WO2012153367A1 - 車両運動制御装置及び車両運動制御システム - Google Patents

車両運動制御装置及び車両運動制御システム Download PDF

Info

Publication number
WO2012153367A1
WO2012153367A1 PCT/JP2011/002604 JP2011002604W WO2012153367A1 WO 2012153367 A1 WO2012153367 A1 WO 2012153367A1 JP 2011002604 W JP2011002604 W JP 2011002604W WO 2012153367 A1 WO2012153367 A1 WO 2012153367A1
Authority
WO
WIPO (PCT)
Prior art keywords
longitudinal acceleration
value
longitudinal
motion control
jerk
Prior art date
Application number
PCT/JP2011/002604
Other languages
English (en)
French (fr)
Inventor
絢也 高橋
山門 誠
真二郎 齋藤
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2013513825A priority Critical patent/JP5764656B2/ja
Priority to DE112011105223.5T priority patent/DE112011105223T5/de
Priority to US14/116,701 priority patent/US9090258B2/en
Priority to PCT/JP2011/002604 priority patent/WO2012153367A1/ja
Publication of WO2012153367A1 publication Critical patent/WO2012153367A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18145Cornering

Definitions

  • the present invention relates to a vehicle motion control device and a vehicle motion control system for accelerating / decelerating a vehicle so that the motion state of the vehicle becomes suitable.
  • a device for acquiring a course shape such as a global positioning system (GPS) or an imaging means such as a camera is required, and the price is high.
  • GPS global positioning system
  • an imaging means such as a camera
  • This method makes it possible to perform acceleration / deceleration similar to a skill driver without setting a time change of deceleration for each curve. Thereby, when driving
  • the deceleration according to the driving situation does not always mean the deceleration intended by the driver, and the deceleration according to the accelerator pedal position always requires the driver to operate the accelerator pedal in order to control the deceleration. .
  • An object of the present invention has been made in view of the above circumstances, and is to propose a vehicle motion control device and a vehicle motion control system that are easy to operate by a driver and can reduce pedal operation.
  • a vehicle motion control device includes a motion state information acquisition unit that acquires longitudinal acceleration, lateral acceleration, and vehicle body speed generated in a vehicle, and a pedal operation that acquires pedal operation information of a driver.
  • Vehicle motion that calculates a longitudinal acceleration command value based on information acquired from the amount acquisition means, the exercise state information acquisition means, and the pedal operation amount acquisition means, and outputs a command value that realizes the calculated longitudinal acceleration command value
  • Control command calculating means and the vehicle motion control command calculating means is based on the acquired information so as to generate a longitudinal acceleration that is the same as the longitudinal jerk based on the driver's pedal opening operation.
  • the longitudinal acceleration command value is calculated.
  • the vehicle motion control system of the present invention includes an exercise state information acquisition unit that acquires longitudinal acceleration, lateral acceleration, and vehicle body speed generated in a vehicle, a pedal operation amount acquisition unit that acquires pedal operation information of a driver, A motion control vehicle command computing means for computing a longitudinal acceleration command value based on information obtained from the state information obtaining means and the pedal operation amount obtaining means, and outputting a command value for realizing the computed longitudinal acceleration command value; A vehicle motion control device, a longitudinal acceleration generating means for performing longitudinal acceleration control on the vehicle based on a command value output from the motion control vehicle command calculation means, and a command value output from the motion control vehicle command calculation means And a longitudinal acceleration control state means for presenting recognizable information to the driver based on the vehicle motion control command calculation means.
  • a longitudinal acceleration control state means for presenting recognizable information to the driver based on the vehicle motion control command calculation means.
  • FIG. 7 is a diagram illustrating a relationship between an accelerator pedal operation amount of a driver and a target longitudinal jerk in FIG. 6.
  • FIG. 7 is a diagram showing a relationship between a target longitudinal jerk and a target longitudinal acceleration of the driver in FIG. 6.
  • the longitudinal acceleration is controlled based on the longitudinal jerk generated by the driver's pedal operation.
  • a negative longitudinal acceleration i.e., a decrease in the longitudinal longitudinal acceleration generated by the driver's accelerator pedal operation will be described below with reference to FIGS. 1 to 5.
  • a method for controlling the speed will be described.
  • the longitudinal acceleration is positive on the acceleration side and negative on the deceleration side.
  • FIG. 1 is a conceptual diagram at the time of deceleration control by a longitudinal acceleration command value according to the present invention.
  • a certain accelerator pedal operation amount starts to release the accelerator pedal from the accelerator pedal position where AP0 becomes AP0, and the acceleration / deceleration generated when the accelerator pedal operation amount is 0 (G xa, G xb )
  • the jerk J xa, J xb ) is represented.
  • FIGS. 1A and 1B the accelerator pedal operation speed is different, and FIG. 1B has a condition that the accelerator pedal operation speed is higher than that in FIG. G xab of G xaa, FIG 1 (B) of FIG. 1 (A), the longitudinal acceleration occurring when no control nothing respectively, J xaa in FIG 1 (A), J xab in FIG. 1 (B), This is the longitudinal jerk at this time.
  • the longitudinal jerk generated when the accelerator pedal is released due to the different accelerator pedal operating speeds is different between -J x1 and -J x2 ,
  • the longitudinal accelerations G xaa and G xab finally become the same value ⁇ G x0 .
  • the longitudinal jerk J xaa ′, J xab ′ generated by the control at the end of the accelerator pedal release operation T 1a , T 1b is The longitudinal accelerations G xaa ′ and G xab ′ are generated so as to be approximately the same as the longitudinal jerks ⁇ J x1 and ⁇ J x2 generated by the pedal operation.
  • the final size of G xaa ′ and G xab ′ depends on the size of ⁇ J x1 and ⁇ J x2 so that G xaa ′ is finally ⁇ G x1 and G xab ′ is ⁇ G x2 .
  • the longitudinal acceleration is added so that the absolute value of the longitudinal acceleration finally generated increases as the absolute value increases. That is, as the absolute value of the longitudinal jerk based on the driver's pedal opening operation is larger, the absolute value of the calculated longitudinal acceleration command value G xcmd is larger.
  • the range of longitudinal acceleration that can be generated by operating the accelerator pedal can be expanded, and the driver can control the longitudinal acceleration that occurs when the accelerator pedal is released, thereby controlling the magnitude of the longitudinal acceleration that is ultimately generated.
  • a longitudinal jerk that is the same as the longitudinal jerk generated by the driver is generated, that is, a longitudinal acceleration that is the same as the longitudinal jerk based on the driver's pedal opening operation is generated.
  • the negative longitudinal acceleration (FIG. 1 (A) G xaa ′ or FIG. 1 (A) G xab ′) generated based on the driver's accelerator pedal operation is the accelerator pedal operation amount by the driver or the driver. It changes based on the amount of brake pedal operation, the lateral jerk generated by the driver's steering wheel operation, or the vehicle body speed.
  • FIG. 2 shows a conceptual diagram of a change in the longitudinal acceleration command value when the driver operates the accelerator pedal during deceleration at which the longitudinal acceleration command value G xcmd becomes G xtgt0 .
  • the longitudinal jerk request value (accelerator) J xreqAP is created from the time change of the accelerator pedal operation amount (AP) of the driver, that is, the accelerator pedal operation speed, and based on the longitudinal jerk request value (accelerator) J xreqAP .
  • the longitudinal acceleration command value G xcmd is changed.
  • the longitudinal jerk request value (accelerator) J xreqAP is set to 0, and the deceleration control by the longitudinal acceleration command value G xcmd is finished.
  • the longitudinal jerk request value (accelerator) J xreqAP is set to 0, and the deceleration control by the longitudinal acceleration command value G xcmd is finished.
  • T 2b1 to T 2b2 under the condition that the accelerator pedal operation speed is positive, as shown in FIG.
  • the accelerator pedal operation amount is positive, If the acceleration command value G XCMD is not 0, changing the longitudinal acceleration command value G XCMD as the minimum value of the longitudinal jerk required value J XreqminAP the longitudinal jerk required value (accelerator) J xreqAP, FIG 2 (B) T 2b3 When the longitudinal acceleration command value G xcmd becomes 0, the longitudinal jerk request value (accelerator) J xreqAP is set to 0.
  • the longitudinal acceleration command value G xcmd can be set to 0 even when the accelerator pedal operation speed is low, and the accelerator pedal operation Acceleration according to the amount becomes possible.
  • the value of the longitudinal acceleration command value G XCMD is during deceleration as a G Xtgt0
  • Figure 3 shows a conceptual view of a longitudinal acceleration command value G XCMD when the driver operates the brake pedal.
  • the absolute value of the longitudinal acceleration request value (brake) GxreqBP generated by the brake pedal operation amount (BP) is greater than or equal to the absolute value of the longitudinal acceleration command value Gxcmd.
  • the absolute value of the longitudinal acceleration command value G xcmd is decreased based on the decrease in the brake pedal operation amount (BP).
  • the value of the longitudinal acceleration command value G XCMD is during deceleration as a G Xtgt0 4, the driver operates the steering wheel, a conceptual diagram of the longitudinal acceleration command value G XCMD when the lateral acceleration is generated.
  • the absolute value of the longitudinal acceleration command value is changed based on the lateral jerk.
  • the driver to generate, if the absolute value of the G XreqJy more than the absolute value of the longitudinal acceleration command value G XCMD, FIG 4 (A ),
  • the longitudinal jerk request value (lateral jerk) J xreqJy is created from the time change of G xreqJy , and the longitudinal acceleration command value G xcmd is changed based on the longitudinal jerk request value (lateral jerk) J xreqJy . .
  • the longitudinal acceleration request value (lateral jerk) G xreqJy is smaller than the absolute value of the longitudinal acceleration command value G xcmd generated, the longitudinal acceleration request value (lateral jerk) as shown in FIG. ) Only the positive component of the time change of G xreqJy is the longitudinal jerk required value (lateral jerk) J xreqJy, and the absolute value of the lateral acceleration is not less than the predetermined value G ylmt and the longitudinal acceleration command value G xcmd is not zero. If, longitudinal jerk required value J XreqminGy as the minimum of (lateral jerk) J xreqJy, changing the longitudinal acceleration command value.
  • a method of creating G xreqJy from the lateral jerk it is proposed in Vol. 39, No. 3, 2008 of the Society of Automotive Engineers of Japan.
  • FIG. 5 shows a conceptual diagram of a change in the longitudinal acceleration command value when the vehicle body speed V decreases due to deceleration at which the longitudinal acceleration command value G xcmd becomes G xtgt0 .
  • the absolute value of the longitudinal acceleration command value decreases according to the decrease in the vehicle body speed. Specifically, in a region where the vehicle body speed V is equal to or less than a predetermined vehicle body speed value V 1mt , the absolute value of the longitudinal acceleration command value G xcmd at the time of deceleration control is reduced as the vehicle body speed V decreases.
  • a longitudinal acceleration command lower limit value G XcmdlmtL which is the lower limit of the longitudinal acceleration command value G XCMD, in addition to the longitudinal acceleration command lower limit value 1 is set independently of the vehicle speed
  • the longitudinal acceleration command lower limit value 2 is set so that the absolute value of the longitudinal acceleration command lower limit value becomes smaller as the vehicle body speed V becomes smaller.
  • a negative longitudinal acceleration that is, deceleration is generated in the vehicle based on the longitudinal jerk generated by the driver's operation of the accelerator pedal, and the generated deceleration is further transmitted to the driver's accelerator pedal. If the driver does not make any input during deceleration control by changing it according to the operation, brake pedal operation, or steering wheel operation, a constant deceleration is performed (if the vehicle body speed is greater than a certain value). If any input is made, deceleration control corresponding to the input is performed.
  • the driver can intuitively control the deceleration generated, and the operation to keep the deceleration constant is controlled by the control. Since this is done, the driving load on the driver can be reduced.
  • the brake pedal is depressed from the accelerator pedal before the curve, and the deceleration operation by the brake pedal and the handle corresponding to the curve
  • the driver can generate the necessary deceleration by controlling the longitudinal jerk when the accelerator pedal is released before the curve. Since the deceleration changes according to the steering wheel operation at the time, the stepping operation of the accelerator pedal and the brake pedal can be reduced.
  • the driver when driving while following a preceding vehicle that repeatedly accelerates and decelerates in the city, the driver can change the deceleration generated by controlling the longitudinal jerk when the accelerator pedal is released, and the pedal can be changed Can be reduced.
  • FIG. 6 is a block diagram of a vehicle motion control system having the vehicle motion control device 1 according to the first embodiment of the present invention.
  • the vehicle motion control apparatus 1 of this embodiment is mounted on a vehicle, and includes acceleration / acceleration information acquisition means 2, vehicle body speed acquisition means 3, accelerator pedal operation amount acquisition means 4, brake pedal operation amount acquisition means 5, It comprises a longitudinal acceleration control switch 6 and a vehicle motion control command calculating means 7, and outputs signals to the longitudinal acceleration generating means 8 and the longitudinal acceleration control state display means 9.
  • the acceleration / jerk information acquisition means 2 and the vehicle body speed acquisition means 3 are collectively referred to as an exercise state information acquisition means, and the accelerator pedal operation amount acquisition means 4 and the brake pedal operation amount acquisition means 5 are collectively referred to as a pedal operation amount acquisition means.
  • the movement state information acquisition means acquires the longitudinal acceleration, lateral acceleration, and vehicle body speed generated in the vehicle
  • the pedal operation amount acquisition means obtains pedal operation information such as the accelerator pedal stroke and brake pressure of the driver. Shall be acquired.
  • Acceleration / jerk information acquisition means 2 is means for acquiring longitudinal acceleration, lateral acceleration, longitudinal jerk, and lateral jerk generated in the vehicle.
  • a value directly detected by a sensor or the like may be acquired, or a result calculated by another electronic controller may be acquired by communication.
  • a value directly detected by a sensor or the like may be acquired, or a result calculated by another electronic controller may be acquired by communication.
  • the longitudinal jerk and the lateral jerk need not necessarily be acquired by the acceleration / jerk information acquisition means 2, and the obtained longitudinal acceleration and lateral acceleration are differentiated by the vehicle motion control command calculation means 7.
  • the longitudinal jerk and the lateral jerk may be created.
  • the longitudinal acceleration and longitudinal jerk are estimated from the accelerator pedal operation amount obtained by the accelerator pedal operation amount acquisition means 4 or the brake pedal operation amount obtained by the brake pedal operation amount acquisition means 5 without depending on the above-described method. It may be a method.
  • the lateral acceleration is not based on the above-described method, and the yaw rate that is the steering angle by the driver's steering wheel operation or the rotational speed in the turning direction of the vehicle is acquired, and the vehicle motion control command calculation means 7 calculates the lateral acceleration using the vehicle model.
  • An estimation method may be used.
  • the vehicle body speed acquisition means 3 is a means for acquiring the vehicle body speed that is the moving speed of the vehicle.
  • the vehicle speed acquisition means may be a method of acquiring a value detected by a ground speed measurement sensor using millimeter waves or the like, or a result calculated by another electronic controller may be acquired by communication. Even if the vehicle speed is not detected directly, the vehicle position is acquired by the global positioning system (GPS), and estimated from the time change of the vehicle position obtained by the vehicle motion control command calculation means 7, A method of acquiring the rotational speed of each wheel and estimating the vehicle body speed from the rotational speed obtained by the vehicle motion control command calculation means 7 and the tire radius may be used.
  • GPS global positioning system
  • the accelerator pedal operation amount acquisition means 4 is a means for acquiring the accelerator pedal stroke or the accelerator pedal operation amount by the driver.
  • the result calculated by another electronic controller may be acquired by communication.
  • the accelerator pedal operation amount may be created by the vehicle motion control command calculation means 7 based on the value obtained by the accelerator pedal depression force sensor or both.
  • the brake pedal operation amount acquisition means 5 is means for acquiring the brake pressure or the brake pedal operation amount by the driver.
  • the brake pedal operation amount may be created by the vehicle motion control command calculation means 7 based on values obtained by the brake pedal stroke sensor, the brake pedal depression force sensor, the brake pressure sensor, or at least two of them. .
  • the accelerator pedal stroke or accelerator pedal operation amount acquired by the accelerator pedal operation amount acquisition means 4 and the brake pressure or brake pedal operation amount acquired by the brake pedal operation amount acquisition means 5 are collectively used as pedal operation information.
  • the longitudinal acceleration control switch 6 which is a longitudinal acceleration control detecting means is a switch which detects ON / OFF of the longitudinal acceleration control according to the present invention and outputs a longitudinal acceleration control detection signal.
  • the longitudinal acceleration control switch 6 is not a switch installed independently, but may be interlocked with other inputs. For example, when a mode changeover switch that changes the engine responsiveness to an accelerator pedal input is provided, the longitudinal acceleration control may be turned on in a mode in which the engine responsiveness is highest.
  • an input switch by the driver and a switch for switching ON / OFF of the longitudinal acceleration control from the shift position position may be used.
  • the longitudinal acceleration control is turned ON, and in other conditions, the longitudinal acceleration control is turned OFF. Also good.
  • processing based on the shift position described above may be performed so as to switch ON / OFF of the longitudinal acceleration control in the vehicle motion control command calculation means 7 by inputting the shift position information to the vehicle motion control command calculation means 7. .
  • the vehicle motion control command calculation means 7 is a calculation device having a storage area, calculation processing capability, and signal input / output means, calculates a longitudinal acceleration command value to be generated by the vehicle, A signal is sent to the acceleration control state means 9.
  • the vehicle motion control command calculation means 7 calculates a longitudinal acceleration command value based on the acquired information, and outputs a command value that realizes the calculated longitudinal acceleration command value.
  • a longitudinal acceleration command value is calculated based on the acquired information so as to generate a longitudinal acceleration having a longitudinal jerk comparable to the longitudinal jerk based on the operation.
  • the longitudinal acceleration generating means 8 is an acceleration / deceleration actuator capable of generating longitudinal acceleration in the vehicle.
  • the acceleration / deceleration actuator for example, an engine that generates longitudinal acceleration by controlling the throttle opening of the engine, a motor that generates longitudinal acceleration by controlling the driving torque of the motor, or when power is transmitted to each wheel 1 is a transmission that generates longitudinal acceleration by changing the gear ratio, or a friction brake that generates longitudinal acceleration by pressing a brake disc against a brake pad of each wheel.
  • the vehicle motion control device 1 An actuator capable of realizing the longitudinal acceleration command value calculated by the above is used as the longitudinal acceleration generating means 8.
  • the longitudinal acceleration control state means 9 is an information presenter that presents information that can be recognized by at least one of the five senses.
  • an information presenter for example, a display that gives information to the driver's vision, such as a display lamp or display, a sound generator that gives information to the driver's hearing, such as a beep or voice, or a handle, pedal, seat
  • the signal sent from the vehicle motion control device 1 to the longitudinal acceleration generating means 8 may be a signal that realizes the longitudinal acceleration command value by the acceleration / deceleration actuator, not the longitudinal acceleration itself.
  • the acceleration / deceleration actuator drive controller can control the acceleration / deceleration actuator so as to realize the longitudinal acceleration command value
  • the longitudinal acceleration command value is sent as a command signal to the drive controller.
  • the acceleration / deceleration actuator is a hydraulic friction brake that presses the brake pad against the brake disk by hydraulic pressure
  • a hydraulic pressure command value that realizes the longitudinal acceleration command value is sent to the hydraulic friction brake controller.
  • the drive signal of the hydraulic friction brake drive actuator that realizes the longitudinal acceleration command value may be sent directly to the hydraulic friction brake drive actuator without going through the hydraulic friction brake controller.
  • the acceleration / deceleration actuator that performs drive control according to the longitudinal acceleration command value may be changed.
  • the longitudinal acceleration generating means 5 when a regenerative brake and a hydraulic friction brake that generate deceleration in the host vehicle using the regenerative torque of the motor are used as the longitudinal acceleration generating means 5, the maximum deceleration that can be generated by the battery charge state and the regenerative brake and the front and rear
  • the regenerative torque command value and the hydraulic pressure command value may be sent to the regenerative brake and the hydraulic friction brake, respectively, so as to change the driving ratio of the regenerative brake and the hydraulic friction brake from the relationship of the acceleration command value.
  • a signal capable of driving the longitudinal acceleration control state means 9 is sent based on the control state of the vehicle motion control device 1 and the longitudinal acceleration command value.
  • the longitudinal acceleration control state means 9 is a display
  • a command value for turning on the display lamp or displaying on the display is sent according to the ON / OFF state of the longitudinal acceleration control or the longitudinal acceleration command value.
  • the longitudinal acceleration control state means 9 is a sound generator
  • a command value for guiding by a beep sound or voice is sent based on the longitudinal acceleration generated by the vehicle.
  • the longitudinal acceleration control state means 9 is a vibration generator
  • a command value is sent to the vibration generator that vibrates the steering wheel, pedal, and seat based on the longitudinal acceleration generated by the vehicle.
  • the vehicle motion control device 1 does not send the signals for controlling the longitudinal acceleration generation means 8 and the longitudinal acceleration control state means 9 directly, but sends the longitudinal acceleration command value to the other vehicle control device 10 as shown in FIG.
  • the vehicle control device 10 may be configured to send a signal for driving and controlling the longitudinal acceleration generating means 8 and the longitudinal acceleration control state means 9.
  • FIG. 8 shows a calculation flowchart A1 in the vehicle motion control command calculation means 7 of the vehicle motion control apparatus 1.
  • the signals obtained by the acceleration / jerk information acquisition means 2 are the signals obtained by the longitudinal acceleration, the lateral acceleration, and the vehicle body speed acquisition means 3, and the wheel speeds of each wheel and the accelerator pedal operation amount acquisition means 4.
  • the obtained signal is the accelerator pedal stroke
  • the signal obtained by the brake pedal operation amount acquisition means 5 is the brake pressure
  • the signal obtained by the longitudinal acceleration control switch 6 is the switch ON / OFF signal.
  • the longitudinal jerk J x , the lateral jerk J y , the vehicle body speed V, the accelerator pedal operation amount AP, and the brake pedal operation amount BP are calculated from the signals obtained in S000 as control signals necessary for control.
  • the longitudinal jerk J x and the lateral jerk J y are obtained by differentiating the longitudinal acceleration G x and the lateral acceleration G y .
  • the vehicle body speed V an average value of the wheel speeds V w [x] of the four wheels, a value obtained by select high, or a value obtained by combining both is used.
  • the vehicle body speed V is set to the higher average value of the average value of the front left and right wheels and the average value of the left and right rear wheels.
  • the accelerator pedal operation amount AP is a value obtained by adding a dead zone process, a filter process, etc. in consideration of pedal play to the obtained accelerator pedal stroke APS.
  • the brake pedal operation amount BP is a value obtained by adding filter processing or the like to the brake pressure Pm. After the calculation, the process proceeds to S200.
  • a longitudinal acceleration control permission flag FOK is created.
  • the longitudinal acceleration control permission flag FOK sets FOK to 1 if the vehicle body speed V is equal to or greater than the threshold value or during longitudinal acceleration control by the longitudinal acceleration command value Gxcmd , and (the switch ON / OFF signal GSW is ON). If the condition is other than 0, it is set to 0.
  • the longitudinal acceleration control permission flag FOK is (the vehicle body speed V is equal to or higher than the threshold value or during longitudinal acceleration control by the longitudinal acceleration command value G xcmd ), and (switch ON / OFF) If the signal GSW is ON) and (the shift position is in the D range), FOK is set to 1; otherwise, it is set to 0.
  • the process proceeds to S300.
  • FIG. 9 shows a calculation flowchart A2 of the longitudinal acceleration command value G xcmd .
  • the longitudinal acceleration control permission flag FOK is determined. If the longitudinal acceleration control permission flag FOK is 0, the process proceeds to S302, and if not 0, the process proceeds to S303.
  • the target longitudinal jerk J xtgt , the target longitudinal acceleration G xtgt , the longitudinal jerk command value J xcmd , the longitudinal jerk request value J xreq , and the longitudinal acceleration command value G xcmd are set to 0, and the process proceeds to S400 in FIG.
  • the target longitudinal jerk J xtgt is calculated based on the longitudinal jerk J x and the accelerator pedal operation amount AP.
  • the minimum value of the longitudinal jerk J x generated during the period ⁇ T when the accelerator pedal operation amount AP starts to decrease becomes 0 is J xtgtlmt.
  • the target longitudinal jerk J xtgt is set to zero.
  • the target longitudinal jerk J xtgt may be an average value instead of the minimum value of the period ⁇ T.
  • J xtgt is a value obtained by filtering different time constants in the direction in which the longitudinal jerk J x decreases and increases, which is much larger than the time constant in the direction of decreasing the time constant in the increasing direction. It is good. Also, based on the time change of the accelerator pedal operation amount AP, the longitudinal jerk to be generated is estimated. If this estimated value is J xAP , the larger value of J xAP and J x is used. The target longitudinal jerk J xtgt may be created.
  • J xAP is determined to be an ascending gradient or a descending gradient exceeding a certain threshold value.
  • J xtgt may be created based on the above . After the calculation, the process proceeds to S304.
  • the target longitudinal acceleration G xtgt is calculated based on the target longitudinal jerk J xtgt .
  • the target longitudinal acceleration J xtgt and the target longitudinal acceleration G xtgt have the same sign, and the larger the absolute value of the target longitudinal acceleration J xtgt is, the larger the target longitudinal acceleration J xtgt is.
  • the absolute value of the acceleration G xtgt is set to be large. After the calculation, the process proceeds to S305.
  • a longitudinal jerk command value J xcmd is calculated based on the target longitudinal jerk J xtgt , the target longitudinal acceleration G xtgt , the accelerator pedal operation amount AP, and the previous value G xcmd_z1 of the longitudinal acceleration command value.
  • the longitudinal jerk command value J xcmd is given by the following equation (1). After the calculation, the process proceeds to S306.
  • the longitudinal jerk request value J xreq is calculated based on the lateral acceleration G y , lateral jerk J y , accelerator pedal operation amount AP, brake pedal operation amount BP, and previous value G xcmd_z1 of the longitudinal acceleration command value G xcmd.
  • the longitudinal jerk demand value J xreq is the longitudinal jerk demand value (accelerator) J xreqAP , longitudinal jerk demand value (brake) J xreqBP , and longitudinal jerk demand value (lateral jerk) shown in FIGS. J xreqJy is given by the following equation (2). After the calculation, the process proceeds to S307.
  • vehicle speed V based on longitudinal jerk instruction value J XCMD, longitudinal jerk required value J XREQ, and the last value G Xcmd_z1 of the longitudinal acceleration command value G XCMD, calculates the longitudinal acceleration command value G XCMD.
  • the longitudinal acceleration command value G xcmd is obtained by integrating the value obtained by adding the longitudinal jerk command value J xcmd and the longitudinal jerk request value J xreq , the upper limit value is 0, and the lower limit value is the longitudinal acceleration shown in FIG. It is calculated by performing upper and lower limit value processing with the command lower limit value G xcmdlmtL .
  • the longitudinal acceleration command lower limit 1 that does not depend on the vehicle body speed V may be a preset value or a value that is set based on the absolute acceleration value
  • that can be generated here can be estimated from the relationship between the wheel speed change of each wheel and the longitudinal acceleration G x .
  • the longitudinal acceleration command value lower limit value 2 depending on the vehicle body speed V becomes a maximum value G xlmtV0 when the vehicle body speed V is 0, as shown in FIG. 12, and the value decreases as the vehicle body speed V increases.
  • a command value capable of generating a braking force capable of maintaining the stop state in each wheel is set to a value that can be transmitted to the longitudinal acceleration generating means 8. After the calculation, the process proceeds to S400 in FIG.
  • the signal transmitted to the longitudinal acceleration generating means 8 is the longitudinal acceleration command value G xcmd by transmitting the longitudinal acceleration command value G xcmd as described above.
  • the longitudinal acceleration command value Gxcmd is transmitted as a control command value.
  • a command value for controlling the longitudinal acceleration generating means 8 is created and transmitted based on the longitudinal acceleration command value Gxcmd .
  • the longitudinal acceleration generating means 8 is a hydraulic friction brake and the longitudinal acceleration control is performed by sending the hydraulic pressure command value to the hydraulic friction brake controller
  • the hydraulic pressure command value is created based on the longitudinal acceleration command value G xcmd.
  • the created hydraulic pressure command value is transmitted as a control command value. This causes the vehicle to generate longitudinal acceleration based on the longitudinal acceleration command value G xcmd .
  • a command for realizing the longitudinal acceleration command value G xcmd may be transmitted to the plurality of longitudinal acceleration generating means 8.
  • a constant longitudinal acceleration command value G xcmd is transmitted to the motor, and the increase / decrease of the longitudinal acceleration command value G xcmd based on the lateral jerk is hydraulically
  • the longitudinal acceleration that is transmitted to the friction brake and finally occurs in the vehicle may be the longitudinal acceleration command value G xcmd .
  • the command value to the longitudinal acceleration control state display means 9 is a drive command to the display to notify the driver that longitudinal acceleration control is performed by operating the accelerator pedal.
  • the drive command value to the display unit or the sound generator is transmitted to notify the driver that the control is being performed.
  • the drive command value may be transmitted so that the output of the display device or the sound generator changes according to the magnitude of the longitudinal acceleration command value G xcmd .
  • the longitudinal acceleration command value G xcmd is transmitted as a command value to the vehicle control device 10, and the vehicle control device 10 Then, a command value for driving and controlling the longitudinal acceleration generating means 8 and the longitudinal acceleration control state presenting means 9 is transmitted.
  • the present invention by controlling the longitudinal acceleration based on the longitudinal jerk generated by the driver's accelerator pedal operation, the range of the longitudinal acceleration that can be generated by the accelerator pedal by the driver can be effectively expanded. It is possible to reduce the pedal changing operation.
  • a signal obtained by the acceleration / acceleration information acquisition means 2 is used, and a signal obtained by the longitudinal acceleration, lateral acceleration, and vehicle body speed acquisition means 3 is obtained from each wheel.
  • the signal obtained by the wheel speed, accelerator pedal operation amount acquisition means 4 is the accelerator pedal stroke
  • the signal obtained by the brake pedal operation amount acquisition means 5 is the brake pressure
  • the signal obtained by the longitudinal acceleration control switch 6 is the switch ON / OFF signal.
  • the present invention is not necessarily limited to the case where all these signals are input.
  • the signal obtained by the acceleration / jerk information acquisition means 2 is only the lateral acceleration, and the target longitudinal jerk J xtgt is a time change of the accelerator pedal operation amount AP. You may calculate from xAP .
  • FIG. 13 is a block diagram of a vehicle motion control system having a vehicle motion control device 1 ′ according to the second embodiment of the present invention.
  • the vehicle motion control device 1 ′ of this embodiment is mounted on a vehicle, and includes a sensor signal acquisition unit 11 and a sensor signal calculation unit 12, and inputs and outputs signals to the in-vehicle network 13.
  • the vehicle body speed acquisition means 3, the accelerator pedal operation amount acquisition means 4, the brake pedal operation amount acquisition means 5, the longitudinal acceleration control switch 6, the longitudinal acceleration generation means 8, the longitudinal acceleration control state display means 9, and the vehicle control device 10 are described above.
  • the longitudinal acceleration control switch 6 does not necessarily need to be connected to the in-vehicle network 13, and may be connected to the vehicle control device 10 as shown in FIG. 14.
  • the sensor information acquisition unit 11 is a sensor that acquires information that can be used for vehicle control.
  • the sensor signal acquisition unit 11 is an acceleration sensor, a rotation speed sensor, or both acceleration and rotation speed. Or a vehicle speed sensor, and any sensor that can acquire information necessary for some vehicle control may be used.
  • the sensor signal calculation means 12 is a calculation device having a storage area, calculation processing capability, and signal input / output means.
  • the sensor signal calculation means 12 processes the signal obtained by the sensor signal acquisition means 11 and generates a longitudinal acceleration command value to be generated in the vehicle. And the signal processing value obtained by the sensor signal acquisition means 11 and the longitudinal acceleration command value are sent to the in-vehicle network 13.
  • the sensor signal acquisition unit 11 is an acceleration sensor that can detect the longitudinal acceleration and the lateral acceleration generated in the vehicle
  • the sensor signal calculation unit 12 calculates the longitudinal acceleration and the lateral acceleration from the signal obtained by the acceleration sensor.
  • information such as accelerator pedal stroke, brake pressure, wheel speed, and shift position is acquired through communication with the in-vehicle network, and longitudinal acceleration command values are calculated from longitudinal acceleration and lateral acceleration, and longitudinal acceleration, lateral acceleration, and longitudinal acceleration command values are calculated.
  • longitudinal acceleration command values are calculated from longitudinal acceleration and lateral acceleration, and longitudinal acceleration, lateral acceleration, and longitudinal acceleration command values are calculated.
  • FIG. 15 shows a calculation flowchart B1 in the sensor signal calculation means 12 of the vehicle motion control device 1 ′.
  • the sensor signal acquisition unit 11 is a sensor that can acquire both acceleration and rotational speed. This sensor calculates the yaw rate that is the longitudinal acceleration, lateral acceleration, and rotational speed in the vehicle turning direction generated at the center of gravity of the vehicle. It shall be attached to obtain.
  • Signals acquired via the in-vehicle network 13 are wheel speed, accelerator pedal stroke, brake pressure, and longitudinal acceleration control switch ON / OFF signal.
  • the sensor signal acquisition unit 11 acquires sensor signal values necessary for calculating the longitudinal acceleration G x , the lateral acceleration G y , and the yaw rate r.
  • the acceleration detecting means may be a method for detecting a change in the position of an object inside the sensor due to acceleration or a method for detecting the movement of heated gas.
  • the rotation speed detecting means may be a method using Coriolis force or a method using the Sagnac effect.
  • the longitudinal acceleration G x , the lateral acceleration G y , and the yaw rate r are calculated from the signal obtained by the sensor signal acquisition unit 11. After the calculation, the process proceeds to S030.
  • a command value for realizing the longitudinal acceleration command value G xcmd is transmitted to the in-vehicle network 13.
  • the longitudinal acceleration control permission flag FOK signal is transmitted to the vehicle network 13 when the 1, as described above, can be realized longitudinal acceleration command value G XCMD by the vehicle control apparatus 10 by sending longitudinal acceleration command value G XCMD
  • the longitudinal acceleration command value G xcmd is transmitted as the control command value. If it is necessary to transmit a command value corresponding to the longitudinal acceleration generating means 8 to the vehicle control device 10, a command value for controlling the longitudinal acceleration generating means 8 is created and transmitted based on the longitudinal acceleration command value Gxcmd .
  • the present invention can be realized without increasing the number of components mounted on the vehicle by incorporating the present invention into the signal processing unit of the sensor that needs to be mounted on the vehicle. Furthermore, as described above, by incorporating the signal necessary for realizing the present invention into a sensor, it is possible to suppress a delay or a decrease in accuracy when obtaining a signal necessary for implementing the present invention. Thereby, for example, even when signals such as longitudinal jerk and lateral jerk are created from longitudinal acceleration and lateral acceleration, a signal with a small delay can be created with higher accuracy.
  • the longitudinal acceleration is controlled based on the longitudinal jerk generated by the driver's pedal operation.
  • a method for controlling positive longitudinal acceleration based on longitudinal jerk generated by driver's brake pedal operation with reference to FIGS. Will be described.
  • FIG. 16 shows a conceptual diagram during acceleration control using the longitudinal acceleration command value G xcmd according to the present invention.
  • the brake pedal is released from the brake pedal position at which the brake pedal operation amount BP is reached while traveling at a certain positive vehicle body speed V 0 and while the vehicle is stopped in FIG. 16C.
  • it represents the longitudinal acceleration and longitudinal jerk that occur when the brake pedal operation amount is zero.
  • FIGS. 16A and 16B the brake pedal operation speed is different, and FIG. 16B is a condition in which the brake pedal operation speed is higher than that in FIG. G xbb of G xba, FIG 16 (B) of FIG. 16 (A) the longitudinal acceleration that occurs when not controlled nothing respectively, J xba shown in FIG. 16 (A), J xbb in FIG. 16 (B) This is the longitudinal jerk at this time.
  • FIGS. 16A and 16B is a condition in which the brake pedal operation speed is higher than that in FIG. G xbb of G xba
  • FIG 16 (B) of FIG. 16 (A) the longitudinal acceleration that occurs when not controlled nothing respectively, J xba shown in FIG. 16 (A), J xbb in FIG. 16 (B) This is the longitudinal jerk at this time.
  • FIGS. 16A the brake pedal operation speed is different
  • FIG. 16B is a condition in which the brake pedal operation speed is higher than that in FIG. G xbb of
  • the longitudinal jerks J xba ′ and J xbb ′ generated by the control at the time T xba and T xbb at the end of the brake pedal release operation are
  • the longitudinal accelerations G xba ′ and G xbb ′ are generated so as to be comparable to the longitudinal jerks J xb1 and J xb2 generated by operating the brake pedal.
  • the final sizes of G xba ′ and G xbb ′ differ depending on the sizes of J xb1 and J xb2 so that G xba ′ is finally ⁇ G xb1 and G xbb ′ is G xb2.
  • the longitudinal acceleration is added so that the absolute value of the longitudinal acceleration that is finally generated increases as the absolute value increases.
  • a vehicle equipped with an automatic transmission if the gear position is in the drive range, driving torque is applied to the drive wheels, and the vehicle accelerates to a certain vehicle speed without releasing the accelerator pedal by releasing the brake pedal (so-called creep phenomenon) ).
  • creep phenomenon a certain driving torque by releasing a brake pedal.
  • longitudinal acceleration control without discontinuity can be realized, and driver feeling can be improved.
  • the longitudinal jerk expected by the driver from the brake pedal operating speed By estimating, the longitudinal acceleration generated according to the operation of the brake pedal can be changed.
  • the longitudinal acceleration (FIG. 16 (A) G xba ′, or FIG. 16 (B) G xbb ′, or FIG. 16 (C) G xbc ′) generated based on the driver's brake pedal operation is It changes based on the accelerator pedal operation amount by the driver, the brake pedal operation amount by the driver, the lateral jerk generated by the driver's steering wheel operation, or the vehicle body speed.
  • the value of the longitudinal acceleration command value G XCMD is during deceleration as a G Xtgt0 17 shows a conceptual view of a longitudinal acceleration command value G XCMD when the driver operates the accelerator pedal.
  • a longitudinal acceleration required value (accelerator) G xreqAP from the accelerator pedal operation amount of the driver, if the absolute value of the G XreqAP more than the absolute value of the longitudinal acceleration command value G XCMD, the time variation of G XreqAP
  • the longitudinal jerk request value (accelerator) J xreqAP is created, and the longitudinal acceleration command value G xcmd is changed based on the longitudinal jerk requested value (accelerator) J xreqAP .
  • This enables acceleration according to the driver's accelerator pedal operation when the driver tries to generate an acceleration higher than the acceleration generated by the longitudinal acceleration control by the accelerator pedal operation during acceleration by the longitudinal acceleration command value G xcmd. It becomes.
  • FIG. 18 shows a conceptual diagram of a change in the longitudinal acceleration command value when the driver operates the brake pedal during acceleration in which the longitudinal acceleration command value G xcmd becomes G xtgt0 .
  • the longitudinal jerk request value (brake) J xreqBP is created from the time change of the brake pedal operation amount of the driver, that is, the brake pedal operation speed, and the longitudinal acceleration is based on the longitudinal jerk request value (brake) J xreqBP.
  • the command value G xcmd is changed.
  • the driver operates the brake pedal during acceleration by the longitudinal acceleration command value G XCMD, it can also be zero longitudinal acceleration command value G XCMD a case where the operation speed of the brake pedal is small, the brake pedal Deceleration according to the operation amount is possible.
  • the value of the longitudinal acceleration command value G XCMD is in acceleration becomes G Xtgt0 19, the driver operates the steering wheel, a conceptual diagram of the longitudinal acceleration command value G XCMD when the lateral acceleration is generated.
  • the longitudinal acceleration request value (lateral jerk) G xreqJy is created from the lateral jerk generated by the driver, and as shown in FIG. 19A , the longitudinal jerk request value (lateral jerk) is calculated from the time change of G xreqJy.
  • J xreqJy is created, the longitudinal acceleration command value G xcmd is changed based on the longitudinal jerk request value (lateral jerk) J xreqJy , and when the longitudinal acceleration command value becomes 0, the longitudinal jerk request value (lateral jerk) J xreqJy is set to 0.
  • the longitudinal acceleration command value G xcmd changes based on the generated lateral jerk, and acceleration / deceleration linked to the lateral motion becomes possible.
  • FIG. 20 shows a conceptual diagram of a change in the longitudinal acceleration command value when the vehicle body speed V increases due to acceleration at which the longitudinal acceleration command value G xcmd becomes G xtgt0 .
  • the longitudinal acceleration command value is a positive value (acceleration)
  • the absolute value of the longitudinal acceleration command value decreases as the vehicle speed decreases. Specifically, when a positive longitudinal acceleration is generated according to the driver's brake pedal operation, a certain target vehicle body speed V tgt is set, The absolute value of the longitudinal acceleration command value G xcmd is set to become smaller as the value ⁇ V tgt obtained by subtracting the vehicle body speed V from the vehicle body speed V tgt becomes smaller. When ⁇ V tgt is 0 or less, the longitudinal acceleration command value G is set. Set the absolute value of xcmd to be 0.
  • the longitudinal acceleration command upper limit G XcmdlmtH is an upper limit value of the longitudinal acceleration command value G XCMD
  • the longitudinal acceleration command upper limit value 1 is set independently of the [Delta] V tgt
  • the longitudinal acceleration command upper limit value 2 is set such that the absolute value of the longitudinal acceleration command upper limit value becomes smaller as ⁇ V tgt becomes smaller, of the longitudinal acceleration command upper limit value 1, the longitudinal acceleration command upper limit value 2,
  • the absolute value of the longitudinal acceleration command value G xcmd can be reduced according to the decrease in ⁇ V tgt .
  • the target vehicle body speed V tgt may be a preset value or a value that changes according to the longitudinal acceleration command.
  • a positive longitudinal acceleration that is, acceleration is generated in the vehicle based on the longitudinal jerk generated by the driver operating the brake pedal or the longitudinal jerk expected by the driver by operating the brake pedal. If the driver does not make any input during acceleration control by changing the generated acceleration according to the driver's accelerator pedal operation, brake pedal operation, or steering wheel operation, If it is larger, a certain acceleration is performed up to the target vehicle speed, and if the driver makes some input, acceleration control is performed according to the input.
  • the driver can control the acceleration that is generated intuitively, and the operation for keeping the acceleration constant is performed by the control.
  • the driving load on the driver can be reduced. This allows the driver to change the acceleration generated by controlling the longitudinal jerk when the brake pedal is released, for example, when following a preceding vehicle that repeatedly accelerates or decelerates in a city or when traveling while following a preceding vehicle in a traffic jam Therefore, the pedal changing operation can be reduced.
  • FIG. 21 is a block diagram of a vehicle motion control system having a vehicle motion control device 1 ′′ according to the third embodiment of the present invention.
  • the vehicle motion control device 1 ′′ of this embodiment is mounted on a vehicle, and includes acceleration / acceleration information acquisition means 2, vehicle body speed acquisition means 3, accelerator pedal operation amount acquisition means 4, brake pedal operation amount acquisition means 5. , A longitudinal acceleration control switch 6 'and a vehicle motion control command calculating means 7', which output signals to the longitudinal acceleration generating means 8 and the longitudinal acceleration control state display means 9.
  • acceleration / acceleration information acquisition means 2 vehicle body speed acquisition means 3, accelerator pedal operation amount acquisition means 4, brake pedal operation amount acquisition means 5, longitudinal acceleration generation means 8, and longitudinal acceleration control state display means 9 are described above. This is the same as the first embodiment.
  • the longitudinal acceleration control switch 6 ' is a switch for detecting ON / OFF of longitudinal acceleration control according to the present invention.
  • the longitudinal acceleration control switch 6 ' is not a switch that is installed independently, but may be interlocked with other inputs. For example, when a mode changeover switch that changes the engine responsiveness to an accelerator pedal input is provided, the longitudinal acceleration control may be turned on in a mode in which the engine responsiveness is highest.
  • an input switch by the driver and a switch for switching ON / OFF of the longitudinal acceleration control from the shift position position may be used.
  • the longitudinal acceleration control is turned ON, and in other conditions, the longitudinal acceleration control is turned OFF. Also good.
  • a switch that turns off the longitudinal acceleration control may be used.
  • the processing based on the shift position described above or the processing based on the external world information is performed by inputting the shift position information or the external world information to the vehicle motion control command calculating means 7 ', thereby controlling the longitudinal acceleration control in the vehicle motion control command calculating means 7'. You may perform so that ON / OFF may be switched.
  • the vehicle motion control command calculation means 7 ′ is a calculation device having a storage area, calculation processing capability, and signal input / output means, calculates a longitudinal acceleration command value to be generated by the vehicle, A signal is sent to the longitudinal acceleration control state means 9.
  • signals obtained by the acceleration / acceleration information acquisition means 2 are represented as longitudinal acceleration and lateral acceleration.
  • the signal obtained by the acceleration and vehicle body speed acquisition means 3 is the wheel speed of each wheel
  • the signal obtained by the accelerator pedal operation amount acquisition means 4 is the accelerator pedal stroke
  • the signal obtained by the brake pedal operation amount acquisition means 5 is the brake pressure
  • a signal obtained by the acceleration control switch 6 ' is an ON / OFF signal of the switch.
  • a longitudinal acceleration control permission flag FOK is created.
  • the longitudinal acceleration control permission flag FOK is set to 1 when the switch ON / OFF signal GSW is ON, and is set to 0 when other conditions are satisfied. Further, when the shift position is input as described above, the longitudinal acceleration control permission flag FOK is set to 1 if the switch ON / OFF signal GSW is ON and if the shift position is the D range, Otherwise 0 is set. After the calculation, the process proceeds to S350.
  • FIG. 23 shows a calculation flowchart C2 of the longitudinal acceleration command value Gxcmd .
  • the longitudinal acceleration control permission flag FOK is determined. If the longitudinal acceleration control permission flag FOK is 0, the process proceeds to S352, and if it is not 0, the process proceeds to S353.
  • the target longitudinal jerk J xtgt , the target longitudinal acceleration G xtgt , the longitudinal jerk command value J xcmd , the longitudinal jerk request value J xreq , and the longitudinal acceleration command value G xcmd are set to 0, and the process proceeds to S450.
  • the target longitudinal jerk J xtgt is calculated based on the longitudinal jerk J x and the brake pedal operation amount BP.
  • the maximum value of the longitudinal longitudinal acceleration J x generated during the period ⁇ T when the brake pedal operation amount BP starts to decrease becomes zero.
  • J xtgt is set, and the target longitudinal jerk J xtgt is set to 0 when the brake pedal operation amount BP starts to increase.
  • the target longitudinal jerk J xtgt may be an average value instead of the minimum value of the period ⁇ T.
  • J xtgt is a value obtained by filtering different time constants in the direction in which the longitudinal acceleration J x decreases and increases, and is much larger than the time constant in the direction of increasing the time constant in the decreasing direction. Also good.
  • the longitudinal jerk generated from the time change of the brake pedal operation amount BP is estimated, and the target longitudinal jerk J xtgt is created using the larger of the estimated values J xBP and J x. May be. If the longitudinal gradient of the road surface is estimated from the difference between the longitudinal acceleration G x and the longitudinal acceleration G xV obtained by differentiating the vehicle speed V, and J xBP is determined to be an upward gradient or a downward gradient exceeding a certain threshold value, Based on the above, the target longitudinal jerk J xtgt may be created. After the calculation, the process proceeds to S354.
  • the target longitudinal acceleration G xtgt and the target vehicle body speed V tgt are calculated based on the target longitudinal jerk J xtgt .
  • the target longitudinal acceleration J xtgt and the target longitudinal acceleration G xtgt have the same sign, and the larger the absolute value of the target longitudinal acceleration J xtgt is, the larger the target longitudinal acceleration J xtgt is.
  • the absolute value of the acceleration G xtgt is set to be large.
  • target longitudinal jerk J xtgt is equal a positive value, increases with target longitudinal jerk J xtgt, and 0 if negative . After the calculation, the process proceeds to S355.
  • a longitudinal jerk command value J xcmd is calculated based on the target longitudinal jerk J xtgt , the target longitudinal acceleration G xtgt , the brake pedal operation amount BP, and the previous value G xcmd_z1 of the longitudinal acceleration command value.
  • the longitudinal jerk command value J xcmd is given by the following equation (1). After the calculation, the process proceeds to S306.
  • the longitudinal jerk request value J xreq is calculated based on the lateral acceleration G y , lateral jerk J y , accelerator pedal operation amount AP, brake pedal operation amount BP, and previous value G xcmd_z1 of the longitudinal acceleration command value G xcmd.
  • the longitudinal jerk demand value J xreq is the longitudinal jerk demand value (accelerator) J xreqAP , longitudinal jerk demand value (brake) J xreqBP , and longitudinal jerk demand value (lateral jerk) shown in FIGS.
  • J xreqJy it is given by the following equation (4). After the calculation, the process proceeds to S357.
  • the longitudinal acceleration command upper limit value 1 that does not depend on the difference ⁇ V tgt between the vehicle body speed V and the target vehicle body speed V tgt is based on the absolute acceleration value
  • the longitudinal acceleration control permission flag FOK signal to be transmitted to the acceleration generating means 8 before and after the time of 1, as described above, the longitudinal acceleration command value by the acceleration generating means 8 back and forth by sending a longitudinal acceleration command value G XCMD G XCMD Is realized, the longitudinal acceleration command value G xcmd is transmitted as a control command value. If it is necessary to set a command value corresponding to the longitudinal acceleration generating means 8, a command value for controlling the longitudinal acceleration generating means 8 is created and transmitted based on the longitudinal acceleration command value Gxcmd .
  • the longitudinal acceleration generating means 8 is an engine and the longitudinal acceleration control is performed by sending the engine torque command value to the engine controller, the engine torque command value is created based on the longitudinal acceleration command value G xcmd and the created engine A torque command value is transmitted as a control command value. This causes the vehicle to generate longitudinal acceleration based on the longitudinal acceleration command value G xcmd .
  • a command for realizing the longitudinal acceleration command value may be transmitted to the plurality of longitudinal acceleration generating means 8.
  • the longitudinal acceleration generating means 8 a constant longitudinal acceleration command value is transmitted to the engine, an increase / decrease in the longitudinal acceleration command value based on the lateral jerk is transmitted to the motor, and finally the vehicle
  • the longitudinal acceleration generated in the above may be the longitudinal acceleration command value G xcmd .
  • the command value to the longitudinal acceleration control state display means 9 is a drive command to the display to notify the driver that the longitudinal acceleration control is performed by operating the brake pedal.
  • the drive command value to the display unit or the sound generator is transmitted to notify the driver that the control is being performed.
  • the drive command value may be transmitted so that the output of the display device or the sound generator changes according to the magnitude of the longitudinal acceleration command value G xcmd .
  • the present invention by controlling the longitudinal acceleration based on the longitudinal jerk generated by the driver's operation of the brake pedal, the range of the longitudinal acceleration that can be generated by the brake pedal by the driver can be effectively expanded. It is possible to reduce the pedal changing operation.
  • a signal obtained by the acceleration / acceleration information obtaining unit 2 is used, and a signal obtained by the longitudinal acceleration, lateral acceleration, and vehicle body speed obtaining unit 3 is used for each wheel.
  • the wheel speed, the signal obtained by the accelerator pedal operation amount acquisition means 4 is the accelerator pedal stroke, the signal obtained by the brake pedal operation amount acquisition means 5 is the brake pressure, and the signal obtained by the longitudinal acceleration control switch 6 'is the ON / OFF switch.
  • the signal obtained by the acceleration / jerk information acquisition means 2 is only the lateral acceleration
  • the target longitudinal jerk J xtgt is the time change of the brake pedal operation amount BP. You may calculate from JxBP .
  • the calculation of the longitudinal acceleration command value based on the accelerator pedal operation amount described in the first embodiment is also incorporated in the vehicle motion control command calculation means 7 ', and acceleration control by the brake pedal and deceleration control by the accelerator pedal are performed by a switch. It may be switched.
  • the calculation of the longitudinal acceleration command value by the brake pedal operation amount of the third embodiment is also incorporated in the sensor signal calculation means 12 of the second embodiment, and the acceleration control by the brake pedal and the deceleration control by the accelerator pedal are switched by a switch. Also good.

Abstract

 ドライバによる操作性がよく、ペダル操作を低減可能な車両運動制御装置を提案するために、車両に発生した前後加速度,横加速度、及び車体速度を取得する運動状態情報取得手段と、ドライバのペダル操作情報を取得するペダル操作量取得手段と、これらから取得された情報に基づいて前後加速度指令値を演算し、演算した前後加速度指令値を実現する指令値を出力する車両運動制御指令演算手段と、を有し、車両運動制御指令演算手段は、ドライバのペダル開放操作に基づく前後加加速度と同程度の前後加加速度となる前後加速度を発生するように、取得した情報に基づいて前後加速度指令値を演算する。

Description

車両運動制御装置及び車両運動制御システム
 本発明は、車両の運動状態が好適になるよう車両を加減速する車両運動制御装置及び車両運動制御システムに関する。
 従来、ドライバの運転負荷を低減する車両運動制御システムとして、ナビゲーションシステムのカーブ情報や旋回時の横加速度から、車両に発生する横加速度が設定値よりも過大となる際に、ドライバの代わりに減速を行うシステムが知られている(例えば特開2009-51487号公報)。
 このような車両運動制御システムでは、カーブ情報を取得するため、グローバルポジショニングシステム(GPS)やカメラのような撮像手段といったコース形状を取得する装置が必要となり、価格が高価なものとなる。
 このような装置を必要とせずに加減速を制御するシステムとして、ドライバ操作により発生する横加加速度に基づく加減速度の作成方法が提案されている(例えば特開2008-285066号公報、自動車技術会論文集Vol39,No.3,2008)。
 この方法により、カーブ毎に減速度の時間変化を設定することなくスキルドライバと同様の加減速を行うことができる。これにより連続カーブを走行する際、ドライバのブレーキ操作回数を減らすことができ、ドライバの運転負荷を低減することができる。
 またドライバのアクセルペダル,ブレーキペダルの踏み変え動作低減という観点から、アクセルペダルの操作で減速度を発生させる方法として、走行状況(街中,郊外のワインディング等)に基づいて減速度を付加する方法(例えば特開平9-272419号公報)や、アクセルペダル位置に応じて減速度を付加する方法(例えば特開2000-233730号公報)が提案されている。これらの方法では、アクセルペダル操作のみで減速度を発生可能である。
 しかし走行状況に応じた減速度では必ずしもドライバが意図した減速度となるとは限らず、またアクセルペダル位置に応じた減速では、ドライバは減速度を制御するために常にアクセルペダルを操作しなければならない。
 本発明の目的は、上記のような事情に鑑みてなされたものであり、ドライバによる操作性がよく、ペダル操作を低減可能な車両運動制御装置及び車両運動制御システムを提案することである。
 この課題を解決するために、本発明の車両運動制御装置は、車両に発生した前後加速度,横加速度、及び車体速度を取得する運動状態情報取得手段と、ドライバのペダル操作情報を取得するペダル操作量取得手段と、運動状態情報取得手段とペダル操作量取得手段と、から取得された情報に基づいて前後加速度指令値を演算し、演算した前後加速度指令値を実現する指令値を出力する車両運動制御指令演算手段と、を有し、車両運動制御指令演算手段は、ドライバのペダル開放操作に基づく前後加加速度と同程度の前後加加速度となる前後加速度を発生するように、取得した情報に基づいて前記前後加速度指令値を演算する構成とする。
 また、本発明の車両運動制御システムは、車両に発生した前後加速度,横加速度、及び車体速度を取得する運動状態情報取得手段と、ドライバのペダル操作情報を取得するペダル操作量取得手段と、運動状態情報取得手段とペダル操作量取得手段と、から取得された情報に基づいて前後加速度指令値を演算し、演算した前記前後加速度指令値を実現する指令値を出力する運動制御車両指令演算手段と、を有する車両運動制御装置と、運動制御車両指令演算手段から出力された指令値に基づいて車両に前後加速度制御を行う前後加速度発生手段と、運動制御車両指令演算手段から出力された指令値に基づいてドライバに認識可能な情報を提示する前後加速度制御状態手段と、を有し、車両運動制御指令演算手段は、ドライバのペダル開放操作に基づく前後加加速度と同程度の前後加加速度となる前後加速度を発生するように、取得した情報に基づいて前後加速度指令値を演算する構成とする。
本発明の前後加速度指令値による減速制御時の概念を示す図である。 本発明の前後加速度指令値による減速中に、ドライバがアクセルペダルを操作した際の前後加速度指令値変化の概念を示す図である。 本発明の前後加速度指令値による減速中に、ドライバがブレーキペダルを操作した際の前後加速度指令値の概念を示す図である。 本発明の前後加速度指令値による減速中に、ドライバがハンドルを操作し、横加速度を発生した際の前後加速度指令値の概念を示す図である。 本発明の前後加速度指令値による減速中に、車体速度が低下した際の前後加速度指令値変化の概念を示す図である。 本発明に係る車両運動制御装置の第一の実施形態を示すシステムブロック図である。 図6の他の実施形態を示すシステムブロック図である。 図6の車両運動制御指令演算部の演算フローチャートを示す図である。 図6の車両運動制御指令演算部の演算フローチャートを示す図である。 図6におけるドライバのアクセルペダル操作量と目標前後加加速度の関係を示す図である。 図6におけるドライバの目標前後加加速度と目標前後加速度の関係を示す図である。 図6におけるドライバの車体速度と前後加速度指令値下限値2の関係を示す図である。 本発明に係る車両運動制御装置の第二の実施形態を示すシステムブロック図である。 図13の他の実施形態を示すシステムブロック図である。 図13の車両運動制御指令演算部の演算フローチャートを示す図である。 本発明の前後加速度指令値による加速制御時の概念を示す図である。 本発明による前後加速度指令値による加速中に、ドライバがアクセルペダルを操作した際の前後加速度指令値変化の概念を示す図である。 本発明の前後加速度指令値による加速中に、ドライバがブレーキペダルを操作した際の前後加速度指令値の概念を示す図である。 本発明の前後加速度指令値による加速中に、ドライバがハンドルを操作し、横加速度を発生した際の前後加速度指令値の概念を示す図である。 本発明の前後加速度指令値による加速中に、車体速度が増加した際の前後加速度指令値変化の概念を示す図である。 本発明に係る車両運動制御装置の第三の実施形態を示すシステムブロック図である。 図21の車両運動制御指令演算部の演算フローチャートを示す図である。 図21の車両運動制御指令演算部の演算フローチャートを示す図である。 図21におけるドライバのブレーキペダル操作量と目標前後加加速度の関係を示す図である。 図21における目標前後加加速度と目標前後加速度の関係を示す図である。 図21における車体速度と目標車体速度の差分と、前後加速度指令値上限値2の関係を示す図である。
(アクセルペダル操作に基づく前後加速度制御方法)
 本発明では、ドライバのペダル操作により発生した前後加加速度に基づいて、前後加速度の制御を行う。実施形態の説明に先立ち、本発明の理解が容易になるよう、以下、図1から図5を用いて、ドライバのアクセルペダル操作により発生した前後加加速度に基づいて、負の前後加速度、すなわち減速度を制御する方法について説明する。なお本明細において、前後加速度は加速側が正、減速側が負である。
 図1に本発明による前後加速度指令値による減速制御時の概念図を示す。
 図1では、あるアクセルペダル操作量(AP)が、AP0となるアクセルペダル位置からアクセルペダルを開放し始め、アクセルペダル操作量を0とした時に発生する前後加速度(Gxa,xb),前後加加速度(Jxa,xb)を表している。
 また図1(A),(B)では、アクセルペダル操作速度が異なり、図1(A)よりも図1(B)はアクセルペダル操作速度が大きい条件となっている。図1(A)のGxaa,図1(B)のGxabは、それぞれ何も制御しない時に発生する前後加速度を、図1(A)のJxaa,図1(B)のJxabは、この時の前後加加速度である。図1(A),(B)に示すように、アクセルペダル操作速度が異なることで、アクセルペダル開放中に発生する前後加加速度は、-Jx1と-Jx2と、その値が異なるが、前後加速度Gxaa,Gxabは、最終的に同程度の値-Gx0となる。
 本発明ではこのJxaaとJxabの違いに着目し、JxaaとJxabの違いによって異なる前後加速度を付加し、最終的に発生する前後加速度を変化させる。
 具体的には、図1(A),(B)に示すように、アクセルペダルの開放操作終了時T1a,T1bにおいて、制御により発生する前後加加速度Jxaa′,Jxab′が、ドライバのペダル操作により発生した前後加加速度-Jx1,-Jx2と同程度となるような前後加速度Gxaa′,Gxab′を発生させる。
 またGxaa′は最終的に-Gx1,Gxab′は-Gx2となるように、Gxaa′,Gxab′の最終的な大きさは、-Jx1,-Jx2の大きさによって異なり、その絶対値が大きいほど最終的に発生する前後加速度の絶対値が大きくなるように、前後加速度を付加する。つまり、ドライバのペダル開放操作に基づく前後加加速度の絶対値が大きいほど、演算された前後加速度指令値Gxcmdの絶対値が大きくなる。
 これによりアクセルペダル操作で発生可能な前後加速度の領域を広げることができ、ドライバはアクセルペダル開放時に発生する前後加加速度を制御することで、最終的に発生する前後加速度の大きさを制御することができる。また、ドライバが発生させた前後加加速度と同程度となる前後加加速度を発生させる、つまり、ドライバのペダル開放操作に基づく前後加加速度と同程度の前後加加速度となる前後加速度を発生するように、前後加速度指令値を演算することで、不連続感のない前後加速度制御を実現でき、ドライバフィーリングを向上することができる。
 本発明では、ドライバのアクセルペダル操作に基づいて発生させた負の前後加速度(図1(A)Gxaa′もしくは図1(A)Gxab′)は、ドライバによるアクセルペダル操作量、もしくはドライバによるブレーキペダル操作量、もしくはドライバのハンドル操作により発生した横加加速度、もしくは車体速度に基づいて変化する。
 図2に前後加速度指令値Gxcmdの値がGxtgt0となる減速中に、ドライバがアクセルペダルを操作した際の前後加速度指令値変化の概念図を示す。
 本発明では、ドライバのアクセルペダル操作量(AP)の時間変化、すなわちアクセルペダル操作速度から、前後加加速度要求値(アクセル)JxreqAPを作成し、前後加加速度要求値(アクセル)JxreqAPに基づいて前後加速度指令値Gxcmdを変化させる。
 図2(A),(B)に示すように、アクセルペダル操作量が増加するように変化している場合、正の値となる前後加加速度要求値(アクセル)JxreqAPが作成される。ここで前後加加速度要求値(アクセル)JxreqAPはアクセルペダル操作速度が大きいほど大きな値となる。図2(A)T2a1からT2a3に示すように、アクセルペダル操作速度が正となっている条件において、図2(A)T2a2に示すように、前後加速度指令値Gxcmdが0となった際、前後加加速度要求値(アクセル)JxreqAPを0とし、前後加速度指令値Gxcmdによる減速制御を終了する。また図2(B)T2b1からT2b2に示すように、アクセルペダル操作速度が正となっている条件において、図2(B)T2b2に示すように、アクセルペダル操作量が正で、前後加速度指令値Gxcmdが0では無い場合、前後加加速度要求値JxreqminAPを前後加加速度要求値(アクセル)JxreqAPの最小値として前後加速度指令値Gxcmdを変化させ、図2(B)T2b3に示すように前後加速度指令値Gxcmdが0となった際に前後加加速度要求値(アクセル)JxreqAPを0とする。
 これにより前後加速度指令値Gxcmdによる減速中にドライバがアクセルペダルを操作した際、アクセルペダルの操作速度が小さい場合であっても前後加速度指令値Gxcmdを0とすることができ、アクセルペダル操作量に応じた加速が可能となる。
 図3に前後加速度指令値Gxcmdの値がGxtgt0となる減速中に、ドライバがブレーキペダルを操作した際の前後加速度指令値Gxcmdの概念図を示す。
 本発明では、ドライバのブレーキペダル操作量(BP)から前後加速度要求値(ブレーキ)GxreqBPを作成し、GxreqBPの絶対値が前後加速度指令値Gxcmdの絶対値以上であれば、GxreqBPの時間変化から前後加加速度要求値(ブレーキ)JxreqBPを作成し、前後加加速度要求値(ブレーキ)JxreqBPに基づいて前後加速度指令値Gxcmdを変化させる。つまり、前後加速度指令値が負の値(減速)の場合、ブレーキペダル操作量(BP)により発生する前後加速度要求値(ブレーキ)GxreqBPの絶対値が前後加速度指令値Gxcmdの絶対値以上の場合、ブレーキペダル操作量(BP)の減少に基づいて、前後加速度指令値Gxcmdの絶対値が減少させる。
 これにより前後加速度指令値Gxcmdによる減速中にドライバがブレーキペダル操作により、前後加速度制御により発生している減速度以上の減速度を発生させようとした際、ドライバのブレーキペダル操作に応じた減速が可能となる。
 図4に前後加速度指令値Gxcmdの値がGxtgt0となる減速中に、ドライバがハンドルを操作し、横加速度を発生した際の前後加速度指令値Gxcmdの概念図を示す。
 本発明では、横加加速度に基づいて、前後加速度指令値の絶対値を変化させる。具体的には、ドライバが発生させる横加加速度から前後加速度要求値(横加加速度)GxreqJyを作成し、GxreqJyの絶対値が前後加速度指令値Gxcmdの絶対値以上であれば、図4(A)に示すように、GxreqJyの時間変化から前後加加速度要求値(横加加速度)JxreqJyを作成し、前後加加速度要求値(横加加速度)JxreqJyに基づいて前後加速度指令値Gxcmdを変化させる。
 また前後加速度要求値(横加加速度)GxreqJyの絶対値が発生している前後加速度指令値Gxcmdの絶対値よりも小さければ、図4(B)に示すように、前後加速度要求値(横加加速度)GxreqJyの時間変化の正の成分のみを前後加加速度要求値(横加加速度)JxreqJyとし、更に、横加速度の絶対値が所定値Gylmt以上で、前後加速度指令値Gxcmdが0ではない場合、JxreqminGyを前後加加速度要求値(横加加速度)JxreqJyの最小値として、前後加速度指令値を変化させる。ここで横加加速度からGxreqJyを作成する方法としては、自動車技術会論文集Vol39,No.3,2008に提案されている。
 これにより前後加速度指令値Gxcmdによる減速制御中にドライバがハンドル操作を行った場合、発生した横加加速度に基づいて前後加速度指令値Gxcmdが変化し、横運動に連係した減速が可能となる。
 図5に前後加速度指令値Gxcmdの値がGxtgt0となる減速により、車体速度Vが低下した際の前後加速度指令値変化の概念図を示す。
 本発明では、前後加速度指令値が負の値(減速)の場合、且つ車体速度が予め定めた車体速度以下の場合は、車体速度の減少に応じて前後加速度指令値の絶対値が減少する、具体的には、車体速度Vが予め定めた車体速度の値Vlmt以下の領域において、減速制御時の前後加速度指令値Gxcmdの絶対値が、車体速度Vの低下に応じて小さくなるように設定する。この方法として、例えば図5に示すように、前後加速度指令値Gxcmdの下限値である前後加速度指令下限値GxcmdlmtLを、車体速度に依存せずに設定される前後加速度指令下限値1に加え、車体速度Vが小さくなるほど、前後加速度指令下限値の絶対値が小さな値となるように設定される前後加速度指令下限値2を備え、前後加速度指令下限値1,前後加速度指令下限値2の内、その絶対値が小さい方の値を前後加速度指令下限値GxcmdlmtLとしておくことで、前後加速度指令値の絶対値を車体速度Vの低下に応じて小さくすることができる。
 これにより前後加速度指令値Gxcmdによる減速制御により車両が停止する際に、急激な前後加速度変化が発生するのを抑制することが可能となる。
 以上のように、本発明では、ドライバがアクセルペダルの操作により発生した前後加加速度に基づいて、負の前後加速度、すなわち減速度を車両に発生させ、更に発生した減速度を、ドライバのアクセルペダル操作、もしくはブレーキペダル操作、あるいはハンドル操作に応じて変化させることで、減速制御中にドライバが何らかの入力を行わなければ、(車体速度がある値よりも大きければ)一定の減速が行われ、ドライバが何らかの入力を行えば、その入力に応じた減速制御が行われる。
 このようにアクセルペダル開放時の前後加加速度に応じて減速度を可変とすることで、ドライバは直感的に発生させる減速度を制御することができ、また減速度を一定に保つ操作は制御により行われるため、ドライバの運転負荷を低減することができる。
 これにより例えば郊外のワインディング路のように連続したカーブ路を走行する際に、従来であれば、カーブ前でアクセルペダルからブレーキペダルの踏み変えを行い、ブレーキペダルによる減速操作とカーブに応じたハンドル操作後に再度アクセルペダルを踏み込むといった行動を、本発明では、ドライバはカーブ前でのアクセルペダル開放時の前後加加速度を制御することで、必要な減速度を発生させることができ、更にカーブを旋回する際のハンドル操作に応じて減速度が変化するため、アクセルペダルとブレーキペダルの踏み変え動作を低減することができる。
 また街中で加減速を繰り返す先行車に追従しながら走行する際においても、ドライバはアクセルペダル開放時の前後加加速度を制御することで発生する減速度を変化させることができ、ペダルの踏み変え動作を低減することができる。
(発明を実施するための実施形態1)
 以下、図6~図12を用いて、本発明の第1の実施形態による車両運動制御装置の構成及び動作について説明する。
 図6は、本発明の第1の実施形態による車両運動制御装置1を有する車両運動制御システムのブロック図である。
 本実施形態の車両運動制御装置1は車両に搭載されるものであり、加速度・加加速度情報取得手段2,車体速度取得手段3,アクセルペダル操作量取得手段4,ブレーキペダル操作量取得手段5,前後加速度制御スイッチ6,車両運動制御指令演算手段7からなり、前後加速度発生手段8、および前後加速度制御状態表示手段9への信号出力を行う。なお、加速度・加加速度情報取得手段2と車体速度取得手段3をまとめて運動状態情報取得手段とし、アクセルペダル操作量取得手段4とブレーキペダル操作量取得手段5とまとめてペダル操作量取得手段とする。よって、運動状態情報取得手段は、車両に発生した前後加速度,横加速度、及び車体速度を取得するものであり、ペダル操作量取得手段は、ドライバのアクセルペダルストローク,ブレーキ圧等のペダル操作情報を取得するものとする。
 加速度・加加速度情報取得手段2は、車両に発生した前後加速度,横加速度,前後加加速度,横加加速度を取得する手段である。
 前後加速度,横加速度を取得する方法として、センサ等により直接検出された値を取得しても、他の電子制御器が演算した結果を通信により取得してもよい。
 また前後加加速度,横加加速度を取得する方法として、センサ等により直接検出された値を取得しても、他の電子制御器が演算した結果を通信により取得してもよい。ここで前後加加速度,横加加速度は必ずしも、加速度・加加速度情報取得手段2により取得される必要はなく、得られた前後加速度,横加速度を車両運動制御指令演算手段7において微分処理をすることで、前後加加速度,横加加速度を作成してもよい。
 また前後加速度,前後加加速度は上述の方法によらず、アクセルペダル操作量取得手段4により得られたアクセルペダル操作量、もしくはブレーキペダル操作量取得手段5により得られたブレーキペダル操作量から推定する方法であってもよい。
 また横加速度は上述の方法によらず、ドライバのハンドル操作による操舵角、もしくは車両の旋回方向の回転速度であるヨーレイトを取得し、車両運動制御指令演算手段7において車両モデルを用いて横加速度を推定する方法であってもよい。
 車体速度取得手段3は、車両の移動速度である車体速度を取得する手段である。車体速度の取得手段として、ミリ波等を用いた対地速度測定センサにより検出された値を取得する方法であっても、他の電子制御器が演算した結果を通信により取得してもよい。また直接車体速度を検出せず、グローバルポジショニングシステム(GPS)により自車両位置を取得し、車両運動制御指令演算手段7にて得られた自車両位置の時間変化から推定する方法であっても、各車輪の回転速度を取得し、車両運動制御指令演算手段7にて得られた回転速度とタイヤ半径から車体速度を推定する方法であってもよい。
 アクセルペダル操作量取得手段4は、ドライバによるアクセルペダルストローク、又はアクセルペダル操作量を取得する手段である。
 アクセルペダル操作量の取得手段として、アクセルペダルストロークセンサにより検出された値をアクセルペダル操作量として取得する方法であっても、アクセルペダル踏力センサにより検出された値をアクセルペダル操作量として取得する方法であっても、他の電子制御器が演算した結果を通信により取得してもよい。
 また直接アクセルペダル操作量を検出せず、スロットル開度を取得し、車両運動制御指令演算手段7にて得られた前記スロットル開度から推定する方法であっても、アクセルペダルストロークセンサ、もしくアクセルペダル踏力センサにより得られた値、もしくはその両方に基づいて車両運動制御指令演算手段7にてアクセルペダル操作量を作成してもよい。
 ブレーキペダル操作量取得手段5は、ドライバによるブレーキ圧又はブレーキペダル操作量を取得する手段である。
 ブレーキペダル操作量の取得手段として、ブレーキペダルストロークセンサにより検出された値をブレーキペダル操作量として取得する方法であっても、ブレーキペダル踏力センサにより検出された値をブレーキペダル操作量として取得する方法であっても、ブレーキ圧センサにより検出された値をブレーキペダル操作量として取得する方法であっても、他の電子制御器が演算した結果を通信により取得してもよい。
 またブレーキペダルストロークセンサ、もしくはブレーキペダル踏力センサ、もしくはブレーキ圧センサにより得られた値、もしくはこれらの少なくとも二つに基づいて車両運動制御指令演算手段7にてブレーキペダル操作量を作成してもよい。
 なお、アクセルペダル操作量取得手段4で取得したアクセルペダルストローク、又はアクセルペダル操作量、及びブレーキペダル操作量取得手段5で取得したブレーキ圧又はブレーキペダル操作量をまとめてペダル操作情報とする。
 前後加速度制御検出手段である前後加速度制御スイッチ6は、本発明による前後加速度制御のON又はOFFを検出し、前後加速度制御検出信号を出力するスイッチである。ここで前後加速度制御スイッチ6は独立に設置されるスイッチではなく、他の入力と連動するものであってもよい。例えばアクセルペダル入力に対してエンジンの応答性を変更するモード切替えスイッチを備える場合、エンジンの応答性が最も高くなるモードでは、前後加速度制御がONとなるようにしてもよい。
 またドライバによる入力スイッチとシフトポジション位置から前後加速度制御のON/OFFを切替えるスイッチであってもよい。例えば、オートマティックトランスミッションの車両であれば、シフトポジションがDレンジで、かつドライバによる入力スイッチがONの時は前後加速度制御をONとし、それ以外の条件では前後加速度制御をOFFとするスイッチであってもよい。
 また上述のシフトポジションによる処理は、シフトポジション情報を車両運動制御指令演算手段7に入力することで、車両運動制御指令演算手段7内で前後加速度制御のON/OFFを切替えるように行ってもよい。
 車両運動制御指令演算手段7は、記憶領域、および演算処理能力、および信号の入出力手段をもつ演算装置であり、車両に発生させる前後加速度指令値を演算し、前後加速度発生手段8、および前後加速度制御状態手段9へと信号を送る。本発明では、車両運動制御指令演算手段7は、取得された情報に基づいて前後加速度指令値を演算し、演算した前後加速度指令値を実現する指令値を出力するものであり、ドライバのペダル開放操作に基づく前後加加速度と同程度の前後加加速度となる前後加速度を発生するように、取得した情報に基づいて前後加速度指令値を演算する。
 前後加速度発生手段8は、車両に前後加速度を発生可能な加減速アクチュエータである。前記加減速アクチュエータとして、例えばエンジンのスロットル開度を制御することで前後加速度を発生させるエンジン、もしくはモータの駆動トルクを制御することで前後加速度を発生させるモータ、もしくは動力を各車輪に伝達する際の変速比を変えることで前後加速度を発生させる変速機、もしくは各車輪のブレーキパッドにブレーキディスクを押しつけることで前後加速度を発生させる摩擦ブレーキであり、これら加減速アクチュエータの内、車両運動制御装置1により演算された前後加速度指令値を実現可能なアクチュエータを前後加速度発生手段8として用いる。
 前後加速度制御状態手段9は、ドライバが五感の少なくとも一つにより認識可能な情報を提示する情報提示器である。情報提示器としては、例えば表示ランプやディスプレイのようにドライバの視覚に情報を与える表示器、もしくはビープ音や音声のようにドライバの聴覚に情報を与える音発生器、もしくはまたハンドルやペダル、シートの振動のようにドライバの触覚に情報を与える振動発生器であり、前後加速度制御状態手段9として、表示器,音発生器,振動発生器を組合せて用いてもよい。
 車両運動制御装置1から前後加速度発生手段8に送られる信号としては、前後加速度そのものではなく、加減速アクチュエータにより前後加速度指令値を実現する信号であればよい。例えば加減速アクチュエータの駆動制御器が、前後加速度指令値を実現するように加減速アクチュエータを制御可能な場合、前後加速度指令値を駆動制御器に指令信号として送る。
 また加減速アクチュエータが油圧によりブレーキパッドをブレーキディスクに押し付ける油圧式摩擦ブレーキである場合、前後加速度指令値を実現する油圧指令値を油圧式摩擦ブレーキ制御器へ送る。
 また油圧式摩擦ブレーキ制御器を介さず、前後加速度指令値を実現する油圧式摩擦ブレーキ駆動アクチュエータの駆動信号を油圧式摩擦ブレーキ駆動アクチュエータに直接送ってもよい。
 また前後加速度指令値を実現する際に前後加速度指令値に応じて駆動制御を行う加減速アクチュエータを変更してもよい。例えば、モータの回生トルクを用いて自車両に減速度を発生させる回生ブレーキと油圧式摩擦ブレーキを前後加速度発生手段5とする場合、バッテリーの充電状態や回生ブレーキで発生可能な最大減速度と前後加速度指令値の関係から、回生ブレーキと油圧式摩擦ブレーキの駆動割合を変更するように、回生トルク指令値および油圧指令値をそれぞれ、回生ブレーキ,油圧式摩擦ブレーキへ送ってもよい。
 車両運動制御装置1から前後加速度制御状態手段9に送られる信号としては、車両運動制御装置1の制御状態や、前後加速度指令値に基づいて、前後加速度制御状態手段9を駆動可能な信号を送る。例えば前後加速度制御状態手段9が表示器である場合、前後加速度制御のON/OFF状態や前後加速度指令値に応じて表示ランプの点灯やディスプレイへの表示を行う指令値を送る。前後加速度制御状態手段9が音発生器である場合、車両に発生させる前後加速度に基づいてビープ音や音声による案内をする指令値を送る。前後加速度制御状態手段9が振動発生器である場合、車両に発生させる前後加速度に基づいてハンドルやペダル,シートを振動する振動発生器に指令値を送る。
 ここで車両運動制御装置1から直接前後加速度発生手段8,前後加速度制御状態手段9を駆動制御する信号を送らず、図7に示すように他の車両制御装置10に前後加速度指令値を送り、車両制御装置10から前後加速度発生手段8,前後加速度制御状態手段9を駆動制御する信号を送る構成であってもよい。
 図8に車両運動制御装置1の車両運動制御指令演算手段7における演算フローチャートA1を示す。なお演算フローチャートA1では、加速度・加加速度情報取得手段2により得られる信号を、前後加速度,横加速度,車体速度取得手段3により得られる信号を各車輪の車輪速度,アクセルペダル操作量取得手段4により得られる信号をアクセルペダルストローク,ブレーキペダル操作量取得手段5により得られる信号をブレーキ圧,前後加速度制御スイッチ6により得られる信号をスイッチのON/OFF信号とする。
 S000では、加速度・加加速度情報取得手段2により前後加速度Gx,横加速度Gy,車体速度取得手段3により得られる各車輪の車輪速度Vw[x](xには各車輪番号、左前輪:0,右前輪:1,左後輪:2,右後輪:3がそれぞれ入る)、アクセルペダル操作量取得手段4により得られるアクセルペダルストロークAPS、ブレーキペダル操作量取得手段5により得られるブレーキ圧Pm、前後加速度制御スイッチ6により得られるスイッチON/OFF信号GSWを取得,演算を行う。演算後S100へ進む。
 S100では、S000により得られた信号から、制御に必要な制御用信号として、前後加加速度Jx,横加加速度Jy,車体速度V,アクセルペダル操作量AP,ブレーキペダル操作量BPを演算する。ここで前後加加速度Jx,横加加速度Jyは、前後加速度Gx,横加速度Gyを微分することで得られる。また車体速度Vとしては、4輪の車輪速度Vw[x]の平均値、もしくはセレクトハイにより得られる値、もしくはその両者を組合せた値を用いる。組合せる方法としては、前輪左右輪の平均値と後輪左右輪の平均値の内のどちらか高い方の平均値を車体速度Vとする。またアクセルペダル操作量APとしては、得られたアクセルペダルストロークAPSにペダルの遊びを考慮した不感帯処理,フィルタ処理等を加えた値とする。ブレーキペダル操作量BPは、ブレーキ圧Pmにフィルタ処理等を加えた値とする。演算後S200へ進む。
 S200では、前後加速度制御許可フラグFOKを作成する。前後加速度制御許可フラグFOKは、(車体速度Vが閾値以上もしくは前後加速度指令値Gxcmdによる前後加速度制御中)、かつ、(スイッチON/OFF信号GSWがON)であればFOKを1とし、それ以外の条件であれば0とする。また上述のようにシフトポジションが入力されている場合、前後加速度制御許可フラグFOKは、(車体速度Vが閾値以上もしくは前後加速度指令値Gxcmdによる前後加速度制御中)、かつ、(スイッチON/OFF信号GSWがON)、かつ、(シフトポジションがDレンジ)であればFOKを1とし、それ以外の条件であれば0とする。演算後S300へ進む。
 S300では、前後加速度指令値初期値Gxcmdの演算を行う。図9に前後加速度指令値Gxcmdの演算フローチャートA2を示す。
 S301では、前後加速度制御許可フラグFOKの判定を行う。前後加速度制御許可フラグFOKが0であればS302に、0でなければS303へと進む。
 S302では、目標前後加加速度Jxtgt,目標前後加速度Gxtgt,前後加加速度指令値Jxcmd,前後加加速度要求値Jxreq,前後加速度指令値Gxcmdを0として、図8のS400へ進む。
 S303では、前後加加速度Jx、およびアクセルペダル操作量APに基づいて、目標前後加加速度Jxtgtを演算する。目標前後加加速度Jxtgtの演算方法としては、図10に示すように、アクセルペダル操作量APが減少開始してから0となる期間ΔTにおいて発生した前後加加速度Jxの最小値をJxtgtlmtとし、アクセルペダル操作量APが増加開始した際に目標前後加加速度Jxtgtを0とする。ここで目標前後加加速度Jxtgtは期間ΔTの最小値ではなく、平均値としてもよい。
 また前後加加速度Jxの値が減少する方向と増加する方向で異なる時定数のフィルタをかけた値をJxtgtとし、増加する方向の時定数を減少する方向の時定数よりも非常に大きな値としてもよい。またアクセルペダル操作量APの時間変化に基づいて、発生する前後加加速度を推定し、この推定値をJxAPとすると、JxAPとJxの内、その絶対値が大きい方の値を用いて目標前後加加速度Jxtgtを作成してもよい。
 また前後加速度Gxと車両速度Vを微分して得られる前後加速度GxVとの差分から路面の縦勾配を推定し、ある閾値以上の上り勾配もしくは下り勾配にあると判定された場合、JxAPに基づいてJxtgtを作成してもよい。演算後S304へと進む。
 S304では、目標前後加加速度Jxtgtに基づいて目標前後加速度Gxtgtを演算する。目標前後加速度Gxtgtの演算方法としては、図11に示すように、目標前後加加速度Jxtgtと目標前後加速度Gxtgtは同符号で、目標前後加加速度Jxtgtの絶対値が大きいほど、目標前後加速度Gxtgtの絶対値が大きくなるように設定される。演算後S305へと進む。
 S305では、目標前後加加速度Jxtgt,目標前後加速度Gxtgt,アクセルペダル操作量AP、および前後加速度指令値の前回値Gxcmd_z1に基づいて、前後加加速度指令値Jxcmdを演算する。前後加加速度指令値Jxcmdは、以下の式(1)により与えられる。演算後S306へと進む。
〔数1〕
  Jxcmd=Jxtgt(AP=0かつ|Gxcmd_z1|≦|Gxtgt|)
  Jxcmd=0(上記条件以外)                …(1)
 S306では、横加速度Gy,横加加速度Jy,アクセルペダル操作量AP,ブレーキペダル操作量BP、および前後加速度指令値Gxcmdの前回値Gxcmd_z1に基づいて、前後加加速度要求値Jxreqを演算する。前後加加速度要求値Jxreqは、上述の図2から図4に示した前後加加速度要求値(アクセル)JxreqAP,前後加加速度要求値(ブレーキ)JxreqBP,前後加加速度要求値(横加加速度)JxreqJyを以下の式(2)により加算して与えられる。演算後S307へと進む。
〔数2〕
  Jxreq=JxreqAP+JxreqBP+JxreqJy               …(2)
 S307では、車体速度V,前後加加速度指令値Jxcmd,前後加加速度要求値Jxreq、および前後加速度指令値Gxcmdの前回値Gxcmd_z1に基づいて、前後加速度指令値Gxcmdを演算する。前後加速度指令値Gxcmdは、前後加加速度指令値Jxcmdと前後加加速度要求値Jxreqを加算した値を積分したものに、上限値を0、下限値を上述の図5に示した前後加速度指令下限値GxcmdlmtLとした上下限値処理を行うことで演算される。
 ここで車体速度Vに依存しない前後加速度指令下限値1は、予め設定される値であっても、路面で発生可能な加速度絶対値|Gmax|に基づいて設定される値であっても、操舵時の旋回応答性まで考慮した加速度絶対値|Gstrlmt|に基づいて設定される値であってもよい。ここで発生可能な|Gmax|および|Gstrlmt|は、各車輪の車輪速度変化と前後加速度Gxの関係から推測可能である。
 また車体速度Vに依存する前後加速度指令値下限値2は、図12に示すように、車体速度Vが0の時に最大値GxlmtV0となり、車体速度Vの増加に応じてその値が減少するように設定される。ここで車体速度Vの増加に応じてその値を減少させる方法として、図12(A)のように線形的に減少するように設定しても、図12(B)のように上に凸の曲線で減少するように設定してもよい。
 またGxlmtV0としては、停車状態を維持可能な制動力を各輪に発生可能な指令値を前後加速度発生手段8へ送信できる値とする。演算後、図8のS400へと進む。
 S400では、前後加速度制御許可フラグFOKが1であれば、前後加速度指令値Gxcmdを実現する指令値を、前後加速度制御許可フラグFOKが0であれば、前後加速度制御を行わないような指令値を前後加速度発生手段8、および前後加速度制御状態表示手段9へ送信する。
 ここで前後加速度制御許可フラグFOKが1の時に前後加速度発生手段8に送信する信号は、上述の通り、前後加速度指令値Gxcmdを送信することで前記前後加速度発生手段8により前後加速度指令値Gxcmdを実現できる場合、前後加速度指令値Gxcmdを制御指令値として送信する。
 また前後加速度発生手段8に応じた指令値にする必要があれば、前後加速度指令値Gxcmdに基づいて前後加速度発生手段8を制御する指令値を作成し、送信する。例えば前後加速度発生手段8が油圧式摩擦ブレーキであり、油圧指令値を油圧式摩擦ブレーキ制御器に送ることで前後加速度制御を行う場合、前後加速度指令値Gxcmdに基づいて油圧指令値を作成し、作成した油圧指令値を制御指令値として送信する。これにより車両に前後加速度指令値Gxcmdに基づく前後加速度を発生させる。
 また上述のように、前後加速度指令値Gxcmdを実現する指令を複数の前後加速度発生手段8に送信してもよい。例えば、上述のモータと油圧式摩擦ブレーキを前後加速度発生手段8とする場合、一定の前後加速度指令値Gxcmdをモータへ送信し、横加加速度に基づく前後加速度指令値Gxcmdの増減分を油圧式摩擦ブレーキに送信し、最終的に車両に発生する前後加速度が前後加速度指令値Gxcmdになるようにしてもよい。
 前後加速度制御状態表示手段9への指令値としては、例えば前後加速度制御許可フラグFOKが1であれば、アクセルペダル操作により前後加速度制御が行われることをドライバへ報知するよう表示器への駆動指令値を送信し、前後加速度指令値Gxcmdによる前後加速度制御中は、制御中であることをドライバへ伝えるよう表示器、または音発生器への駆動指令値を送信する。また前後加速度指令値Gxcmdの大きさに応じて表示器、または音発生器の出力が変化するように駆動指令値を送信してもよい。
 また上述の図7に示したように、車両制御装置10へと信号を送信する構成である場合、車両制御装置10への指令値として前後加速度指令値Gxcmdを送信し、車両制御装置10により、前後加速度発生手段8、および前後加速度制御状態提示手段9を駆動制御する指令値を送信する。
 以上のように、本発明では、ドライバのアクセルペダル操作により発生する前後加加速度に基づいて前後加速度を制御することで、ドライバがアクセルペダルにより発生可能な前後加速度の範囲を効果的に広げることができ、ペダルの踏み変え動作を低減することができる。
 また本実施例では、車両運動制御装置1への入力信号として、加速度・加加速度情報取得手段2により得られる信号を、前後加速度,横加速度、車体速度取得手段3により得られる信号を各車輪の車輪速度、アクセルペダル操作量取得手段4により得られる信号をアクセルペダルストローク、ブレーキペダル操作量取得手段5により得られる信号をブレーキ圧、前後加速度制御スイッチ6により得られる信号をスイッチのON/OFF信号として説明を行ったが、必ずしもこれらすべての信号が入力される場合に限ったものではない。
 例えば、車両運動制御装置1への入力信号として、加速度・加加速度情報取得手段2により得られる信号を、横加速度のみとし、目標前後加加速度Jxtgtをアクセルペダル操作量APの時間変化であるJxAPから演算してもよい。
(発明を実施するための実施形態2)
 以下、図13~図15を用いて、本発明の第2の実施形態による車両運動制御装置1′の構成及び動作について説明する。
 図13は、本発明の第2の実施形態による車両運動制御装置1′を有する車両運動制御システムのブロック図である。
 本実施形態の車両運動制御装置1′は車両に搭載されるものであり、センサ信号取得手段11,センサ信号演算手段12からなり、車載ネットワーク13への信号の入出力を行う。また車体速度取得手段3,アクセルペダル操作量取得手段4,ブレーキペダル操作量取得手段5,前後加速度制御スイッチ6,前後加速度発生手段8,前後加速度制御状態表示手段9,車両制御装置10は上述の実施形態1と同様である。ここで前後加速度制御スイッチ6は、必ずしも車載ネットワーク13へ接続されている必要はなく、図14に示すように、車両制御装置10に接続されていてもよい。
 センサ情報取得手段11は、車両制御に利用可能な情報を取得するセンサであり、センサ信号取得手段11としては、加速度センサであっても、回転速度センサであっても、加速度と回転速度の両方を取得可能なセンサであっても、車体速度センサであってもよく、何らかの車両制御に必要とされる情報を取得可能なセンサであればよい。
 センサ信号演算手段12は、記憶領域、および演算処理能力、および信号の入出力手段をもつ演算装置であり、センサ信号取得手段11により得られた信号の処理、および車両に発生させる前後加速度指令値を演算し、車載ネットワーク13に、センサ信号取得手段11により得られた信号処理値、および前後加速度指令値を送る。例えばセンサ信号取得手段11が車両に発生する前後加速度と横加速度を検出可能な加速度センサである場合、センサ信号演算手段12は、加速度センサにより得られた信号から前後加速度,横加速度を演算する。更に車載ネットワークとの通信によりアクセルペダルストローク,ブレーキ圧,車輪速度,シフトポジション等の情報を取得し、前後加速度,横加速度から前後加速度指令値を演算し、前後加速度,横加速度と前後加速度指令値を車載ネットワークへ送る。
 図15に車両運動制御装置1′のセンサ信号演算手段12における演算フローチャートB1を示す。なお演算フローチャートB1では、センサ信号取得手段11として、加速度と回転速度の両方を取得可能なセンサとし、本センサは車両重心に発生する前後加速度,横加速度,車両旋回方向の回転速度であるヨーレイトを取得するように取り付けられているものとする。また車載ネットワーク13を介して取得する信号を、車輪速度,アクセルペダルストローク,ブレーキ圧,前後加速度制御スイッチON/OFF信号とする。
 S010では、センサ信号取得手段11により、前後加速度Gx,横加速度Gy,ヨーレイトrを演算するのに必要なセンサ信号値を取得する。ここで加速度の検出手段としては、加速によるセンサ内部の物体の位置変化を検出する方法であっても、加熱されたガスの移動を検出する方法であってもよい。また回転速度の検出手段としては、コリオリ力を利用する方法であっても、サニャック効果を利用する方法であってもよい。信号取得後、S020へと進む。
 S020では、センサ信号取得手段11により得られた信号から、前後加速度Gx,横加速度Gy,ヨーレイトrを演算する。演算後、S030へと進む。
 S030では、車載ネットワーク13を介して、車輪速度,アクセルペダルストローク,ブレーキ圧,前後加速度制御スイッチON/OFF信号を取得する。演算後、S100へと進む。
 S100からS300での演算は、上述の実施形態1と同様である。
 S410では、前後加速度Gx,横加速度Gy,ヨーレイトr、および前後加速度制御許可フラグFOKが1であれば、前後加速度指令値Gxcmdを実現する指令値を、車載ネットワーク13へ送信する。ここで前後加速度制御許可フラグFOKが1の時に車載ネットワーク13に送信する信号は、上述の通り、前後加速度指令値Gxcmdを送信することで車両制御装置10により前後加速度指令値Gxcmdを実現できる場合、前後加速度指令値Gxcmdを制御指令値として送信する。また前後加速度発生手段8に応じた指令値を車両制御装置10に送信する必要があれば、前後加速度指令値Gxcmdに基づいて前後加速度発生手段8を制御する指令値を作成し、送信する。
 このように車載に搭載する必要があるセンサの信号処理部に本発明を組み込むことで、車両に搭載される部品点数を増加させることなく、本発明を実現することができる。更に上述のように本発明を実現する上で必要な信号を取得するセンサに組み込むことにより、本発明を実施する際に必要な信号を取得する際の遅れや精度低下を抑制することができる。これにより例えば前後加加速度や横加加速度といった信号を前後加速度,横加速度から作成する場合であっても、より精度良く、遅れの小さい信号を作成することができる。
(ブレーキペダル操作に基づく前後加速度制御方法)
 本発明では、ドライバのペダル操作により発生した前後加加速度に基づいて、前後加速度の制御を行う。実施形態の説明に先立ち、本発明の理解が容易になるよう、以下、図16から図20を用いてドライバのブレーキペダル操作により発生した前後加加速度に基づいて、正の前後加速度を制御する方法について説明する。
 図16に本発明による前後加速度指令値Gxcmdによる加速制御時の概念図を示す。図16(A),(B)ではある正の車体速度V0での走行中に、図16(C)では停車中に、あるブレーキペダル操作量BPとなるブレーキペダル位置からブレーキペダルを開放し始め、ブレーキペダル操作量を0とした時に発生する前後加速度,前後加加速度を表している。
 また図16(A),(B)では、ブレーキペダル操作速度が異なり、図16(A)よりも図16(B)はブレーキペダル操作速度が大きい条件となっている。図16(A)のGxba,図16(B)のGxbbは、それぞれ何も制御しない時に発生する前後加速度を、図16(A)のJxba,図16(B)のJxbbは、この時の前後加加速度である。図16(A),(B)に示すように、アクセルペダル操作速度が異なることで、アクセルペダル開放中に発生する正の前後加加速度は、JxbaではJxb1,JxbbではJxb2とその値が異なるが、最終的に発生する前後加速度Gxba,Gxbbは、それぞれ同程度の値-Gxb0となる。
 本発明では、この前後加加速度JxbaとJxbbの違いに着目し、JxbaとJxbbの違いによって異なる前後加速度を付加し、最終的に発生する前後加速度を変化させる。
 具体的には、図16(A),(B)に示すように、ブレーキペダルの開放操作終了時Txba,Txbbにおいて、制御により発生する前後加加速度Jxba′,Jxbb′が、ドライバのブレーキペダル操作により発生した前後加加速度Jxb1,Jxb2と同程度となるような前後加速度Gxba′,Gxbb′を発生させる。
 またGxba′は最終的に-Gxb1,Gxbb′はGxb2となるように、Gxba′,Gxbb′の最終的な大きさは、Jxb1,Jxb2の大きさによって異なり、その絶対値が大きいほど最終的に発生する前後加速度の絶対値が大きくなるように、前後加速度を付加する。またオートマティックトランスミッション搭載車両では、ギア位置がドライブレンジであれば駆動輪に駆動トルクが働いており、ブレーキペダルの開放により、アクセルペダルを踏み込まなくとも、車両がある車体速度まで加速する(いわゆるクリープ現象)。近年ではオートマティックトランスミッション搭載車両ではなくとも、ブレーキペダルの開放により、ある駆動トルクが付加されるよう制御される車両がある。
 これらの車両では、図16(C)のGxbcに示すように、ブレーキペダルの開放により、正の前後加速度が発生し、その後前後加速度は減少していき、ある車体速度で一定となる。この時発生する前後加加速度はJxbcに示すように、Txbcにおいて正から負へと反転する形になるが、本発明ではこの時発生する正の前後加加速度Jxbc1に着目し、Jxbc′に示すように、Jxbc1となる前後加加速度で、最終的にGxbc1となる前後加速度Gxbc′を発生させる。
 これによりブレーキペダル操作で発生可能な前後加速度の領域を広げることができ、ドライバはブレーキペダル開放する際に発生する前後加加速度を制御することで、最終的に発生する前後加速度の大きさを制御することができる。
 また、ドライバが発生させた前後加加速度と同程度となる前後加加速度を発生させることで、不連続感のない前後加速度制御を実現でき、ドライバフィーリングを向上することができる。また非オートマティックトランスミッション搭載車両や、電気自動車のようにクリープ現象が発生しない車両に、ブレーキペダルを開放することによる発進制御を付加する際においても、ブレーキペダル操作速度からドライバが期待する前後加加速度を推定することで、ブレーキペダル操作に応じて発生する前後加速度を変化させることができる。
 本発明では、ドライバのブレーキペダル操作に基づいて発生させた前後加速度(図16(A)Gxba′、もしくは図16(B)Gxbb′、もしくは図16(C)Gxbc′)は、ドライバによるアクセルペダル操作量、もしくはドライバによるブレーキペダル操作量、もしくはドライバのハンドル操作により発生した横加加速度、もしくは車体速度に基づいて変化する。
 図17に前後加速度指令値Gxcmdの値がGxtgt0となる減速中に、ドライバがアクセルペダルを操作した際の前後加速度指令値Gxcmdの概念図を示す。本発明では、ドライバのアクセルペダル操作量から前後加速度要求値(アクセル)GxreqAPを作成し、GxreqAPの絶対値が前後加速度指令値Gxcmdの絶対値以上であれば、GxreqAPの時間変化から前後加加速度要求値(アクセル)JxreqAPを作成し、前後加加速度要求値(アクセル)JxreqAPに基づいて前後加速度指令値Gxcmdを変化させる。これにより前後加速度指令値Gxcmdによる加速中にドライバがアクセルペダル操作により、前後加速度制御により発生している加速度以上の加速度を発生させようとした際、ドライバのアクセルペダル操作に応じた加速が可能となる。
 図18に前後加速度指令値Gxcmdの値がGxtgt0となる加速中に、ドライバがブレーキペダルを操作した際の前後加速度指令値変化の概念図を示す。
 本発明では、ドライバのブレーキペダル操作量の時間変化、すなわちブレーキペダル操作速度から、前後加加速度要求値(ブレーキ)JxreqBPを作成し、前後加加速度要求値(ブレーキ)JxreqBPに基づいて前後加速度指令値Gxcmdを変化させる。
 図18(A),(B)に示すように、ブレーキペダル操作量が増加するように変化している場合、負の値となる前後加加速度要求値(ブレーキ)JxreqBPが作成される。ここで前後加加速度要求値(ブレーキ)JxreqBPはブレーキペダル操作速度が大きいほど大きな値となる。
 図18(A)T18a1からT18a3に示すように、ブレーキペダル操作速度が正となる条件において、図18(A)T18a2に示すように、前後加速度指令値Gxcmdが0となった際、前後加加速度要求値(ブレーキ)JxreqBPを0とし、前後加速度指令値Gxcmdによる減速制御を終了する。
 また図18(B)T18b1からT18b2に示すように、ブレーキペダル操作速度が正となる条件において、図18(B)T18b2に示すように、ブレーキペダル操作量が正で、前後加速度指令値Gxcmdが0では無い場合、前後加加速度要求値を前後加加速度要求値(ブレーキ)JxreqBPの最小値(JxreqminBP)として前後加速度指令値Gxcmdを変化させ、図18(B)T18b3に示すように前後加速度指令値が0となった際に前後加加速度要求値(ブレーキ)JxreqBPを0とする。これにより前後加速度指令値Gxcmdによる加速中にドライバがブレーキペダルを操作した際、ブレーキペダルの操作速度が小さい場合であっても前後加速度指令値Gxcmdを0とすることができ、ブレーキペダルの操作量に応じた減速が可能となる。
 図19に前後加速度指令値Gxcmdの値がGxtgt0となる加速中に、ドライバがハンドルを操作し、横加速度を発生した際の前後加速度指令値Gxcmdの概念図を示す。本発明では、ドライバが発生させる横加加速度から前後加速度要求値(横加加速度)GxreqJyを作成し、図19(A)に示すように、GxreqJyの時間変化から前後加加速度要求値(横加加速度)JxreqJyを作成し、前後加加速度要求値(横加加速度)JxreqJyに基づいて前後加速度指令値Gxcmdを変化させ、前後加速度指令値が0となった際、前後加加速度要求値(横加加速度)JxreqJyを0とする。
 またGxreqJyの絶対値が発生している前後加速度指令値Gxcmdの絶対値よりも小さく、図19(B)に示すように、前後加速度要求値(横加加速度)GxreqJyが負で前後加速度指令値Gxcmdが0ではない場合、JxreqminGyを前後加加速度要求値(横加加速度)JxreqJyの最大値として、前後加速度指令値Gxcmdを変化させる。ここで横加加速度からGxreqJyを作成する方法としては、自動車技術会論文集Vol39,No.3,2008に提案されている。
 これにより前後加速度指令値Gxcmdによる加速制御中にドライバがハンドル操作を行った場合、発生した横加加速度に基づいて前後加速度指令値Gxcmdが変化し、横運動に連係した加減速が可能となる。
 図20に前後加速度指令値Gxcmdの値がGxtgt0となる加速により、車体速度Vが増加した際の前後加速度指令値変化の概念図を示す。
 本発明では、前後加速度指令値が正の値(加速)の場合、ドライバのペダル開放操作により発生した前後加加速度に基づいて設定された目標車体速度Vtgtから車体速度Vを差し引いた値ΔVtgtの減少に応じて、前後加速度指令値の絶対値が減少する、具体的には、ドライバのブレーキペダル操作に応じて正の前後加速度を発生させる場合、ある目標車体速度Vtgtを設定し、目標車体速度Vtgtから車体速度Vを差し引いた値ΔVtgtが小さくなるのに応じて前後加速度指令値Gxcmdの絶対値が、小さくなるように設定し、ΔVtgtが0以下では前後加速度指令値Gxcmdの絶対値が0となるように設定する。
 この方法として、例えば図20に示すように、前後加速度指令値Gxcmdの上限値である前後加速度指令上限値GxcmdlmtHを、ΔVtgtに依存せずに設定される前後加速度指令上限値1に加え、ΔVtgtが小さくなるほど、前後加速度指令上限値の絶対値が小さな値となるように設定される前後加速度指令上限値2を備え、前後加速度指令上限値1,前後加速度指令上限値2の内、その絶対値が小さい方の値を前後加速度指令上限値GxcmdlmtHとしておくことで、前後加速度指令値Gxcmdの絶対値をΔVtgtの低下に応じて小さくすることができる。
 これにより前後加速度指令値Gxcmdによる加速制御により車両が目標車体速度Vtgtに達する際に、急激な前後加速度変化が発生するのを抑制することが可能となる。ここで目標車体速度Vtgtは予め設定される値であっても、前後加速度指令に応じて変化する値であってもよく、前後加速度指令が大きいほど目標車体速度Vtgtを大きな値に設定してもよい。
 以上のように、本発明では、ドライバがブレーキペダルの操作により発生した前後加加速度、もしくはブレーキペダル操作によりドライバが期待した前後加加速度に基づいて、正の前後加速度、すなわち加速度を車両に発生させ、更に発生した加速度を、ドライバのアクセルペダル操作、もしくはブレーキペダル操作、もしくはハンドル操作に応じて変化させることで、加速制御中にドライバが何らかの入力を行わなければ、(車体速度がある値よりも大きければ)目標車体速度まで一定の加速が行われ、ドライバが何らかの入力を行えば、その入力に応じた加速制御が行われる。
 このようにブレーキペダル開放時の前後加加速度に応じて加速度を可変とすることで、ドライバは直感的に発生させる加速度を制御することができ、また加速度を一定に保つ操作は制御により行われるため、ドライバの運転負荷を低減することができる。これにより例えば街中で加減速を繰り返す先行車に追従や、渋滞時に先行車に追従しながら走行する際においても、ドライバはブレーキペダル開放時の前後加加速度を制御することで発生する加速度を変化させることができ、ペダルの踏み変え動作を低減することができる。
(発明を実施するための実施形態3)
 以下、図21~図26を用いて、本発明の第3の実施形態による車両運動制御装置1″の構成及び動作について説明する。
 図21は、本発明の第3の実施形態による車両運動制御装置1″を有する車両運動制御システムのブロック図である。
 本実施形態の車両運動制御装置1″は車両に搭載されるものであり、加速度・加加速度情報取得手段2,車体速度取得手段3,アクセルペダル操作量取得手段4,ブレーキペダル操作量取得手段5,前後加速度制御スイッチ6′,車両運動制御指令演算手段7′からなり、前後加速度発生手段8、および前後加速度制御状態表示手段9への信号出力を行う。
 ここで、加速度・加加速度情報取得手段2,車体速度取得手段3,アクセルペダル操作量取得手段4,ブレーキペダル操作量取得手段5,前後加速度発生手段8、および前後加速度制御状態表示手段9は上述の実施形態1と同様である。
 前後加速度制御スイッチ6′は、本発明による前後加速度制御のON/OFFを検出するスイッチである。ここで前後加速度制御スイッチ6′は独立に設置されるスイッチではなく、他の入力と連動するものであってもよい。例えばアクセルペダル入力に対してエンジンの応答性を変更するモード切替えスイッチを備える場合、エンジンの応答性が最も高くなるモードでは、前後加速度制御がONとなるようにしてもよい。
 またドライバによる入力スイッチとシフトポジション位置から前後加速度制御のON/OFFを切替えるスイッチであってもよい。例えば、オートマティックトランスミッションの車両であれば、シフトポジションがDレンジで、かつドライバによる入力スイッチがONの時は前後加速度制御をONとし、それ以外の条件では前後加速度制御をOFFとするスイッチであってもよい。
 またカメラやミリ波のように、自車両周囲の障害物等を検出可能な外界情報取得手段を備える場合、シフトポジションとドライバによる入力スイッチに加え、外界情報取得手段に得られた情報に基づいて、自車両進行方向に接触する可能性がある物体が存在する場合は、前後加速度制御をOFFするスイッチであってもよい。
 また上述のシフトポジションによる処理は、もしくは外界情報による処理は、シフトポジション情報や外界情報を車両運動制御指令演算手段7′に入力することで、車両運動制御指令演算手段7′内で前後加速度制御のON/OFFを切替えるように行ってもよい。
 車両運動制御指令演算手段7′は、記憶領域、および演算処理能力、および信号の入出力手段をもつ演算装置であり、車両に発生させる前後加速度指令値を演算し、前後加速度発生手段8、および前後加速度制御状態手段9へと信号を送る。
 図22に前記車両運動制御装置1″の車両運動制御指令演算手段7′における演算フローチャートC1を示す。なお演算フローチャートC1では、加速度・加加速度情報取得手段2により得られる信号を、前後加速度,横加速度、車体速度取得手段3により得られる信号を各車輪の車輪速度、アクセルペダル操作量取得手段4により得られる信号をアクセルペダルストローク、ブレーキペダル操作量取得手段5により得られる信号をブレーキ圧、前後加速度制御スイッチ6′により得られる信号をスイッチのON/OFF信号とする。
 S000,S100での演算は、上述の実施形態1と同様である。
 S250では、前後加速度制御許可フラグFOKを作成する。前後加速度制御許可フラグFOKは、(スイッチON/OFF信号GSWがON)であればFOKを1とし、それ以外の条件であれば0とする。また上述のようにシフトポジションが入力されている場合、前後加速度制御許可フラグFOKは、(スイッチON/OFF信号GSWがON)、かつ、(シフトポジションがDレンジ)であればFOKを1とし、それ以外の条件であれば0とする。演算後S350へ進む。
 S350では、前後加速度指令値初期値Gxcmdの演算を行う。図23に前後加速度指令値Gxcmdの演算フローチャートC2を示す。
 S351では、前後加速度制御許可フラグFOKの判定を行う。前後加速度制御許可フラグFOKが0であればS352に、0でなければS353へと進む。
 S352では、目標前後加加速度Jxtgt,目標前後加速度Gxtgt,前後加加速度指令値Jxcmd,前後加加速度要求値Jxreq,前後加速度指令値Gxcmdを0として、S450へ進む。
 S353では、前後加加速度Jx、およびブレーキペダル操作量BPに基づいて目標前後加加速度Jxtgtを演算する。目標前後加速度Jxtgtの演算方法としては、図24に示すように、ブレーキペダル操作量BPが減少開始してから0となる期間ΔTにおいて発生した前後加加速度Jxの最大値を目標前後加加速度Jxtgtとし、ブレーキペダル操作量BPが増加開始した際に目標前後加加速度Jxtgtを0とする。ここで目標前後加加速度Jxtgtは期間ΔTの最小値ではなく、平均値としてもよい。
 また前後加速度Jxの値が減少する方向と増加する方向で異なる時定数のフィルタをかけた値をJxtgtとし、減少する方向の時定数を増加する方向の時定数よりも非常に大きな値としてもよい。
 またブレーキペダル操作量BPの時間変化から発生する前後加加速度を推定し、この推定値JxBPとJxの内、その絶対値が大きい方の値を用いて目標前後加加速度Jxtgtを作成してもよい。また前後加速度Gxと車両速度Vを微分して得られる前後加速度GxVとの差分から路面の縦勾配を推定し、ある閾値以上の上り勾配もしくは下り勾配にあると判定された場合、JxBPに基づいて目標前後加加速度Jxtgtを作成してもよい。演算後S354へと進む。
 S354では、目標前後加加速度Jxtgtに基づいて目標前後加速度Gxtgt,目標車体速度Vtgtを演算する。目標前後加速度Gxtgtの演算方法としては、図11に示すように、目標前後加加速度Jxtgtと目標前後加速度Gxtgtは同符号で、目標前後加加速度Jxtgtの絶対値が大きいほど、目標前後加速度Gxtgtの絶対値が大きくなるように設定される。
 また目標車体速度Vtgtは、図25に示すように、目標前後加加速度Jxtgtが正の値であれば、目標前後加加速度Jxtgtに応じて増加し、負の値であれば0とする。演算後S355へと進む。
 S355では、目標前後加加速度Jxtgt,目標前後加速度Gxtgt,ブレーキペダル操作量BP、および前後加速度指令値の前回値Gxcmd_z1に基づいて、前後加加速度指令値Jxcmdを演算する。前後加加速度指令値Jxcmdは、以下の式(1)により与えられる。演算後S306へと進む。
〔数3〕
  Jxcmd=Jxtgt{(BP=0もしくはJx≦0)かつ(|Gxcmd_z1|≦|Gxtgt|)}
  Jxcmd=0(上記条件以外)                …(3)
 S356では、横加速度Gy,横加加速度Jy,アクセルペダル操作量AP,ブレーキペダル操作量BP、および前後加速度指令値Gxcmdの前回値Gxcmd_z1に基づいて、前後加加速度要求値Jxreqを演算する。前後加加速度要求値Jxreqは、上述の図16から図20に示した前後加加速度要求値(アクセル)JxreqAP,前後加加速度要求値(ブレーキ)JxreqBP,前後加加速度要求値(横加加速度)JxreqJyを用いて、以下の式(4)により与えられる。演算後S357へと進む。
〔数4〕
  Jxreq=JxreqAP+JxreqBP+JxreqJy               …(4)
 S357では、車体速度V,目標車体速度Vtgt,前後加加速度指令値Jxcmd,前後加加速度要求値Jxreq、および前後加速度指令値Gxcmdの前回値Gxcmd_z1に基づいて、前後加速度指令値Gxcmdを演算する。前後加速度指令値Gxcmdは、前後加加速度指令値Jxcmdと前後加加速度要求値Jxreqを加算した値を積分したものに、下限値を0、上限値を上述の図20に示した前後加速度指令上限値GxcmdlmtHとした上下限値処理を行うことで演算される。
 ここで車体速度Vと目標車体速度Vtgtの差分ΔVtgtに依存しない前後加速度指令上限値1は、予め設定される値であっても、路面で発生可能な加速度絶対値|Gmax|に基づいて設定される値であっても、操舵時の旋回応答性まで考慮した加速度絶対値|Gstrlmt|に基づいて設定される値であってもよい。
 ここで発生可能な|Gmax|および|Gstrlmt|は、各車輪の車輪速度変化と前後加速度Gxの関係から推測可能である。またΔVtgtに依存する前後加速度指令上限値2は、図26に示すように、ΔVtgtが0以下では0となり、ΔVtgtの増加に応じてその値が増加するように設定される。
 ここでΔVtgtの増加に応じてその値を増加させる方法として、図26(A)のように線形的に増加するように設定しても、図26(B)のように下に凸の曲線で増加するように設定してもよい。演算後S450へと進む。
 S450では、前後加速度制御許可フラグFOKが1であれば、前後加速度指令値Gxcmdを実現する指令値を、前後加速度制御許可フラグFOKが0であれば、前後加速度制御を行わないような指令値を前後加速度発生手段8、および前後加速度制御状態表示手段9へ送信する。
 ここで前後加速度制御許可フラグFOKが1の時に前後加速度発生手段8に送信する信号は、上述の通り、前後加速度指令値Gxcmdを送信することで前後加速度発生手段8により前後加速度指令値Gxcmdを実現できる場合、前後加速度指令値Gxcmdを制御指令値として送信する。また前後加速度発生手段8に応じた指令値にする必要があれば、前後加速度指令値Gxcmdに基づいて前後加速度発生手段8を制御する指令値を作成し、送信する。例えば前後加速度発生手段8がエンジンであり、エンジントルク指令値をエンジン制御器に送ることで前後加速度制御を行う場合、前後加速度指令値Gxcmdに基づいてエンジントルク指令値を作成し、作成したエンジントルク指令値を制御指令値として送信する。これにより車両に前後加速度指令値Gxcmdに基づく前後加速度を発生させる。
 また上述のように、前後加速度指令値を実現する指令を複数の前後加速度発生手段8に送信してもよい。例えば、上述のモータとエンジンを前後加速度発生手段8とする場合、一定の前後加速度指令値をエンジンへ送信し、横加加速度に基づく前後加速度指令値の増減分をモータに送信し、最終的に車両に発生する前後加速度が前後加速度指令値Gxcmdになるようにしてもよい。
 前後加速度制御状態表示手段9への指令値としては、例えば前後加速度制御許可フラグFOKが1であれば、ブレーキペダル操作により前後加速度制御が行われることをドライバへ報知するよう表示器への駆動指令値を送信し、前後加速度指令値Gxcmdによる前後加速度制御中は、制御中であることをドライバへ伝えるよう表示器、または音発生器への駆動指令値を送信する。また前後加速度指令値Gxcmdの大きさに応じて表示器、または音発生器の出力が変化するように駆動指令値を送信してもよい。
 以上のように、本発明では、ドライバのブレーキペダル操作により発生する前後加加速度に基づいて前後加速度を制御することで、ドライバがブレーキペダルにより発生可能な前後加速度の範囲を効果的に広げることができ、ペダルの踏み変え動作を低減することができる。
 また本実施例では、車両運動制御装置1″への入力信号として、加速度・加加速度情報取得手段2により得られる信号を、前後加速度,横加速度、車体速度取得手段3により得られる信号を各車輪の車輪速度、アクセルペダル操作量取得手段4により得られる信号をアクセルペダルストローク、ブレーキペダル操作量取得手段5により得られる信号をブレーキ圧、前後加速度制御スイッチ6′により得られる信号をスイッチのON/OFF信号として説明を行ったが、必ずしもこれらすべての信号が入力される場合に限ったものではない。
 例えば、車両運動制御装置1″への入力信号として、加速度・加加速度情報取得手段2により得られる信号を、横加速度のみとし、目標前後加加速度Jxtgtをブレーキペダル操作量BPの時間変化であるJxBPから演算してもよい。
 また車両運動制御指令演算手段7′に上述の実施形態1にて述べた、アクセルペダル操作量による前後加速度指令値の演算も合わせて組込み、スイッチによりブレーキペダルによる加速制御とアクセルペダルによる減速制御を切替えてもよい。
 逆に上述の実施形態2のセンサ信号演算手段12に実施形態3のブレーキペダル操作量による前後加速度指令値の演算も合わせて組込み、スイッチによりブレーキペダルによる加速制御とアクセルペダルによる減速制御を切替えてもよい。

Claims (20)

  1.  車両に発生した前後加速度,横加速度、及び車体速度を取得する運動状態情報取得手段と、
     ドライバのペダル操作情報を取得するペダル操作量取得手段と、
     前記運動状態情報取得手段と前記ペダル操作量取得手段と、から取得された情報に基づいて前後加速度指令値を演算し、演算した前記前後加速度指令値を実現する指令値を出力する車両運動制御指令演算手段と、を有し、
     前記車両運動制御指令演算手段は、ドライバのペダル開放操作に基づく前後加加速度と同程度の前後加加速度となる前後加速度を発生するように、前記取得した情報に基づいて前記前後加速度指令値を演算する車両運動制御装置。
  2.  請求項1記載の車両運動制御装置において、
     ドライバのペダル開放操作に基づく前記前後加加速度の絶対値が大きいほど、演算された前記前後加速度指令値の絶対値が大きくなる車両運動制御装置。
  3.  請求項1記載の車両運動制御装置において、
     前記車両運動制御指令演算手段は、前記運動状態情報取得手段で取得した、又は取得した情報から算出された横加加速度に基づいて、前記前後加速度指令値の絶対値を変化させる車両運動制御装置。
  4.  請求項1記載の車両運動制御装置において、
     前記前後加速度指令値が負の値の場合、且つ運動状態情報取得手段で取得した車体速度が前記予め定めた車体速度以下の場合は、前記車体速度の減少に応じて前記前後加速度指令値の絶対値が減少する車両運動制御装置。
  5.  請求項1記載の車両運動制御装置において、
     前記前後加速度指令値が負の値の場合、前記ペダル操作情報から生成されたブレーキペダル操作量により発生する前後加速度要求値(ブレーキ)の絶対値が前記前後加速度指令値の絶対値以上の場合、前記ブレーキペダル操作量の減少に基づいて、前記前後加速度指令値の絶対値が減少する車両運動制御装置。
  6.  請求項1記載の車両運動制御装置において、
     前記前後加速度指令値が正の値の場合、ドライバのペダル開放操作により発生した前後加加速度に基づいて設定さた目標車体速度から前記運動状態情報取得手段で取得した車体速度を差し引いた値の減少に応じて、前記前後加速度指令値の絶対値が減少する車両運動制御装置。
  7.  請求項1記載の車両運動制御装置において、
     前記前後加速度指令値が正の値の場合、前記ペダル操作情報から生成されたブレーキペダル操作量から生成したブレーキペダル操作速度に基づいて前後加加速度要求値を生成し、前記前後加加速度要求値に基づいて前後加速度指令値を生成する車両運動制御装置。
  8.  請求項1記載の車両運動制御装置において、
     前記車両運動制御指令演算手段は、ドライバのアクセルペダル開放操作から推定される前後加加速度に基づいて生成される前後加加速度指令値と、ドライバのアクセルペダル踏み込み操作から推定される前後加加速度に基づいて生成される前後加加速度要求値(アクセル)と、ドライバのブレーキペダル踏み込み操作から推定される前後加加速度に基づいて生成される前後加加速度要求値(ブレーキ)と、ドライバのハンドル操作により発生する横加加速度に基づいて作成される前後加速度要求値(横加加速度)の時間変化に基づいて作成される前後加加速度要求値(横加加速度)と、を演算し、前記前後加加速度指令値,前記前後加加速度要求値(アクセル),前記前後加加速度要求値(ブレーキ),前記前後加加速度要求値(横加加速度)と、を加算した値を時間積分することにより、前後加速度指令値を演算する車両運動制御装置。
  9.  請求項1記載の車両運動制御装置において、
     前記車両運動制御指令演算手段は、ドライバのアクセルペダル操作により発生した前後加加速度に基づいて、負の前後加速度指令値(減速度)を演算する車両運動制御装置。
  10.  請求項1記載の車両運動制御装置において、
     前記車両運動制御指令演算手段は、前記前後加速度指令値が負の値の場合、前記ペダル操作量取得手段で取得した前記ペダル操作情報から生成されたアクセルペダル操作量に基づいて、前後加加速度要求値を算出し、算出された前記前後加加速度要求値に基づいて前記前後加速度指令値を変化させる車両運動制御装置。
  11.  請求項1記載の車両運動制御装置において、
     前記車両運動制御指令演算手段は、前記前後加速度指令値が負の値の場合、前記ペダル操作量取得手段で取得した前記ペダル操作情報から生成されたブレーキペダル操作量に基づいて、前後加速度要求値を算出し、算出された前記前後加速度要求値の絶対値が前記前後加速度指令値の絶対値以上の場合、前記前後加速度要求値の時間変化に基づいて前記前後加加速度要求値を算出し、算出された前記前後加加速度要求値に基づいて前記前後加速度指令値を変化させる車両運動制御装置。
  12.  請求項3記載の車両運動制御装置において、
     前記車両運動制御指令演算手段は、前記前後加速度指令値が負の値の場合、前記横加加速度に基づいて前後加速度要求値を算出し、算出された前記前後加速度要求値の絶対値が前記前後加速度指令値の絶対値以上の場合、前記前後加速度要求値の時間変化から前後加加速度要求値を算出し、算出された前記前後加加速度要求値に基づいて前記前後加速度指令値を変化させる車両運動制御装置。
  13.  請求項1記載の車両運動制御装置において、
     前記運動状態情報取得手段は、
     車両に発生した前後加速度,横加速度,前後加加速度,横加加速度のいずれかを取得する加速度加加速度情報取得手段と、
     車両の車体速度を取得する車体速度取得手段と、を有し、
     前記ペダル操作量取得手段は、
     ドライバによるアクセルペダルストロークを取得するアクセルペダル操作量取得手段と、
     ドライバによるブレーキ圧を取得するブレーキペダル操作量取得手段と、を有し、
     前記ペダル操作情報は、前記アクセルペダルストロークと前記ブレーキ圧を有する車両運動制御装置。
  14.  請求項13記載の車両運動制御装置において、
     前後加速度制御のON又はOFFを検出し、前後加速度制御検出信号を出力する前後加速度制御検出手段を有する車両運動制御装置。
  15.  請求項14記載の車両運動制御装置において、
     前記車両運動制御指令演算手段は、
     前記前後加速度,前記横加速度,前記車体速度,前記アクセルペダルストローク,前記ブレーキ圧、及び前記前後加速度制御検出信号を取得し、
     前記前後加速度と前記横加速度と前記車体速度から前後加加速度と横加加速度を算出し、前記アクセルペダルストロークと前記ブレーキ圧からアクセルペダル操作量とブレーキペダル操作量を算出し、
     前記車体速度と、前記前後加速度制御検出信号に基づいて前後加速度制御許可フラグを生成し、
     前記車体速度と前記前後加速度制御許可フラグの値と前記前後加加速度と前記横加加速度に基づいて前後加速度指令値を算出し、
     前記前後加速度制御許可フラグの値に基づいて前記前後加速度指令値に基づく指令値を出力する車両運動制御装置。
  16.  車両に発生した前後加速度,横加速度、及び車体速度を取得する運動状態情報取得手段と、ドライバのペダル操作情報を取得するペダル操作量取得手段と、前記運動状態情報取得手段と前記ペダル操作量取得手段と、から取得された情報に基づいて前後加速度指令値を演算し、演算した前記前後加速度指令値を実現する指令値を出力する運動制御車両指令演算手段と、を有する車両運動制御装置と、
     前記運動制御車両指令演算手段から出力された前記指令値に基づいて車両に前後加速度制御を行う前後加速度発生手段と、
     前記運動制御車両指令演算手段から出力された前記指令値に基づいてドライバに認識可能な情報を提示する前後加速度制御状態手段と、を有し、
     前記車両運動制御指令演算手段は、ドライバのペダル開放操作に基づく前後加加速度と同程度の前後加加速度となる前後加速度を発生するように、前記取得した情報に基づいて前記前後加速度指令値を演算する車両運動制御システム。
  17.  請求項16記載の車両運動制御システムにおいて、
     前記運動制御車両指令演算手段から出力された前記指令値が入力され、入力された前記指令値に基づいて、前記前後加速度発生手段及び前記前後加速度制御状態手段を駆動する駆動信号を生成して、出力する車両制御装置を有する車両運動制御システム。
  18.  請求項16記載の車両運動制御システムにおいて、
     前記車両運動制御装置は、ドライバのペダル開放操作に基づく前記前後加加速度の絶対値が大きいほど、演算された前記前後加速度指令値の絶対値が大きくなる車両運動制御システム。
  19.  請求項16記載の車両運動制御システムにおいて、
     前記車両運動制御装置の前記車両運動制御指令演算手段は、前記運動状態情報取得手段で取得した、又は取得した情報から算出された横加加速度に基づいて、前記前後加速度指令値の絶対値を変化させる車両運動制御システム。
  20.  請求項16記載の車両運動制御システムにおいて、
     前記車両運動制御装置の前記車両運動制御指令演算手段は、ドライバのアクセルペダル操作により発生した前後加加速度に基づいて、負の前後加速度指令値を演算する車両運動制御システム。
PCT/JP2011/002604 2011-05-11 2011-05-11 車両運動制御装置及び車両運動制御システム WO2012153367A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013513825A JP5764656B2 (ja) 2011-05-11 2011-05-11 車両運動制御装置
DE112011105223.5T DE112011105223T5 (de) 2011-05-11 2011-05-11 Fahrzeug-Bewegungssteuerungsgerät und Fahrzeug-Bewegungssteuerungssystem
US14/116,701 US9090258B2 (en) 2011-05-11 2011-05-11 Vehicle motion control apparatus and vehicle motion control system
PCT/JP2011/002604 WO2012153367A1 (ja) 2011-05-11 2011-05-11 車両運動制御装置及び車両運動制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/002604 WO2012153367A1 (ja) 2011-05-11 2011-05-11 車両運動制御装置及び車両運動制御システム

Publications (1)

Publication Number Publication Date
WO2012153367A1 true WO2012153367A1 (ja) 2012-11-15

Family

ID=47138870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002604 WO2012153367A1 (ja) 2011-05-11 2011-05-11 車両運動制御装置及び車両運動制御システム

Country Status (4)

Country Link
US (1) US9090258B2 (ja)
JP (1) JP5764656B2 (ja)
DE (1) DE112011105223T5 (ja)
WO (1) WO2012153367A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014148182A (ja) * 2013-01-31 2014-08-21 Hitachi Automotive Systems Ltd 車両の走行制御装置
WO2015045502A1 (ja) * 2013-09-30 2015-04-02 日立オートモティブシステムズ株式会社 車両の走行制御装置
JP5764656B2 (ja) * 2011-05-11 2015-08-19 日立オートモティブシステムズ株式会社 車両運動制御装置
JP2015212115A (ja) * 2014-05-02 2015-11-26 エイディシーテクノロジー株式会社 車両制御装置
JP2018002150A (ja) * 2017-10-06 2018-01-11 日立オートモティブシステムズ株式会社 車両の走行制御装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6112303B2 (ja) * 2013-10-31 2017-04-12 マツダ株式会社 車両用挙動制御装置
EP3017995A1 (en) * 2014-11-05 2016-05-11 ABB Technology Oy Adjustment method for speed-controlled electronic drive and apparatus for implementing the same
DE102016204136B4 (de) * 2016-03-14 2018-07-12 Ford Global Technologies, Llc Verfahren und Vorrichtung zur automatisierten Längsbewegungssteuerung eines Kraftfahrzeugs
KR20170119088A (ko) * 2016-04-18 2017-10-26 현대자동차주식회사 차량의 모터 토크 제어를 통한 제동 성능 향상 방법
JP6814710B2 (ja) * 2017-08-10 2021-01-20 日立オートモティブシステムズ株式会社 車両運動制御装置及びその方法、並びに、目標軌道生成装置及びその方法
DE102017216432A1 (de) * 2017-09-15 2019-03-21 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Fahrzeuges mit einer Antriebsmaschine, mit einem Getriebe und mit einem Abtrieb
JP6536726B1 (ja) * 2018-07-20 2019-07-03 株式会社明電舎 アクセル遊び測定装置、アクセル遊び測定方法、プログラム、及び媒体
CN111308125B (zh) * 2020-02-24 2021-08-20 北京大学 一种基于光纤Sagnac干涉仪的加加速度探测方法及加加速度计
JP2022154260A (ja) * 2021-03-30 2022-10-13 マツダ株式会社 車両制御システム
JP2022154261A (ja) * 2021-03-30 2022-10-13 マツダ株式会社 車両制御システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118485A (ja) * 2004-10-25 2006-05-11 Toyota Motor Corp 車両の制御装置
JP2008285066A (ja) * 2007-05-18 2008-11-27 Hitachi Ltd 加加速度情報を用いた車両のヨーモーメント制御装置
WO2011036810A1 (ja) * 2009-09-28 2011-03-31 トヨタ自動車株式会社 車両の制御装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09272419A (ja) 1996-04-08 1997-10-21 Mitsubishi Motors Corp 緩減速度付加制御装置
JP3928288B2 (ja) 1999-02-12 2007-06-13 トヨタ自動車株式会社 車両制動制置
JP4147982B2 (ja) * 2003-03-13 2008-09-10 日産自動車株式会社 車両の駆動力制御装置
US20050159853A1 (en) * 2004-01-15 2005-07-21 Nissan Motor Co., Ltd. Driving status detection device and related method
JP2005225453A (ja) * 2004-02-16 2005-08-25 Autech Japan Inc 制動支援装置
JP2005096760A (ja) * 2004-10-18 2005-04-14 Nissan Diesel Motor Co Ltd 車両の変速装置
US8008791B2 (en) * 2006-02-08 2011-08-30 Hitachi, Ltd. Right-and-left-wheel differential torque generator of vehicle
JP2008025492A (ja) * 2006-07-21 2008-02-07 Toyota Central Res & Dev Lab Inc 車両制御装置
JP4967806B2 (ja) * 2007-05-22 2012-07-04 株式会社日立製作所 経路曲率に応じた車両の速度制御装置
US8744689B2 (en) * 2007-07-26 2014-06-03 Hitachi, Ltd. Drive controlling apparatus for a vehicle
JP5251216B2 (ja) 2007-07-31 2013-07-31 日産自動車株式会社 車両用走行制御装置および車両用走行制御方法
JP4997065B2 (ja) * 2007-10-29 2012-08-08 日立オートモティブシステムズ株式会社 車両制御装置
JP2009120116A (ja) * 2007-11-16 2009-06-04 Hitachi Ltd 車両衝突回避支援装置
JP4602444B2 (ja) * 2008-09-03 2010-12-22 株式会社日立製作所 ドライバ運転技能支援装置及びドライバ運転技能支援方法
JP5070171B2 (ja) * 2008-09-19 2012-11-07 日立オートモティブシステムズ株式会社 車両制御装置
US8346476B2 (en) * 2009-05-13 2013-01-01 Toyota Jidosha Kabushiki Kaisha Vehicle running control system
JP2011037363A (ja) * 2009-08-10 2011-02-24 Toyota Motor Corp 車両の駆動力制御装置
JP5143103B2 (ja) * 2009-09-30 2013-02-13 日立オートモティブシステムズ株式会社 車両の運動制御装置
JP5414454B2 (ja) * 2009-10-23 2014-02-12 日立オートモティブシステムズ株式会社 車両運動制御装置
JP5378318B2 (ja) * 2010-07-30 2013-12-25 日立オートモティブシステムズ株式会社 車両運動制御装置
EP2623386B1 (en) * 2010-09-28 2020-09-09 Hitachi Automotive Systems, Ltd. Vehicle motion control device
JP5405441B2 (ja) * 2010-11-24 2014-02-05 日立オートモティブシステムズ株式会社 車両制御装置
JP5764656B2 (ja) * 2011-05-11 2015-08-19 日立オートモティブシステムズ株式会社 車両運動制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118485A (ja) * 2004-10-25 2006-05-11 Toyota Motor Corp 車両の制御装置
JP2008285066A (ja) * 2007-05-18 2008-11-27 Hitachi Ltd 加加速度情報を用いた車両のヨーモーメント制御装置
WO2011036810A1 (ja) * 2009-09-28 2011-03-31 トヨタ自動車株式会社 車両の制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5764656B2 (ja) * 2011-05-11 2015-08-19 日立オートモティブシステムズ株式会社 車両運動制御装置
JP2014148182A (ja) * 2013-01-31 2014-08-21 Hitachi Automotive Systems Ltd 車両の走行制御装置
US9643607B2 (en) 2013-01-31 2017-05-09 Hitachi Automotive Systems, Ltd. Vehicle motion control system
WO2015045502A1 (ja) * 2013-09-30 2015-04-02 日立オートモティブシステムズ株式会社 車両の走行制御装置
JPWO2015045502A1 (ja) * 2013-09-30 2017-03-09 日立オートモティブシステムズ株式会社 車両の走行制御装置
US10286910B2 (en) 2013-09-30 2019-05-14 Hitachi Automotive Systems, Ltd. Vehicle running control apparatus
JP2015212115A (ja) * 2014-05-02 2015-11-26 エイディシーテクノロジー株式会社 車両制御装置
JP2018002150A (ja) * 2017-10-06 2018-01-11 日立オートモティブシステムズ株式会社 車両の走行制御装置

Also Published As

Publication number Publication date
JP5764656B2 (ja) 2015-08-19
US20140180554A1 (en) 2014-06-26
DE112011105223T5 (de) 2014-03-27
JPWO2012153367A1 (ja) 2014-07-28
US9090258B2 (en) 2015-07-28

Similar Documents

Publication Publication Date Title
JP5764656B2 (ja) 車両運動制御装置
JP6204865B2 (ja) 車両の運動制御システム、車両、および、プログラム
JP6764312B2 (ja) 車両運動制御装置、車両運動制御方法、車両運動制御プログラム
JP5378318B2 (ja) 車両運動制御装置
JP5414454B2 (ja) 車両運動制御装置
CN110799399B (zh) 车辆运动控制装置及其方法、和目标轨道生成装置及其方法
CN102905947B (zh) 车辆的减振控制装置
JP6976142B2 (ja) 車両運動制御装置、その方法、そのプログラム、及びそのシステム、並びに、目標軌道生成装置、その方法、そのプログラム、及びそのシステム
WO2018047874A1 (ja) 加減速制御システム、加減速制御方法
JP6375034B2 (ja) 車両の運動制御システム
WO2018047873A1 (ja) 加減速制御システム、加減速制御方法
WO2011151689A2 (en) Vehicle damping control apparatus
JP2023121864A (ja) 制御装置、制御システム、方法、プログラム、および車両
WO2020129633A1 (ja) 車両運動制御装置及びその方法
CN112677952B (zh) 一种智能驾驶控制方法及系统
WO2013114626A1 (ja) 減速因子推定装置
JP2013014205A (ja) 車両の走行制御装置
KR20130142347A (ko) 스마트 전기자동차 및 이의 운용방법
WO2022113740A1 (ja) 車両統合制御装置、および、車両統合制御方法
JP5370043B2 (ja) 車両制御装置
JP2019172017A (ja) 車両の制御装置および制御方法
CN116710312A (zh) 控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864945

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013513825

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112011105223

Country of ref document: DE

Ref document number: 1120111052235

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14116701

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11864945

Country of ref document: EP

Kind code of ref document: A1