WO2012153439A1 - 角加速度検出素子 - Google Patents

角加速度検出素子 Download PDF

Info

Publication number
WO2012153439A1
WO2012153439A1 PCT/JP2011/079139 JP2011079139W WO2012153439A1 WO 2012153439 A1 WO2012153439 A1 WO 2012153439A1 JP 2011079139 W JP2011079139 W JP 2011079139W WO 2012153439 A1 WO2012153439 A1 WO 2012153439A1
Authority
WO
WIPO (PCT)
Prior art keywords
angular acceleration
support beam
axis
detection
weight
Prior art date
Application number
PCT/JP2011/079139
Other languages
English (en)
French (fr)
Inventor
市丸正幸
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to EP11865192.6A priority Critical patent/EP2708903A4/en
Priority to JP2013513899A priority patent/JP5618002B2/ja
Priority to CN201180070708.9A priority patent/CN103534597B/zh
Publication of WO2012153439A1 publication Critical patent/WO2012153439A1/ja
Priority to US14/064,371 priority patent/US9983003B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0888Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values for indicating angular acceleration

Definitions

  • the present invention relates to an angular acceleration detection element that detects angular acceleration acting around a detection axis.
  • a certain type of angular acceleration detection element includes a rotating weight, a support beam, and a detection unit (see, for example, Patent Documents 1 and 2).
  • the support beam extends in a direction perpendicular to the detection axis, and both ends thereof are connected to the rotary weight and the fixed portion.
  • the rotary weight rotates (swings) with respect to the fixed portion by the action of the rotational inertia force associated therewith.
  • the support beam is deformed as the rotating weight rotates, and the detection unit detects the stress generated in the support beam.
  • the angular acceleration around the detection axis can be measured from the detection signal of the detection unit.
  • the rotary weight is also rotated by the translational inertia force. Then, the translational inertia force becomes a noise factor of the detection signal, and the detection accuracy of the angular acceleration around the detection axis is lowered.
  • the angular acceleration detecting element is formed in a symmetrical shape with the center of gravity of the rotating weight as the center.
  • an annular rotary weight is supported from the inside by a plurality of support beams arranged symmetrically about the center of gravity.
  • the rotating weight is supported from the outside by a plurality of support beams arranged symmetrically about the center of gravity.
  • the angular acceleration detection element since the plurality of support beams receive the inertial force received by the rotating weight in a distributed manner, when the angular acceleration detection element is configured at a predetermined natural frequency, the stress generated on the beam per angular acceleration is small. Therefore, there is a problem that the sensitivity of detecting angular acceleration is lowered.
  • An object of the present invention is to provide an angular acceleration detecting element capable of realizing a high detection sensitivity by reducing the number of substantial support beams while ensuring the rotational balance of the rotary weight.
  • the present invention relates to an angular acceleration detection element including a rotary weight, a fixed portion, a support beam, and a detection portion.
  • the rotary weight rotates around the detection axis by the action of the rotational inertia force around the predetermined detection axis.
  • the fixing portion is provided at a position away from the rotating weight.
  • the support beam is provided between the fixed part and the rotary weight on a plane orthogonal to the detection axis, and elastically supports the rotary weight with respect to the fixed part.
  • the detection unit outputs a detection signal based on the stress generated in the support beam.
  • the rotating weight is such that the position of the center of gravity in the orthogonal plane overlaps the support beam. In this configuration, it is possible to balance the rotation of the rotary weight only with a single support beam that overlaps the position of the center of gravity of the rotary weight.
  • the angular acceleration detection element includes a plurality of support beams in which neutral surfaces of stress acting as the rotation weight rotates around a detection axis, and the rotation weight has a center of gravity in the orthogonal plane. The position overlaps the neutral plane.
  • the neutral surfaces of the stresses acting on each of the multiple support beams are the same, so the total stress distribution of the multiple support beams is substantially equivalent to the stress distribution of a single support beam. Become. For this reason, the rotational balance of the rotary weight can be achieved substantially by only a single support beam.
  • the rotating weight of the above-described angular acceleration detection element is configured in a thin plate shape having a direction along the detection axis as a thickness direction.
  • the rotary inertia force per angular acceleration can be increased.
  • the width of the support beam required to maintain the natural frequency increases and the length of the support beam decreases. This contributes to increasing the detection sensitivity of angular acceleration.
  • the rotating weight of the above-described angular acceleration detection element is configured to have a shape having a major axis direction and a minor axis direction along the orthogonal plane.
  • the moment of inertia of the rotating weight around the detection axis is further increased, so that the rotational inertia force per angular acceleration can be further increased.
  • the element occupation area required in order to obtain the same angular acceleration detection sensitivity can be reduced, and cost reduction and size reduction can be advanced.
  • the support beam of the above-described angular acceleration detection element is configured with the major axis direction of the rotating weight as the length direction.
  • the rotary weight having this configuration has a large moment of inertia around the short axis, and the rotary inertia force around the short axis due to disturbance vibrations becomes large. Therefore, if the minor axis direction of the rotating weight is the length direction of the support beam, the support beam is twisted due to the rotational inertial force around the minor axis, and excessive stress concentration occurs at the edge portion of the support beam, resulting in reduced impact resistance performance. Resulting in.
  • the length direction of the support beam to the long axis direction of the rotating weight as described above, it is possible to prevent the support beam from being twisted by the rotational inertia force around the short axis and to concentrate stress on the edge portion of the support beam. Can be avoided.
  • the rotating weight since the rotational balance of the rotating weight is balanced only by a substantially single support beam that supports the rotating weight, the rotating weight does not rotate even if a translational inertial force is applied. Since the number of typical support beams is reduced, the stress generated in the support beams is increased. From these things, the detection accuracy of angular acceleration can be improved.
  • the thickness direction of the angular acceleration detection element is the Z-axis of the orthogonal coordinate system
  • the length direction of the support beam is the Y-axis direction
  • the width direction of the support beam is the X-axis direction.
  • FIG. 1A is a perspective view showing the configuration of the angular acceleration detection element 1 according to the first embodiment of the present invention
  • FIG. 1B is a plan view of the angular acceleration detection element 1.
  • the angular acceleration detection element 1 is composed of an integral rectangular plate in which a groove penetrating between the upper and lower surfaces perpendicular to the Z-axis is formed. Prepare. The rectangular plate is cut out by surface processing of a semiconductor wafer. Semiconductor wafer surface processing has matured processing technology and processing apparatus performance, and can efficiently manufacture a plurality of rectangular plates with high accuracy.
  • the fixing portion 4 is provided in a rectangular shape at a position deviated from the center of the XY plane of the rectangular plate, and is fixed to at least one of the upper surface and the lower surface of a housing (not shown).
  • the rotary weight 2 is configured by providing a rectangular opening in a rectangular plate so as to surround the fixed portion 4 on the XY plane.
  • the support beam 3 is provided between the fixed portion 4 and the rotary weight 2 on the XY plane so as to extend in a rectangular shape in the positive direction of the Y axis, and the upper and lower surfaces of the rotary weight 2 float from a housing (not shown). In this state, the rotating weight 2 is supported by the fixed portion 4.
  • the detection unit 5 (not shown) outputs a detection signal corresponding to the stress acting on the support beam 3.
  • the center position of each of the support beam 3 and the fixed portion 4 in the X-axis coordinate is made to coincide with the center position of the rotary weight 2.
  • the center position of the fixed portion 4 in the Y-axis coordinates is shifted from the center position of the rotary weight 2 in the Y-axis negative direction.
  • the center position of the support beam 3 in the Y-axis coordinates is shifted from the center position of the rotary weight 2 in the positive Y-axis direction and coincides with the center of gravity of the rotary weight 2 in the Y-axis coordinates.
  • the rotating weight 2 rotates (oscillates) around the Z axis with respect to the fixed portion 4 in the XY plane by the rotation inertial force around the Z axis.
  • Angular acceleration is detected using the Z axis as a detection axis.
  • FIG. 2 is a diagram for explaining a distribution of stress generated in the support beam 3 when a rotational inertial force around the Z axis is applied.
  • the angular acceleration detection element 1 is shown rotating in a clockwise direction when viewed from the positive direction of the Z axis.
  • the rotary weight 2 rotates counterclockwise as viewed from the positive direction of the Z axis with respect to the fixed portion 4, and a counterclockwise rotational inertia force acts on the support beam 3 as viewed from the positive direction of the Z axis. .
  • the support beam 3 is subjected to compressive stress in a region near the side surface in the negative direction of the X axis and is subjected to tensile stress in a region near the side surface in the positive direction of the X axis, and bends in the negative direction of the X axis.
  • the center plane in the width direction of the support beam 3 is a neutral plane where the stress acts as a boundary between the tensile stress and the compressive stress, and it rotates on this center plane as viewed in the XY plane.
  • the gravity center position (illustrated by x) of the weight 2 overlaps.
  • FIG. 3 is a diagram illustrating the configuration of the detection unit 5.
  • FIG. 3A is a plan view of the vicinity of the support beam 3
  • FIG. 3B is a circuit diagram of the detection unit 5.
  • the detection unit 5 includes piezoresistors 5 ⁇ / b> A and 5 ⁇ / b> B whose longitudinal direction is the Y-axis direction on the upper surface of the support beam 3.
  • Piezoresistors 5A and 5B can be formed on a semiconductor wafer by using a semiconductor process, so that a fine position and shape can be made highly accurate.
  • These piezoresistors 5A and 5B are arranged in parallel on both sides of the neutral surface of the support beam 3, and are connected in series with each other and connected to a constant voltage source.
  • the piezoresistors 5A and 5B are reversely expanded and contracted.
  • the piezoresistors 5A and 5B increase in resistance value when extended, and decrease in resistance value when shortened. Therefore, since the voltage dividing ratio by the piezoresistors 5A and 5B varies, it is possible to detect the stress acting on the support beam 3 from the voltage across the piezoresistors 5A and 5B.
  • FIG. 4 is a diagram for explaining the deformation of the support beam and the change in piezoresistance due to the action of various accelerations.
  • FIG. 4 (A) shows a state in which a rotational inertia force counterclockwise as viewed from the positive direction of the Z-axis is applied to the angular acceleration detection element 1.
  • the support beam 3 is curved in the XY plane, the piezoresistor 5A is extended, and the piezoresistor 5B is shortened.
  • the extended piezoresistor 5A has an increased resistance value, and the shortened piezoresistor 5B has a decreased resistance value.
  • the detection part 5 the both-ends voltage of the piezoresistor 5A increases, and the both-ends voltage of the piezoresistor 5B decreases.
  • FIG. 4B shows a state in which a rotational inertia force counterclockwise as viewed from the positive direction of the X-axis acts on the angular acceleration detection element 1.
  • the support beam 3 is curved in the YZ plane, and both the piezoresistors 5A and 5B are shortened to lower the resistance value.
  • the detection part 5 the change of the resistance value of the piezoresistor 5A and the change of the resistance value of the piezoresistor 5B are canceled, and the divided voltage is maintained.
  • FIG. 4C shows a state in which a rotational inertia force counterclockwise as viewed from the positive direction of the Y-axis acts on the angular acceleration detection element 1.
  • the support beam 3 is twisted in the XZ plane.
  • the same twist occurs in the piezoresistors 5A and 5B, and the changes in the resistance values coincide. Therefore, in the detection unit 5, the change in the resistance value in the piezoresistor 5A and the change in the resistance value in the piezoresistor 5B are both canceled out, and the divided voltage is maintained.
  • FIG. 4 (D) shows a state in which the translational inertia force in the positive direction of the X-axis acts on the angular acceleration detection element 1.
  • the support beam 3 is curved in the XY plane.
  • the same bending occurs in the piezoresistors 5A and 5B, and the changes in resistance values coincide. Therefore, in the detection unit 5, the change in the resistance value in the piezoresistor 5A and the change in the resistance value in the piezoresistor 5B are both canceled out, and the divided voltage is maintained.
  • FIG. 4 (E) shows a state in which a translational inertia force in the positive direction of the Y-axis is applied to the angular acceleration detection element 1.
  • the support beam 3 extends in the Y-axis direction.
  • the piezoresistors 5A and 5B expand in the same manner and the changes in resistance value coincide.
  • the detection part 5 the change of the resistance value of the piezoresistor 5A and the change of the piezoresistor 5B resistance value are canceled, and the divided voltage is maintained.
  • FIG. 4F shows a state in which the translational inertia force in the positive direction of the Z-axis is applied to the angular acceleration detection element 1.
  • the support beam 3 is curved in the YZ plane.
  • the piezoresistors 5A and 5B are similarly expanded and contracted so that the changes in the resistance values coincide. Therefore, in the detection unit 5, the change in the resistance value in the piezoresistor 5A and the change in the resistance value in the piezoresistor 5B are both canceled out, and the divided voltage is maintained.
  • the output voltage changes only in the state where the rotational inertia force around the Z axis is applied.
  • the rotation angle ⁇ around the Z axis of the rotary weight 2 with respect to the fixed portion 4 is proportional to the angular acceleration ⁇ around the Z axis as shown by the following equation, and is a structure comprising the rotary weight 2, the support beam 3, and the fixed portion 4. Is inversely proportional to the square of the natural frequency f 0 around the Z axis.
  • the natural frequency f 0 be an appropriate set value. Therefore, when the natural frequency f 0 is determined, the rotation angle ⁇ / ⁇ per unit angular acceleration is uniquely determined as in the following equation.
  • the natural frequency f 0 depends on a plurality of shape parameters of the structure composed of the rotary weight 2, the support beam 3, and the fixed portion 4, and the dimensions of each part can be adjusted even when the number of support beams is different. Can be matched. Therefore, if the natural frequency f 0 is the same, the rotation angle ⁇ when the same angular acceleration is applied is the same.
  • FIG. 5A is a plan view showing a configuration of an angular acceleration detection element 10A according to a comparative configuration.
  • the angular acceleration detection element 10A includes two support beams, and is configured in a symmetric shape with the center of gravity of the rotating weight as the center.
  • FIG. 5B is a plan view showing the configuration of the angular acceleration detection element 10B according to the comparative configuration.
  • the angular acceleration detection element 10B includes four support beams, and is configured in a symmetric shape with respect to the position of the center of gravity of the rotary weight.
  • the external dimensions 2 mm ⁇ 2 mm ⁇ 200 ⁇ m are set together with the angular acceleration detection element 1 according to the embodiment, the rotary weight 2 and the fixed portion 4 have the same shape, and the natural frequency f 0 is adjusted by adjusting the dimensions of the support beam. Were matched at 2.0 kHz.
  • FIG. 5C is a diagram showing the dimensions and performance of each part in each analysis example.
  • the number n of support beams is 1, the length (Y-axis direction dimension) Ly of the support beam is 110 ⁇ m, and the width (X-axis direction dimension) Lx of the support beam is 20 ⁇ m.
  • the natural frequency f 0 is set to 2.0 kHz.
  • the number n of support beams is 2, the length (Y-axis direction dimension) Ly of the support beam is 441 ⁇ m, and the width (X-axis direction dimension) Lx of the support beam is 10 ⁇ m.
  • the natural frequency f 0 is set to 2.0 kHz.
  • the number n of support beams is 4, the length (Y-axis direction dimension) Ly of the support beam is 640 ⁇ m, and the width (X-axis direction dimension) Lx of the support beam is 10 ⁇ m.
  • the natural frequency f 0 is set to 2.0 kHz.
  • the deflection angle ⁇ ′ of the support beam is expressed by the product of the length Ly of the support beam and the deflection curvature 1 / ⁇ of the support beam as shown in the following equation.
  • the stress ⁇ generated in the vicinity of the piezoresistors 5A and 5B in the support beam 3 is the distance x from the neutral surface of the support beam to the piezoresistors 5A and 5B and the deflection curvature 1 / ⁇ of the support beam as shown in the following equation.
  • the product of the longitudinal elastic modulus E of the material of the support beam is the product of the longitudinal elastic modulus E of the material of the support beam.
  • the stress ⁇ generated in the support beam 3 per deflection angle ⁇ ′ of the support beam is increased by shortening the support beam length Ly and increasing the distance x from the neutral plane to the piezoresistors 5A and 5B. can do.
  • the stress ⁇ / ⁇ per unit angular acceleration generated in the vicinity of the piezoresistors 5A and 5B in the support beam 3 is also shorter than the support beam length Ly, and the distance x from the neutral plane to the piezoresistors 5A and 5B is x. It can be increased by increasing. This can be confirmed also by the finite element analysis shown in FIG.
  • the support beam length Ly is the shortest, and the maximum value per unit angular acceleration of the stress acting on the support beam 3 is 73 Pa / (rad / s 2 ).
  • the angular acceleration detecting element 10A according to the comparative example has a longer support beam length Ly, and the maximum value of the stress acting on the support beam 3 per unit angular acceleration is 49 Pa / (rad / s 2 ).
  • the angular acceleration detecting element 10B according to the comparative example has a longer support beam length Ly, and the maximum value per unit angular acceleration of the stress acting on the support beam 3 is 29 Pa / (rad / s 2 ).
  • the number of support beams is one and the stress acting on the support beam 3 is large, so that the rotational inertia force received by the support beam from the rotating weight is more concentrated.
  • the stress generated in the support beam increases, and the amount of deformation of the piezoresistors 5A and 5B increases, resulting in high detection sensitivity.
  • an example in which the outer shape of the rotary weight 2 viewed from the Z-axis direction is a rectangle is shown, but other shapes such as a circle and a star may be used.
  • the example which makes the internal shape of the rotary weight 2 substantially rectangular was shown, this may also be another shape.
  • fixed part 4 a rectangle was shown, this may be another shape.
  • the example which makes the shape of a support beam a rectangle was shown, this may also be another shape.
  • each part is configured by surface processing of a semiconductor wafer
  • the detection unit 5 is configured by piezoresistors 5A and 5B.
  • stress can be finally converted into an electrical signal. Any other configuration may be used as long as it is a means regardless of the detection principle, the manufacturing method, or the constituent material.
  • FIG. 6A is a perspective view of the angular acceleration detecting element 11 according to the second exemplary embodiment of the present invention in a deformed state.
  • FIG. 6B is a schematic diagram showing the peripheral structure of the support beam 13 of the angular acceleration detection element 11.
  • the angular acceleration detection element 11 includes a rotary weight 12, a support beam 13, a fixed portion 14, and a detection portion 15 (not shown).
  • the rotary weight 12, the support beam 13, and the fixed portion 14 can employ substantially the same configuration as in the first embodiment.
  • the main difference from the first embodiment is that piezoresistors 15A and 15B provided in the detection unit 15 (not shown) are arranged on the upper and lower surfaces of the support beam 13, and angular acceleration is detected using the X axis as a detection axis. It is.
  • FIG. 7 is a diagram for explaining a stress distribution generated in the support beam 13 when a rotational inertial force around the X axis is applied.
  • the figure shows a state in which the angular acceleration detection element 11 rotates counterclockwise when viewed from the positive direction of the X axis.
  • the rotary weight 12 rotates clockwise as viewed from the X-axis positive direction with the fixed portion 14 as a reference, and a clockwise rotational inertial force as viewed from the X-axis positive direction acts on the support beam 13.
  • the support beam 13 is subjected to a compressive stress in a region near the upper surface in the positive direction of the Z axis, and a tensile stress is applied to a region in the vicinity of the lower surface in the negative direction of the Z axis. It will be.
  • the center surface in the thickness direction of the support beam 13 becomes a boundary between the tensile stress and the compressive stress and becomes a neutral surface (illustrated by a one-dot chain line) where no stress acts.
  • the center of gravity (illustrated by x) of the rotary weight 12 in the YZ plane is positioned on this neutral plane, so that the rotation balance of the rotary weight 12 around the X axis is secured and the detection unit 15 ( The angular acceleration around the X axis can be detected with high detection sensitivity. In this manner, the angular acceleration detection element can be configured.
  • FIG. 8 is a perspective view showing the configuration of the angular acceleration detection element 91 according to the third embodiment.
  • the angular acceleration detection element 91 is made of a rectangular plate having a groove penetrating between the upper and lower surfaces perpendicular to the Z axis, and includes a rotary weight 92, a support beam 93, a fixing portion 94, and a detection portion 95 (not shown).
  • the rotary weight 92 is U-shaped with the Y-axis negative direction open, and the X-axis direction is the long axis and the Y-axis direction is the short axis.
  • the center of the support beam 93 coincides with the center of gravity of the rotary weight 92, and the Y-axis direction is the length direction and the X-axis direction is the width direction.
  • the fixing portion 94 is provided in the opening of the rotating weight 92 and is fixed to a housing (not shown) at least one of the upper surface and the lower surface, and supports the rotating weight 92 via the support beam 93.
  • the rotary weight 92 rotates (swings) around the Z axis with respect to the fixed portion 94 in the XY plane by the action of the rotational inertia force around the Z axis.
  • Angular acceleration can be detected using the Z axis as a detection axis.
  • the rotary weight 92 has a shape having the major axis in the X-axis direction, the moment of inertia around the Z-axis is large, and the square area of the same element-occupied area is larger than when the rotary weight has a square shape.
  • the rotational inertia force per acceleration can be increased. Therefore, the support beam 93 can be made thick and short while maintaining the natural frequency of the angular acceleration detection element 91, and the angular acceleration detection sensitivity can be increased.
  • FIG. 9A is a perspective view of the angular acceleration detection element 21 according to the fourth embodiment.
  • the angular acceleration detection element 21 is formed of a rectangular plate in which a groove penetrating between the upper and lower surfaces perpendicular to the Z axis is formed, and includes a rotary weight 22, a support beam 23, a fixing unit 24, and a detection unit 25 (not shown).
  • the rotary weight 22 has a U-shape in which the positive direction of the X axis is open, and the Y axis direction is the long axis and the X axis direction is the short axis.
  • the center of the support beam 23 coincides with the center of gravity of the rotary weight 22, and the Y-axis direction is the length direction and the X-axis direction is the width direction.
  • the fixing unit 24 is provided in the opening of the rotary weight 22 and is fixed to at least one of the upper surface and the lower surface of a housing (not shown), and supports the rotary weight 22 via the support beam 23.
  • FIG. 9B is a diagram for explaining a stress distribution generated in the support beam 23 when a rotational inertial force around the Z axis is applied.
  • the figure shows a state in which the angular acceleration detection element 21 rotates clockwise as viewed from the positive Z-axis direction.
  • the rotary weight 22 rotates counterclockwise as viewed from the positive direction of the Z axis with reference to the fixed portion 24, and a counterclockwise rotational inertia force acts on the support beam 23 as viewed from the positive direction of the Z axis. .
  • the support beam 23 is subjected to compressive stress in the region near the side surface in the negative X-axis direction, and is subjected to tensile stress in the region near the side surface in the positive X-axis direction, and is bent in the negative X-axis direction.
  • the center plane in the width direction of the support beam 23 becomes a neutral plane (illustrated by a one-dot chain line). Then, by arranging the center of gravity (illustrated by x) of the rotary weight 22 in the XY plane on this central plane, the detection unit 25 (while maintaining the rotational balance of the rotary weight 22 around the Z axis) The angular acceleration around the Z axis can be detected with high detection sensitivity.
  • the rotary weight 22 has a shape with the Y axis direction as the long axis, and therefore, the moment of inertia around the Z axis is large, and the outer shape of the rotary weight is a square shape. Rotational inertia force per angular acceleration can be increased with the same element occupation area. Therefore, it becomes possible to make the support beam thicker and shorter while maintaining the natural frequency of the angular acceleration detection element 21, and the angular acceleration detection sensitivity can be increased.
  • the rotary weight 22 has a large moment of inertia around the X axis, and the rotary inertia force around the short axis of the rotary weight 22 due to disturbance vibration becomes large.
  • the rotational inertial force around the minor axis of the rotary weight causes the support beam 23 to be twisted.
  • the rotational inertial force around the short axis of the rotary weight causes the support beam 23 to bend rather than twist.
  • the length direction of the support beam matches the long axis direction of the rotating weight as in this embodiment.
  • FIG. 10 is a diagram for explaining a stress distribution when a rotational inertia force acts in the angular acceleration detection element 31 according to the fifth embodiment.
  • the angular acceleration detection element 31 includes a rotary weight 32, a support beam 33, a fixed part 34, and a detection part 35 (not shown).
  • the rotary weight 32, the fixed part 34, and the detection part 35 (not shown) have substantially the same configuration as that of the fourth embodiment.
  • the main difference from the fourth embodiment is that two support beams 33 provided in parallel with a center of gravity (illustrated by x) of the rotary weight 32 are provided.
  • the stresses acting on the two support beams 33 are of opposite polarities, that is, tensile stress or compressive stress.
  • the neutral plane illustrated by a one-dot chain line
  • the detection unit 35 can detect the angular acceleration around the Z axis with high detection sensitivity while ensuring the rotational balance of the rotary weight 32 around the Z axis. In this manner, the angular acceleration detection element can be configured.
  • FIG. 11 is a diagram for explaining a stress distribution when a rotational inertia force acts in the angular acceleration detection element 41 according to the sixth embodiment.
  • the angular acceleration detection element 41 includes a rotary weight 42, a support beam 43, a fixed portion 44, and a detection portion 45 (not shown).
  • the rotary weight 42, the fixing unit 44, and the detection unit 45 (not shown) have substantially the same configuration as that of the fourth embodiment.
  • the main difference from the fourth embodiment is that the support beam 43 is centered at the center of gravity of the rotary weight 42, and is configured in an H shape in which the Y-axis direction is the length direction and the X-axis direction is the width direction. It is a point to be done.
  • the center of gravity (illustrated by x) of the rotating weight 42 in the XY plane is positioned on the neutral plane (illustrated by the alternate long and short dash line) of the support beam 43, so that the rotating weight 42 around the Z axis. It is possible to detect the angular acceleration around the Z axis with high detection sensitivity while ensuring the rotation balance. From the finite element analysis, it can be confirmed that the closer to the center of the support beam 43 in the Y-axis direction, the greater the stress in the area near the both side surfaces. By doing so, it is considered that the angular acceleration detection sensitivity can be further increased.
  • FIG. 12 is a diagram for explaining a stress distribution when a rotational inertia force acts in the angular acceleration detection element 51 according to the seventh embodiment.
  • the angular acceleration detection element 51 includes a rotary weight 52, a support beam 53, a fixed portion 54, and a detection portion 55 (not shown).
  • the rotary weight 52, the fixed part 54, and the detection part 55 (not shown) have substantially the same configuration as that of the fourth embodiment.
  • the main difference from the fourth embodiment is that the center of the support beam 53 coincides with the center of gravity of the rotary weight 52, the Y-axis direction is the length direction, the X-axis direction is the width direction, and the center width is narrow. The point is that the both ends are formed in a tapered shape.
  • the center of gravity (illustrated by x) of the rotating weight 52 in the XY plane is positioned on the neutral plane (illustrated by the alternate long and short dash line) of the support beam 53, so that the rotating weight 52 around the Z axis is located. It is possible to detect the angular acceleration around the Z axis with high detection sensitivity while ensuring the rotation balance. From the finite element analysis, it can be confirmed that the stress is concentrated in the vicinity of the center of the support beam 53 in the Y-axis direction. From this, it is possible to detect angular acceleration by setting those regions as the stress detection position of the detection unit 55. It is considered that the sensitivity can be further increased.
  • FIG. 13 is a diagram for explaining a stress distribution when a rotational inertia force acts in the angular acceleration detection element 61 according to the eighth embodiment.
  • the angular acceleration detection element 61 includes a rotary weight 62, a support beam 63, a fixed portion 64, and a detection portion 65 (not shown).
  • the rotary weight 62 and the fixed portion 64 have substantially the same configuration as that of the fourth embodiment.
  • the main difference from the fourth embodiment is that the center of the support beam 63 coincides with the center of gravity of the rotary weight 62, the Y-axis direction is the length direction, the X-axis direction is the width direction, and the center is wide. However, it is the point which comprised in the multistage shape which comprised the both ends narrowly.
  • the center of gravity (illustrated by x) of the rotating weight 62 in the XY plane is positioned on the neutral plane (illustrated by the alternate long and short dash line) of the support beam 63, so that the rotating weight 62 around the Z axis can be obtained. It becomes possible to ensure the rotation balance of the.
  • the stress detection of the detection unit 65 (not shown) is detected. It is considered that the angular acceleration around the Z axis can be detected with high detection sensitivity by setting the position to be a narrow region near both ends of the support beam 63.
  • FIG. 14 is a partially enlarged perspective view of an angular acceleration detection element 71 according to the ninth embodiment.
  • the angular acceleration detection element 71 includes a rotary weight 72, a support beam 73, a fixed portion 74, and a detection portion 75 (not shown).
  • the rotary weight 72, the fixing unit 74, and the detection unit 75 (not shown) have substantially the same configuration as that of the fourth embodiment.
  • the main difference from the fourth embodiment is that a protrusion 73A is provided on the upper surface of the support beam 73 in the positive Z-axis direction.
  • the protrusions may be on only the upper surface, only the lower surface, or both upper and lower surfaces.
  • Providing the protrusion 73A increases the thickness of the support beam 73 in the Z-axis direction and increases the rigidity. Even if an excessive bending stress acts around the X-axis, the support beam 73 can be prevented from being damaged.
  • FIG. 15A is a perspective view of an angular acceleration detection element 81 according to the tenth embodiment.
  • the angular acceleration detection element 81 has a configuration in which two configurations of the fourth embodiment are abutted and a rotating weight is integrated, and the rotating weight 82, the support beam 83, the fixing portion 84, and the detecting portion 85 (not shown). ).
  • the rotary weight 82 has a square shape with an opening, and the major axis is the Y-axis direction and the minor axis is the X-axis direction.
  • Two support beams 83 and two fixed portions 84 are disposed in the opening of the rotary weight 82.
  • the two support beams 83 are provided in parallel across the center of gravity of the rotary weight 82.
  • the two fixing portions 84 are fixed to a housing (not shown) at least one of the upper surface and the lower surface, and support the rotary weight 82 via the support beams 83, respectively.
  • FIG. 15B is a diagram for explaining a stress distribution generated in the support beam 83 when a rotational inertial force around the Z axis acts.
  • the figure shows a state in which the angular acceleration detection element 81 rotates clockwise as viewed from the positive Z-axis direction.
  • the rotary weight 82 rotates counterclockwise as viewed from the positive direction of the Z-axis with respect to the fixed portion 84, and a counterclockwise rotational inertia force acts on the support beam 83 as viewed from the positive direction of the Z-axis. .
  • the neutral plane of stress acting on each of the support beams 83 (illustrated by a one-dot chain line) coincides between the two support beams 83, and the rotary weight 82 in the XY plane is placed on the neutral plane.
  • the angular acceleration around the Z axis can be detected with high detection sensitivity while ensuring the rotational balance of the rotary weight 82 around the Z axis.
  • FIG. 16 is a perspective view showing the configuration of the angular acceleration detection element 101 according to the eleventh embodiment.
  • the angular acceleration detection element 101 includes a rotating weight 102, a support beam 103, a fixing unit 104, and a detection unit 105 (not shown).
  • the support beam 103, the fixing unit 104, and the detection unit 105 (not shown) have the same configuration as that of the third embodiment.
  • the main difference from the third embodiment is that the rotary weight 102 includes partial protrusions 102A and 102B on the upper surface in the Z-axis positive direction. Such partial protrusions may be provided only on the upper surface, only the lower surface, or both the upper and lower surfaces of the rotary weight 102.
  • the rotating weight 102 rotates (oscillates) around the Z axis with respect to the fixed portion 104 in the XY plane by the action of the rotational inertia force around the Z axis.
  • Angular acceleration can be detected using the Z axis as a detection axis.
  • FIG. 17 is a perspective view showing the configuration of the angular acceleration detection element 111 according to the twelfth embodiment.
  • the angular acceleration detection element 111 includes a rotary weight 112, a support beam 113, a fixed portion 114, and a detection portion 115 (not shown).
  • the rotary weight 112 has a circular outer shape. Even in the angular acceleration detecting element 111 having such a configuration, the rotating weight 112 rotates (swings) about the Z axis with respect to the fixed portion 114 in the XY plane by the action of the rotational inertia force about the Z axis. Angular acceleration can be detected using the Z axis as a detection axis.
  • FIG. 18 is a perspective view showing the configuration of the angular acceleration detection element 121 according to the thirteenth embodiment.
  • the angular acceleration detection element 121 includes a rotary weight 122, a support beam 123, a fixing unit 124, and a detection unit 125 (not shown).
  • the outer shape of the rotary weight 122 has a circular shape
  • the support beam 123 has a shape that is narrow at the center and wide at both ends and has a semicircular side when viewed from the XY plane.
  • the rotating weight 122 rotates (oscillates) around the Z axis with respect to the fixed portion 124 in the XY plane by the action of the rotational inertia force around the Z axis.
  • Angular acceleration can be detected using the Z axis as a detection axis.
  • FIG. 19 is a perspective view showing the configuration of the angular acceleration detection element 131 according to the fourteenth embodiment.
  • the angular acceleration detection element 131 includes a rotary weight 132, a support beam 133, a fixed part 134, and a detection part 135 (not shown).
  • the rotary weight 132 has an elliptical outer shape, the Y-axis direction is the long axis, and the X-axis direction is the short axis. Even in the angular acceleration detecting element 131 having such a configuration, the rotating weight 132 rotates (oscillates) around the Z axis with respect to the fixed portion 134 in the XY plane due to the rotational inertial force around the Z axis. Angular acceleration can be detected using the Z axis as a detection axis.
  • FIG. 20 is a perspective view showing the configuration of the angular acceleration detection element 141 according to the fifteenth embodiment.
  • the angular acceleration detection element 141 includes a rotary weight 142, a support beam 143, a fixed portion 144, and a detection portion 145 (not shown).
  • the rotary weight 142 has a rectangular outer shape and includes a rectangular opening 142A. By providing the opening 142A, it becomes easy to adjust the position of the center of gravity of the rotary weight 142. Even in the angular acceleration detecting element 141 having such a configuration, the rotating weight 142 rotates (oscillates) around the Z axis with respect to the fixed portion 144 in the XY plane by the action of the rotational inertia force around the Z axis. Angular acceleration can be detected using the Z axis as a detection axis.
  • FIG. 21 is a perspective view showing the configuration of the angular acceleration detection element 151 according to the sixteenth embodiment.
  • the angular acceleration detection element 151 includes a rotating weight 152, a support beam 153, a fixed portion 154, an extraction electrode 155, and a detection portion 156 (not shown).
  • the angular acceleration detection element 151 has a configuration in which the fixed portion 154 is disposed on the outer peripheral side and the rotary weight 152 is disposed on the inner side of the fixed portion 154.
  • the fixed portion 154 has an outer shape viewed from the XY plane having a rectangular shape with a major axis in the Y-axis direction and a minor axis in the X-axis direction.
  • the rotary weight 152 has a U-shape that is disposed in the opening of the fixed portion 154 in the XY plane and has an open X-axis positive direction.
  • the support beam 153 is disposed at the position of the center of gravity of the rotary weight 152, and the Y-axis direction is the length direction and the X-axis direction is the width direction.
  • the extraction electrode 155 is extracted from the support beam 153 to the upper surface of the fixed portion 154.
  • the rotating weight 152 rotates (swings) around the Z axis with respect to the fixed portion 154 in the XY plane by the rotation inertia force around the Z axis, and the Z axis is detected.
  • Angular acceleration can be detected as an axis.
  • the outer periphery of the fixed portion 154 becomes a separation surface. Therefore, at the time of separation, the rotating weight 152 can be prevented from coming into contact with other members, and the support beam 153 can be prevented from being damaged due to excessive weight. Also, when the angular acceleration detection element is incorporated into another member, the rotating weight 152 can be prevented from coming into contact with the other member, and assembly can be facilitated.
  • FIG. 22 is a diagram illustrating another configuration of the detection unit.
  • the detection unit is composed of four piezoresistors 166A to 166D.
  • the piezoresistors 166A and 166B are arranged in the negative direction of the X axis with respect to the neutral surface of the upper surface of the support beam 163.
  • the piezoresistors 166C and 166D are arranged in the positive direction of the X axis with respect to the neutral surface of the upper surface of the support beam 163.
  • the piezoresistors 166A and 166C are arranged on the Y axis negative direction side of the upper surface of the support beam 163, and the piezoresistors 166B and 166D are arranged on the Y axis positive direction side of the upper surface of the support beam 163.
  • piezo resistors 166A to 166D constitute a bridge circuit.
  • Piezoresistors 166A and 166B are provided on opposite sides of the four sides of the bridge circuit, and piezoresistors 166C and 166D are also provided on opposite sides of the four sides of the bridge circuit.
  • Piezoresistors provided on the opposite side with the neutral plane of the support beam 163 as a boundary are connected in series, and two series circuits are connected in parallel to a constant voltage source or a constant current source. Wiring is performed so that the potentials of the bridge output terminals change with opposite polarities, and the potential difference can be measured as a voltage fluctuation.
  • the bridge circuit By adopting the bridge circuit, a larger potential difference can be obtained with the same stress as compared with the case where angular acceleration is detected using the voltage division ratio as shown in the first embodiment.
  • a bridge circuit it is possible to increase the common mode rejection ratio with respect to drive power supply noise, and to extract a minute electric signal with a good S / N ratio. For these reasons, detection sensitivity and detection accuracy of angular acceleration can be further increased.
  • FIG. 23 is a perspective view showing a configuration of an angular acceleration detection element 171 according to the seventeenth embodiment.
  • the angular acceleration detection element 171 includes a rotary weight 172, a support beam 173, a fixed part 174, an extraction electrode 175, and a detection part 176 (not shown). Similar to the sixteenth embodiment, the angular acceleration detection element 171 has a configuration in which the fixed portion 174 is disposed on the outer peripheral side and the rotary weight 172 is disposed on the inner side of the fixed portion 174. The main difference from the sixteenth embodiment is the arrangement position of the extraction electrode 175.
  • the angular acceleration detection element 171 When the angular acceleration detection element 171 is housed in the housing, it is necessary to read an electrical signal from the extraction electrode 175 connected to the piezoresistor. However, the distance between the extraction electrodes 175 is a certain length or more due to the restrictions on the housing processing. There is a need.
  • two of the four extraction electrodes 175 are drawn out to the opposite side across the rotating weight 172 of the fixed portion 174, thereby suppressing the area required for forming the extraction electrode, A large moment of inertia of the rotary weight 172 can be ensured, and as a result, a decrease in angular acceleration detection sensitivity can be suppressed.
  • FIG. 24 is a diagram illustrating another configuration of the detection unit.
  • This detection unit constitutes a bridge circuit by four piezoresistors 186A to 186D.
  • the piezoresistors 186A and 186B are arranged in the X-axis negative direction and parallel to the Y-axis with respect to the neutral surface of the upper surface of the support beam 183.
  • the piezoresistors 186C and 186D are arranged in parallel to the Y axis in the positive direction of the X axis from the neutral surface of the upper surface of the support beam 183.
  • the piezoresistors 186A to 186D are arranged, the piezoresistors provided on the opposite side with the neutral surface of the support beam 183 as a boundary are connected in series, and two series circuits are connected to a constant voltage source or a constant current. By connecting in parallel to the source, wiring can be performed so that the potentials of the bridge output terminals change with opposite polarities due to the stress of the support beam 183, and the potential difference can be measured as a voltage fluctuation.
  • FIG. 25 is a diagram illustrating the configuration of the angular acceleration detection element 191 according to the eighteenth embodiment.
  • the angular acceleration detection element 191 of this embodiment is configured to detect angular acceleration around the X axis, as in the second embodiment.
  • a bridge circuit is configured by the four piezoresistors 196A to 196D.
  • the piezoresistors 196A and 196B are disposed on the lower surface of the support beam 193.
  • the piezoresistors 196C and 196D are disposed on the upper surface of the support beam 193.
  • piezoresistors 196A to 196D are arranged in this way, two piezoresistors provided on the opposite side with the neutral surface (parallel to the XY plane) of the support beam 193 as a boundary are connected in series. Is connected in parallel to a constant voltage source or a constant current source so that the potentials of the bridge output terminals change with opposite polarities due to the stress of the support beam 193, and the potential difference is measured as a voltage fluctuation. Can do.
  • the present invention can be implemented in various forms. At least the center of gravity of the rotary weight overlaps with the support beam, or the configuration overlaps with the neutral surface of the support beam.
  • the invention can be suitably implemented.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Pressure Sensors (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

 角加速度検出素子(1)は回転錘(2)と固定部(4)と支持梁(3)と検出部(5)を備える。回転錘(2)は、Z軸回りの角加速度による慣性力の作用で固定部(4)に対してZ軸回りに回転する。固定部(4は回転錘(2)から離間する位置に設けられる。支持梁(3)は、X-Y面における固定部(4)と回転錘(2)との間に設けられ、固定部(4)に対して回転錘(2)を弾性支持する。検出部(5)は支持梁(3)に発生した応力に応じた検出信号を出力する。回転錘(2)は、Z軸方向から視た回転錘(2)の重心位置が支持梁(3)に重なる。

Description

角加速度検出素子
 この発明は、検出軸回りに作用する角加速度を検出する角加速度検出素子に関する。
 ある種の角加速度検出素子は、回転錘と支持梁と検出部を備えて構成される(例えば特許文献1および2参照。)。支持梁は、検出軸に対して垂直な方向に延設され、両端部が回転錘と固定部とに接続される。回転錘は、角加速度検出素子に検出軸回りの角加速度が作用すると、それに伴う回転慣性力の作用で固定部に対して回転(揺動)する。支持梁は回転錘の回転に伴って変形し、検出部は支持梁に生じる応力を検出する。支持梁に生じる応力は回転錘に作用する検出軸回りの角加速度に応じて変化するため、検出部の検出信号から検出軸回りの角加速度を計測することができる。
 このような角加速度検出素子において、回転錘の検出軸回りでの回転バランスが崩れていれば、並進慣性力によっても回転錘が回転してしまう。すると、並進慣性力が検出信号のノイズ要因となり、検出軸回りでの角加速度の検出精度が低下する。
 通常、回転錘の回転バランスを取るために、角加速度検出素子は回転錘の重心位置を中心に対称形状で形成される。特許文献1では、重心位置を中心に対称に配置した複数の支持梁で、環状の回転錘を内側から支持する。特許文献2では、重心位置を中心に対称に配置した複数の支持梁で、回転錘を外側から支持する。
特許第2602300号公報 特開2010-139263号公報
 先行技術では、回転錘の受けた慣性力を複数の支持梁が分散して受けるため、所定の固有振動数で角加速度検出素子を構成した場合に、角加速度あたりの梁に発生する応力が小さくなり、角加速度の検出感度が低くなるという問題があった。
 そこで、角加速度検出素子で高い検出感度を得るために、支持梁の数を減らすことが考えられるが、回転錘の回転バランスを確保するためには支持梁の数や配置には強い制約があり、支持梁の数の低減には限界があった。
 本発明の目的は、回転錘の回転バランスを確保しながら実質的な支持梁の数を低減し、高い検出感度を実現できる角加速度検出素子を提供することにある。
 この発明は、回転錘と固定部と支持梁と検出部を備える角加速度検出素子に関する。回転錘は、所定の検出軸回りの回転慣性力の作用で検出軸回りに回転する。固定部は前記回転錘から離間する位置に設けられる。支持梁は、前記検出軸に対する直交面における前記固定部と前記回転錘との間に設けられ、前記固定部に対して前記回転錘を弾性支持する。検出部は前記支持梁に生じる応力に基づく検出信号を出力する。そして、回転錘は、前記直交面における重心位置が前記支持梁に重なるものである。
 この構成では、回転錘の重心位置に重なる単一の支持梁のみで回転錘の回転バランスを取ることができる。
 または、この発明の角加速度検出素子は、検出軸回りでの前記回転錘の回転に伴って作用する応力の中立面が一致する複数の支持梁を備え、回転錘は、前記直交面における重心位置が前記中立面に重なるものである。
 この構成では、複数の支持梁それぞれに作用する応力の中立面が一致するため、複数の支持梁の総体としての応力分布が、単一の支持梁による応力分布と実質的に等価なものになる。このため、実質的に単一の支持梁のみで回転錘の回転バランスを取ることができる。
 上述の角加速度検出素子の回転錘は、前記検出軸に沿う方向を厚み方向とする薄板状に構成されると好適である。
 この構成では、検出軸回りでの回転錘の慣性モーメントが大きくなるため、角加速度あたりの回転慣性力を大きくすることができる。すると、固有振動数を保つために必要な支持梁の幅が太くなるとともに支持梁の長さが短くなる。このことが角加速度の検出感度を高めることに寄与する。
 上述の角加速度検出素子の回転錘は、前記直交面に沿う長軸方向と短軸方向とを持つ形状で構成されると好適である。
 この構成では、検出軸回りでの回転錘の慣性モーメントがさらに大きくなるため、角加速度あたりの回転慣性力をより大きくすることができる。このため、同じ角加速度検出感度を得るために必要な素子占有面積を低減でき、低コスト化や小型化を進展させることができる。
 上述の角加速度検出素子の支持梁は、前記回転錘の長軸方向を長さ方向として構成されると好適である。
 この構成の回転錘は短軸回りの慣性モーメントが大きく、外乱振動による短軸回りの回転慣性力が大きくなってしまう。そのため、回転錘の短軸方向が支持梁の長さ方向であれば、短軸回りの回転慣性力により支持梁が捻れ、支持梁のエッジ部分に過大な応力集中が生じて耐衝撃性能が低下してしまう。そこで、上述のように支持梁の長さ方向を回転錘の長軸方向とすることで、短軸回りの回転慣性力によって支持梁が捻れることを防ぎ、支持梁のエッジ部分への応力集中を回避できる。
 この発明によれば、回転錘を支持する実質的に単一の支持梁のみで回転錘の回転バランスを取るため、並進慣性力が作用しても回転錘の回転が生じず、その上、実質的な支持梁の数が低減されるために支持梁に生じる応力が大きくなる。これらのことから角加速度の検出精度を向上させることができる。
第1の実施形態に係る角加速度検出素子の構成を説明する図である。 角加速度検出素子での応力分布のシミュレーションを説明する図である。 角加速度検出素子での検出回路の構成を説明する図である。 検出回路の動作を説明する図である。 本構成と比較構成の有限要素解析について説明する図である。 第2の実施形態に係る角加速度検出素子を説明する図である。 角加速度検出素子での応力分布のシミュレーションを説明する図である。 第3の実施形態に係る角加速度検出素子を説明する図である。 第4の実施形態に係る角加速度検出素子を説明する図である。 第5の実施形態に係る角加速度検出素子を説明する図である。 第6の実施形態に係る角加速度検出素子を説明する図である。 第7の実施形態に係る角加速度検出素子を説明する図である。 第8の実施形態に係る角加速度検出素子を説明する図である。 第9の実施形態に係る角加速度検出素子を説明する図である。 第10の実施形態に係る角加速度検出素子を説明する図である。 第11の実施形態に係る角加速度検出素子を説明する図である。 第12の実施形態に係る角加速度検出素子を説明する図である。 第13の実施形態に係る角加速度検出素子を説明する図である。 第14の実施形態に係る角加速度検出素子を説明する図である。 第15の実施形態に係る角加速度検出素子を説明する図である。 第16の実施形態に係る角加速度検出素子を説明する図である。 角加速度検出素子での検出回路の構成を説明する図である。 第17の実施形態に係る角加速度検出素子を説明する図である。 角加速度検出素子での検出回路の構成を説明する図である。 第18の実施形態に係る角加速度検出素子の検出回路の構成を説明する図である。
 以下の説明では、角加速度検出素子の厚み方向を直交座標系のZ軸とし、支持梁の長さ方向をY軸方向、支持梁の幅方向をX軸方向とする。
《第1の実施形態》
 図1(A)は本発明の第1の実施形態に係る角加速度検出素子1の構成を示す斜視図であり、図1(B)は角加速度検出素子1の平面図である。
 角加速度検出素子1は、Z軸に垂直な上下面間を貫通する溝を形成した一体の矩形板からなり、回転錘2、支持梁3、固定部4、および検出部5(不図示)を備える。矩形板は半導体ウェハの面加工により切り出されたものである。半導体ウェハの面加工は加工技術や加工装置の性能が成熟しており、複数の矩形板を効率的に高精度に製造することができる。
 固定部4は、矩形板のX-Y面中心からずれた位置に矩形状で設けられ、図示しない筐体に上面と下面との少なくとも一方で固定される。回転錘2は、X-Y面で固定部4を囲むように矩形板に矩形開口を設けて構成している。支持梁3は、X-Y面における固定部4と回転錘2との間に、Y軸正方向に長方形状に延設して設けられ、回転錘2の上下面を図示しない筐体から浮いた状態にして固定部4に回転錘2を支持させる。検出部5(不図示)は支持梁3に作用する応力に応じた検出信号を出力する。
 支持梁3、固定部4それぞれのX軸座標における中心位置は、回転錘2の中心位置に一致させている。固定部4のY軸座標における中心位置は、回転錘2の中心位置からY軸負方向にずらしている。支持梁3のY軸座標における中心位置は、回転錘2の中心位置からY軸正方向にずらし、回転錘2のY軸座標における重心に一致させている。
 このような構成の角加速度検出素子1は、Z軸回りの回転慣性力が作用することで回転錘2がX-Y面において固定部4に対してZ軸回りに回転(揺動)し、Z軸を検出軸として角加速度を検出することになる。
 図2は、Z軸回りの回転慣性力が作用する場合の、支持梁3に発生する応力分布を説明する図である。図中には、角加速度検出素子1がZ軸正方向から視て時計回りに回転する状態を示している。
 この場合、回転錘2は、固定部4を基準としてZ軸正方向から視て反時計回りに回転し、支持梁3にはZ軸正方向から視て反時計回りの回転慣性力が作用する。これにより、支持梁3は、X軸負方向の側面近傍の領域に圧縮応力が作用し、X軸正方向の側面近傍の領域に引っ張り応力が作用し、X軸負方向に撓むことになる。支持梁3の幅方向の中心面(一点鎖線で図示する。)が引っ張り応力と圧縮応力との境となり応力が作用しない中立面であり、X-Y面で視てこの中心面上に回転錘2の重心位置(×で図示する。)が重なることになる。
 図3は、検出部5の構成について説明する図である。図3(A)は支持梁3の近傍の平面図であり、図3(B)は検出部5の回路図である。
 検出部5は、支持梁3の上面にY軸方向を長手とするピエゾ抵抗5A,5Bを備える。ピエゾ抵抗5A,5Bは、半導体ウェハに半導体プロセスを用いて形成されることにより、微細な位置・形状を高精度にすることが可能である。これらのピエゾ抵抗5A,5Bは、支持梁3の中立面の両側に平行に配置され、互いに直列接続され定電圧源に接続される。支持梁3の中立面を境に一方の領域は圧縮応力が作用し、他方の領域は引っ張り応力が作用するため、ピエゾ抵抗5A,5Bは伸縮が逆になる。ピエゾ抵抗5A,5Bは伸長する際には抵抗値が増大し、短縮する際には抵抗値が低減する。そのため、ピエゾ抵抗5A,5Bによる分圧比が変動するため、ピエゾ抵抗5Aやピエゾ抵抗5Bの両端電圧から、支持梁3に作用する応力を検出することが可能になる。
 図4は、各種加速度の作用による支持梁の変形とピエゾ抵抗の変化を説明する図である。
 図4(A)は、この角加速度検出素子1にZ軸正方向から視て反時計回りの回転慣性力が作用した状態を示している。この状態では、支持梁3がX-Y面で湾曲し、ピエゾ抵抗5Aが伸長しピエゾ抵抗5Bが短縮する。伸長したピエゾ抵抗5Aは抵抗値が増大し、短縮したピエゾ抵抗5Bは抵抗値が低下する。このため、検出部5においてはピエゾ抵抗5Aの両端電圧が増加し、ピエゾ抵抗5Bの両端電圧が減少することになる。
 なお、図4(B)は、角加速度検出素子1にX軸正方向から視て反時計回りの回転慣性力が作用した状態を示している。この状態では、支持梁3がY-Z面で湾曲し、ピエゾ抵抗5A,5Bはともに短縮して抵抗値が低下する。このため、検出部5においてはピエゾ抵抗5Aの抵抗値の変化とピエゾ抵抗5Bの抵抗値の変化とが相殺されて、分圧電圧が維持される。
 図4(C)は、角加速度検出素子1にY軸正方向から視て反時計回りの回転慣性力が作用した状態を示している。この状態では、支持梁3がX-Z面で捻れる。すると、ピエゾ抵抗5A,5Bにも同様な捻れが生じて抵抗値の変化が一致する。このため、検出部5においてはピエゾ抵抗5A内の抵抗値の変化およびピエゾ抵抗5B内の抵抗値の変化がそれぞれ共に相殺されて、分圧電圧が維持される。
 図4(D)は、角加速度検出素子1にX軸正方向の並進慣性力が作用した状態を示している。この状態では、支持梁3がX-Y面で湾曲する。すると、ピエゾ抵抗5A,5Bには同様な湾曲が生じて抵抗値の変化が一致する。このため、検出部5においてはピエゾ抵抗5A内の抵抗値の変化およびピエゾ抵抗5B内の抵抗値の変化がそれぞれ共に相殺されて、分圧電圧が維持される。
 図4(E)は、角加速度検出素子1にY軸正方向の並進慣性力が作用した状態を示している。この状態では、支持梁3がY軸方向に伸長する。すると、ピエゾ抵抗5A,5Bは同様に伸長して抵抗値の変化が一致する。このため、検出部5においてはピエゾ抵抗5Aの抵抗値の変化とピエゾ抵抗5B抵抗値の変化とが相殺されて、分圧電圧が維持される。
 図4(F)は、角加速度検出素子1にZ軸正方向の並進慣性力が作用した状態を示している。この状態では、支持梁3がY-Z面で湾曲する。すると、ピエゾ抵抗5A,5Bは同様に伸縮して抵抗値の変化が一致する。このため、検出部5においてはピエゾ抵抗5A内の抵抗値の変化およびピエゾ抵抗5B内の抵抗値の変化がそれぞれ共に相殺されて、分圧電圧が維持される。
 したがって、この角加速度検出素子1によれば、Z軸回りの回転慣性力が作用した状態でのみ出力電圧が変化することになる。
 ここで、支持梁3に作用する応力の大きさに付いて説明する。
 固定部4に対する回転錘2のZ軸回りの回転角θは、次式で示すようにZ軸回りの角加速度βに比例し、回転錘2と支持梁3と固定部4とからなる構造体のZ軸まわりでの固有振動数f0の二乗に反比例する。
Figure JPOXMLDOC01-appb-M000001
 角加速度検出素子1で応答周波数範囲を一定にするために固有振動数f0は適切な設定値とすると好適である。そのため固有振動数f0が定まる場合、次式のように単位角加速度あたりの回転角θ/βは一意に定まる。
Figure JPOXMLDOC01-appb-M000002
 固有振動数f0は、回転錘2、支持梁3、固定部4からなる構造体の複数の形状パラメータに依存するものでもあり、支持梁の数が相違する構成であっても各部の寸法調整により一致させることが可能である。したがって、固有振動数f0が同一の構成であれば、同じ角加速度が作用した場合の回転角θは等しいものになる。
 そこで、角加速度検出素子において支持梁の数nを異ならせ固有振動数f0を一致させた場合の、構成ごとの各部寸法や性能を有限要素法で解析した結果について説明する。
 図5(A)は比較構成に係る角加速度検出素子10Aの構成を示す平面図である。角加速度検出素子10Aは、2つの支持梁を備え、回転錘の重心位置を中心に対称な形状で構成している。
 図5(B)は比較構成に係る角加速度検出素子10Bの構成を示す平面図である。角加速度検出素子10Bは、4つの支持梁を備え、回転錘の重心位置を中心に対称な形状で構成している。
 これら構成の解析例では、実施形態に係る角加速度検出素子1とともに同じ外形寸法2mm×2mm×200μmとし、回転錘2および固定部4を同形状とし、支持梁の寸法調整により固有振動数f0を2.0kHzで一致させた。
 図5(C)は、各解析例における各部寸法や性能を示す図である。
 実施形態に係る角加速度検出素子1は、支持梁の数nが1、支持梁の長さ(Y軸方向寸法)Lyが110μm、支持梁の幅(X軸方向寸法)Lxが20μmであり、これにより固有振動数f0を2.0kHzとしている。
 比較構成に係る角加速度検出素子10Aは、支持梁の数nが2、支持梁の長さ(Y軸方向寸法)Lyが441μm、支持梁の幅(X軸方向寸法)Lxが10μmであり、これにより固有振動数f0を2.0kHzとしている。
 比較構成に係る角加速度検出素子10Bは、支持梁の数nが4、支持梁の長さ(Y軸方向寸法)Lyが640μm、支持梁の幅(X軸方向寸法)Lxが10μmであり、これにより固有振動数f0を2.0kHzとしている。
 このように固有振動数f0を一致させて単位角加速度当たりの回転角θ/βを等しくする場合、支持梁3の数が少ないほど支持梁の長さが短いものになる。
 ここで、支持梁のたわみ角θ’を考えると、次式のように、支持梁のたわみ角θ’は支持梁の長さLyと支持梁のたわみ曲率1/ρの積で表わされる。
Figure JPOXMLDOC01-appb-M000003
 一方、支持梁3におけるピエゾ抵抗5A,5Bの近傍に発生する応力σは次式のように、支持梁の中立面からピエゾ抵抗5A,5Bまでの距離xと支持梁のたわみ曲率1/ρと支持梁の材料の縦弾性係数Eの積で表わされる。
Figure JPOXMLDOC01-appb-M000004
 上記2式から次式が得られる。
Figure JPOXMLDOC01-appb-M000005
 つまり、支持梁長さLyをより短く、中立面からピエゾ抵抗5A,5Bまでの距離xをより大きくすることで、支持梁のたわみ角θ’あたりの支持梁3に発生する応力σを大きくすることができる。
 仮に、支持梁のたわみ角θ’が回転錘2の回転角θと等しいとすると、上述の数2の式と数5の式から次式が成りたつ。
Figure JPOXMLDOC01-appb-M000006
 則ち、支持梁3におけるピエゾ抵抗5A,5Bの近傍に発生する単位角加速度当たりの応力σ/βも、支持梁長さLyをより短く、中立面からピエゾ抵抗5A,5Bまでの距離xをより大きくすることで増大させることができる。このことは図5(C)に示した有限要素解析によっても確認することができる。実施形態に係る角加速度検出素子1では、支持梁長さLyが最も短く支持梁3に作用する応力の単位角加速度当たりの最大値は73Pa/(rad/s2)であった。比較例に係る角加速度検出素子10Aは支持梁長さLyがより長く、支持梁3に作用する応力の単位角加速度当たりの最大値は49Pa/(rad/s2)であった。比較例に係る角加速度検出素子10Bは支持梁長さLyがさらに長く、支持梁3に作用する応力の単位角加速度当たりの最大値は29Pa/(rad/s2)であった。
 このように、本実施形態の角加速度検出素子1では支持梁の数がひとつであり、支持梁3に作用する応力が大きなものになるため、回転錘から支持梁が受ける回転慣性力がより集中して支持梁に発生する応力は大きくなり、ピエゾ抵抗5A,5Bの変形量が増大して高い検出感度が得られることになる。
 なお、この実施形態ではZ軸方向からみた回転錘2の外形を矩形とする例を示したが、円形や星形など、その他の形状であってもよい。また、回転錘2の内形を略矩形とする例を示したが、これもその他の形状であってもよい。また、固定部4の外形を矩形とする例を示したが、これもその他の形状であってもよい。また、支持梁の形状を長方形とする例を示したが、これもその他の形状であってもよい。
 さらには、この実施形態では、半導体ウェハの面加工により各部を構成し、また、検出部5をピエゾ抵抗5A,5Bにより構成する例を示したが、最終的に応力を電気信号に変換可能な手段であれば検出原理や製造方法、構成材料を問わず、その他の構成であってもよい。
《第2の実施形態》
 図6(A)は、本発明の第2の実施形態に係る角加速度検出素子11の変形状態での斜視図である。図6(B)は、角加速度検出素子11の支持梁13の周辺構造を示す模式図である。
 角加速度検出素子11は、回転錘12、支持梁13、固定部14、および検出部15(不図示)を備える。回転錘12、支持梁13、および固定部14は、第1の実施形態とほぼ同様な構成を採用することができる。第1の実施形態との主な相違点は、検出部15(不図示)が備えるピエゾ抵抗15A,15Bを支持梁13の上下面に配置し、X軸を検出軸として角加速度を検出する点である。
 図7は、X軸回りの回転慣性力が作用する場合の、支持梁13に発生する応力分布を説明する図である。図中には、角加速度検出素子11がX軸正方向から視て反時計回りに回転する状態を示している。
 この場合、回転錘12は、固定部14を基準としてX軸正方向から視て時計回りに回転し、支持梁13にはX軸正方向から視て時計回りの回転慣性力が作用する。これにより、支持梁13は、Z軸正方向の上面近傍の領域に圧縮応力が作用し、Z軸負方向の下面近傍の領域に引っ張り応力が作用し、支持梁13はZ軸正方向に撓むことになる。
 このとき、支持梁13の厚み方向の中心面が引っ張り応力と圧縮応力との境となり応力が作用しない中立面(一点鎖線で図示する。)となる。そして、Y-Z面における回転錘12の重心(×で図示する。)がこの中立面上に位置することにより、X軸回りの回転錘12の回転バランスを確保しながら、検出部15(不図示)でX軸回りの角加速度を高い検出感度で検出することが可能になる。このように角加速度検出素子は構成することもできる。
《第3の実施形態》
 図8は、第3の実施形態に係る角加速度検出素子91の構成を示す斜視図である。
 角加速度検出素子91は、Z軸に垂直な上下面間を貫通する溝を形成した長方形板からなり、回転錘92、支持梁93、固定部94、および検出部95(不図示)を備える。回転錘92はY軸負方向が開いたコの字状であり、X軸方向を長軸としY軸方向を短軸とする。支持梁93は、回転錘92の重心位置に中心が一致し、Y軸方向を長さ方向、X軸方向を幅方向とする。固定部94は、回転錘92の開口内に設けられて図示しない筐体に上面と下面との少なくとも一方で固定され、支持梁93を介して回転錘92を支持する。
 このような構成の角加速度検出素子91でも、Z軸回りの回転慣性力が作用することで回転錘92がX-Y面において固定部94に対してZ軸回りに回転(揺動)し、Z軸を検出軸として角加速度を検出することができる。
 また、回転錘92がX軸方向を長軸とする形状であるため、Z軸回りでの慣性モーメントが大きく、回転錘の外形が正方形状である場合などよりも、同じ素子専有面積で、角加速度あたりの回転慣性力を大きくすることができる。
 そのため、角加速度検出素子91の固有振動数を維持したまま支持梁93を太く短くすることが可能であり、角加速度検出感度を高めることができる。
《第4の実施形態》
 図9(A)は、第4の実施形態に係る角加速度検出素子21の斜視図である。
 角加速度検出素子21は、Z軸に垂直な上下面間を貫通する溝を形成した長方形板からなり、回転錘22、支持梁23、固定部24、および検出部25(不図示)を備える。回転錘22はX軸正方向が開いたコの字状であり、Y軸方向を長軸としX軸方向を短軸とする。支持梁23は、回転錘22の重心位置に中心が一致し、Y軸方向を長さ方向、X軸方向を幅方向とする。固定部24は、回転錘22の開口内に設けられて図示しない筐体に上面と下面との少なくとも一方で固定され、支持梁23を介して回転錘22を支持する。
 図9(B)は、Z軸回りの回転慣性力が作用する場合の、支持梁23に発生する応力分布を説明する図である。図中には、角加速度検出素子21がZ軸正方向から視て時計回りに回転する状態を示している。
 この場合、回転錘22は、固定部24を基準としてZ軸正方向から視て反時計回りに回転し、支持梁23にはZ軸正方向から視て反時計回りの回転慣性力が作用する。これにより、支持梁23は、X軸負方向の側面近傍の領域に圧縮応力が作用し、X軸正方向の側面近傍の領域に引っ張り応力が作用し、X軸負方向に撓むことになる。
 このとき、支持梁23の幅方向の中心面が中立面(一点鎖線で図示する。)となる。そして、X-Y面における回転錘22の重心(×で図示する。)をこの中心面上に配置することにより、Z軸回りでの回転錘22の回転バランスを確保しながら、検出部25(不図示)でZ軸回りの角加速度を高い検出感度で検出することが可能になる。
 この構成の角加速度検出素子21では、回転錘22がY軸方向を長軸とする形状であるため、Z軸回りでの慣性モーメントが大きく、回転錘の外形が正方形状である場合などよりも、同じ素子専有面積で、角加速度あたりの回転慣性力を大きくすることができる。
 そのため、角加速度検出素子21の固有振動数を維持したまま支持梁を太く短くすることが可能になり、角加速度検出感度を高めることができる。
 なお、回転錘22はX軸回りでの慣性モーメントも大きく、外乱振動による回転錘22の短軸回りでの回転慣性力まで大きなものになる。前述の第3の実施形態においては支持梁の長さ方向が回転錘の短軸方向と一致するため、回転錘の短軸回りの回転慣性力は支持梁23に捻れを生じさせるが、本実施形態においては支持梁の長さ方向が回転錘の長軸方向と一致するため、回転錘の短軸回りの回転慣性力は支持梁23に捻れではなく曲げを生じさせる。支持梁の大きな捻れは支持梁23のエッジ部分に応力集中を生じさせて破壊現象を引き起こす危険性が高いため、本実施形態のように支持梁の長さ方向を回転錘の長軸方向と一致させた構成とすることにより、支持梁に大きな捻れが生じることを防ぎ、角加速度検出素子の耐衝撃性能を改善することができる。
《第5の実施形態》
 図10は、第5の実施形態に係る角加速度検出素子31における、回転慣性力が作用する場合の応力分布を説明する図である。
 角加速度検出素子31は、回転錘32、支持梁33、固定部34、および検出部35(不図示)を備える。回転錘32、固定部34、および検出部35(不図示)は、第4の実施形態とほぼ同様な構成である。第4の実施形態との主な相違点は、回転錘32の重心(×で図示する。)を隔てて平行に設けられる2つの支持梁33を備える点である。
 この構成では、Z軸回りの角加速度が作用した場合に、2つの支持梁33に作用する応力が、それぞれ逆の極性のもの、則ち、引っ張り応力または圧縮応力になる。そして、支持梁33それぞれに作用する応力の中立面(一点鎖線で図示する。)が2つの支持梁33の中間で一致し、その中立面上に回転錘32の重心が位置することにより、Z軸回りの回転錘32の回転バランスを確保しながら、検出部35(不図示)がZ軸回りの角加速度を高い検出感度で検出することが可能になる。このように角加速度検出素子は構成することもできる。
《第6の実施形態》
 図11は、第6の実施形態に係る角加速度検出素子41における、回転慣性力が作用する場合の応力分布を説明する図である。
 角加速度検出素子41は、回転錘42、支持梁43、固定部44、および検出部45(不図示)を備える。回転錘42、固定部44、および検出部45(不図示)は、第4の実施形態とほぼ同様な構成である。第4の実施形態との主な相違点は、支持梁43が回転錘42の重心位置に中心が一致し、Y軸方向を長さ方向、X軸方向を幅方向とするH字状に構成される点である。
 この構成では、Z軸回りの角加速度が作用した場合に、支持梁43のX軸負方向の側面近傍の領域に圧縮応力が作用し、X軸正方向の側面近傍の領域に引っ張り応力が作用し、X軸負方向に撓むことになる。
 このとき、支持梁43の中立面(一点鎖線で図示する。)上にX-Y面における回転錘42の重心(×で図示する。)が位置することにより、Z軸回りの回転錘42の回転バランスを確保しながら、Z軸回りの角加速度を高い検出感度で検出することが可能になる。有限要素解析からは、支持梁43のY軸方向の中心に近いほど、両側面の近傍領域での応力が大きくなることが確認でき、このことから、それらの領域を検出部45の応力検出位置とすることで、角加速度検出感度をさらに高めることが可能になると考えられる。
《第7の実施形態》
 図12は、第7の実施形態に係る角加速度検出素子51における、回転慣性力が作用する場合の応力分布を説明する図である。
 角加速度検出素子51は、回転錘52、支持梁53、固定部54、および検出部55(不図示)を備える。回転錘52、固定部54、および検出部55(不図示)は、第4の実施形態とほぼ同様な構成である。第4の実施形態との主な相違点は、支持梁53が回転錘52の重心位置に中心が一致し、Y軸方向を長さ方向、X軸方向を幅方向とし、中央の幅が狭く両端の幅が広いテーパ状に構成される点である。
 この構成では、Z軸回りの角加速度が作用した場合に、支持梁53のX軸負方向の側面近傍の領域に圧縮応力が作用し、X軸正方向の側面近傍の領域に引っ張り応力が作用し、X軸負方向に撓むことになる。
 このとき、支持梁53の中立面(一点鎖線で図示する。)上にX-Y面における回転錘52の重心(×で図示する。)が位置することにより、Z軸回りの回転錘52の回転バランスを確保しながら、Z軸回りの角加速度を高い検出感度で検出することが可能になる。有限要素解析からは、支持梁53のY軸方向の中心の近傍に応力が集中することが確認でき、このことから、それらの領域を検出部55の応力検出位置とすることで、角加速度検出感度をさらに高めることが可能になると考えられる。
《第8の実施形態》
 図13は、第8の実施形態に係る角加速度検出素子61における、回転慣性力が作用する場合の応力分布を説明する図である。
 角加速度検出素子61は、回転錘62、支持梁63、固定部64、および検出部65(不図示)を備える。回転錘62および固定部64は、第4の実施形態とほぼ同様な構成である。第4の実施形態との主な相違点は、支持梁63を回転錘62の重心位置に中心が一致し、Y軸方向を長さ方向、X軸方向を幅方向とし、中央を幅広に構成し両端を幅狭に構成した多段形状に構成した点である。
 この構成では、Z軸回りの角加速度が作用した場合に、支持梁63のX軸負方向の側面近傍の領域に圧縮応力が作用し、X軸正方向の側面近傍の領域に引っ張り応力が作用し、X軸負方向に撓むことになる。
 このとき、支持梁63の中立面(一点鎖線で図示する。)上にX-Y面における回転錘62の重心(×で図示する。)が位置することにより、Z軸回りの回転錘62の回転バランスを確保することが可能になる。
 有限要素解析からは、支持梁63の中央の幅広な領域では応力が小さく、両端の幅狭な領域では応力が大きくなることが確認でき、このことから、検出部65(不図示)の応力検出位置を、支持梁63の両端近傍の幅狭な領域とすることで、Z軸回りの角加速度を高い検出感度で検出することが可能になると考えられる。
《第9の実施形態》
 図14は、第9の実施形態に係る角加速度検出素子71の部分拡大斜視図である。
 角加速度検出素子71は、回転錘72、支持梁73、固定部74、および検出部75(不図示)を備える。回転錘72、固定部74、および検出部75(不図示)は、第4の実施形態とほぼ同様な構成である。第4の実施形態との主な相違点は、支持梁73のZ軸正方向の上面に突起部73Aを備える点である。なお、突起部は、上面のみ、下面のみ、上下両面のいずれにあってもよい。突起部73Aを設けることで支持梁73のZ軸方向の厚みが増して剛性が高まり、X軸周りで過大な曲げ応力が作用しても、支持梁73が破損を防ぐことができる。
《第10の実施形態》
 図15(A)は、第10の実施形態に係る角加速度検出素子81の斜視図である。
 角加速度検出素子81は、第4の実施形態の構成を2つ突き合わせて回転錘を一体化したような構成であり、回転錘82、支持梁83、固定部84、および検出部85(不図示)を備える。回転錘82は開口を備えるロの字状であり、Y軸方向を長軸としX軸方向を短軸とする。回転錘82の開口内には2つの支持梁83と2つの固定部84とが配置される。2つの支持梁83は、回転錘82の重心を隔てて平行に設けられる。2つの固定部84は、図示しない筐体に上面と下面との少なくとも一方で固定され、それぞれ支持梁83を介して回転錘82を支持する。
 図15(B)は、Z軸回りの回転慣性力が作用する場合の、支持梁83に発生する応力分布を説明する図である。図中には、角加速度検出素子81がZ軸正方向から視て時計回りに回転する状態を示している。
 この場合、回転錘82は、固定部84を基準としてZ軸正方向から視て反時計回りに回転し、支持梁83にはZ軸正方向から視て反時計回りの回転慣性力が作用する。これにより、X軸負方向側の支持梁83は圧縮応力が作用し、X軸正方向の支持梁83は引っ張り応力が作用し、2つの支持梁83はX軸負方向に撓むことになる。
 このとき、支持梁83のそれぞれに作用する応力の中立面(一点鎖線で図示する。)が2つの支持梁83の中間で一致し、その中立面上にX-Y面における回転錘82の重心(×で図示する。)が位置することにより、Z軸回りの回転錘82の回転バランスを確保しながら、Z軸回りの角加速度を高い検出感度で検出することが可能になる。
《第11の実施形態》
 図16は、第11の実施形態に係る角加速度検出素子101の構成を示す斜視図である。
 角加速度検出素子101は、回転錘102、支持梁103、固定部104、および検出部105(不図示)を備える。支持梁103、固定部104、および検出部105(不図示)は、第3の実施形態と同様な構成である。第3の実施形態との主な相違点は、回転錘102がZ軸正方向の上面に部分的な突起部102A,102Bを備える点である。なお、このような部分的な突起部は、回転錘102の上面のみ、下面のみ、上下両面のいずれに設けてもよい。
 このような構成の角加速度検出素子101でも、Z軸回りの回転慣性力が作用することで回転錘102がX-Y面において固定部104に対してZ軸回りに回転(揺動)し、Z軸を検出軸として角加速度を検出することができる。
《第12の実施形態》
 図17は、第12の実施形態に係る角加速度検出素子111の構成を示す斜視図である。
 角加速度検出素子111は、回転錘112、支持梁113、固定部114、および検出部115(不図示)を備える。回転錘112は外形が円形状である。このような構成の角加速度検出素子111でも、Z軸回りの回転慣性力が作用することで回転錘112がX-Y面において固定部114に対してZ軸回りに回転(揺動)し、Z軸を検出軸として角加速度を検出することができる。
《第13の実施形態》
 図18は、第13の実施形態に係る角加速度検出素子121の構成を示す斜視図である。
 角加速度検出素子121は、回転錘122、支持梁123、固定部124、および検出部125(不図示)を備える。回転錘122は外形が円形状であり、支持梁123は、X-Y面を視て、中央が狭く両端が広い形状であって、側面が半円状である。このような構成の角加速度検出素子121でも、Z軸回りの回転慣性力が作用することで回転錘122がX-Y面において固定部124に対してZ軸回りに回転(揺動)し、Z軸を検出軸として角加速度を検出することができる。
《第14の実施形態》
 図19は、第14の実施形態に係る角加速度検出素子131の構成を示す斜視図である。
 角加速度検出素子131は、回転錘132、支持梁133、固定部134、および検出部135(不図示)を備える。回転錘132は外形が楕円形状であって、Y軸方向が長軸であり、X軸方向が短軸である。このような構成の角加速度検出素子131でも、Z軸回りの回転慣性力が作用することで回転錘132がX-Y面において固定部134に対してZ軸回りに回転(揺動)し、Z軸を検出軸として角加速度を検出することができる。
《第15の実施形態》
 図20は、第15の実施形態に係る角加速度検出素子141の構成を示す斜視図である。
 角加速度検出素子141は、回転錘142、支持梁143、固定部144、および検出部145(不図示)を備える。回転錘142は外形が長方形であって、矩形の開口部142Aを備える。開口部142Aを設けることにより回転錘142の重心位置を調整することが容易となる。このような構成の角加速度検出素子141でも、Z軸回りの回転慣性力が作用することで回転錘142がX-Y面において固定部144に対してZ軸回りに回転(揺動)し、Z軸を検出軸として角加速度を検出することができる。
《第16の実施形態》
 図21は、第16の実施形態に係る角加速度検出素子151の構成を示す斜視図である。
 角加速度検出素子151は、回転錘152、支持梁153、固定部154、引出電極155、および検出部156(不図示)を備える。この角加速度検出素子151は、固定部154が外周側に配置され、回転錘152が固定部154の内側に配置された構成である。
 固定部154は、X-Y面で視た外形が、Y軸方向に長軸でX軸方向に短軸の矩形環状である。回転錘152は、X-Y面において固定部154の開口内に配置されX軸正方向が開いたコの字状である。支持梁153は回転錘152の重心位置に配置され、Y軸方向を長さ方向とし、X軸方向を幅方向とする。引出電極155は支持梁153上から、固定部154の上面に引き出される。この角加速度検出素子151でも、Z軸回りの回転慣性力が作用することで回転錘152がX-Y面において固定部154に対してZ軸回りに回転(揺動)し、Z軸を検出軸として角加速度を検出することができる。
 この構成では、半導体ウェハから複数の角加速度検出素子151を分離する際に、固定部154の外周が分離面となる。そのため、分離時に、回転錘152が他部材に接触することを防ぐことができ、支持梁153に過重がかかって破損することを防止できる。また角加速度検出素子を他部材に組み込む際にも、回転錘152が他部材に接触することを防いで、組み立てを容易にすることができる。
 図22は、検出部の他の構成について説明する図である。
 検出部は、4つのピエゾ抵抗166A~166Dにより構成する。ピエゾ抵抗166A,166Bは、支持梁163の上面の中立面よりもX軸負方向に配置される。ピエゾ抵抗166C,166Dは、支持梁163の上面の中立面よりもX軸正方向に配置される。また、ピエゾ抵抗166A,166Cは、支持梁163の上面のY軸負方向側に配置され、ピエゾ抵抗166B,166Dは、支持梁163の上面のY軸正方向側に配置される。
 また、ピエゾ抵抗166A~166Dは、ブリッジ回路を構成する。ピエゾ抵抗166A,166Bはブリッジ回路四辺の対向する辺に設けられ、ピエゾ抵抗166C,166Dもブリッジ回路四辺の対向する辺に設けられる。
 支持梁163の中立面を境に反対側に設けたピエゾ抵抗同士を直列に接続し、2組の直列回路を定電圧源あるいは定電流源に並列接続することで、支持梁163の応力によりブリッジ出力端子の電位が互いに逆極性で変わるように配線して、その電位差を電圧変動として計測することができる。ブリッジ回路を採用することにより、第1の実施形態で示したように分圧比を用いて角加速度を検出する場合に比べ、同じ応力でより大きな電位差が得られる。またブリッジ回路を採用することにより駆動電源ノイズに対する同相除去比を高め、微小な電気信号を良好なS/N比で取り出すことができる。これらのために、さらに角加速度の検出感度および検出精度を高めることができる。
《第17の実施形態》
 図23は、第17の実施形態に係る角加速度検出素子171の構成を示す斜視図である。
 角加速度検出素子171は、回転錘172、支持梁173、固定部174、引出電極175、および検出部176(不図示)を備える。この角加速度検出素子171は、第16の実施形態と同様に、固定部174が外周側に配置され、回転錘172が固定部174の内側に配置された構成である。第16の実施形態との主な相違点は、引出電極175の配置位置である。
 角加速度検出素子171を筺体に収める場合、ピエゾ抵抗に接続された引出電極175から電気信号を読み取る必要があるが、筺体加工の制約から引出電極175の相互間距離は、一定以上の長さとする必要がある。
 第16の実施形態で示したように回転錘の片側の固定部に全ての引出電極を設ける場合には、引出電極の形成に要する面積が増大するために、一定面積を維持するならば、回転錘172を小さくする必要があり、回転錘の慣性モーメントが減少する要因となる。
 そこで、本実施形態では、4つの引出電極175のうちの2つを、固定部174の回転錘172を挟んだ逆側にまで引き出して設けることで、引出電極の形成に要する面積を抑制し、回転錘172の大きな慣性モーメントを確保し、ひいては角加速度検出感度の減少を抑制することができる。
 図24は、検出部の他の構成について説明する図である。
 この検出部は、4つのピエゾ抵抗186A~186Dによりブリッジ回路を構成する。ピエゾ抵抗186A,186Bは、支持梁183の上面の中立面よりもX軸負方向に、Y軸と平行に配置される。ピエゾ抵抗186C,186Dは、支持梁183の上面の中立面よりもX軸正方向にY軸と平行に配置される。
 このようにピエゾ抵抗186A~186Dを配置しても、支持梁183の中立面を境に反対側に設けたピエゾ抵抗同士を直列に接続し、2組の直列回路を定電圧源あるいは定電流源に並列接続することで、支持梁183の応力によりブリッジ出力端子の電位が互いに逆極性で変わるように配線して、その電位差を電圧変動として計測することができる。
《第18の実施形態》
 図25は、第18の実施形態に係る角加速度検出素子191の構成を説明する図である。本実施形態の角加速度検出素子191は、第2の実施形態と同様に、X軸回りの角加速度を検出する構成である。
 この構成では、4つのピエゾ抵抗196A~196Dによりブリッジ回路を構成する。ピエゾ抵抗196A,196Bは、支持梁193の下面に配置される。ピエゾ抵抗196C,196Dは、支持梁193の上面に配置される。
 このようにピエゾ抵抗196A~196Dを配置しても、支持梁193の中立面(X-Y面との平行面)を境に反対側に設けたピエゾ抵抗同士を直列に接続し、2組の直列回路を定電圧源あるいは定電流源に並列接続することで、支持梁193の応力によりブリッジ出力端子の電位が互いに逆極性で変わるように配線して、その電位差を電圧変動として計測することができる。
 以上に説明した各実施形態のように、本発明は様々な形態で実施でき、少なくとも回転錘の重心が支持梁に重なる構成、または、支持梁の中立面に重なる構成とすることにより、本発明は好適に実施できる。
1…角加速度検出素子
2…回転錘
3…支持梁
4…固定部
5…検出部
73A,102A,102B…突起部

Claims (11)

  1.  所定の検出軸回り角加速度による慣性力の作用で前記検出軸回りに回転する回転錘と、
     前記回転錘から離間する位置に設けられた固定部と、
     前記検出軸に対する直交面における前記固定部と前記回転錘との間に設けられ、前記固定部に対して前記回転錘を弾性支持する支持梁と、
     前記支持梁に発生した応力に応じた検出信号を出力する検出部と、を備え、
     前記検出軸方向から視た前記回転錘の重心位置が前記支持梁に重なるものである、角加速度検出素子。
  2.  所定の検出軸回りの角加速度による慣性力の作用で前記検出軸回りに回転する回転錘と、
     前記回転錘から離間する位置に設けられた固定部と、
     前記検出軸に対する直交面における前記固定部と前記回転錘との間に設けられ、前記固定部に対して前記回転錘を弾性支持する複数の支持梁と、
     前記複数の支持梁に発生した応力に応じた検出信号を出力する検出部と、を備え、
     前記検出軸方向から視た前記回転錘の重心位置が、前記検出軸回りでの前記回転錘の回転に伴って前記複数の支持梁に作用する応力の中立面に重なるものである、角加速度検出素子。
  3.  前記回転錘は、前記直交面に沿う長軸方向と短軸方向とを持つ形状で構成される、請求項1または2に記載の角加速度検出素子。
  4.  前記支持梁または前記複数の支持梁は、前記回転錘の長軸方向を長さ方向として構成される、請求項3に記載の角加速度検出素子。
  5.  前記固定部は、前記支持梁または前記複数の支持梁および前記回転錘を内装する開口を備える、請求項1~4のいずれかに記載の角加速度検出素子。
  6.  前記検出部は、前記支持梁または前記複数の支持梁に作用する応力に応じた検出信号を出力する素子を四辺に設けたブリッジ回路を備え、前記ブリッジ回路の隣接する辺の素子が前記支持梁または前記複数の支持梁の中立面に対して異なる側に設けられる、請求項1~5のいずれかに記載の角加速度検出素子。
  7.  前記検出部は、前記支持梁または前記複数の支持梁に作用する応力に応じて抵抗値が変化する抵抗素子で構成される、請求項1~6のいずれかに記載の角加速度検出素子。
  8.  前記支持梁または前記複数の支持梁と前記固定部と前記回転錘とは、同一の薄板状部材から加工形成される、請求項1~7のいずれかに記載の角加速度検出素子。
  9.  前記薄板状部材が半導体ウェハで構成される、請求項8に記載の角加速度検出素子。
  10.  前記回転錘の前記検出軸は、前記薄板状部材の厚み方向に構成される、請求項8または9に記載の角加速度検出素子。
  11.  前記支持梁または前記複数の支持梁は、前記薄板状部材の厚み方向に前記回転錘よりも突出する突起部を備える、請求項10に記載の角加速度検出素子。
PCT/JP2011/079139 2011-05-12 2011-12-16 角加速度検出素子 WO2012153439A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11865192.6A EP2708903A4 (en) 2011-05-12 2011-12-16 ANGULAR ACCELERATION DETECTOR ELEMENT
JP2013513899A JP5618002B2 (ja) 2011-05-12 2011-12-16 角加速度検出素子
CN201180070708.9A CN103534597B (zh) 2011-05-12 2011-12-16 角加速度检测元件
US14/064,371 US9983003B2 (en) 2011-05-12 2013-10-28 Angular acceleration detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011107338 2011-05-12
JP2011-107338 2011-05-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/064,371 Continuation US9983003B2 (en) 2011-05-12 2013-10-28 Angular acceleration detection device

Publications (1)

Publication Number Publication Date
WO2012153439A1 true WO2012153439A1 (ja) 2012-11-15

Family

ID=47138933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079139 WO2012153439A1 (ja) 2011-05-12 2011-12-16 角加速度検出素子

Country Status (5)

Country Link
US (1) US9983003B2 (ja)
EP (1) EP2708903A4 (ja)
JP (1) JP5618002B2 (ja)
CN (1) CN103534597B (ja)
WO (1) WO2012153439A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092040A1 (ja) * 2012-12-13 2014-06-19 株式会社村田製作所 角加速度センサおよび加速度センサ
WO2014092039A1 (ja) * 2012-12-13 2014-06-19 株式会社村田製作所 角加速度センサおよび加速度センサ
JP6010678B1 (ja) * 2015-11-24 2016-10-19 株式会社トライフォース・マネジメント 加速度センサ
JP6020590B2 (ja) * 2012-11-19 2016-11-02 株式会社村田製作所 角加速度センサ
JP6058858B1 (ja) * 2016-09-16 2017-01-11 株式会社トライフォース・マネジメント 加速度センサ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11796318B2 (en) 2021-08-18 2023-10-24 Honeywell International Inc. Rotation measurement system using Coriolis and Euler forces

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421970U (ja) * 1990-06-18 1992-02-24
JP2602300B2 (ja) 1988-09-30 1997-04-23 日本電気株式会社 半導体センサ
JP2010139263A (ja) 2008-12-09 2010-06-24 Murata Mfg Co Ltd 角加速度センサ
JP2011033617A (ja) * 2009-07-10 2011-02-17 Yamaha Corp 1軸加速度センサ
JP2011117944A (ja) * 2009-10-29 2011-06-16 Seiko Epson Corp 加速度センサー

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5101669A (en) * 1988-07-14 1992-04-07 University Of Hawaii Multidimensional force sensor
US6718605B2 (en) * 1997-09-08 2004-04-13 The Regents Of The University Of Michigan Single-side microelectromechanical capacitive accelerometer and method of making same
DE69938658D1 (de) * 1999-09-10 2008-06-19 St Microelectronics Srl Gegen mechanische Spannungen unempfindliche mikroelektromechanische Struktur
US6938484B2 (en) * 2003-01-16 2005-09-06 The Regents Of The University Of Michigan Micromachined capacitive lateral accelerometer device and monolithic, three-axis accelerometer having same
JP2005227591A (ja) * 2004-02-13 2005-08-25 Murata Mfg Co Ltd 静電型アクチュエータ
JP2007285879A (ja) 2006-04-17 2007-11-01 Seiko Epson Corp 角速度センサおよびその製造方法
JP2007322200A (ja) * 2006-05-31 2007-12-13 Kyocera Kinseki Corp 慣性センサ素子
DE102009002066A1 (de) * 2009-03-31 2010-10-07 Sensordynamics Ag Verfahren zum Erfassen von Beschleunigungen und Drehraten sowie MEMS-Sensor
FR2944102B1 (fr) * 2009-04-03 2011-06-10 Onera (Off Nat Aerospatiale) Element vibrant sur deux modes decouples et application a un gyrometre vibrant.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2602300B2 (ja) 1988-09-30 1997-04-23 日本電気株式会社 半導体センサ
JPH0421970U (ja) * 1990-06-18 1992-02-24
JP2010139263A (ja) 2008-12-09 2010-06-24 Murata Mfg Co Ltd 角加速度センサ
JP2011033617A (ja) * 2009-07-10 2011-02-17 Yamaha Corp 1軸加速度センサ
JP2011117944A (ja) * 2009-10-29 2011-06-16 Seiko Epson Corp 加速度センサー

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2708903A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6020590B2 (ja) * 2012-11-19 2016-11-02 株式会社村田製作所 角加速度センサ
WO2014092040A1 (ja) * 2012-12-13 2014-06-19 株式会社村田製作所 角加速度センサおよび加速度センサ
WO2014092039A1 (ja) * 2012-12-13 2014-06-19 株式会社村田製作所 角加速度センサおよび加速度センサ
CN104838274A (zh) * 2012-12-13 2015-08-12 株式会社村田制作所 角加速度传感器以及加速度传感器
CN104838275A (zh) * 2012-12-13 2015-08-12 株式会社村田制作所 角加速度传感器以及加速度传感器
JPWO2014092040A1 (ja) * 2012-12-13 2017-01-12 株式会社村田製作所 角加速度センサおよび加速度センサ
JPWO2014092039A1 (ja) * 2012-12-13 2017-01-12 株式会社村田製作所 角加速度センサおよび加速度センサ
US9682853B2 (en) 2012-12-13 2017-06-20 Murata Manufacturing Co., Ltd. Angular acceleration sensor and acceleration sensor
US9726690B2 (en) 2012-12-13 2017-08-08 Murata Manufacturing Co., Ltd. Angular acceleration sensor and acceleration sensor
JP6010678B1 (ja) * 2015-11-24 2016-10-19 株式会社トライフォース・マネジメント 加速度センサ
JP6058858B1 (ja) * 2016-09-16 2017-01-11 株式会社トライフォース・マネジメント 加速度センサ

Also Published As

Publication number Publication date
US20140047919A1 (en) 2014-02-20
EP2708903A4 (en) 2014-10-22
US9983003B2 (en) 2018-05-29
JP5618002B2 (ja) 2014-11-05
EP2708903A1 (en) 2014-03-19
JPWO2012153439A1 (ja) 2014-07-28
CN103534597A (zh) 2014-01-22
CN103534597B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5618002B2 (ja) 角加速度検出素子
JP3956999B2 (ja) 加速度センサ
CN112703406B (zh) 灵敏度提高的z-轴加速度计
WO2013179647A2 (ja) 物理量センサ
JPWO2005062060A1 (ja) 半導体型3軸加速度センサ
JP6258051B2 (ja) 角速度センサ、センサ素子及びセンサ素子の製造方法
JPWO2007141944A1 (ja) 加速度センサ
WO2018021167A1 (ja) 角速度センサ、センサ素子および多軸角速度センサ
JP2016133428A (ja) センサ素子及び角速度センサ
JP2013246033A (ja) 加速度センサ
JP5205619B2 (ja) 圧電落下センサ及び圧電落下センサを用いた落下検出方法
WO2013027741A1 (ja) 圧電振動センサ
WO2019021860A1 (ja) センサ素子および角速度センサ
JP4637074B2 (ja) ピエゾ抵抗型加速度センサー
JP6065017B2 (ja) 角加速度センサおよび加速度センサ
JP2007101203A (ja) 角速度センサ
JP2008107300A (ja) 加速度センサ
JP6517507B2 (ja) センサ素子及び角速度センサ
JP5971349B2 (ja) 角加速度センサ
JP4466344B2 (ja) 加速度センサ
JP6020590B2 (ja) 角加速度センサ
JP2009264863A (ja) ジャイロセンサ振動体
JP2007199081A (ja) 加速度センサ
JP2017058353A (ja) センサ素子
WO2012086103A1 (ja) 加速度センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013513899

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011865192

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011865192

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE