WO2012153793A1 - Mesure d'état de matériau, procédé de détection et dispositif de détection - Google Patents

Mesure d'état de matériau, procédé de détection et dispositif de détection Download PDF

Info

Publication number
WO2012153793A1
WO2012153793A1 PCT/JP2012/061944 JP2012061944W WO2012153793A1 WO 2012153793 A1 WO2012153793 A1 WO 2012153793A1 JP 2012061944 W JP2012061944 W JP 2012061944W WO 2012153793 A1 WO2012153793 A1 WO 2012153793A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
substance
measuring
chemical reaction
microwaves
Prior art date
Application number
PCT/JP2012/061944
Other languages
English (en)
Japanese (ja)
Inventor
西岡 将輝
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2013514046A priority Critical patent/JP6112725B2/ja
Publication of WO2012153793A1 publication Critical patent/WO2012153793A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more

Definitions

  • FIG. 14 is an explanatory view schematically showing the detection apparatus used in Example 5.
  • FIG. 15 is a graph showing the relationship between the water temperature measured in advance in Example 5 and the resonance frequency.
  • FIG. 16 is a graph showing the results of water temperature control performed in Example 5.
  • FIG. 17 is an explanatory view schematically showing the detection apparatus used in Example 6.
  • FIG. 18 is a graph showing the relationship between the alumina catalyst temperature measured in advance in Example 6 and the resonance frequency.
  • FIG. 19 is a graph showing the results of performing alumina catalyst temperature control in Example 6.
  • FIG. 20 is an explanatory view schematically showing a cavity, a reaction tube, and an electric field intensity distribution that are used in Example 7 as a TM 110 mode.
  • the present invention is not limited to the above adjustment method. For example, if a standing wave of TM 010 having the strongest electric field intensity at the center as shown in the electric field intensity distribution 11 and uniform electric field intensity in the longitudinal direction of the cylindrical axis is formed, the reactants in the reaction tube 15 are made uniform. Can be heated. Since the frequency of the signal generation source 13 at this time is determined by the dielectric constant of the reactant, the state of the reactant can be detected by monitoring the frequency.
  • the present embodiment is not limited to a standing wave of TM mn0 (m is an integer of 0 or more and n is an integer of 1 or more), and is not limited to a cylindrical microwave irradiation space.
  • the present invention is not limited to the configuration using the signal generation source 13 and the amplifier 12, and can be realized by a microwave generation source capable of adjusting the frequency.
  • the microwave incident wave power PF and the reflected wave power PR were measured, and the ratio PF / PR was taken as the microwave reflectance.
  • the result is shown in FIG. From the figure, it can be seen that the relationship between reflectance and temperature is monotonically increasing, and from this relationship, the temperature of ethylene glycol can be estimated by actually measuring the reflectance during microwave irradiation. (Ethylene glycol is not vaporized at this temperature.)
  • Example 6 With the apparatus shown in FIG. 17, the temperature control of the alumina-supported catalyst 30 arranged in the quartz tube 15 was performed without a temperature sensor.
  • the same reference numerals as those in FIG. 14 denote the same components.
  • a radiation thermometer is often used for non-contact temperature measurement.
  • the radiation thermometer measures the surface temperature of the outer wall of the reaction tube, and the temperature of the catalyst in the reaction tube is measured by the wavelength of the infrared rays to be measured. It was necessary to devise special measures such as In the present embodiment, even the substance in the reaction tube can be detected if there is a change in the dielectric constant temperature, and can be used even when non-contact measurement using a conventional radiation thermometer or the like is not possible.
  • Example 9 The ethylene glycol bubbles were sensed in the same manner as in Example 4 except that the cavity in the TM020 mode was used.
  • FIG. 22A shows a cavity to be TM 020 used as microwave irradiation means
  • FIG. 22B shows the electric field intensity distribution. In this case, the electric field strength at the center is strong, but there is a place where the electric field intensity is maximized on the outside.
  • a spiral reaction tube was passed through this part to detect bubbles. As a result, it was found that the same result can be obtained with the form shown in this embodiment as the microwave irradiation means.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

L'invention vise à procurer un procédé pour détecter de façon pratique et sûre l'état d'un matériau dans un réacteur chimique ou dans un dispositif de réaction sans l'utilisation d'un capteur spécialisé et sans toucher le matériau. A cet effet, l'invention porte sur un procédé pour mesurer et détecter, par rayonnement de micro-ondes, la température, l'état de phase et la composition d'un matériau irradié, la présence de matières étrangères ou de bulles, de changements dans ces caractéristiques, ou la progression d'un changement chimique ; le procédé comprend les états consistant à irradier le matériau par des micro-ondes, et à mesurer et à détecter l'état du matériau irradié sur la base d'un changement entre avant et après l'irradiation par les micro-ondes.
PCT/JP2012/061944 2011-05-10 2012-05-10 Mesure d'état de matériau, procédé de détection et dispositif de détection WO2012153793A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013514046A JP6112725B2 (ja) 2011-05-10 2012-05-10 物質の状態の測定、検出方法及び検出装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011105591 2011-05-10
JP2011-105591 2011-05-10
JP2011258087 2011-11-25
JP2011-258087 2011-11-25

Publications (1)

Publication Number Publication Date
WO2012153793A1 true WO2012153793A1 (fr) 2012-11-15

Family

ID=47139268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061944 WO2012153793A1 (fr) 2011-05-10 2012-05-10 Mesure d'état de matériau, procédé de détection et dispositif de détection

Country Status (2)

Country Link
JP (1) JP6112725B2 (fr)
WO (1) WO2012153793A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014221446A (ja) * 2013-05-13 2014-11-27 東京理化器械株式会社 反応装置
JP2015161597A (ja) * 2014-02-27 2015-09-07 国立研究開発法人産業技術総合研究所 電磁波特性評価装置
WO2015146600A1 (fr) * 2014-03-28 2015-10-01 株式会社前川製作所 Procédé de mesure de la température interne d'un objet à congeler et dispositif de mesure de la température interne d'un objet à congeler
JP2016079971A (ja) * 2014-10-17 2016-05-16 兵神装備株式会社 容積式ポンプ
WO2017051461A1 (fr) * 2015-09-24 2017-03-30 株式会社前川製作所 Procédé de mesure de la température interne d'un objet congelé et dispositif pour mesurer la température interne d'un objet congelé
JP2017220461A (ja) * 2017-08-30 2017-12-14 光洋サーモシステム株式会社 マイクロ波加熱に関する被加熱物の負荷推定装置、マイクロ波加熱装置、および、マイクロ波加熱に関する被加熱物の負荷推定方法
FR3057062A1 (fr) * 2016-10-04 2018-04-06 Centre National D'etudes Spatiales Procede de mesure de temperature d'un milieu, produit programme d'ordinateur, dispositif de traitement et ensemble de mesure associes
JP2020038060A (ja) * 2018-08-31 2020-03-12 国立研究開発法人産業技術総合研究所 触媒反応方法、及び触媒反応システム
JP2020148713A (ja) * 2019-03-15 2020-09-17 国立研究開発法人産業技術総合研究所 解析装置、方法及びプログラム
JP7446599B2 (ja) 2019-12-16 2024-03-11 国立研究開発法人産業技術総合研究所 樹脂乾燥装置及び樹脂乾燥方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279394A (ja) * 1985-10-01 1987-04-11 動力炉・核燃料開発事業団 マイクロ波加熱脱硝方法および装置
JP2002532239A (ja) * 1998-12-17 2002-10-02 パーソナル ケミストリー イ ウプサラ アーベー 化学反応を行うためのマイクロ波装置及び方法
JP2003509689A (ja) * 1999-09-17 2003-03-11 エスアイケイ―インスチチュート フォー ライブスメデル オーク バイオテクニク アーベー 製品内の異物を検出する装置および方法
JP2005501262A (ja) * 2001-08-24 2005-01-13 ライノ・アナリティクス・エルエルシー 超広帯域パルス分散分光分析方法及び多成分組成分析装置
JP2006266688A (ja) * 2005-03-22 2006-10-05 Matsushita Electric Ind Co Ltd 相転移の判定装置と判定方法および判定プログラム
JP2007017454A (ja) * 2006-10-06 2007-01-25 Meidensha Corp マイクロ波式濃度測定方法
JP2007071820A (ja) * 2005-09-09 2007-03-22 Nippon Steel Corp 排ガスのダスト濃度測定方法
JP2007163474A (ja) * 2005-12-16 2007-06-28 Agilent Technol Inc マイクロ波撮像システム及びマイクロ波による撮像方法
JP2008247667A (ja) * 2007-03-30 2008-10-16 Toyota Central R&D Labs Inc 改質装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5300014B2 (ja) * 2009-03-10 2013-09-25 独立行政法人産業技術総合研究所 流体へのマイクロ波連続照射方法及び装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279394A (ja) * 1985-10-01 1987-04-11 動力炉・核燃料開発事業団 マイクロ波加熱脱硝方法および装置
JP2002532239A (ja) * 1998-12-17 2002-10-02 パーソナル ケミストリー イ ウプサラ アーベー 化学反応を行うためのマイクロ波装置及び方法
JP2003509689A (ja) * 1999-09-17 2003-03-11 エスアイケイ―インスチチュート フォー ライブスメデル オーク バイオテクニク アーベー 製品内の異物を検出する装置および方法
JP2005501262A (ja) * 2001-08-24 2005-01-13 ライノ・アナリティクス・エルエルシー 超広帯域パルス分散分光分析方法及び多成分組成分析装置
JP2006266688A (ja) * 2005-03-22 2006-10-05 Matsushita Electric Ind Co Ltd 相転移の判定装置と判定方法および判定プログラム
JP2007071820A (ja) * 2005-09-09 2007-03-22 Nippon Steel Corp 排ガスのダスト濃度測定方法
JP2007163474A (ja) * 2005-12-16 2007-06-28 Agilent Technol Inc マイクロ波撮像システム及びマイクロ波による撮像方法
JP2007017454A (ja) * 2006-10-06 2007-01-25 Meidensha Corp マイクロ波式濃度測定方法
JP2008247667A (ja) * 2007-03-30 2008-10-16 Toyota Central R&D Labs Inc 改質装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014221446A (ja) * 2013-05-13 2014-11-27 東京理化器械株式会社 反応装置
JP2015161597A (ja) * 2014-02-27 2015-09-07 国立研究開発法人産業技術総合研究所 電磁波特性評価装置
US10161809B2 (en) 2014-03-28 2018-12-25 Mayekawa Mfg. Co., Ltd. Method for measuring internal temperature of freezing target object and internal temperature measurement device for freezing target object
WO2015146600A1 (fr) * 2014-03-28 2015-10-01 株式会社前川製作所 Procédé de mesure de la température interne d'un objet à congeler et dispositif de mesure de la température interne d'un objet à congeler
EP3109606A4 (fr) * 2014-03-28 2017-03-15 Mayekawa Mfg. Co., Ltd. Procédé de mesure de la température interne d'un objet à congeler et dispositif de mesure de la température interne d'un objet à congeler
JPWO2015146600A1 (ja) * 2014-03-28 2017-04-13 株式会社前川製作所 凍結対象物の内部温度測定方法及び凍結対象物の内部温度測定装置
AU2015235436B2 (en) * 2014-03-28 2017-07-20 Mayekawa Mfg. Co., Ltd. Method for measuring internal temperature of object to be frozen and device for measuring internal temperature of object to be frozen
JP2016079971A (ja) * 2014-10-17 2016-05-16 兵神装備株式会社 容積式ポンプ
WO2017051461A1 (fr) * 2015-09-24 2017-03-30 株式会社前川製作所 Procédé de mesure de la température interne d'un objet congelé et dispositif pour mesurer la température interne d'un objet congelé
JPWO2017051461A1 (ja) * 2015-09-24 2018-04-12 株式会社前川製作所 凍結対象物の内部温度測定方法及び凍結対象物の内部温度測定装置
FR3057062A1 (fr) * 2016-10-04 2018-04-06 Centre National D'etudes Spatiales Procede de mesure de temperature d'un milieu, produit programme d'ordinateur, dispositif de traitement et ensemble de mesure associes
JP2017220461A (ja) * 2017-08-30 2017-12-14 光洋サーモシステム株式会社 マイクロ波加熱に関する被加熱物の負荷推定装置、マイクロ波加熱装置、および、マイクロ波加熱に関する被加熱物の負荷推定方法
JP2020038060A (ja) * 2018-08-31 2020-03-12 国立研究開発法人産業技術総合研究所 触媒反応方法、及び触媒反応システム
JP7074340B2 (ja) 2018-08-31 2022-05-24 国立研究開発法人産業技術総合研究所 触媒反応方法、及び触媒反応システム
JP2020148713A (ja) * 2019-03-15 2020-09-17 国立研究開発法人産業技術総合研究所 解析装置、方法及びプログラム
JP7315200B2 (ja) 2019-03-15 2023-07-26 国立研究開発法人産業技術総合研究所 解析装置、方法及びプログラム
JP7446599B2 (ja) 2019-12-16 2024-03-11 国立研究開発法人産業技術総合研究所 樹脂乾燥装置及び樹脂乾燥方法

Also Published As

Publication number Publication date
JP6112725B2 (ja) 2017-04-12
JPWO2012153793A1 (ja) 2014-07-31

Similar Documents

Publication Publication Date Title
JP6112725B2 (ja) 物質の状態の測定、検出方法及び検出装置
JP4759668B2 (ja) マイクロ波加熱装置
JP5107278B2 (ja) マイクロ波加熱装置および加熱方法
Horikoshi et al. Microwave flow chemistry as a methodology in organic syntheses, enzymatic reactions, and nanoparticle syntheses
Horikoshi et al. A hybrid microreactor/microwave high-pressure flow system of a novel concept design and its application to the synthesis of silver nanoparticles
JP6004424B2 (ja) 水質分析装置及び水質分析方法
Plazl et al. Hydrolysis of sucrose by conventional and microwave heating in stirred tank reactor
US6630654B2 (en) Microwave heating apparatus
EP1214867A2 (fr) Systeme et procede de lyse cellulaire de petits echantillons par hyperfrequences
JP2017218667A (ja) 金属微粒子の製造方法及び金属微粒子の製造装置
KR20150086232A (ko) 정보 처리 장치, 정보 처리 방법 및 기록 매체
CA2463878C (fr) Dispositif de rechauffement par micro-ondes
WO2019107402A1 (fr) Dispositif de traitement par micro-ondes, procédé de traitement par micro-ondes et procédé de réaction chimique
JP5408566B2 (ja) 導電性薄膜のマイクロ波加熱
JP7268854B2 (ja) マイクロ波処理装置、マイクロ波処理方法及び化学反応方法
Nishioka et al. Controlled heating of palladium dispersed porous alumina tube and continuous oxidation of ethylene using frequency-variable single-mode microwave reactor
JP2020043051A (ja) マイクロ波処理装置、マイクロ波処理方法及び化学反応方法
JP2012052895A (ja) フローインジェクション分析装置及び分析方法
Sturm et al. Microwave reactor concepts: From resonant cavities to traveling fields
Longo et al. Chemical activation using an open-end coaxial applicator
JP2007326063A (ja) マイクロ化学反応装置
Wada et al. Activation of chemical reactions on solid catalysts under microwave irradiation
JP6004390B2 (ja) 液体の気化装置および液体の気化方法
Barham et al. Microwave flow chemistry
JP6971812B2 (ja) マイクロ波処理装置、マイクロ波処理方法、加熱処理方法及び化学反応方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782267

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013514046

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12782267

Country of ref document: EP

Kind code of ref document: A1