WO2012147578A1 - 白血球の分類計数方法、白血球分類試薬キット及び白血球分類試薬 - Google Patents

白血球の分類計数方法、白血球分類試薬キット及び白血球分類試薬 Download PDF

Info

Publication number
WO2012147578A1
WO2012147578A1 PCT/JP2012/060432 JP2012060432W WO2012147578A1 WO 2012147578 A1 WO2012147578 A1 WO 2012147578A1 JP 2012060432 W JP2012060432 W JP 2012060432W WO 2012147578 A1 WO2012147578 A1 WO 2012147578A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
less
concentration
organic acid
aromatic organic
Prior art date
Application number
PCT/JP2012/060432
Other languages
English (en)
French (fr)
Inventor
佐緒里 鈴木
和樹 八町
水上 利洋
小国 振一郎
Original Assignee
シスメックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シスメックス株式会社 filed Critical シスメックス株式会社
Priority to EP12776153.4A priority Critical patent/EP2703812B1/en
Priority to BR112013027349-6A priority patent/BR112013027349B1/pt
Priority to SG2013075643A priority patent/SG194452A1/en
Priority to CN201280016125.2A priority patent/CN103460041B/zh
Publication of WO2012147578A1 publication Critical patent/WO2012147578A1/ja
Priority to US14/061,333 priority patent/US20140120530A1/en
Priority to US16/915,851 priority patent/US20200326332A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5094Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for blood cell populations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1429Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1468Electro-optical investigation, e.g. flow cytometers with spatial resolution of the texture or inner structure of the particle
    • G01N15/147Electro-optical investigation, e.g. flow cytometers with spatial resolution of the texture or inner structure of the particle the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2015/011
    • G01N2015/016

Definitions

  • the present invention relates to a method for classifying and counting white blood cells in a biological sample.
  • the present invention also relates to a white blood cell classification reagent kit and a white blood cell classification reagent for classifying and counting white blood cells in a biological sample.
  • Normal white blood cells are usually classified into five types: lymphocytes, monocytes, neutrophils, eosinophils and basophils. In normal peripheral blood, these blood cells are present at a certain ratio. However, certain blood counts may increase or decrease if the subject has a disease. Therefore, in the field of clinical examination, it is possible to obtain extremely useful information for diagnosing diseases by performing leukocyte classification and counting.
  • lymphocytes In diseases such as hematopoietic tumors and viral infections, cells that do not exist in normal peripheral blood appear. For example, in acute leukemia, immature leukocytes, “blasts (myeloblasts: lymphoblasts)” appear in peripheral blood. On the other hand, for viral infections, drug allergies, etc., atypical lymphocytes (atypical lymphocytes activated by antigen stimulation) lymphocyte) "appears in the peripheral blood. Differentiating and detecting atypical lymphocytes and blasts from peripheral blood is extremely useful for screening or diagnosing diseases.
  • Patent Document 1 describes a method capable of classifying and counting both abnormal white blood cells and normal white blood cells.
  • a reagent kit comprising a combination of a staining solution that specifically stains RNA and a hemolytic agent containing a cationic surfactant and a nonionic surfactant is used.
  • Patent Document 2 describes a method of classifying and counting normal white blood cells and detecting abnormal white blood cells.
  • a reagent containing a staining solution containing a predetermined fluorescent dye and a hemolytic agent containing a cationic surfactant and a nonionic surfactant is used.
  • a specimen obtained from a subject may contain abnormal white blood cells such as blasts and atypical lymphocytes in addition to normal white blood cells.
  • abnormal white blood cells such as blasts and atypical lymphocytes
  • the signals of blasts and abnormal lymphocytes which are abnormal leukocytes, appear in almost the same region on the scattergram. It may be difficult to distinguish and detect a sphere.
  • An object of the present invention is to provide a method for classifying and counting leukocytes which can classify and count normal leukocytes and which can distinguish and detect blasts and atypical lymphocytes.
  • Another object of the present invention is to provide a white blood cell classification reagent kit and a white blood cell classification reagent capable of classifying and counting normal white blood cells and distinguishing and detecting blasts and atypical lymphocytes.
  • the blast and atypical lymphocyte signals overlap or overlap with the region where normal and normal monocyte signals appear on the scattergram. Appears in the area to be.
  • the present inventors can separate the abnormal leukocyte signal from the normal leukocyte signal by separating the region where the normal lymphocyte signal appears from the region where the normal monocyte signal appears. I thought that it might be possible to raise.
  • the present inventors examined a leukocyte classification method capable of separating a region where normal lymphocyte signals appear from a region where normal monocyte signals appear.
  • the detection accuracy of abnormal leukocytes is enhanced by distinguishing between blasts and atypical lymphocytes by combining the concentration of the aromatic organic acid and the pH of the reagent in a predetermined combination.
  • the present invention has been completed.
  • the present invention A cationic reagent and a nonionic surfactant for lysing red blood cells and damaging red blood cells so that the fluorescent dye can penetrate the biological sample, a first reagent for staining nucleic acid, and 20 mM
  • the concentration of the aromatic organic acid in the second reagent is 20 mM or more and less than 30 mM
  • the pH of the second reagent is 5.5 or more and 6.4 or less
  • the aromatic organic acid in the second reagent When the concentration is 30 mM or more and 50 mM or less, the leukocyte classification
  • the present invention also includes a first reagent containing a fluorescent dye capable of staining a nucleic acid, a cationic surfactant for lysing red blood cells and damaging the white blood cell membrane so that the fluorescent dye can permeate.
  • the second reagent has a pH of 5.5 or more and 6.4 or less, and the concentration of the aromatic organic acid in the second reagent is 30 mM or more and 50 mM or less, the second reagent has a pH of 5.5 or more and 7.0 or less.
  • a reagent kit is provided.
  • the present invention further provides a leukocyte classification reagent comprising a fluorescent dye capable of staining a nucleic acid, a cationic surfactant, a nonionic surfactant, and an aromatic organic acid, the fragrance contained in the reagent.
  • a leukocyte classification reagent comprising a fluorescent dye capable of staining a nucleic acid, a cationic surfactant, a nonionic surfactant, and an aromatic organic acid, the fragrance contained in the reagent.
  • concentration of aromatic organic acid is 20 mM or more and 50 mM or less
  • the concentration of aromatic organic acid is 20 mM or more and less than 30 mM
  • the pH is 5.5 or more and 6.4 or less
  • the concentration of aromatic organic acid is 30 mM or more and 50 mM or less.
  • a leukocyte classification reagent characterized by having a pH of 5.5 to 7.0 is provided.
  • leukocyte classification reagent kit and leukocyte classification reagent of the present invention normal leukocytes can be classified and counted, and blasts and atypical lymphocytes can be distinguished and detected.
  • FIG. 10 is a scattergram when a normal blood sample is measured using each reagent of Example 5.
  • the biological sample is not particularly limited as long as it is a body fluid sample containing leukocytes.
  • biological samples include blood, bone marrow fluid, urine collected from mammals, preferably humans, samples collected by apheresis, and the like.
  • the biological sample may also be a sample that may contain abnormal white blood cells.
  • the white blood cells in the present invention include normal white blood cells and abnormal white blood cells. Normal white blood cells are usually lymphocytes, monocytes, eosinophils, and granulocytes other than eosinophils, or lymphocytes, monocytes, neutrophils, eosinophils, and eosinophils. There are five types of base spheres.
  • abnormal leukocytes mean leukocytes that are not usually present in peripheral blood.
  • abnormal leukocytes include atypical lymphocytes and blasts.
  • Atypical lymphocytes are lymphocytes activated by antigen stimulation, and indicate morphological changes in response to stimulation. These atypical lymphocytes appear in the peripheral blood of patients with diseases such as viral infections and drug allergies.
  • a blast refers to immature leukocytes such as myeloblasts and lymphblasts. Myeloblasts appear in the peripheral blood of patients with acute myeloid leukemia, and lymphoblasts appear in the peripheral blood of patients with acute lymphocytic leukemia.
  • the leukocyte classification reagent kit of the present invention (hereinafter sometimes referred to as “reagent kit”) is a kit containing a first reagent and a second reagent. Below, each reagent of a reagent kit is demonstrated.
  • the first reagent contained in the reagent kit of the present invention contains a fluorescent dye capable of staining a nucleic acid.
  • the first reagent is a reagent for fluorescent staining of nucleic acid of nucleated cells in a biological sample treated with a second reagent described later.
  • the fluorescent dye is not particularly limited as long as it is a dye capable of staining a nucleic acid, and can be appropriately selected according to the wavelength of light emitted from a light source.
  • fluorescent dyes include propidium iodide, ethidium bromide, ethidium-acridine heterodimer, ethidium diazide, ethidium homodimer-1, ethidium homodimer-2, ethidium monoazide, trimethylenebis [[3-[[ 4-[[[(3-Methylbenzothiazol-3-ium) -2-yl] methylene] -1,4-dihydroquinolin] -1-yl] propyl] dimethylaminium] tetraiodide (TOTO-1), 4 -[(3-Methylbenzothiazole-2 (3H) -ylidene) methyl] -1- [3- (trimethylaminio) prop
  • R 1 and R 4 are the same or different from each other, and are a hydrogen atom, an alkyl group, an alkyl chain having a hydroxy group, an alkyl chain having an ether group, an alkyl chain having an ester group, or a substituent.
  • R 2 and R 3 are the same or different from each other, and are a hydrogen atom, a hydroxyl group, a halogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an alkylsulfonyl group, or Z is a carbon atom having a sulfur atom, an oxygen atom or a methyl group; n is 0, 1, 2 or 3; and X ⁇ is an anion.
  • the alkyl group may be linear or branched.
  • the other is a hydrogen atom or an alkyl group having less than 6 carbon atoms. It is preferably a group.
  • alkyl groups having 6 to 18 carbon atoms alkyl groups having 6, 8 or 10 carbon atoms are preferable.
  • a substituent for the benzyl group of R 1 and R 4 for example, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or carbon Examples thereof include alkynyl groups of 2 to 20. Among these, a methyl group or an ethyl group is particularly preferable.
  • examples of the alkenyl group represented by R 2 and R 3 in the above formula (I) include alkenyl groups having 2 to 20 carbon atoms.
  • examples of the alkoxy group of R 2 and R 3 include an alkoxy group having 1 to 20 carbon atoms. Among these, a methoxy group or an ethoxy group is particularly preferable.
  • halogen ions such as F ⁇ , Cl ⁇ , Br ⁇ and I ⁇ , CF 3 SO 3 ⁇ , BF 4 ⁇ and the like can be used. Can be mentioned.
  • the fluorescent dye in the first reagent may be one type or two or more types.
  • the concentration of the fluorescent dye in the first reagent can be appropriately set according to the type of the fluorescent dye, but is usually 0.01 to 100 pg / ⁇ L, preferably 0.1 to 10 pg / ⁇ L.
  • the concentration of the fluorescent dye in the first reagent is preferably 0.2 to 0.6 pg / ⁇ L, more preferably Is 0.3 to 0.5 pg / ⁇ L.
  • the first reagent can be obtained by dissolving the fluorescent dye in an appropriate solvent so as to have the above concentration.
  • a solvent will not be specifically limited if said fluorescent dye can be dissolved,
  • the organic solvent include alcohol, ethylene glycol, dimethyl sulfoxide (DMSO) and the like. Since the fluorescent dye may have poor storage stability in an aqueous solution, it is preferably dissolved in an organic solvent.
  • a commercially available staining reagent for leukocyte measurement may be used as the first reagent.
  • An example of such a staining reagent is Stoma Riser 4DS (Sysmex Corporation).
  • Stoma riser 4DS is a staining reagent containing the fluorescent dye represented by the above formula (I).
  • the second reagent contained in the reagent kit of the present invention is a surfactant for lysing erythrocytes and damaging the leukocyte cell membrane to the extent that the fluorescent dye can permeate, that is, a cationic surfactant and a nonionic interface.
  • a surfactant for lysing erythrocytes and damaging the leukocyte cell membrane to the extent that the fluorescent dye can permeate that is, a cationic surfactant and a nonionic interface.
  • the second reagent further contains an aromatic organic acid at a concentration of 20 mM to 50 mM.
  • the pH of the second reagent when the concentration of the aromatic organic acid in the second reagent is 20 mM or more and less than 30 mM, the pH of the second reagent is 5.5 or more and 6.4 or less, more preferably 5.5 or more and 6.2 or less. is there.
  • the concentration of the aromatic organic acid in the second reagent is 30 mM or more and 50 mM or less, preferably 40 mM or more and 50 mM or less
  • the pH of the second reagent is 5.5 or more and 7.0 or less. More preferably, when the concentration of the aromatic organic acid in the second reagent is 40 mM or more and 50 mM or less, the pH of the second reagent is 5.5 or more and 6.2 or less.
  • the red blood cells in the biological sample are hemolyzed, and the above-mentioned fluorescent dye is damaged to the cell membrane of the white blood cells.
  • the second reagent can damage the cell membrane of the abnormal leukocytes to such an extent that the fluorescent dye can pass therethrough. Blood cells damaged in the cell membrane by the second reagent are stained with the fluorescent dye in the first reagent.
  • the normal lymphocyte signal appearance region and the normal monocyte signal appearance region detected by a flow cytometer or the like Can be separated to such an extent that the detection accuracy of abnormal leukocytes is increased and discrimination between blasts and atypical lymphocytes is possible.
  • an aromatic organic acid means an acid having at least one aromatic ring in the molecule and a salt thereof.
  • the aromatic organic acid include aromatic carboxylic acid and aromatic sulfonic acid.
  • phthalic acid, benzoic acid, salicylic acid, hippuric acid, p-aminobenzenesulfonic acid, benzenesulfonic acid and salts thereof are preferably used as the aromatic organic acid.
  • the aromatic organic acid in the second reagent may be one type or two or more types. When two or more types of aromatic organic acids are contained in the second reagent, the total concentration of the aromatic organic acids in the second reagent may be 20 mM or more and 50 mM or less.
  • quaternary ammonium salt type surfactant or a pyridinium salt type surfactant can be used as the cationic surfactant.
  • examples of the quaternary ammonium salt type surfactant include surfactants having a total carbon number of 9 to 30 and represented by the following formula (II).
  • R 1 is an alkyl group or alkenyl group having 6 to 18 carbon atoms
  • R 2 and R 3 are the same or different from each other, and are an alkyl group or alkenyl group having 1 to 4 carbon atoms.
  • R 4 is an alkyl group or alkenyl group having 1 to 4 carbon atoms, or a benzyl group;
  • X ⁇ is a halogen ion;
  • R 1 is preferably an alkyl group or alkenyl group having 6, 8, 10, 12 and 14 carbon atoms, and particularly preferably a linear alkyl group. More specific R 1 includes an octyl group, a decyl group, and a dodecyl group.
  • R 2 and R 3 are preferably a methyl group, an ethyl group and a propyl group.
  • R 4 is preferably a methyl group, an ethyl group or a propyl group.
  • pyridinium salt type surfactant examples include surfactants represented by the following formula (III).
  • R 1 is an alkyl group or alkenyl group having 6 to 18 carbon atoms;
  • X ⁇ is a halogen ion.
  • R 1 is preferably an alkyl group or alkenyl group having 6, 8, 10, 12 and 14 carbon atoms, and particularly preferably a linear alkyl group. More specific R 1 includes an octyl group, a decyl group, and a dodecyl group.
  • the concentration of the cationic surfactant in the second reagent can be appropriately adjusted depending on the type of the surfactant, but is usually 10 to 10,000 ppm, preferably 100 to 1000 ppm.
  • the nonionic surfactant is preferably a polyoxyethylene nonionic surfactant represented by the following formula (VI).
  • VI polyoxyethylene nonionic surfactant represented by the following formula (VI).
  • R 1 is an alkyl group, alkenyl group or alkynyl group having 8 to 25 carbon atoms;
  • R 2 is an oxygen atom, —COO— or
  • N is an integer from 10 to 50.
  • nonionic surfactant examples include polyoxyethylene alkyl ether, polyoxyethylene sterol, polyoxyethylene castor oil, polyoxyethylene sorbite fatty acid ester, polyoxyethylene alkylamine, polyoxyethylene polyoxypropylene alkyl Examples include ether.
  • the concentration of the nonionic surfactant in the second reagent is usually 10 to 100,000 ppm, preferably 100 to 10,000 ppm, more preferably 1000 to 5000 ppm.
  • the second reagent may contain a buffering agent in order to keep the pH constant.
  • a buffering agent examples include citrate, HEPES and phosphate.
  • the aromatic organic acid may have a buffering action. When such an aromatic organic acid is used, addition of a buffering agent to the second reagent is optional.
  • the osmotic pressure of the second reagent is not particularly limited, but is preferably 20 to 150 mOsm / kg from the viewpoint of efficiently lysing red blood cells.
  • the second reagent contains the surfactant and the aromatic organic acid or a salt thereof, and optionally the buffer, so that the concentration of the aromatic organic acid becomes the above. It can be obtained by dissolving in an appropriate solvent and adjusting the pH with NaOH, HCl or the like.
  • the solvent is not particularly limited as long as the above components can be dissolved, and examples thereof include water, organic solvents, and mixtures thereof.
  • the organic solvent include alcohol, ethylene glycol, DMSO and the like.
  • the above-described reagent kit is divided into a first reagent and a second reagent.
  • the present invention is not limited to this, and the reagent kit is not particularly limited as long as the reagent includes the composition of the first reagent and the second reagent.
  • the leukocyte classification reagent kit of the present invention or the reagent described above is used, leukocytes in a biological sample can be classified and counted.
  • a method for classifying and counting leukocytes using the reagent kit of the present invention hereinafter sometimes simply referred to as “method”.
  • measurement is performed by mixing a biological sample with the first reagent and the second reagent of the above-described reagent kit to lyse erythrocytes in the biological sample and stain leukocyte nucleic acid.
  • a sample is prepared (preparation process).
  • the mixing of the biological sample and the first reagent or the second reagent is performed so that the volume ratio of the biological sample: the first reagent or the second reagent is 1: 1 to 1: 1000, more preferably 1:10 to 1: 100.
  • the ratio of the mixture of the first reagent and the second reagent to the biological sample is such that the volume ratio of the biological sample: mixture is 1: 5 to 1: 1000, more preferably 1:10 to 1: 100.
  • the order of mixing the biological sample with the first reagent and the second reagent is not particularly limited.
  • the first reagent and the second reagent may be mixed first, and this mixed solution and the biological sample may be mixed.
  • the second reagent and the biological sample may be mixed first, and the mixed solution and the first reagent may be mixed.
  • an equivalent result can be obtained by mixing in any order.
  • the temperature is 15 to 50 ° C., preferably 30 to 45 ° C., for 5 to 120 seconds, preferably 5 to 30 seconds. Incubation is preferred.
  • the measurement sample prepared in the above step is irradiated with light to acquire scattered light information and fluorescence information (measurement step).
  • the measurement step is preferably performed by a flow cytometer.
  • scattered light information and fluorescence information can be obtained as signals emitted from the white blood cells by irradiating the white blood cells with light when the stained white blood cells pass through the flow cell of the flow cytometer. .
  • the scattered light information is not particularly limited as long as it is a scattered light that can be measured by a commercially available flow cytometer.
  • the scattered light information include forward scattered light (for example, around a light receiving angle of 0 to 20 degrees), scattered light pulse width such as side scattered light (around a light receiving angle of about 90 degrees), scattered light intensity, and the like.
  • side scattered light reflects internal information such as cell nuclei and granules
  • forward scattered light reflects cell size information.
  • Fluorescence information is information obtained by irradiating stained white blood cells with excitation light of an appropriate wavelength and measuring the excited fluorescence.
  • the fluorescence is emitted from intracellular nucleic acid stained with a fluorescent dye contained in the first reagent.
  • the light receiving wavelength can be appropriately selected according to the fluorescent dye contained in the first reagent.
  • the light source of the flow cytometer is not particularly limited, and a light source having a wavelength suitable for excitation of the fluorescent dye is selected.
  • a light source for example, a red semiconductor laser, a blue semiconductor laser, an argon laser, a He—Ne laser, a mercury arc lamp, or the like is used.
  • a semiconductor laser is preferable because it is much cheaper than a gas laser.
  • white blood cells in a biological sample are classified and counted based on the scattered light information and fluorescence information (classification counting step).
  • white blood cell classification and counting are performed by creating a scattergram having two axes of side scattered light information and fluorescence information, and analyzing the obtained scattergram using appropriate analysis software. Is preferably carried out by For example, when a scattergram is drawn by taking the side scattered light intensity on the X axis and the fluorescence intensity on the Y axis, as shown in the right panel of FIG. 1, leukocytes are lymphocytes, monocytes, neutrophils, It is classified into five types of clusters (clusters) of eosinophils and basophils.
  • the analysis software can provide a window surrounding each group on the scattergram, and the number of cells in the window can be counted.
  • leukocytes are classified into five types of groups, but the present invention is not limited to this.
  • leukocytes may be classified into four types of groups by classifying neutrophils and basophils as one group.
  • the biological sample may be a sample that may contain abnormal white blood cells.
  • the appearance region of the normal lymphocyte signal detected by the flow cytometer and the appearance region of the normal monocyte signal can be separated on the scattergram. Therefore, in the method of the present invention, when abnormal leukocytes are contained in a biological sample, blasts and atypical lymphocytes can be distinguished and detected among such abnormal leukocytes in the step of classifying and counting leukocytes. .
  • the differentiation between blasts and atypical lymphocytes is performed, for example, by setting a signal appearance region of blasts and a signal appearance region of atypical lymphocytes on the scattergram in advance.
  • the detection of blasts and atypical lymphocytes is, for example, determined that a blast is contained in a biological sample when a signal is detected in a signal appearance region of a preset blast.
  • a signal is detected in the signal appearance region of the atypical lymphocyte, the determination is made that it is determined that the atypical lymphocyte is contained in the biological sample.
  • examples of the blast include myeloblast.
  • Example 1 in order to separate the position where the signal of normal lymphocyte appears from the position where the signal of normal monocyte appears on the scattergram, the concentration of the aromatic organic acid in the second reagent and the second The pH of the reagent was examined.
  • Stoma riser 4DS (Sysmex Corporation) was used as the first reagent.
  • the second reagent is dodecyltrimethylammonium chloride (LTAC: Tokyo Chemical Industry Co., Ltd.), polyoxyethylene (30) cetyl ether (BC30TX: Nikko Chemicals Co., Ltd.), potassium hydrogen phthalate (hereinafter referred to as phthalic acid: Wako Pure Chemicals) Kogyo Co., Ltd.) and EDTA-2K (Chubu Crest Co., Ltd.) were mixed and prepared so as to have the composition shown in Table 1 below.
  • NaOH solution was used for adjustment of pH.
  • LTAC is a cationic surfactant
  • BC30TX is a nonionic surfactant
  • phthalic acid is an aromatic organic acid.
  • the second reagents A and B contain HEPES (Dojindo Laboratories) as a buffer.
  • the second reagents A and B correspond to the hemolytic agent of the conventional leukocyte classification reagent.
  • the biological sample used in this example is a blood sample (18 samples) collected from 18 healthy persons.
  • each specimen is referred to as specimen Nos. 1 to 18, respectively.
  • a sample for measurement was prepared by mixing 20 ⁇ L of the sample, 20 ⁇ L of the first reagent and 1000 ⁇ L of the second reagent, and incubating at 40 ° C. for 20 seconds.
  • Samples No. 1 to 10 were prepared using second reagents A to D and G to Q, and sample Nos. 11 to 18 were prepared using second reagents B and E to G.
  • Each measurement sample was irradiated with light by a flow cytometer (hereinafter referred to as FCM) to detect a side scattered light signal, a forward scattered light signal, and a fluorescent signal emitted from cells in the sample.
  • the obtained signal was analyzed to measure normal white blood cells in the measurement sample.
  • a red semiconductor laser having an excitation wavelength of 633 nm was used as the light source for the FCM.
  • the fluorescence signal detected fluorescence (red fluorescence) having a wavelength of 600 nm or more.
  • each white blood cell forms a population for each cell.
  • each leukocyte population is identified, the number of cells contained in each leukocyte population, the ratio of the number of cells contained in each leukocyte population to the total number of cells, and each leukocyte population Is calculated.
  • the distance between the centroids (hereinafter referred to as the centroid distance) is calculated from the centroid position of each leukocyte population.
  • Figure 1 is shown as a reference for the center of gravity distance.
  • the left panel of FIG. 1 is a scattergram obtained by measuring a sample of a healthy person using the first reagent and the second reagent O described above. From the left panel of FIG. 1, it is shown that normal white blood cells in the specimen are classified into five types: lymphocytes, monocytes, neutrophils, eosinophils and basophils.
  • the right panel of FIG. 1 identifies each classified blood cell population and shows the centroid ( ⁇ ) of the lymphocyte population and the monocyte population. The distance between the two ⁇ is the center of gravity distance.
  • the average value of the center-of-gravity distance when measuring 10 specimens (specimen Nos. 1 to 10) using the second reagent A (phthalic acid concentration 20 mM, pH 7.2) was 36.4.
  • the average value of the center-of-gravity distance when measuring 18 samples (sample Nos. 1 to 18) using the second reagent B (phthalic acid concentration 20 mM, pH 7.0) was 38.3.
  • Table 2 shows the average value of the center-of-gravity distance when measuring 8) and the average value of the center-of-gravity distance when measuring 8 specimens (sample Nos. 11 to 18) using the second reagents E and F. Show.
  • Table 3 shows the results of classifying the average value of the center-of-gravity distances shown in Table 2 according to the phthalic acid concentration and pH of each second reagent.
  • a combination of phthalic acid concentration and pH is a combination in which the phthalic acid concentration is 20 mM or more and less than 30 mM and the pH is 5.5 or more and 6.4 or less, or the phthalic acid concentration is 30 mM or more and 50 mM or less, And a combination having a pH of 5.5 to 7.0.
  • Example 2 In this example, using the first reagent and the second reagent B, G, or O of Example 1, a blood sample containing abnormally shaped lymphocytes (hereinafter referred to as abnormal sample 1) was measured. The measurement by FCM and the calculation of the center-of-gravity distance were performed in the same manner as in Example 1.
  • the scattergram (X axis: side scattered light intensity, Y axis: fluorescence intensity) created from the measurement by FCM using each reagent is shown in FIG.
  • the center-of-gravity distance when the abnormal specimen 1 was measured using the second reagent B (phthalic acid concentration 20 mM, pH 7.0) was 62.9.
  • the center-of-gravity distance when the abnormal sample 1 was measured using the second reagent G (phthalic acid concentration 20 mM, pH 6.0) was 69.7.
  • the center-of-gravity distance when the abnormal sample 1 was measured using the second reagent O (phthalic acid concentration 40 mM, pH 6.0) was 80.6.
  • the abnormal specimen 1 used in this example is a specimen in which a signal of a lymphocyte with an abnormal morphology appears in the same region as a signal of a normal lymphocyte. Therefore, the population of lymphocytes swells very large on the scattergram.
  • the abnormal specimen 1 is measured using the second reagent B, which is a conventional hemolytic agent, a group containing abnormally shaped lymphocytes and a monocyte group overlap to accurately detect abnormally shaped lymphocytes. Difficult to do.
  • the second reagent G or O of the reagent kit of the present invention the lymphocyte population and the monocyte population are greatly separated. However, it is possible to accurately separate a population containing abnormally shaped lymphocytes from a population of monocytes. Thereby, it is possible to detect lymphocytes with abnormal morphology with higher accuracy than conventional reagents.
  • Example 3 In this example, a biological sample containing abnormally shaped lymphocytes (hereinafter referred to as abnormal specimen 2) and myeloblast using the first reagent and the second reagent B, G, M or O of Example 1 A biological sample (hereinafter, referred to as abnormal specimen 3) was measured.
  • abnormal specimen 2 a biological sample containing abnormally shaped lymphocytes
  • abnormal specimen 3 A biological sample (hereinafter, referred to as abnormal specimen 3) was measured.
  • the biological samples used in this example are two blood samples that cannot be determined whether abnormal leukocytes are abnormal lymphocytes or myeloblasts by measurement with conventional reagents. This is due to the fact that morphologically abnormal lymphocyte and myeloblast signals all appear in almost the same region on the scattergram.
  • the measurement by FCM and the calculation of the center-of-gravity distance were performed in the same manner as in Example 1.
  • FIG. 3 and 4 show scattergrams (X axis: side scattered light intensity, Y axis: fluorescence intensity) created from measurement by FCM using each reagent.
  • the abnormally shaped lymphocyte population contained in the specimen is between the lymphocyte population and the monocyte population. It can be seen that it appears from the region to the upper part of the region (the higher fluorescence intensity).
  • the myeloblast population included in the specimen is the same as the abnormal lymphocyte population included in the abnormal specimen 2. It can be seen that it appears in the area. That is, the abnormal leukocyte population contained in the abnormal specimens 2 and 3 partially overlaps with the lymphocyte and monocyte population.
  • the abnormal white blood cell populations included in the abnormal specimens 2 and 3 are similar to each other in distribution on the scattergram.
  • the second reagent B which is a conventional reagent, whether the specimen contains lymphocytes or myeloblasts with abnormal morphology. Furthermore, since a part of the lymphocyte population with abnormal morphology overlaps the lymphocyte and monocyte population, it is difficult to classify and count normal lymphocytes and monocytes with high accuracy.
  • abnormally shaped lymphocytes contained in the abnormal specimen 2 appear biased toward the lymphocyte population, and can be accurately separated from the monocyte population.
  • myeloblasts contained in the abnormal specimen 3 appear biased toward the monocyte population and can be accurately separated from the lymphocyte population. Therefore, when the measurement is performed using the second reagent of the reagent kit of the present invention, there is a clear difference between the appearance position of abnormally shaped lymphocytes and the appearance position of myeloblasts. It is possible to accurately determine whether it is included.
  • abnormal leukocyte populations can be accurately separated from lymphocyte populations or monocyte populations, so that normal monocytes or normal lymphocytes can be classified and counted more accurately than conventional reagents. Can do.
  • Example 4 a biological sample containing abnormally shaped lymphocytes was measured using the first reagent and the second reagent A or O of Example 1.
  • the abnormal lymphocytes contained in the biological sample of the present example are lymphocytes that have been confirmed to be atypical lymphocytes by morphological examination.
  • the biological sample used in the present example has two blood specimens (hereinafter referred to as abnormal specimen 4 and abnormal specimen 5, respectively) that cannot be distinguished whether abnormal leukocytes are atypical lymphocytes or blasts by measurement with conventional reagents. ). As described above, this is because each signal of atypical lymphocyte blast appears in almost the same region on the scattergram.
  • the measurement by FCM was performed in the same manner as in Example 1.
  • FIG. 5 shows a scattergram (horizontal axis: side scattered light intensity, vertical axis: fluorescence intensity) created from measurement by FCM using each reagent.
  • the second reagent A which is a conventional reagent
  • the atypical lymphocyte population contained in the specimen is determined from the region between the lymphocyte population and the monocyte population. It can be seen that it appears upward (the higher fluorescence intensity).
  • the blast population since the blast population also appears in almost the same region (not shown), the atypical lymphocyte population and the blast population cannot be detected separately.
  • Example 5 the first reagent of Example 1, the second reagent A or G as the second reagent, or the second reagent R or S containing phthalic acid and benzoic acid as the aromatic organic acid, The biological sample was used to measure.
  • the second reagents R and S were prepared by mixing LTAC, BC30TX, phthalic acid, benzoic acid and EDTA-2K so as to have the composition shown in Table 4 below.
  • the biological sample used in this example is a blood sample collected from a healthy person. Measurement by FCM and calculation of the center-of-gravity distance were performed in the same manner as in Example 1.
  • FIG. 6 shows a scattergram (horizontal axis: side scattered light intensity, vertical axis: fluorescence intensity) created from measurement by FCM using each reagent.
  • Table 5 shows the center-of-gravity distance when the specimen is measured using each reagent, and the concentration and pH of the aromatic organic acid of each reagent.
  • the center-of-gravity distance between the monocyte population and the lymphocyte population is further increased by measurement using a second reagent in which benzoic acid is further added to phthalic acid as an aromatic organic acid. I found out that I could do it.

Abstract

 正常白血球を分類計数することができ、且つ芽球と異型リンパ球との判別を可能にする白血球の分類計数方法を提供する。白血球の分類計数方法が、生体試料と、核酸を染色する第1試薬と、赤血球を溶血させ、白血球の細胞膜に蛍光色素が透過できる程度の損傷を与えるための、カチオン性界面活性剤およびノニオン性界面活性剤、並びに、20mM以上50mM以下の濃度で芳香族の有機酸を含有する第2試薬と、を混合して測定試料を調製する工程;測定試料に光を照射することにより生じる散乱光情報及び蛍光情報を取得する工程;取得した散乱光情報および蛍光情報に基づいて、生体試料中の白血球を分類し、芽球と異型リンパ球とを区別して検出する工程;を含み、第2試薬中の芳香族の有機酸の濃度が20mM以上30mM未満の場合は第2試薬のpHが5.5以上6.4以下であり、30mM以上50mM以下の場合はpHが5.5以上7.0以下であるようにする。

Description

白血球の分類計数方法、白血球分類試薬キット及び白血球分類試薬
 本発明は、生体試料中の白血球を分類計数する方法に関する。本発明はまた、生体試料中の白血球を分類計数するための白血球分類試薬キット及び白血球分類試薬に関する。
 正常な白血球は、通常、リンパ球、単球、好中球、好酸球および好塩基球の5種類に分類される。正常な末梢血においては、これらの血球がそれぞれ一定の割合で存在している。しかし、被験者に疾患が存在する場合、特定の血球数が増加または減少することがある。それゆえ、臨床検査の分野においては、白血球の分類計数を行うことにより、疾患の診断に極めて有用な情報を得ることができる。
 造血器腫瘍、ウイルス感染症等の疾患においては、正常な末梢血液中には存在しない細胞が出現する。例えば、急性の白血病では、未成熟な白血球である「芽球(骨髄芽球:myeloblast、リンパ芽球:lymphoblast)」が末梢血液中に出現する。一方、ウイルス感染症、薬物アレルギー等では、抗原刺激により活性化したリンパ球である「異型リンパ球(atypical
lymphocyte)」が末梢血液中に出現する。末梢血液中から異型リンパ球と芽球とを区別して検出することは、疾患のスクリーニング又は診断を行う上で極めて有用である。
 近年、フローサイトメトリーの原理を応用した種々の自動血球計数装置が市販されている。そのような装置によれば、試料中の血球の分類計数を自動で行うことができる。また、自動血球計数装置による測定のための血球分類試薬も市販されている。このような試薬を用いて検体を自動血球計数装置で測定すると、検出された各血球のシグナルはそれぞれスキャッタグラム上の所定の領域に出現する。
 上記のような血球分類試薬は、当該技術においていくつか知られている。例えば、特許文献1には、異常白血球と正常白血球との両方を分類計数することができる方法が記載されている。該方法では、RNAを特異的に染色する染色液と、カチオン性界面活性剤およびノニオン性界面活性剤を含む溶血剤との組合せからなる試薬キットを用いている。また、特許文献2には、正常白血球を分類計数し、且つ異常白血球を検出する方法が記載されている。該方法では、所定の蛍光色素を含む染色液と、カチオン性界面活性剤およびノニオン性界面活性剤を含む溶血剤とを含有する試薬を用いている。
特許第4248017号公報 米国特許出願第2009/0023129号
 上述のように、被験者から得た検体中には、正常白血球の他に芽球及び異型リンパ球といった異常白血球が含まれている場合がある。
 しかしながら、特許文献1及び特許文献2の試薬を用いた方法では、異常白血球である芽球及び異型リンパ球のシグナルが、いずれもスキャッタグラム上のほぼ同じ領域に出現するので、芽球と異型リンパ球とを区別して検出することが困難な場合がある。
 本発明は、正常白血球を分類計数することができ、且つ芽球と異型リンパ球とを区別して検出することが可能な白血球の分類計数方法を提供することを目的とする。本発明はまた、正常白血球を分類計数することができ、且つ芽球と異型リンパ球とを区別して検出することが可能な白血球分類試薬キット及び白血球分類試薬を提供することを目的とする。
 従来の白血球分類試薬を用いたフローサイトメータによる測定では、芽球および異型リンパ球のシグナルは、スキャッタグラム上で、正常リンパ球および正常単球のシグナルが出現する領域の近辺または該領域と重複する領域に出現する。本発明者らは、正常リンパ球のシグナルが出現する領域と正常単球のシグナルが出現する領域とを隔てることにより、異常白血球のシグナルと正常白血球のシグナルとを分離でき、異常白血球の検出感度を高めることができるのではないかと考えた。
 そこで、本発明者らは、正常リンパ球のシグナルが出現する領域と正常単球のシグナルが出現する領域とを隔てることが可能な白血球分類方法について検討した。その結果、驚くべきことに、芳香族の有機酸の濃度と試薬のpHとを所定の組合せにすることで、異常白血球の検出精度を高め、芽球と異型リンパ球とを区別して検出することが可能になることを見出して、本発明を完成した。
 すなわち、本発明は、
 生体試料と、核酸を染色する第1試薬と、赤血球を溶血させ、白血球の細胞膜に前記蛍光色素が透過できる程度の損傷を与えるための、カチオン性界面活性剤およびノニオン性界面活性剤、ならびに20mM以上50mM以下の濃度で芳香族の有機酸を含有する第2試薬とを混合して測定試料を調製する工程;
 調製された測定試料に光を照射し、そのときに生じる散乱光情報および蛍光情報を取得する工程;および
 取得された散乱光情報および蛍光情報に基づいて、前記生体試料中の白血球を分類するとともに、芽球と異型リンパ球とを区別して検出する工程;
を含み、前記第2試薬中の芳香族の有機酸の濃度が20mM以上30mM未満の場合は前記第2試薬のpHが5.5以上6.4以下であり、前記第2試薬中の芳香族の有機酸の濃度が30mM以上50mM以下の場合は前記第2試薬のpHが5.5以上7.0以下である、白血球の分類計数方法を提供する。
 本発明はまた、核酸を染色可能な蛍光色素を含有する第1試薬と、赤血球を溶血させ、白血球の細胞膜に上記の蛍光色素が透過できる程度の損傷を与えるための、カチオン性界面活性剤およびノニオン性界面活性剤、ならびに20mM以上50mM以下の濃度で芳香族の有機酸を含有する第2試薬とを含み、該第2試薬中の芳香族の有機酸の濃度が20mM以上30mM未満の場合は該第2試薬のpHが5.5以上6.4以下であり、該第2試薬中の芳香族の有機酸の濃度が30mM以上50mM以下の場合は該第2試薬のpHが5.5以上7.0以下である白血球分類試薬キットを提供する。
 本発明はさらに、核酸を染色可能な蛍光色素と、カチオン性界面活性剤と、ノニオン性界面活性剤と、芳香族の有機酸と、を含む白血球分類試薬であって、試薬中に含まれる芳香族の有機酸の濃度が20mM以上50mM以下であり、芳香族の有機酸の濃度が20mM以上30mM未満の場合はpHが5.5以上6.4以下であり、芳香族の有機酸の濃度が30mM以上50mM以下の場合はpHが5.5以上7.0以下であることを特徴とする白血球分類試薬を提供する。
 本発明の白血球の分類計数方法、白血球分類試薬キットおよび白血球分類試薬によれば、正常白血球を分類計数でき、且つ芽球と異型リンパ球とを区別して検出することができる。
本発明の白血球分類試薬キットを用いて正常な血液検体を測定したときのスキャッタグラムおよびその模式図である。 実施例2の各試薬を用いて形態が異常なリンパ球を含む血液検体を測定したときのスキャッタグラムである。 実施例3の各試薬を用いて異常白血球を含む血液検体を測定したときのスキャッタグラムである。 実施例3の各試薬を用いて異常白血球を含む血液検体を測定したときのスキャッタグラムである。 実施例4の各試薬を用いて異常白血球を含む血液検体を測定したときのスキャッタグラムである。 実施例5の各試薬を用いて正常な血液検体を測定したときのスキャッタグラムである。
 本発明の実施の形態において、生体試料は、白血球を含む体液試料であれば特に限定されない。生体試料としては、例えば、哺乳動物、好ましくはヒトから採取された血液、骨髄液、尿、及び、アフェレーシスなどにより採取した試料などが挙げられる。生体試料はまた、異常白血球を含む可能性のある試料であってもよい。本発明における白血球とは、正常な白血球と異常白血球とを含む。正常な白血球は、通常、リンパ球、単球、好酸球、および、好酸球以外の顆粒球、の4種類、または、リンパ球、単球、好中球、好酸球、および、好塩基球、の5種類に分類される。
 本明細書において、異常白血球とは、通常は末梢血中に存在しない白血球を意味する。そのような異常白血球としては、例えば、異型リンパ球及び芽球などが挙げられる。異型リンパ球とは、抗原刺激により活性化したリンパ球であり、刺激に反応して形態変化したものを指す。この異型リンパ球は、ウイルス感染症、薬物アレルギー等の疾患のある患者の末梢血中に出現する。芽球とは、骨髄芽球(myeloblast)及びリンパ芽球(lymphblast)等の未成熟な白血球を指す。骨髄芽球は、急性骨髄性白血病の患者の末梢血中に出現し、リンパ芽球は、急性リンパ性白血病の患者の末梢血中に出現する。
 以下に、本発明の白血球の分類計数方法で用いられる白血球分類試薬キットについて説明する。
 本発明の白血球分類試薬キット(以下、「試薬キット」という場合がある。)は、第1試薬と第2試薬とを含むキットである。以下に、試薬キットの各試薬について説明する。
[第1試薬]
 本発明の試薬キットに含まれる第1試薬は、核酸を染色可能な蛍光色素を含む。本発明の実施の形態において、第1試薬は、後述する第2試薬により処理された生体試料中の有核細胞の核酸を蛍光染色するための試薬である。生体試料を第1試薬で処理することにより、正常白血球および上記の異常白血球などの核酸を有する血球が染色される。
 本発明の実施の形態において、蛍光色素は、核酸を染色できる色素であれば特に限定されず、光源から照射される光の波長に応じて適宜選択することができる。そのような蛍光色素としては、例えば、プロピジウムアイオダイド、エチジウムブロマイド、エチジウム-アクリジンヘテロダイマー、エチジウムジアジド、エチジウムホモダイマー-1、エチジウムホモダイマー-2、エチジウムモノアジド、トリメチレンビス[[3‐[[4‐[[(3‐メチルベンゾチアゾール‐3‐イウム)‐2‐イル]メチレン]‐1,4‐ジヒドロキノリン]‐1‐イル]プロピル]ジメチルアミニウム]・テトラヨージド(TOTO-1)、4‐[(3‐メチルベンゾチアゾール‐2(3H)‐イリデン)メチル]‐1‐[3‐(トリメチルアミニオ)プロピル]キノリニウム・ジヨージド(TO-PRO-1)、N,N,N',N'‐テトラメチル‐N,N'‐ビス[3‐[4‐[3‐[(3‐メチルベンゾチアゾール‐3‐イウム)‐2‐イル]‐2‐プロペニリデン]‐1,4‐ジヒドロキノリン‐1‐イル]プロピル]‐1,3‐プロパンジアミニウム・テトラヨージド(TOTO-3)、2‐[3‐[[1‐[3‐(トリメチルアミニオ)プロピル]‐1,4‐ジヒドロキノリン]‐4‐イリデン]‐1‐プロペニル]‐3‐メチルベンゾチアゾール‐3‐イウム・ジヨージド(TO-PRO-3)、および、以下の一般式(I)で表される蛍光色素などが挙げられる。それらの中でも、一般式(I)で表される蛍光色素が好ましい。
Figure JPOXMLDOC01-appb-C000003
 上記の式(I)中、R1およびR4は互いに同一または異なって、水素原子、アルキル基、ヒドロキシ基を有するアルキル鎖、エーテル基を有するアルキル鎖、エステル基を有するアルキル鎖、または、置換基を有していてもよいベンジル基であり;R2およびR3は互いに同一または異なって、水素原子、ヒドロキシル基、ハロゲン、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アルキルスルホニル基、または、フェニル基であり;Zは硫黄原子、酸素原子、または、メチル基を有する炭素原子であり;nは0、1、2または3であり;X-はアニオンである。
 本発明の実施の形態において、アルキル基は直鎖状または分枝鎖状のいずれであってもよい。本発明の実施の形態においては、上記の式(I)中、R1およびR4のいずれか一方が炭素数6~18のアルキル基である場合、他方は水素原子又は炭素数6未満のアルキル基であることが好ましい。炭素数6~18のアルキル基の中でも、炭素数が6、8または10のアルキル基が好ましい。
 本発明の実施の形態においては、上記の式(I)中、R1およびR4のベンジル基の置換基として、例えば炭素数1~20のアルキル基、炭素数2~20のアルケニル基または炭素数2~20のアルキニル基が挙げられる。それらの中でも、メチル基またはエチル基が特に好ましい。
 本発明の実施の形態においては、上記の式(I)中、R2およびR3のアルケニル基として、例えば炭素数2~20のアルケニル基が挙げられる。R2およびR3のアルコキシ基としては、炭素数1~20のアルコキシ基が挙げられる。それらの中でも、特にメトキシ基又はエトキシ基が好ましい。
 本発明の実施の形態においては、上記の式(I)中、アニオンX-として、F-、Cl-、Br-及びI-のようなハロゲンイオン、CF3SO3 -、BF4 -などが挙げられる。
 本発明の実施の形態において、第1試薬中の蛍光色素は1種類であってもよいし、2種類以上であってもよい。
 本発明の実施の形態において、第1試薬中の蛍光色素の濃度は蛍光色素の種類に応じて適宜設定できるが、通常0.01~100pg/μL、好ましくは0.1~10pg/μLである。例えば、第1試薬の蛍光色素として上記の式(I)で表される蛍光色素を用いる場合、第1試薬中の該蛍光色素の濃度は、好ましくは0.2~0.6pg/μLであり、より好ましくは0.3~0.5pg/μLである。
 本発明の実施の形態において、第1試薬は、上記の蛍光色素を上記の濃度になるように適切な溶媒に溶解させることにより得ることができる。溶媒は、上記の蛍光色素を溶解させることができれば特に限定されないが、例えば、水、有機溶媒、および、これらの混合物が挙げられる。
 有機溶媒としては、例えば、アルコール、エチレングリコール、ジメチルスルホキシド(DMSO)などが挙げられる。蛍光色素は、水溶液中での保存安定性が悪い場合があるので、有機溶媒に溶解させることが好ましい。
 本発明の実施の形態においては、第1試薬として、市販の白血球測定用の染色試薬を用いてもよい。そのような染色試薬としては、例えばストマトライザー4DS(シスメックス株式会社)が挙げられる。ストマトライザー4DSは、上記の式(I)で示される蛍光色素を含む染色試薬である。
[第2試薬]
 本発明の試薬キットに含まれる第2試薬は、赤血球を溶血させ、白血球の細胞膜に上記の蛍光色素が透過できる程度の損傷を与えるための界面活性剤、すなわちカチオン性界面活性剤およびノニオン性界面活性剤を含有する。該第2試薬はさらに、20mM以上50mM以下の濃度で芳香族の有機酸を含有する。
 本発明の実施の形態においては、第2試薬中の芳香族の有機酸の濃度が20mM以上30mM未満の場合、第2試薬のpHは5.5以上6.4以下であり、より好ましくは5.5以上6.2以下である。第2試薬中の芳香族の有機酸の濃度が30mM以上50mM以下、好ましくは40mM以上50mM以下である場合、第2試薬のpHは5.5以上7.0以下である。さらに好ましくは、第2試薬中の芳香族の有機酸の濃度が40mM以上50mM以下である場合、第2試薬のpHは5.5以上6.2以下である。
 本発明の実施の形態においては、第2試薬を用いて生体試料を処理することにより、該生体試料中の赤血球を溶血させ、白血球の細胞膜に上記の蛍光色素が通過できる程度の損傷を与えることができる。生体試料中に異常白血球が含まれる場合、第2試薬は、該異常白血球の細胞膜に対しても、上記の蛍光色素が通過できる程度の損傷を与えることができる。
 第2試薬により細胞膜に損傷を受けた血球は、上記の第1試薬中の蛍光色素により染色される。第2試薬に含まれる芳香族の有機酸の濃度およびpHが上記の範囲内であることにより、フローサイトメータなどにより検出した正常リンパ球のシグナルの出現領域と正常単球のシグナルの出現領域とを、異常白血球の検出精度を高め且つ芽球と異型リンパ球との判別を可能にする程度に隔てることができる。
 本明細書において、芳香族の有機酸とは、分子中に少なくとも1つの芳香環を有する酸およびその塩を意味する。芳香族の有機酸としては、例えば、芳香族カルボン酸、芳香族スルホン酸などが挙げられる。本発明の実施の形態においては、芳香族の有機酸として、フタル酸、安息香酸、サリチル酸、馬尿酸、p-アミノベンゼンスルホン酸、ベンゼンスルホン酸およびそれらの塩が好適に用いられる。第2試薬中の芳香族の有機酸は1種類であってもよいし、2種類以上であってもよい。第2試薬中に芳香族の有機酸を2種類以上含む場合、第2試薬中の芳香族の有機酸の濃度は、それらの濃度の合計が20mM以上50mM以下であればよい。
 本発明の実施の形態においては、カチオン性界面活性剤として、第四級アンモニウム塩型界面活性剤、または、ピリジニウム塩型界面活性剤を用いることができる。第四級アンモニウム塩型界面活性剤としては、例えば以下の式(II)で表される、全炭素数が9~30の界面活性剤が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 上記の式(II)中、R1は炭素数6~18のアルキル基またはアルケニル基であり;R2およびR3は互いに同一または異なって、炭素数1~4のアルキル基またはアルケニル基であり;R4は炭素数1~4のアルキル基もしくはアルケニル基、またはベンジル基であり;X-はハロゲンイオンである。
 上記の式(II)中、R1としては、炭素数が6、8、10、12および14のアルキル基またはアルケニル基が好ましく、特に直鎖のアルキル基が好ましい。より具体的なR1としてはオクチル基、デシル基およびドデシル基が挙げられる。R2およびR3としては、メチル基、エチル基およびプロピル基が好ましい。R4としては、メチル基、エチル基およびプロピル基が好ましい。
 ピリジニウム塩型界面活性剤としては、例えば以下の式(III)で表される界面活性剤が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 上記の式(III)中、R1は炭素数6~18のアルキル基またはアルケニル基であり;X-はハロゲンイオンである。
 上記の式(III)中、R1としては、炭素数が6、8、10、12および14のアルキル基またはアルケニル基が好ましく、特に直鎖のアルキル基が好ましい。より具体的なR1としてはオクチル基、デシル基およびドデシル基が挙げられる。
 本発明の実施の形態において、第2試薬中のカチオン性界面活性剤の濃度は、界面活性剤の種類により適宜調節できるが、通常10~10000ppm、好ましくは100~1000ppmである。
 本発明の実施の形態においては、ノニオン性界面活性剤としては、以下の式(VI)で表されるポリオキシエチレン系ノニオン界面活性剤が好ましい。
1-R2-(CH2CH2O)n-H  (VI)
 上記の式(VI)中、R1は炭素数8~25のアルキル基、アルケニル基またはアルキニル基であり;R2は酸素原子、-COO-または
Figure JPOXMLDOC01-appb-C000006
であり;nは10~50の整数である。
 上記のノニオン性界面活性剤の具体例としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンステロール、ポリオキシエチレンヒマシ油、ポリオキシエチレンソルビット脂肪酸エステル、ポリオキシエチレンアルキルアミン、ポリオキシエチレンポリオキシプロピレンアルキルエーテルなどが挙げられる。
 本発明の実施の形態において、第2試薬中のノニオン性界面活性剤の濃度は、通常10~100000ppmであり、好ましくは100~10000ppmであり、より好ましくは1000~5000ppmである。
 本発明の実施の形態において、第2試薬は、pHを一定に保つために緩衝剤を含んでいてもよい。そのような緩衝剤としては、例えば、クエン酸塩、HEPESおよびリン酸塩などが挙げられる。なお、上記の芳香族の有機酸が緩衝作用を示す場合がある。そのような芳香族の有機酸を用いる場合は、第2試薬への緩衝剤の添加は任意である。
 本発明の実施の形態において、第2試薬の浸透圧は特に限定されないが、赤血球を効率よく溶血させる観点から20~150mOsm/kgであることが好ましい。
 本発明の実施の形態において、第2試薬は、上記の界面活性剤および芳香族の有機酸またはその塩と、所望により上記の緩衝剤とを、上記の芳香族の有機酸濃度になるように適切な溶媒に溶解し、pHをNaOH、HClなどを用いて調整することにより得ることができる。
 溶媒としては、上記の成分を溶解させることができれば特に限定されないが、例えば水、有機溶媒、および、それらの混合物が挙げられる。有機溶媒としては、例えば、アルコール、エチレングリコール、DMSOなどが挙げられる。
 なお、上述した試薬キットは、第1試薬と第2試薬とに分かれているが、本発明はこれに限らず、第1試薬及び第2試薬の組成を含む試薬であれば特に限定されない。
[白血球の分類計数方法]
 本発明の白血球分類試薬キットまたは上記した試薬を用いれば、生体試料中の白血球を分類計数することができる。以下に、本発明の試薬キットを用いた場合の白血球の分類計数方法(以下、単に「方法」という場合がある。)について説明する。
 本発明の方法では、まず、生体試料と、上記の試薬キットの第1試薬および第2試薬と、を混合して、該生体試料中の赤血球を溶解させるとともに白血球の核酸を染色することにより測定試料を調製する(調製工程)。
 本発明の実施の形態において、生体試料と、第1試薬または第2試薬と、の混合は、生体試料:第1試薬または第2試薬の体積比が1:1~1:1000、より好ましくは1:10~1:100である。生体試料に対する第1試薬と第2試薬との混合液の比率は、生体試料:混合液の体積比が1:5~1:1000、より好ましくは1:10~1:100である。このような比で生体試料と、第1試薬および第2試薬と、を混合することにより、赤血球の溶血が速やかに進行し、白血球の核酸を染色することができる。また、生体試料中に異常白血球が存在する場合、この工程では該異常白血球の核酸も染色される。測定に使用する生体試料の量は5~500μL程度で十分である。
 上記の調製工程において、生体試料と第1試薬および第2試薬とを混合する順序は特に限定されない。例えば、第1試薬と第2試薬とを先に混合し、この混合液と生体試料とを混合してもよい。また、第2試薬と生体試料とを先に混合し、この混合液と第1試薬とを混合してもよい。本発明の実施の形態においては、いずれの順序で混合しても同等の結果を得ることができる。
 本発明の実施の形態においては、生体試料と第1試薬および第2試薬とを混合した後に、15~50℃、好ましくは30~45℃の温度で5~120秒間、好ましくは5~30秒間インキュベーションすることが好ましい。
 本発明の方法では、上記の工程で調製された測定試料に光を照射して散乱光情報および蛍光情報を取得する(測定工程)。
 本発明の実施の形態において、測定工程はフローサイトメータにより行われることが好ましい。フローサイトメータによる測定では、染色された白血球がフローサイトメータのフローセルを通過する際に該白血球に光を照射することにより、該白血球から発せられるシグナルとして散乱光情報および蛍光情報を得ることができる。
 本発明の実施の形態において、散乱光情報は、一般に市販されるフローサイトメータで測定できる散乱光であれば特に限定されない。散乱光情報としては、例えば前方散乱光(例えば、受光角度0~20度付近)、側方散乱光(受光角度90度付近)などの散乱光のパルス幅、散乱光強度などが挙げられる。
 当該技術においては、側方散乱光は細胞の核及び顆粒などの内部情報を反映し、前方散乱光は細胞の大きさの情報を反映することが知られている。本発明の実施の形態においては、散乱光情報として側方散乱光強度を用いることが好ましい。
 蛍光情報とは、適当な波長の励起光を染色された白血球に照射して、励起された蛍光を測定して得られる情報である。この蛍光は、第1試薬に含まれる蛍光色素によって染色された細胞内の核酸などから発せられる。受光波長は、第1試薬に含まれる蛍光色素に応じて適宜選択することができる。
 本発明の実施の形態において、フローサイトメータの光源は特に限定されず、蛍光色素の励起に好適な波長の光源が選ばれる。光源としては、例えば、赤色半導体レーザ、青色半導体レーザ、アルゴンレーザ、He-Neレーザ、水銀アークランプなどが使用される。特に半導体レーザは、気体レーザに比べて非常に安価であるので好適である。
 本発明の方法では、上記の散乱光情報および蛍光情報に基づいて、生体試料中の白血球を分類計数する(分類計数工程)。
 本発明の実施の形態において、白血球の分類計数は、側方散乱光情報と蛍光情報とを二軸とするスキャッタグラムを作成し、得られたスキャッタグラムを適当な解析ソフトを用いて解析することにより行われることが好ましい。例えば、X軸に側方散乱光強度、Y軸に蛍光強度をとってスキャッタグラムを描いた場合、図1の右パネルに示されるように、白血球は、リンパ球、単球、好中球、好酸球および好塩基球の5種類の集団(クラスター)に分類される。そして、解析ソフトによって、スキャッタグラム上で各集団を囲むウィンドウを設け、その中の細胞数を計数することができる。
 なお、図1では、白血球を5種類の集団に分類しているが、本発明はこれに限定されない。例えば、好中球と好塩基球とを1つの集団として分類することにより、白血球を4種類の集団に分類してもよい。
 本発明の実施の形態においては、上記の生体試料が異常白血球を含む可能性のある試料であってもよい。上述したように、本発明の試薬キットを用いれば、フローサイトメータにより検出した正常リンパ球のシグナルの出現領域と、正常単球のシグナルの出現領域とをスキャッタグラム上で隔てることができる。したがって、本発明の方法では、生体試料中に異常白血球が含まれる場合、白血球を分類計数する工程において、そのような異常白血球のうち、芽球と異型リンパ球とを区別して検出することができる。この芽球と異型リンパ球との区別は、例えば、スキャッタグラム上における芽球のシグナル出現領域と異型リンパ球のシグナル出現領域とを、スキャッタグラム上に予め設定することにより行われる。芽球及び異型リンパ球の検出は、例えば、予め設定された芽球のシグナル出現領域にシグナルが検出された場合、生体試料中には芽球が含まれていると判定し、予め設定された異型リンパ球のシグナル出現領域にシグナルが検出された場合、生体試料中には異型リンパ球が含まれていると判定することにより行われる。
 本発明の実施形態において、芽球としては、例えば骨髄芽球が挙げられる。
 以下に、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1
 本実施例では、正常リンパ球のシグナルが出現する位置と正常単球のシグナルが出現する位置とをスキャッタグラム上で分離するために、第2試薬中の芳香族の有機酸の濃度と第2試薬のpHとを検討した。
 第1試薬として、ストマトライザー4DS(シスメックス株式会社)を用いた。第2試薬は、ドデシルトリメチルアンモニウムクロライド(LTAC:東京化成工業株式会社)、ポリオキシエチレン(30)セチルエーテル(BC30TX:日光ケミカルズ株式会社)、フタル酸水素カリウム(以下、フタル酸という:和光純薬工業株式会社)およびEDTA-2K(中部キレスト株式会社)を、以下の表1に示される組成となるように混合して調製した。また、pHの調整にはNaOH溶液を用いた。
 なお、LTACはカチオン性界面活性剤であり、BC30TXはノニオン性界面活性剤であり、フタル酸は芳香族の有機酸である。
Figure JPOXMLDOC01-appb-T000007
 表1に示されるように、第2試薬AおよびBのみ、バッファーとしてHEPES(株式会社同仁化学研究所)を含む。第2試薬AおよびBは、従来の白血球分類試薬の溶血剤に相当する。
 本実施例で用いた生体試料は、18名の健常人から採取した血液検体(18検体)である。以下、各検体をそれぞれ検体No.1~18という。
 検体20μL、第1試薬20μLおよび第2試薬1000μLを混合し、40℃で20秒間インキュベーションして測定用試料を調製した。なお、検体No.1~10については第2試薬A~DおよびG~Qを用い、検体No.11~18については第2試薬BおよびE~Gを用いて測定用試料を調製した。
 各測定用試料にフローサイトメータ(以下、FCMという)により光を照射して、該試料中の細胞から発せられる側方散乱光シグナル、前方散乱光シグナルおよび蛍光シグナルを検出した。得られたシグナルを解析して測定用試料中の正常白血球を測定した。なお、FCMの光源として、励起波長633nmの赤色半導体レーザを用いた。蛍光シグナルは、600nm以上の波長の蛍光(赤蛍光)を検出した。
 各測定用試料について、側方散乱光強度をX軸とし、蛍光強度をY軸とするスキャッタグラムを作成した場合、各白血球細胞は細胞毎に集団を形成する。この集団を適当な解析ソフトで解析することにより、各白血球集団を特定し、各白血球集団に含まれる細胞数と、全細胞数に占める各白血球集団に含まれる細胞数の割合と、各白血球集団の重心位置とを算出する。各白血球集団の重心位置から、重心間の距離(以下、重心距離という)を算出する。
 重心距離についての参考として、図1を示す。なお、図1の左パネルは、健常人の検体を上記の第1試薬および第2試薬Oを用いて測定して得たスキャッタグラムである。図1の左パネルから、検体中の正常白血球がリンパ球、単球、好中球、好酸球および好塩基球の5種類に分類されたことが示される。図1の右パネルは、分類された各血球の集団を特定し、リンパ球の集団及び単球の集団の重心(●)を示している。2つの●の間の距離が重心距離である。
 第2試薬A(フタル酸濃度20mM、pH7.2)を用いて10検体(検体No.1~10)を測定したときの重心距離の平均値は、36.4であった。第2試薬B(フタル酸濃度20mM、pH7.0)を用いて18検体(検体No.1~18)を測定したときの重心距離の平均値は、38.3であった。
 第2試薬C、DおよびH~Qを用いて10検体(検体No.1~10)を測定したときの重心距離の平均値、第2試薬Gを用いて18検体(検体No.1~18)を測定したときの重心距離の平均値、および、第2試薬EおよびFを用いて8検体(検体No.11~18)を測定したときの重心距離の平均値を、以下の表2に示す。表2に示される結果である重心距離の平均値を、各第2試薬のフタル酸濃度およびpHにより分類した結果を、以下の表3に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表3より、第2試薬のフタル酸濃度およびpHを特定の組み合わせにすることによって、従来の試薬である第2試薬AおよびBに比べて、単球のシグナルが出現する領域と、リンパ球のシグナルが出現する領域とが大きく離れることがわかった。そのようなフタル酸濃度とpHとの組合せは、フタル酸の濃度が20mM以上30mM未満であり、且つpHが5.5以上6.4以下である組合せ、または、フタル酸の濃度が30mM以上50mM以下であり、且つpHが5.5以上7.0以下である組合せである。
実施例2
 本実施例では、実施例1の第1試薬と第2試薬B、G又はOとを用いて、形態が異常なリンパ球を含む血液検体(以下、異常検体1という)を測定した。なお、FCMによる測定および重心距離の算出は、実施例1と同様にして行った。
 各試薬を用いたFCMによる測定から作成されたスキャッタグラム(X軸:側方散乱光強度、Y軸:蛍光強度)を、図2に示す。
 第2試薬B(フタル酸濃度20mM、pH7.0)を用いて異常検体1を測定したときの重心距離は62.9であった。第2試薬G(フタル酸濃度20mM、pH6.0)を用いて異常検体1を測定したときの重心距離は69.7であった。第2試薬O(フタル酸濃度40mM、pH6.0)を用いて異常検体1を測定したときの重心距離は80.6であった。
 本実施例で用いた異常検体1は、形態が異常なリンパ球のシグナルが正常リンパ球のシグナルと同じ領域に出現する検体である。それゆえ、スキャッタグラム上でリンパ球の集団が非常に大きく膨れ上がる。異常検体1を従来の溶血剤である第2試薬Bを用いて測定すると、形態が異常なリンパ球を含む集団と単球の集団とが重なってしまい、形態が異常なリンパ球を精度よく検出することが困難である。
 これに対して、本発明の試薬キットの第2試薬G又はOを用いた測定では、リンパ球の集団と単球の集団とが大きく離れるので、本実施例のように異常検体を測定した場合でも、形態が異常なリンパ球を含む集団と単球の集団とを精度よく分けることができるようになる。これにより、従来試薬よりも精度よく形態が異常なリンパ球を検出することができる。
実施例3
 本実施例では、実施例1の第1試薬と第2試薬B、G、MまたはOとを用いて、形態が異常なリンパ球を含む生体試料(以下、異常検体2という)および骨髄芽球を含む生体試料(以下、異常検体3という)を測定した。
 本実施例で用いた生体試料は、従来の試薬による測定では、異常白血球が、形態が異常なリンパ球であるか骨髄芽球であるかを判別できない2つの血液検体である。これは、形態が異常なリンパ球および骨髄芽球の各シグナルがいずれもスキャッタグラム上のほぼ同じ領域に出現することに起因する。なお、FCMによる測定および重心距離の算出は、実施例1と同様にして行った。
 各試薬を用いたFCMによる測定から作成されたスキャッタグラム(X軸:側方散乱光強度、Y軸:蛍光強度)を、図3および図4に示す。
 図3より、従来試薬である第2試薬Bを用いて異常検体2を測定すると、該検体に含まれる、形態が異常なリンパ球の集団は、リンパ球の集団と単球の集団との間の領域からその領域の上方(蛍光強度の高い方)にかけて出現することがわかる。また、図4より、第2試薬Bを用いて異常検体3を測定すると、該検体に含まれる骨髄芽球の集団も、異常検体2に含まれる、形態が異常なリンパ球の集団と同様の領域に出現することがわかる。
 すなわち、異常検体2および3に含まれる異常白血球の集団はいずれもリンパ球および単球の集団と一部分が重なっている。また、異常検体2および3に含まれる異常白血球の集団は、スキャッタグラム上での分布の様子が互いに類似している。
 したがって、従来試薬である第2試薬Bを用いた測定の結果からは、検体中に形態が異常なリンパ球および骨髄芽球のいずれが含まれているのか判別できない。さらに、形態が異常なリンパ球の集団の一部分がリンパ球および単球の集団と重なっているので、正常なリンパ球および単球を精度よく分類計数することが困難である。
 図3および4より、本発明の試薬キットの第2試薬である第2試薬I、K、M又はOを用いた測定では、リンパ球の集団と単球の集団とがスキャッタグラム上で離れて出現することがわかる。これにより、異常検体2に含まれる、形態が異常なリンパ球はリンパ球の集団の方へ偏って出現し、単球の集団と精度よく分けることができるようになる。また、異常検体3に含まれる骨髄芽球は単球の集団の方へ偏って出現し、リンパ球の集団と精度よく分けることができるようになる。
 したがって、本発明の試薬キットの第2試薬を用いて測定すれば、形態が異常なリンパ球の出現位置と骨髄芽球の出現位置とに明確な差が現れるので、いずれの異常白血球が検体に含まれているのかを正確に判断することができる。さらに、異常白血球の集団はリンパ球の集団または単球の集団と精度良く分けることができるようになるので、従来の試薬と比べて、正常単球または正常リンパ球をより正確に分類計数することができる。
実施例4
 本実施例では、実施例1の第1試薬と第2試薬AまたはOとを用いて、形態が異常なリンパ球を含む生体試料を測定した。ここで、本実施例の生体試料に含まれている形態が異常なリンパ球は、形態学検査により異型リンパ球であると確認されたリンパ球である。
 本実施例で用いた生体試料は、従来の試薬による測定では、異常白血球が異型リンパ球であるか芽球であるかを判別できない2つの血液検体(以下、それぞれ異常検体4および異常検体5という)である。これは、上述したように、異型リンパ球芽球の各シグナルがいずれもスキャッタグラム上のほぼ同じ領域に出現することに起因する。なお、FCMによる測定は、実施例1と同様にして行った。
 各試薬を用いたFCMによる測定から作成されたスキャッタグラム(横軸:側方散乱光強度、縦軸:蛍光強度)を、図5に示す。従来の試薬である第2試薬Aを用いて異常検体4および5を測定すると、検体に含まれる異型リンパ球の集団は、リンパ球の集団と単球の集団との間の領域からその領域の上方(蛍光強度の高い方)にかけて出現することがわかる。しかし、芽球の集団もほぼ同じ領域に出現するため(図示せず)、異型リンパ球の集団と芽球の集団とを区別して検出することはできない。
 これに対して、第2試薬Oを用いて異常検体4および5を測定すると、単球の集団とリンパ球の集団とが離れるとともに、異型リンパ球の集団はリンパ球の集団へ偏って出現した。上記の実施例3の図4で示したように、第2試薬Oを用いて芽球を含む異常検体を測定した場合、芽球は単球の集団へ偏って出現する。これにより、異型リンパ球の集団と芽球の集団とを区別して検出することができる。
実施例5
 本実施例では、実施例1の第1試薬と、第2試薬として、第2試薬A若しくはG、又は、芳香族の有機酸としてフタル酸および安息香酸を含む第2試薬R若しくはSと、を用いて生体試料を測定した。なお、第2試薬RおよびSは、LTAC、BC30TX、フタル酸、安息香酸およびEDTA-2Kを、以下の表4に示される組成となるように混合して調製した。
Figure JPOXMLDOC01-appb-T000010
 本実施例で用いた生体試料は、健常人から採取した血液検体である。FCMによる測定および重心距離の算出は、実施例1と同様にして行った。
 各試薬を用いたFCMによる測定から作成されたスキャッタグラム(横軸:側方散乱光強度、縦軸:蛍光強度)を、図6に示す。また、各試薬を用いて検体を測定したときの重心距離ならびに各試薬の芳香族の有機酸の濃度およびpHを、以下の表5に示す。
Figure JPOXMLDOC01-appb-T000011
 表5および図6から、芳香族の有機酸としてフタル酸に安息香酸をさらに加えた第2試薬を用いて測定することにより、単球の集団とリンパ球の集団との重心距離をさらに大きくすることができることがわかった。

Claims (14)

  1.  生体試料と、核酸を染色する第1試薬と、赤血球を溶血させ、白血球の細胞膜に前記蛍光色素が透過できる程度の損傷を与えるための、カチオン性界面活性剤およびノニオン性界面活性剤、ならびに20mM以上50mM以下の濃度で芳香族の有機酸を含有する第2試薬とを混合して測定試料を調製する工程;
     調製された測定試料に光を照射し、そのときに生じる散乱光情報および蛍光情報を取得する工程;および
     取得された散乱光情報および蛍光情報に基づいて、前記生体試料中の白血球を分類するとともに、芽球と異型リンパ球とを区別して検出する工程;
    を含み、
     前記第2試薬中の芳香族の有機酸の濃度が20mM以上30mM未満の場合は前記第2試薬のpHが5.5以上6.4以下であり、前記第2試薬中の芳香族の有機酸の濃度が30mM以上50mM以下の場合は前記第2試薬のpHが5.5以上7.0以下である白血球の分類計数方法。
  2.  前記芳香族の有機酸が、芳香族カルボン酸、芳香族スルホン酸およびそれらの塩からなる群より選択される少なくとも1つである請求項1に記載の方法。
  3.  前記第2試薬中の芳香族の有機酸の濃度が、40mM以上50mM以下である請求項1または2に記載の方法。
  4.  前記第2試薬中のpHが、5.5以上6.2以下である請求項1または2に記載の方法。
  5.  前記散乱光情報が、側方散乱光情報である請求項1または2に記載の方法。
  6.  前記カチオン性界面活性剤が、第四級アンモニウム塩型界面活性剤、またはピリジニウム塩型界面活性剤である請求項1または2に記載の方法。
  7.  前記ノニオン性界面活性剤が、以下の一般式(VI):
    1-R2-(CH2CH2O)n-H  (VI)
      (式中、R1は炭素数8~25のアルキル基、アルケニル基またはアルキニル基であり;
      R2は酸素原子、-COO-または
    Figure JPOXMLDOC01-appb-C000001
      であり;
      nは10~50の整数である)
    で表されるポリオキシエチレン系ノニオン界面活性剤である請求項1または2に記載の方法。
  8.  核酸を染色可能な蛍光色素を含有する第1試薬と、
     赤血球を溶血させ、白血球の細胞膜に前記蛍光色素が透過できる程度の損傷を与えるための、カチオン性界面活性剤およびノニオン性界面活性剤、ならびに20mM以上50mM以下の濃度で芳香族の有機酸を含有する第2試薬とを含み、
     前記第2試薬中の芳香族の有機酸の濃度が20mM以上30mM未満の場合は前記第2試薬のpHが5.5以上6.4以下であり、前記第2試薬中の芳香族の有機酸の濃度が30mM以上50mM以下の場合は前記第2試薬のpHが5.5以上7.0以下である白血球分類試薬キット。
  9.  前記芳香族の有機酸が、芳香族カルボン酸、芳香族スルホン酸およびそれらの塩からなる群より選択される少なくとも1つである請求項8に記載の試薬キット。
  10.  前記第2試薬中の芳香族の有機酸の濃度が40mM以上50mM以下である、請求項8または9に記載の試薬キット。
  11.  前記第2試薬中のpHが、5.5以上6.2以下である請求項8または9に記載の試薬キット。
  12.  前記カチオン性界面活性剤が、第四級アンモニウム塩型界面活性剤、またはピリジニウム塩型界面活性剤である請求項8または9に記載の試薬キット。
  13.  前記ノニオン性界面活性剤が、以下の一般式(VI):
    1-R2-(CH2CH2O)n-H  (VI)
      (式中、R1は炭素数8~25のアルキル基、アルケニル基またはアルキニル基であり;
      R2は酸素原子、-COO-または
    Figure JPOXMLDOC01-appb-C000002
      であり;
      nは10~50の整数である)
    で表されるポリオキシエチレン系ノニオン界面活性剤である請求項8または9に記載の試薬キット。
  14.  核酸を染色可能な蛍光色素と、カチオン性界面活性剤と、ノニオン性界面活性剤と、芳香族の有機酸とを含む白血球分類試薬であって、
     前記試薬に含まれる芳香族の有機酸の濃度が20mM以上50mM以下であり、
     前記芳香族の有機酸の濃度が20mM以上30mM未満の場合はpHが5.5以上6.4以下であり、前記芳香族の有機酸の濃度が30mM以上50mM以下の場合はpHが5.5以上7.0以下であることを特徴とする白血球分類試薬。
PCT/JP2012/060432 2011-04-28 2012-04-18 白血球の分類計数方法、白血球分類試薬キット及び白血球分類試薬 WO2012147578A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12776153.4A EP2703812B1 (en) 2011-04-28 2012-04-18 Method for classifying/counting leukocytes, reagent kit for classifying leukocytes, and reagent for classifying leukocytes
BR112013027349-6A BR112013027349B1 (pt) 2011-04-28 2012-04-18 método para classificação/contagem de leucócitos, kit de reagentes para classificação de leucócitos, e reagentes para classificação de leucócitos
SG2013075643A SG194452A1 (en) 2011-04-28 2012-04-18 Method for classifying/counting leukocytes, reagent kit for classifying leukocytes, and reagent for classifying leukocytes
CN201280016125.2A CN103460041B (zh) 2011-04-28 2012-04-18 白细胞的分类计数方法、白细胞分类试剂盒及白细胞分类试剂
US14/061,333 US20140120530A1 (en) 2011-04-28 2013-10-23 Method for classifying/counting leukocytes, reagent kit for classifying leukocytes, and reagent for classifying leukocytes
US16/915,851 US20200326332A1 (en) 2011-04-28 2020-06-29 Method for classifying/counting leukocytes, reagent kit for classifying leukocytes, and reagent for classifying leukocytes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-101595 2011-04-28
JP2011101595A JP5583629B2 (ja) 2011-04-28 2011-04-28 白血球の分類計数方法、白血球分類試薬キット及び白血球分類試薬

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/061,333 Continuation US20140120530A1 (en) 2011-04-28 2013-10-23 Method for classifying/counting leukocytes, reagent kit for classifying leukocytes, and reagent for classifying leukocytes

Publications (1)

Publication Number Publication Date
WO2012147578A1 true WO2012147578A1 (ja) 2012-11-01

Family

ID=47072099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060432 WO2012147578A1 (ja) 2011-04-28 2012-04-18 白血球の分類計数方法、白血球分類試薬キット及び白血球分類試薬

Country Status (7)

Country Link
US (2) US20140120530A1 (ja)
EP (1) EP2703812B1 (ja)
JP (1) JP5583629B2 (ja)
CN (1) CN103460041B (ja)
BR (1) BR112013027349B1 (ja)
SG (1) SG194452A1 (ja)
WO (1) WO2012147578A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016004030A (ja) * 2014-06-19 2016-01-12 シスメックス株式会社 血液分析装置、血液分析方法及び血液分析プログラム
JP2016515397A (ja) * 2013-04-19 2016-05-30 エピオンティス ゲーエムベーハー 生体サンプルにおける定量的細胞組成を特定する方法
EP4047348A1 (en) * 2021-02-22 2022-08-24 Sysmex Corporation Hemolytic reagent, reagent kit, and method for classifying white blood cells

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6383216B2 (ja) * 2014-08-08 2018-08-29 シスメックス株式会社 血液分析方法、血液分析装置およびプログラム
JP6238856B2 (ja) 2014-08-25 2017-11-29 シスメックス株式会社 尿中異型細胞の分析方法、尿分析装置および体液中異型細胞の分析方法
CN108318408B (zh) * 2018-01-30 2020-04-17 深圳唯公生物科技有限公司 白细胞分类用样本的预处理试剂及方法
WO2020042027A1 (zh) * 2018-08-29 2020-03-05 深圳迈瑞生物医疗电子股份有限公司 血液样本检测的方法、血液样本检测仪和存储介质
CN109238801B (zh) * 2018-10-19 2021-08-13 武汉百合龙腾生物科技有限责任公司 一种血细胞分析用溶血剂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294518A (ja) * 1994-04-21 1995-11-10 Toa Medical Electronics Co Ltd 白血球分析用試薬及び白血球の分類方法
JP2002207034A (ja) * 2001-01-10 2002-07-26 Sysmex Corp 異常細胞検出方法
US20090023129A1 (en) 2007-07-20 2009-01-22 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. White blood cell differentiation reagent and method of use thereof
JP4248017B2 (ja) 2005-10-28 2009-04-02 シスメックス株式会社 白血球分類計数方法及び白血球分類計数試薬キット

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3783808B2 (ja) * 1997-05-19 2006-06-07 シスメックス株式会社 白血球分類計数用試薬
JP4914656B2 (ja) * 2006-06-26 2012-04-11 シスメックス株式会社 試料分析用試薬、試料分析用試薬キット及び試料分析方法
PL2202516T3 (pl) * 2007-09-27 2015-02-27 Sysmex Corp Zestaw odczynników do analizy próbek i sposób analizy próbek
CN101470108B (zh) * 2007-12-24 2013-11-27 深圳迈瑞生物医疗电子股份有限公司 一种对白细胞进行分类的试剂和方法
CN101750476B (zh) * 2008-12-08 2015-06-03 深圳迈瑞生物医疗电子股份有限公司 血液分析试剂及其使用方法
CN101750274B (zh) * 2008-12-17 2014-06-25 深圳迈瑞生物医疗电子股份有限公司 白细胞分类计数试剂、试剂盒以及白细胞分类计数的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294518A (ja) * 1994-04-21 1995-11-10 Toa Medical Electronics Co Ltd 白血球分析用試薬及び白血球の分類方法
JP2002207034A (ja) * 2001-01-10 2002-07-26 Sysmex Corp 異常細胞検出方法
JP4248017B2 (ja) 2005-10-28 2009-04-02 シスメックス株式会社 白血球分類計数方法及び白血球分類計数試薬キット
US20090023129A1 (en) 2007-07-20 2009-01-22 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. White blood cell differentiation reagent and method of use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2703812A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016515397A (ja) * 2013-04-19 2016-05-30 エピオンティス ゲーエムベーハー 生体サンプルにおける定量的細胞組成を特定する方法
JP2016004030A (ja) * 2014-06-19 2016-01-12 シスメックス株式会社 血液分析装置、血液分析方法及び血液分析プログラム
EP4047348A1 (en) * 2021-02-22 2022-08-24 Sysmex Corporation Hemolytic reagent, reagent kit, and method for classifying white blood cells

Also Published As

Publication number Publication date
BR112013027349B1 (pt) 2021-05-18
US20140120530A1 (en) 2014-05-01
JP5583629B2 (ja) 2014-09-03
US20200326332A1 (en) 2020-10-15
CN103460041A (zh) 2013-12-18
EP2703812A4 (en) 2014-12-10
BR112013027349A2 (pt) 2017-01-17
SG194452A1 (en) 2013-12-30
EP2703812A1 (en) 2014-03-05
JP2012233754A (ja) 2012-11-29
EP2703812B1 (en) 2018-02-28
CN103460041B (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
WO2012147578A1 (ja) 白血球の分類計数方法、白血球分類試薬キット及び白血球分類試薬
JP5943909B2 (ja) 血液分析装置、血液分析方法、及びコンピュータプログラム
JP6001425B2 (ja) 血球分析方法、血球分析装置およびプログラム
JP3886271B2 (ja) 赤芽球の分類計数用試薬及び分類計数方法
JP3048260B2 (ja) 白血球分類計数用試料調製方法
JP4796443B2 (ja) 試料分析用試薬、試料分析用試薬キット及び試料分析方法
US7892841B2 (en) Method and apparatus for measuring hematological sample
JP4914656B2 (ja) 試料分析用試薬、試料分析用試薬キット及び試料分析方法
JP2012233889A (ja) 血液分析装置、血液分析方法、及びコンピュータプログラム
JP5600726B2 (ja) 試料分析方法
EP2587262B1 (en) Detection method of activated neutrophils and apparatus therefor
JPH01199161A (ja) 白血球を定量且つ識別する方法
RU2435164C2 (ru) Реактив и набор реактивов для анализа незрелых лейкоцитов
JP7291337B2 (ja) 骨髄液分析方法、試料分析装置及びコンピュータプログラム
WO2011140042A1 (en) Method for hematology analysis
JP2017211318A (ja) 試料分析方法、試料分析装置および試薬
JP4338206B2 (ja) 赤芽球の分類計数方法
JP2002207034A (ja) 異常細胞検出方法
US20060223138A1 (en) Method and apparatus for counting megakaryocytes
JP2006308574A (ja) 巨核球の計数方法及び装置
JP2021103109A (ja) 血液分析方法
JP2012088336A (ja) 骨髄芽球と血小板凝集との弁別方法及び弁別装置
JP2012103267A (ja) 血液学的試料の測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012776153

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013027349

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013027349

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131024