の位置関係を説明するために、貫通配線20Aと、貫通配線20Bとの関係について述べる。例えば、図3に示すように、貫通配線20Aの軸S1(仮想軸)と、貫通配線20Bの軸S2(仮想軸)とが、互いに平行、かつ、離間している。すなわち、本発明の第1実施形態の貫通配線基板1では、少なくとも隣り合う配線である貫通配線20A、20Bの位置が互いにずれるように、貫通配線20A、20Bが配置されている。
 図4の拡大断面図に示すように、隣り合う貫通配線20A、20Bの一方の貫通配線(20B)は、主面に対して垂直な方向から角度θだけずれるように配置されている。ここで、貫通配線20A、20Bの径Rで一定である。また、隣り合う貫通配線20A、20Bが離間している距離(隣り合う貫通配線において互いに近接しているエッジが離間している距離)は、Lで示されており、この距離は一定である。このとき、隣り合う貫通配線20A、20B間の距離Lを維持したまま、貫通配線20Bは主面に対して垂直な方向から角度θだけずれた位置に設けられている。基板10の厚さ方向(主面に対して垂直な方向)の長さは、見かけ上(1-cosθ)Lだけ減少する。これにより、本実施形態と同じ数の貫通配線20を同じ距離Lで離間するように、かつ、主面に対して垂直な方向からずらさずに貫通配線を並べた構造(隣り合う貫通配線20A、20Bを垂直方向に配列させる構造)と比較して、基板10の厚さの増大を抑制することができる。
 その結果、本発明の第1実施形態では、貫通配線の本数が増えても、基板の厚さの増大を抑制でき、高密度な三次元実装又は電子デバイスパッケージの薄型化が可能となる。
(第2実施形態)
 次に、本発明の第2実施形態について説明する。
 図5に示すように、本発明の第2実施形態の貫通配線基板1A(1)では、前記基板10の主面10a,10bには各々、前記貫通配線20を構成する前記第二部位25及び前記第三部位26と電気的に接続するようにパッド2,3が設けられていてもよい。貫通配線基板1A(1)の両面にデバイスを実装する際に、前記デバイスの電極と前記パッドが、表面配線を介することなく電気的に接続されるので、電極が如何なるレイアウトで高密度に配置された小型のデバイスが用いられる場合であっても、小型のデバイスを貫通配線基板に接続することができる。
 また、貫通配線基板1A(1)においては、前記貫通配線20A、20B、20C、…の長さは、互いに略同じであることが好ましい。これにより、複数の貫通配線20A、20B、20C…の電気抵抗を略均一にすることができ、貫通配線基板1A(1)に実装されたデバイスの電気特性を向上することができる。また、信号の高速伝送においては、複数の貫通配線において、配線遅延がばらつくといった不具合を抑えることができる。
(第3実施形態)
 次に、本発明の第3実施形態について説明する。
 また、貫通配線基板1A(1)においては、前記基板10が、前記基板10を冷却する冷却部を有していてもよい。
 このような基板10を冷却する冷却部としては、例えば、図5に示すように、冷却用流体を流す流路40が挙げられる。これにより、前記流路40に冷媒を流通することにより、発熱量の大きいデバイスを貫通配線基板に実装する場合であっても、温度上昇を効果的に低減することが可能になる。
 流路40は、流路40の両端に冷却用流体を出し入れする出入口40a、40bを有する。例えば、複数の流路40が設けられていてもよい。また、1本の流路40が基板10全体を冷却できるように、流路40が蛇行するように設けられていても良い。また、流路40の出入口40a、40bが基板10の主面に開口されていても良い。
 また、流路40のパターン(経路)又は断面形状は、上述した構造に限定されず、適宜設計することが可能である。ただし、流路40は、貫通配線20を有する貫通孔21と連通しないように、3次元的に面に平行な方向または厚さ方向に所定の間隔を保つことが好ましい。
 貫通配線20が配置される貫通孔21を形成する方法と同様の方法により、流路40を形成することができる。このとき、貫通配線20が形成される貫通孔21を形成する際に、流路40として用いられる貫通孔を並行して同時に形成することが好ましい。貫通配線20の貫通孔21と流路40として用いられる貫通孔を同時に形成すれば、製造工程が簡略化でき、コストを低減することができる。また、貫通孔21と流路40との位置関係を容易に制御することができ、貫通孔21と流路40が誤って繋がってしまうことを防ぐことができる。
(第4実施形態)
 次に、本発明の第4実施形態について説明する。
 本発明は、基板表面における複数の端子の配置が、第一主面及び第二主面の鉛直方向から見て、X軸方向のみにおいて異なっているだけでなく、複数の端子の配置がY軸方向にも異なっている構造にも適用可能である。
 ここで、図6は、本発明の第4実施形態の貫通配線基板1B(1)において、表面に複数の端子群が並んで配置された状態を示す平面図である。また、図7は、図6のM2-M2線における断面図、図8は、図6のN2-N2線における断面図である。
 第4実施形態の貫通配線基板1B(1)においては、図6及び図8に示した貫通配線の配置は、第一主面及び第二主面を鉛直方向から見て、一方の貫通配線が他方の貫通配線を迂回するような配置(図1参照)ではない。具体的には、X軸方向及びY軸方向に対して傾斜するように、隣り合う貫通配線20A、20B、20Cが延在している。これによって、隣り合う貫通配線20A、20B、20Cは、互いにずれるように配置される(必然的に)。したがって、図8に示すように、所望の深さまで垂直方向に貫通配線を基板10に形成するだけで、本発明の第4実施形態の貫通配線基板1B(1)を実現することができる。また、図1のように、一方の貫通配線を迂回するよう他方の貫通配線が配置されている構造が用いられていないので、第一主面と第二主面とを、図1の貫通配線よりも短い距離で結ぶことが可能となる。
 次に、上述したような貫通配線基板1A(1)の製造方法について説明する。
 図9A~図9Dは、貫通配線基板1A(1)の作製方法を工程順に模式的に示した断面図である。本実施形態では、基材として厚さが500μmのガラス(石英)基板を用いた。また、本実施形態における微細孔の作製方法は、レーザーを用いて石英基板の一部を改質した後、改質した部分をエッチングにより除去する。
 まず、図9Aに示すように、石英で形成された基板10に、後の工程によって少なくとも微細孔が形成される箇所にレーザー光80を照射して基板10内に改質部82を形成する。本実施形態においてはレーザー光80の光源としてフェムト秒レーザーを用い、基板10内部に焦点81を結ぶようにレーザービームを照射し、例えば、数μm~数十μmの径を有する改質部を得る。その際、焦点81と基板位置とを制御することにより、様々な形状の改質部82を形成することができる。なお、微細孔が形成される基板10は、石英基板に限定されず、例えば、サファイア等の絶縁基板10又はアルカリ成分等を含んだような他の成分を有するガラス基板を用いることができる。ガラス基板の厚さも150μm~1mm程度まで適宜設定できる。
 次いで、図9Bに示すように、容器90内に入れた所定の薬液91中に、改質部82が形成された基板10を浸漬する。これにより、改質部82は薬液によりウェットエッチングされ、基板10内から除去される。その結果、図9Cに示すように、改質部82が存在した部分に、微細孔83(貫通孔21)が形成される。本実施形態では、薬液としてフッ酸を主成分とする酸溶液を用いた。
 本実施形態に用いられるエッチングは、改質部82が改質されていない部分に比べて非常に早くエッチングされる現象を利用しており、改質部82に起因した形状を有する微細孔83を最終的に形成することができる。本実施形態においては、微細孔83の孔径は50μmである。なお、薬液はフッ酸に限定されず、例えば、フッ酸に硝酸等を適量添加したフッ硝酸系の混酸等又は水酸化カリウム溶液のようなアルカリ溶液等を用いることができる。また、微細孔の孔径は、貫通配線の用途に応じて10μm程度から300μm程度まで適宜設定することができる。さらに、上記のような方法によって形成される微細孔83は、基板10を貫通する貫通孔に限定されず、基板10を貫通しない非貫通孔であってもよい。
 上述した方法により、石英で形成された基板10の内部に三次元的に自由な構造を持つ微細孔83を形成することができる。
 次いで、図9Dに示すように、微細孔83の内部に導電性物質84(導体22)を充填する。本実施形態では、導電性物質84(導体22)として金錫(Au-Sn)を用い、溶融金属充填法により微細孔内部に充填した。溶融金属充填法は、圧力差を用いて微細孔内部にも気密性よく短時間で充填できる方法である。なお、本実施形態においては、充填金属として金錫(Au-Sn)を用いたが、これに限定されない。異なる組成を有する金錫合金又は錫(Sn)、インジウム(In)等の金属、また、錫鉛(Sn-Pb)系、錫(Sn)基、鉛(Pb)基、金(Au)基、インジウム(In)基、アルミニウム(Al)基等のはんだを使用することができる。また、充填方法も溶融金属吸引法を用いたが、これに限定されず、めっき法による金属充填、CVD、超臨界流体成膜による金属膜形成、印刷法による導電性ペーストの充填、又は、これらの方法が組み合わされたた方法等を適宜利用することができる。
 以上の方法により、複数の貫通配線20を有する貫通配線基板1A(1)を提供することができる。
 なお、上述した実施形態においては、微細孔83が基板10の主面を貫通している構造が採用されていたが、本発明はこの構造に限定されない。例えば、非貫通である微細孔83を基板10に形成しておき、金属を微細孔に充填した後、基板10を研磨することにより貫通配線20を形成することも可能である。
(電子デバイスパッケージ)
 次に、このような本発明の貫通配線基板1A(1)を用いた、電子デバイスパッケージについて説明する。
 図10~図12は、本発明に係る電子デバイスパッケージの実施形態(構成例)を模式的に示す平面図である。また、図11は、図10のM3-M3線における断面図である。図12は、図10のN3-N3線における断面図である。
 この電子デバイスパッケージ50においては、貫通配線基板1の少なくとも一方の主面に、電子デバイスが実装されている。上述したように、貫通配線基板1においては、少なくとも隣り合う貫通配線20が互いにずれるように配置されているので、貫通配線の数が増えても基板10の厚さの増大を抑制することができる。これにより、電子デバイスパッケージを備えた電子装置における薄型化、小型化、高速化などを図ることが可能となる。
 この電子デバイスパッケージ50は、基板10に形成された貫通孔21に導体が充填又は成膜された貫通配線20を有する貫通配線基板1と、基板10の第一主面10aに配置された第一のデバイス51と、基板10の第二主面10b側に配置された第二のデバイス53とを備える。第一のデバイス51の電極配置と第二のデバイス53の電極配置とは互いに異なる。
 貫通配線基板1により、基板10の第一主面10aに配置された第一のデバイス51の複数の電極52A,52B、52C…と、基板10の第二主面10bに配置された第二のデバイス53の複数の電極54A,54B、54C…とが、複数の貫通配線20A,20B、20C…を介して電気的に接続される。
 デバイス51、53としては、メモリー(記憶素子)やロジック(論理素子)等の集積回路(IC)、センサなどのMEMSデバイス、発光素子や受光素子などの光学デバイスが挙げられる。デバイス51、53の電極配置が異なっていれば、デバイス51、53の機能が相違していても、機能が同一であってもよい。特に、異種デバイスを高密度で集積することで、3次元システムインパッケージ(SiP)を実現することが可能である。
 また、図11に示すように、電子デバイスパッケージ50において、露呈している第二部位25の端部及び第三部位26の端部の少なくとも一方が、実装されるデバイス51、53の電極52、54に対向する位置に配置されている。前記デバイス51、53の電極と前記第二部位25の端部及び前記第三部位26の端部の少なくとも一方とが電気的に接続していることが好ましい。これにより、貫通配線基板1の両面に実装された、デバイス51の電極52(52A,52B,52C)と、デバイス53の電極54(54A,54B,54C)とが、表面配線を介することなく電気的に接続されるので、電極が如何なるレイアウトで高密度に配置された小型のデバイスであっても、電極52と電極54とを自由自在に接続することができる。
(電子部品)
 本発明に係る電子部品は、上述したような本発明の電子デバイスパッケージ50を少なくとも備えている。これにより、電子デバイスパッケージを備えた電子装置(電子部品)の薄型化、小型化、高速化などを図ることが可能となる。
 以上、本発明の貫通配線基板、電子デバイスパッケージ、及び電子部品について説明してきたが、本発明の技術範囲は、上記実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 本発明は、貫通配線を備えた貫通配線基板、及びこれを用いた電子デバイスパッケージ、電子部品に広く適用可能である。
 1 貫通配線基板、2,3 パッド、10 基板、20A,20B,20C…(20) 貫通配線、 21 貫通孔、22 導体、40 流路、50 電子デバイスパッケージ、51,53 デバイス。

Claims (9)

  1.  貫通配線基板であって、
     第一主面及び第二主面を有する単一の基板と、
     互いに平行に延設された第一部位を有するとともに前記第一主面及び前記第二主面を結ぶ複数の貫通配線と、
     を備え、
     前記第一主面及び前記第二主面の少なくとも一方に対して垂直に延在して前記第一部位の中心を貫く仮想軸が、互いに平行かつ離間するように、互いに隣り合う前記貫通配線が設けられている
     ことを特徴とする貫通配線基板。
  2.  請求項1に記載の貫通配線基板であって、
     前記第一部位は、前記第一主面及び前記第二主面の少なくとも一方に対して略平行に配置されている
     ことを特徴とする貫通配線基板。
  3.  請求項1に記載の貫通配線基板であって、
     前記貫通配線は、前記第一部位の両端を形成する第二部位及び第三部位を有し、
     前記第二部位の長手方向は、前記第一主面に対して略垂直であり、
     前記第三部位の長手方向は、前記第二主面に対して略垂直である
     ことを特徴とする貫通配線基板。
  4.  請求項1から請求項3のいずれか一項に記載の貫通配線基板であって、
     前記複数の貫通配線の長さは、互いに略同じである
     ことを特徴とする貫通配線基板。
  5.  請求項1から請求項4のいずれか一項に記載の貫通配線基板であって、
     前記第一主面には、前記貫通配線を構成する前記第二部位と電気的に接続するようにパッドが設けられており、
     前記第二主面には、前記貫通配線を構成する前記第三部位と電気的に接続するようにパッドが設けられている
     ことを特徴とする貫通配線基板。
  6.  請求項1から請求項5のいずれか一項に記載の貫通配線基板であって、
     前記基板は、前記基板を冷却する冷却部を有している
     ことを特徴とする貫通配線基板。
  7.  電子デバイスパッケージであって、
     請求項1から請求項6のいずれか一項に記載の貫通配線基板と、
     前記貫通配線基板の前記第一主面及び前記第二主面のうち少なくとも一方に実装された電子デバイスと、
     を備えることを特徴とする電子デバイスパッケージ。
  8.  請求項7に記載の電子デバイスパッケージであって、
     前記貫通配線基板の前記貫通配線は、前記第一部位の両端を形成する第二部位及び第三部位を有し、
     前記第二部位の端部及び前記第三部位の端部の少なくとも一方は、前記電子デバイスの端子に対向する位置に配置されており、
     前記電子デバイスの前記端子と、前記第二部位の前記端部及び前記第三部位の前記端部の少なくとも一方とは、電気的に接続している
     ことを特徴とする電子デバイスパッケージ。
  9.  電子部品であって、
     請求項7又は請求項8に記載の電子デバイスパッケージを少なくとも備えた
     ことを特徴とする電子部品。
PCT/JP2012/062157 2011-05-12 2012-05-11 貫通配線基板、電子デバイスパッケージ、及び電子部品 WO2012153842A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280012422XA CN103430636A (zh) 2011-05-12 2012-05-11 贯通布线基板、电子器件封装以及电子部件
JP2013514072A JPWO2012153842A1 (ja) 2011-05-12 2012-05-11 貫通配線基板、電子デバイスパッケージ、及び電子部品
US13/968,886 US20130335936A1 (en) 2011-05-12 2013-08-16 Interposer substrate, electronic device package, and electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-107580 2011-05-12
JP2011107580 2011-05-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/968,886 Continuation US20130335936A1 (en) 2011-05-12 2013-08-16 Interposer substrate, electronic device package, and electronic component

Publications (1)

Publication Number Publication Date
WO2012153842A1 true WO2012153842A1 (ja) 2012-11-15

Family

ID=47139316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062157 WO2012153842A1 (ja) 2011-05-12 2012-05-11 貫通配線基板、電子デバイスパッケージ、及び電子部品

Country Status (5)

Country Link
US (1) US20130335936A1 (ja)
JP (2) JPWO2012153842A1 (ja)
CN (1) CN103430636A (ja)
TW (1) TWI439192B (ja)
WO (1) WO2012153842A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017092111A (ja) * 2015-11-04 2017-05-25 アルプス電気株式会社 信号処理装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6727937B2 (ja) * 2016-06-10 2020-07-22 日本電波工業株式会社 電子デバイス

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004559A1 (ja) * 2009-07-10 2011-01-13 株式会社フジクラ 貫通配線基板及びその製造方法
WO2011048858A1 (ja) * 2009-10-23 2011-04-28 株式会社フジクラ デバイス実装構造およびデバイス実装方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5222014A (en) * 1992-03-02 1993-06-22 Motorola, Inc. Three-dimensional multi-chip pad array carrier
US5810607A (en) * 1995-09-13 1998-09-22 International Business Machines Corporation Interconnector with contact pads having enhanced durability
US6246247B1 (en) * 1994-11-15 2001-06-12 Formfactor, Inc. Probe card assembly and kit, and methods of using same
JP3681542B2 (ja) * 1998-07-01 2005-08-10 富士通株式会社 プリント回路基板および多段バンプ用中継基板
US7579848B2 (en) * 2000-05-23 2009-08-25 Nanonexus, Inc. High density interconnect system for IC packages and interconnect assemblies
US6441629B1 (en) * 2000-05-31 2002-08-27 Advantest Corp Probe contact system having planarity adjustment mechanism
US6344684B1 (en) * 2000-07-06 2002-02-05 Advanced Micro Devices, Inc. Multi-layered pin grid array interposer apparatus and method for testing semiconductor devices having a non-pin grid array footprint
US6970362B1 (en) * 2000-07-31 2005-11-29 Intel Corporation Electronic assemblies and systems comprising interposer with embedded capacitors
US6914786B1 (en) * 2001-06-14 2005-07-05 Lsi Logic Corporation Converter device
US7327554B2 (en) * 2003-03-19 2008-02-05 Ngk Spark Plug Co., Ltd. Assembly of semiconductor device, interposer and substrate
JP2005093946A (ja) * 2003-09-19 2005-04-07 Ngk Spark Plug Co Ltd セラミック配線基板及びそれを用いた部品実装済み配線基板
JP5180634B2 (ja) * 2007-04-24 2013-04-10 パナソニック株式会社 差動伝送線路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004559A1 (ja) * 2009-07-10 2011-01-13 株式会社フジクラ 貫通配線基板及びその製造方法
WO2011048858A1 (ja) * 2009-10-23 2011-04-28 株式会社フジクラ デバイス実装構造およびデバイス実装方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017092111A (ja) * 2015-11-04 2017-05-25 アルプス電気株式会社 信号処理装置

Also Published As

Publication number Publication date
US20130335936A1 (en) 2013-12-19
TW201306678A (zh) 2013-02-01
CN103430636A (zh) 2013-12-04
TWI439192B (zh) 2014-05-21
JPWO2012153842A1 (ja) 2014-07-31
JP2014225702A (ja) 2014-12-04

Similar Documents

Publication Publication Date Title
US10134711B2 (en) Thermally enhanced semiconductor assembly with three dimensional integration and method of making the same
WO2012153839A1 (ja) 貫通配線基板、電子デバイスパッケージ、及び電子部品
CN102332435B (zh) 电子元件及其制作方法
JP6033843B2 (ja) 2つ以上のダイのためのマルチダイフェイスダウン積層
JP5384700B2 (ja) デバイス実装構造およびデバイス実装構造の製造方法
EP2259309A2 (en) Integrated circuit package including a thermally and electrically conductive package lid
TWI596680B (zh) 具有打線接合互連的低熱膨脹係數部件
JP4942857B2 (ja) デバイス実装構造およびデバイス実装方法
JP5085788B2 (ja) デバイス実装構造
US20180374827A1 (en) Semiconductor assembly with three dimensional integration and method of making the same
WO2012153842A1 (ja) 貫通配線基板、電子デバイスパッケージ、及び電子部品
US20120103677A1 (en) Through wiring substrate and manufacturing method thereof
JP2010251707A (ja) 配線基板及び半導体装置
US11183483B2 (en) Multichip module and electronic device
JP2008203336A (ja) 光電気複合基板およびその製造方法、並びに電子機器
US20140254120A1 (en) Device packaging structure and device packaging method
JP2005101186A (ja) 積層型半導体集積回路
JP2011018672A (ja) 半導体装置およびその製造方法
KR101068305B1 (ko) 적층형 반도체 패키지 및 그 제조 방법
CN115172328A (zh) 一种多芯片封装用的导电组件及其制作方法
JP2008078327A (ja) 半導体装置及び半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013514072

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12782212

Country of ref document: EP

Kind code of ref document: A1