WO2012147411A1 - リーンNOxトラップ型排気ガス浄化触媒及び排気ガス浄化システム - Google Patents
リーンNOxトラップ型排気ガス浄化触媒及び排気ガス浄化システム Download PDFInfo
- Publication number
- WO2012147411A1 WO2012147411A1 PCT/JP2012/055655 JP2012055655W WO2012147411A1 WO 2012147411 A1 WO2012147411 A1 WO 2012147411A1 JP 2012055655 W JP2012055655 W JP 2012055655W WO 2012147411 A1 WO2012147411 A1 WO 2012147411A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exhaust gas
- gas purification
- catalyst
- trap type
- cerium
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9422—Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9431—Processes characterised by a specific device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/58—Platinum group metals with alkali- or alkaline earth metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1021—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1023—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1025—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/202—Alkali metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/202—Alkali metals
- B01D2255/2022—Potassium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/202—Alkali metals
- B01D2255/2027—Sodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/204—Alkaline earth metals
- B01D2255/2042—Barium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2065—Cerium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20715—Zirconium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2092—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/91—NOx-storage component incorporated in the catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/944—Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9459—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
- B01D53/9477—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2370/00—Selection of materials for exhaust purification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to a lean NOx trap type exhaust gas purification catalyst and an exhaust gas purification system. More specifically, the present invention relates to a lean NOx trap type exhaust gas purification catalyst having excellent durability and an exhaust gas purification system including the same.
- the exhaust gas-purifying catalyst is a mixture of a first powder in which platinum is supported on a first carrier made of porous particles and a second powder in which rhodium is supported on a second carrier.
- the first carrier carries a NOx occlusion material
- the second carrier is zirconia stabilized with an alkaline earth metal or a rare earth element (excluding cerium) (see Patent Document 1).
- An object of the present invention is to provide a lean NOx trap type exhaust gas purification catalyst having excellent durability and an exhaust gas purification system including the same.
- the inventors of the present invention have made extensive studies in order to achieve the above object.
- the above object is achieved by including a precious metal such as palladium, an inorganic oxide supporting the catalytic precious metal, and a predetermined NOx adsorbent, and having a predetermined composition of the inorganic oxide supporting palladium.
- the inventors have found that this can be achieved and have completed the present invention.
- the lean NOx trap type exhaust gas purification catalyst of the present invention includes platinum, palladium and rhodium which are catalytic noble metals, an inorganic oxide supporting the catalytic noble metal, magnesium, barium, sodium, potassium or cesium or any of these. And a NOx adsorbent combined with the above. And among the said inorganic oxides, the said inorganic oxide which carry
- the exhaust gas purification system of the present invention is located on the upstream side of the lean NOx trap type exhaust gas purification catalyst of the present invention and the lean NOx trap type exhaust gas purification catalyst with respect to the exhaust gas flow direction. And other catalysts included.
- a lean NOx trap type exhaust gas purifying catalyst having excellent durability and an exhaust gas purifying system including the same are provided because they have the following configurations (1) to (3).
- Can do (1) It contains platinum, palladium and rhodium which are catalytic noble metals, an inorganic oxide supporting the catalytic noble metal, and a NOx adsorbent which is an arbitrary combination of magnesium, barium, sodium, potassium or cesium or these.
- the inorganic oxide supporting palladium contains cerium, and one or both of aluminum and zirconium.
- the inorganic oxide supporting palladium contains 1 to 20% by mass of cerium in terms of CeO 2 .
- the lean NOx trap type exhaust gas purification catalyst of the present embodiment includes a catalyst noble metal, an inorganic oxide supporting the catalyst noble metal, and a NOx adsorbent.
- the catalyst noble metal include those containing at least platinum (Pt), palladium (Pd), and rhodium (Rd), but this does not preclude inclusion of other catalyst noble metals.
- the NOx adsorbent examples include magnesium (Mg), barium (Ba), sodium (Na), potassium (K) or cesium (Cs), and NOx adsorbents arbitrarily combined with these, It does not prevent inclusion of NOx adsorbents other than. Of these, the use of barium (Ba) or cesium (Cs) is preferred because the durability is further improved.
- the inorganic oxide supporting palladium (Pd) contains cerium (Ce), one of or both of aluminum (Al) and zirconium (Zr). Furthermore, the inorganic oxide supporting palladium (Pd) contains 1 to 20% by mass of cerium (Ce) in terms of CeO 2 .
- the lean NOx trap type exhaust gas purification catalyst of the present embodiment may be used in the form of pellets as it is, but in order to improve the contact rate with HC, CO, and NOx in the exhaust gas, the lean NOx is applied to the honeycomb carrier.
- a catalyst layer including a trap type exhaust gas purification catalyst can also be formed and used.
- the honeycomb carrier for example, a ceramic material such as cordierite or silicon carbide, or a metal material such as ferritic stainless steel can be applied.
- the aggregation of the catalyst noble metal is considered to occur by the following mechanisms [1] and [2].
- the catalyst noble metal is aggregated by heat or the like on the inorganic oxide as the supporting substrate.
- the inorganic oxide itself which is the supporting substrate, aggregates due to heat or the like, the catalyst noble metal present on the supporting substrate aggregates accordingly.
- the inorganic oxide contains cerium (Ce) and one or both of aluminum (Al) and zirconium (Zr), and the content ratio is 1 to 20% by mass in terms of CeO 2.
- CeO 2 oxygen storage / release material
- the inorganic oxide contains cerium and one or both of aluminum and zirconium and contains 1 to 5% by mass of cerium in terms of CeO 2 .
- the above mechanism is based on estimation. Therefore, it goes without saying that even if the above-described effect is obtained by a mechanism other than the above-described mechanism, it is included in the scope of the present invention.
- the surface area maintenance rate when the inorganic oxide supporting palladium (Pd) is baked at 900 ° C. for 3 hours is 50% or more.
- the inorganic oxide itself as the supporting base material is not easily aggregated, and particularly those having a surface area maintenance ratio of 50% or more when the inorganic oxide is baked at 900 ° C. for 3 hours.
- the aggregation of the catalyst noble metal on the supporting substrate can be remarkably suppressed. Therefore, the lean NOx trap type exhaust gas purification catalyst having such a configuration has more excellent durability.
- the inorganic oxide supporting platinum (Pt) or rhodium (Rh) is also hard to aggregate, but it is not necessarily the same.
- the catalytic mechanism of the lean NOx trap type exhaust gas purification catalyst is considered as follows. First, the catalyst oxidizes NO mainly discharged in a lean atmosphere to NO 2 on the catalyst noble metal and adsorbs it on a NOx adsorbent such as barium (Ba). When the amount of adsorption to the NOx adsorbent approaches saturation, when the atmosphere around the catalyst is made rich by engine control, the catalyst desorbs the NOx adsorbed on the NOx adsorbent and reduces the reducing agent. NOx is purified by reacting with HC, CO, H 2 and the like on the catalyst noble metal.
- a NOx adsorbent such as barium (Ba).
- the lean NOx trap type exhaust gas purification catalyst of the present embodiment contains 20% by mass or less of cerium in terms of CeO 2 with respect to the total amount of the catalyst.
- the amount of the OSC material in the total amount of the catalyst exceeds 20% by mass, simple oxidation of the reducing agent proceeds due to oxygen released from the OSC material, so that the rich spike may not be effectively used in NOx purification. is there.
- FIG. 1 is a schematic diagram showing a configuration of an exhaust gas purification system according to an embodiment of the present invention.
- the exhaust gas purification system 1 of the present embodiment includes a lean NOx trap type exhaust gas purification catalyst 2 according to one embodiment of the present invention described above, and the lean NOx trap type with respect to the exhaust gas flow direction.
- the other catalyst 4 is provided on the upstream side of the exhaust gas purification catalyst 2.
- the other catalyst contains a catalyst noble metal. Representative examples of such other catalysts include three-way catalysts and diesel oxidation catalysts.
- the lean NOx trap type exhaust gas purification catalyst is arranged downstream of other catalysts such as a three-way catalyst and a diesel oxidation catalyst, it is possible to achieve both purification of HC, CO and NOx that are exhausted a lot when the engine starts, It has more excellent durability.
- the ratio of the amount of catalyst noble metal in the lean NOx trap type exhaust gas purification catalyst to the amount of catalyst noble metal in the other catalyst is 1 to 1.6 in terms of mass ratio. preferable.
- the purpose of arranging other catalysts such as three-way catalysts and diesel oxidation catalysts is for HC and CO purification in the low temperature range (when the engine starts), and the purpose of arranging the lean NOx trap type exhaust gas purification catalyst is for NOx It is purification.
- the HC and CO purification rates in the low temperature range are improved, but the NOx purification rate in the lean NOx trap type exhaust gas purification catalyst is reversed. descend.
- the amount of precious metal in the three-way catalyst or diesel oxidation catalyst is increased, the amount of NOx reducing material such as HC and CO that flows into the lean NOx trap type exhaust gas purification catalyst during the rich spike decreases, and this is useful for NOx purification. This is probably because the necessary reducing material cannot be supplied. Therefore, the HC, CO purification rate and NOx purification rate in the low temperature region are improved by keeping the amount of noble metal of the three-way catalyst or diesel oxidation catalyst and the lean NOx trap type exhaust gas purification catalyst within the above range. It becomes possible.
- Example 1 A predetermined amount of platinum (Pt) is impregnated and supported on cerium-added alumina (Ce—Al 2 O 3 ), dried and fired, and Pt (3.9 mass%) / Ce—Al 2 O 3 powder. Got. (Step 2) A predetermined amount of platinum (Pt) is impregnated and supported on cerium-added alumina (Ce—Al 2 O 3 ), dried and fired, and Pt (0.9 mass%) / Ce—Al 2 O 3 powder Got.
- Step 3 A predetermined amount of palladium (Pd) is impregnated and supported on cerium-added alumina (1 mass% Ce—Al 2 O 3 ) containing 1 mass% of cerium in terms of CeO 2 , dried and fired, and Pd ( 3 mass%) / Ce (1 mass%)-Al 2 O 3 powder was obtained.
- Step 4 A predetermined amount of rhodium (Rh) was impregnated and supported on lanthanum-added zirconia (La—ZrO 2 ), dried and fired to obtain Rh (2.2 mass%) / La—ZrO 2 powder.
- Step 5 The powder, boehmite alumina, nitric acid, and ion-exchanged water obtained in Step 1, Step 3 and Step 4 were put into a magnetic pot and shaken and ground together with alumina balls to obtain a surface layer slurry.
- Step 6 The powder, boehmite alumina, nitric acid and ion-exchanged water obtained in the above steps 2 and 3 were put into a magnetic pot and shaken and ground together with alumina balls to obtain an inner layer slurry.
- Step 7 The inner layer slurry obtained in the above step 6 is put into a ceramic honeycomb carrier (cell number: 400 cells / 6 mil, capacity: 0.119 L), and excess slurry is removed by an air flow, and the temperature is 120 ° C. And dried.
- Step 8 The surface layer slurry obtained in the above step 5 is put into the carrier obtained in the above step 7, the excess slurry is removed by an air flow, dried at 120 ° C., and fired at 400 ° C. under air flow. did.
- the amount of catalyst noble metal in the catalyst at this time was 6.7 g / L.
- Step 9 The catalyst obtained in Step 8 above was impregnated and supported with barium (Ba) so that the amount of Ba was 28 g / L, dried at 120 ° C., and calcined at 400 ° C. under air flow.
- a lean NOx trap type exhaust gas purification catalyst was obtained. Note that the lean NOx trap type exhaust gas purification catalyst of this example contains 13.5% by mass of cerium in terms of CeO 2 with respect to the total amount of the catalyst. Further, the surface area retention when cerium-added alumina (1 mass% Ce—Al 2 O 3 ), which is an inorganic oxide supporting palladium, was baked at 900 ° C. for 3 hours was 58%.
- Example 2 The cerium-added alumina (1% by mass Ce—Al 2 O 3 ) containing 1% by mass of cerium in terms of CeO 2, which is the Pd carrier in Example 1, was replaced with cerium-added zirconia containing 1% by mass of cerium in terms of CeO 2.
- a lean NOx trap type exhaust gas purification catalyst of this example was obtained by repeating the same operation as in Example 1 except that it was changed to (1% by mass Ce—ZrO 2 ). Note that the lean NOx trap type exhaust gas purification catalyst of this example contains 13.5% by mass of cerium in terms of CeO 2 with respect to the total amount of the catalyst.
- the surface area retention when cerium-added zirconia (1% by mass Ce—ZrO 2 ), which is an inorganic oxide supporting palladium, was baked at 900 ° C. for 3 hours was 67%.
- Example 3 The lean NOx trap type exhaust gas purification catalyst of this example is obtained by repeating the same operation as in Example 1 except that barium (Ba), which is the NOx adsorbent in Example 1, is changed to magnesium (Mg). It was. Note that the lean NOx trap type exhaust gas purification catalyst of this example contains 13.5% by mass of cerium in terms of CeO 2 with respect to the total amount of the catalyst. Further, the surface area retention when cerium-added alumina (1 mass% Ce—Al 2 O 3 ), which is an inorganic oxide supporting palladium, was baked at 900 ° C. for 3 hours was 58%.
- Example 4 A lean NOx trap type exhaust gas purification catalyst of this example is obtained by repeating the same operation as in Example 1 except that barium (Ba), which is the NOx adsorbent in Example 1, is changed to sodium (Na). It was. Note that the lean NOx trap type exhaust gas purification catalyst of this example contains 13.5% by mass of cerium in terms of CeO 2 with respect to the total amount of the catalyst. Further, the surface area retention when cerium-added alumina (1 mass% Ce—Al 2 O 3 ), which is an inorganic oxide supporting palladium, was baked at 900 ° C. for 3 hours was 58%.
- Example 5 A lean NOx trap type exhaust gas purification catalyst of this example is obtained by repeating the same operation as in Example 1 except that barium (Ba), which is the NOx adsorbent in Example 1, is changed to potassium (K). It was. Note that the lean NOx trap type exhaust gas purification catalyst of this example contains 13.5% by mass of cerium in terms of CeO 2 with respect to the total amount of the catalyst. Further, the surface area retention when cerium-added alumina (1 mass% Ce—Al 2 O 3 ), which is an inorganic oxide supporting palladium, was baked at 900 ° C. for 3 hours was 58%.
- Example 6 A lean NOx trap type exhaust gas purification catalyst of this example is obtained by repeating the same operation as in Example 1 except that barium (Ba), which is the NOx adsorbent in Example 1, is changed to cesium (Cs). It was. Note that the lean NOx trap type exhaust gas purification catalyst of this example contains 13.5% by mass of cerium in terms of CeO 2 with respect to the total amount of the catalyst. Further, the surface area retention when cerium-added alumina (1 mass% Ce—Al 2 O 3 ), which is an inorganic oxide supporting palladium, was baked at 900 ° C. for 3 hours was 58%.
- Example 7 The cerium-added alumina containing 1% by mass of cerium in terms of CeO 2 (1% by mass Ce—Al 2 O 3 ), which is the Pd support in Example 1, and the cerium-added alumina containing 5% by mass of cerium in terms of CeO 2
- a lean NOx trap type exhaust gas purification catalyst of this example was obtained by repeating the same operation as in Example 1 except that it was changed to (5% by mass Ce—Al 2 O 3 ).
- the lean NOx trap type exhaust gas purification catalyst of this example contains 13.9% by mass of cerium in terms of CeO 2 with respect to the total amount of the catalyst. Further, the surface area retention when cerium-added alumina (5 mass% Ce—Al 2 O 3 ), which is an inorganic oxide supporting palladium, was baked at 900 ° C. for 3 hours was 62%.
- Example 8 The cerium-added zirconia (1% by mass Ce—ZrO 2 ) containing 1% by mass of cerium in terms of CeO 2, which is the Pd carrier in Example 2, was converted to cerium-added zirconia (5% by mass in terms of CeO 2 ).
- a lean NOx trap type exhaust gas purification catalyst of this example was obtained by repeating the same operation as in Example 2 except that the mass was changed to Ce% ZrO 2 ).
- the lean NOx trap type exhaust gas purification catalyst of this example contains 13.9% by mass of cerium in terms of CeO 2 with respect to the total amount of the catalyst. Further, the surface area retention rate when cerium-added zirconia (5 mass% Ce—ZrO 2 ), which is an inorganic oxide supporting palladium, was baked at 900 ° C. for 3 hours was 78%.
- Example 9 The cerium-added alumina containing 1% by mass of cerium in terms of CeO 2 (1% by mass Ce—Al 2 O 3 ) as the Pd support in Example 1 and the cerium-added alumina containing 20% by mass of cerium in terms of CeO 2
- a lean NOx trap type exhaust gas purification catalyst of this example was obtained by repeating the same operation as in Example 1 except that it was changed to (20 mass% Ce—Al 2 O 3 ). Note that the lean NOx trap type exhaust gas purification catalyst of this example contains 15.4% by mass of cerium in terms of CeO 2 with respect to the total amount of the catalyst. Further, the surface area retention rate when cerium-added alumina (1 mass% Ce—Al 2 O 3 ), which is an inorganic oxide supporting palladium, was baked at 900 ° C. for 3 hours was 68%.
- Example 10 The cerium-added zirconia (1% by mass Ce—ZrO 2 ) containing 1% by mass of cerium in terms of CeO 2, which is the Pd carrier in Example 2, was converted to cerium-added zirconia (20% by mass in terms of CeO 2 ).
- a lean NOx trap type exhaust gas purification catalyst of this example was obtained by repeating the same operation as in Example 2 except that the mass was changed to Ce% ZrO 2 ). Note that the lean NOx trap type exhaust gas purification catalyst of this example contains 15.4% by mass of cerium in terms of CeO 2 with respect to the total amount of the catalyst. Further, the surface area retention when cerium-added alumina (1% by mass Ce—Al 2 O 3 ), which is an inorganic oxide supporting palladium, was baked at 900 ° C. for 3 hours was 71%.
- the exhaust gas purification system as shown in FIG. 1 was used.
- Example 2 The cerium-added zirconia (1% by mass Ce—ZrO 2 ) containing 1% by mass of cerium in terms of CeO 2, which is the Pd carrier in Example 2, was converted to cerium-added zirconia (60% by mass in terms of CeO 2 ).
- a lean NOx trap type exhaust gas purification catalyst of this example was obtained by repeating the same operation as in Example 2 except that the mass was changed to Ce% ZrO 2 ). In the lean NOx trap type exhaust gas purification catalyst of this example, 19.4 mass% of cerium is contained in terms of CeO 2 with respect to the total amount of the catalyst. Further, the surface area retention rate when cerium-added zirconia (60 mass% Ce—ZrO 2 ), which is an inorganic oxide supporting palladium, was baked at 900 ° C. for 3 hours was 74%.
- Example 3 (Comparative Example 3) Except that the cerium-added alumina (1% by mass Ce—Al 2 O 3 ) containing 1% by mass of cerium in terms of CeO 2 as the Pd support in Example 1 was changed to alumina (Al 2 O 3 ), The same operation as in Example 1 was repeated to obtain a lean NOx trap type exhaust gas purification catalyst of this example.
- the lean NOx trap type exhaust gas purification catalyst of this example contains 13.4% by mass of cerium in terms of CeO 2 with respect to the total amount of the catalyst. Further, the surface area retention rate when alumina (Al 2 O 3 ), which is an inorganic oxide supporting palladium, was baked at 900 ° C. for 3 hours was 23%.
- Example 4 Example 2 except that cerium-added zirconia (1% by mass Ce—ZrO 2 ) containing 1% by mass of cerium in terms of CeO 2 as the Pd support in Example 2 was changed to zirconia (ZrO 2 ). The same operation was repeated to obtain the lean NOx trap type exhaust gas purification catalyst of this example.
- the lean NOx trap type exhaust gas purification catalyst of this example contains 13.4% by mass of cerium in terms of CeO 2 with respect to the total amount of the catalyst.
- zirconia is an inorganic oxide carrying palladium (ZrO 2), the surface area retention when fired 3 hours at 900 ° C. was 18%.
- Table 1 shows some of the specifications of the lean NOx trap type exhaust gas purification catalyst and the exhaust gas purification system of each example.
- the diesel oxidation catalyst is abbreviated as DOC
- the lean NOx trap type exhaust gas purification catalyst is abbreviated as LNT.
- the lean NOx trap type exhaust gas purification catalyst of each example is arranged behind the V type 6 cylinder 3.5L engine manufactured by Nissan Motor Co., Ltd., adjusted so that the catalyst inlet temperature becomes 750 ° C., and 60 in an exhaust gas atmosphere. Time durability treatment was performed. The fuel used was unleaded gasoline.
- the lean NOx trap type exhaust gas purification catalysts of Examples 1 to 10 belonging to the scope of the present invention are compared with the lean NOx trap type exhaust gas purification catalysts of Comparative Examples 1 to 4 outside the present invention. Then, it turns out that the NOx purification rate after durability is excellent. Further, when the lean NOx trap type exhaust gas purification catalysts of Examples 1 to 10, Comparative Examples 1 and 2 and the lean NOx trap type exhaust gas purification catalysts of Comparative Examples 3 and 4 are compared, Pd It can be seen that the NOx purification rate after durability is excellent when the surface area maintenance rate of the carrier is 50% or more. Furthermore, it can be seen that the lean NOx trap type exhaust gas purification catalysts of Examples 1 to 10 have an excellent NOx purification rate because they contain 20% by mass or less of cerium in terms of CeO 2 .
- the exhaust gas purification systems of Examples 11 to 13 belonging to the scope of the present invention use a lean NOx trap type exhaust gas purification catalyst having an excellent NOx purification rate after durability, so that it is durable. It can be seen that the subsequent NOx purification rate and HC purification rate are excellent. Further, from the comparison of the exhaust gas purification systems of Examples 11 to 13, the ratio of the amount of catalyst noble metal in the lean NOx trap type exhaust gas purification catalyst to the amount of catalyst noble metal in the other catalyst is 1 to 1. It can be seen that the exhaust gas purification system of Example 12, which is 6, has an excellent NOx purification rate and HC purification rate after durability.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Combustion & Propulsion (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
更に詳細には、本発明は、優れた耐久性を有するリーンNOxトラップ型排気ガス浄化触媒及びこれを備えた排気ガス浄化システムに関する。
具体的には、排ガス浄化用触媒は、多孔質粒子よりなる第1担体に白金を担持した第1粉末と、第2担体にロジウムを担持した第2粉末とが混在してなるものである。
そして、上記第1担体がNOx吸蔵材を担持し、上記第2担体がアルカリ土類金属や希土類元素(セリウムを除く)で安定化されたジルコニアである(特許文献1参照。)。
そして、本発明の目的とするところは、優れた耐久性を有するリーンNOxトラップ型排気ガス浄化触媒及びこれを備えた排気ガス浄化システムを提供することにある。
そして、その結果、パラジウムなどの触媒貴金属、触媒貴金属を担持する無機酸化物及び所定のNOx吸着材を含み、パラジウムを担持する無機酸化物の組成を所定のものとすることなどにより、上記目的が達成できることを見出し、本発明を完成するに至った。
そして、上記無機酸化物のうち上記パラジウムを担持する無機酸化物は、セリウムとアルミニウム及びジルコニウムのいずれか一方又は双方とを含有するものである。
また、上記パラジウムを担持する無機酸化物は、CeO2換算で1~20質量%のセリウムを含有するものである。
(1)触媒貴金属である白金、パラジウム及びロジウムと、該触媒貴金属を担持する無機酸化物と、マグネシウム、バリウム、ナトリウム、カリウム若しくはセシウム又はこれらを任意に組み合わせたNOx吸着材とを含むものである。
(2)無機酸化物のうちパラジウムを担持する無機酸化物は、セリウムとアルミニウム及びジルコニウムのいずれか一方又は双方とを含有するものである。
(3)パラジウムを担持する無機酸化物は、CeO2換算で1~20質量%のセリウムを含有するものである。
本実施形態のリーンNOxトラップ型排気ガス浄化触媒は、触媒貴金属と、触媒貴金属を担持する無機酸化物と、NOx吸着材とを含むものである。
そして、触媒貴金属としては、少なくとも白金(Pt)、パラジウム(Pd)及びロジウム(Rd)を含むものを挙げることができるが、これら以外の触媒貴金属を含むことを妨げるものではない。
また、NOx吸着材としては、マグネシウム(Mg)、バリウム(Ba)、ナトリウム(Na)、カリウム(K)又はセシウム(Cs)及びこれらを任意に組み合わせたNOx吸着材を挙げることができるが、これら以外のNOx吸着材を含むことを妨げるものではない。
なお、このうちバリウム(Ba)又はセシウム(Cs)を用いることで一層耐久性能が向上するので好ましい。
更に、無機酸化物のうちパラジウム(Pd)を担持する無機酸化物は、セリウム(Ce)とアルミニウム(Al)及びジルコニウム(Zr)のいずれか一方又は双方とを含有するものである。
更にまた、パラジウム(Pd)を担持する無機酸化物は、CeO2換算で1~20質量%のセリウム(Ce)を含有するものである。
なお、本実施形態のリーンNOxトラップ型排気ガス浄化触媒は、ペレット状のものをそのまま用いてもよいが、排ガス中のHCやCO、NOxとの接触率を向上させるため、ハニカム担体にリーンNOxトラップ型排気ガス浄化触媒を含む触媒層を形成して用いることもできる。
ハニカム担体としては、例えば、コージェライト製や炭化珪素製などのセラミック製のものやフェライト系ステンレス製などの金属製のものを適用することができる。
[1]触媒貴金属が、担持基材である無機酸化物上で熱等により凝集する。
[2]担持基材である無機酸化物自体が、熱等により凝集するため、担持基材上に存在する触媒貴金属がそれに伴い凝集する。
一方、本発明のように、無機酸化物が、セリウム(Ce)とアルミニウム(Al)及びジルコニウム(Zr)のいずれか一方又は双方とを含有し、含有割合がCeO2換算で1~20質量%であると、担持基材である無機酸化物自体の凝集が抑制される。
その結果、耐久後であっても、優れた触媒性能を維持することが可能になる。
なお、無機酸化物中に存在するセリウムは、酸素吸放出材(OSC材)としての機能をもっている。そのため、触媒に含有させる場合には、ある程度の最適範囲が存在する。
本実施形態においては、CeO2換算でセリウムの含有量が1質量%未満である場合には、雰囲気変動を緩和できなくなり、触媒性能が低下する。
また、本実施形態においては、CeO2換算でセリウムの含有量が20質量%超である場合には、NOx還元に必要な還元剤をリッチスパイク時にNOx還元に利用できない(OSC材から放出された酸素により還元剤の単純酸化が進行する。)等の不具合が生ずる。
このような観点からは、無機酸化物がセリウムとアルミニウム及びジルコニウムのいずれか一方又は双方とを含有するものであって、CeO2換算で1~5質量%のセリウムを含有するものがより好ましい。
但し、上記のメカニズムはあくまでも推測に基づくものである。従って、上記のメカニズム以外のメカニズムにより上述のような効果が得られていたとしても、本発明の範囲に含まれることは言うまでもない。
上述したように、担持基材である無機酸化物自体が凝集し難いものであることが好ましく、特に、無機酸化物を900℃で3時間焼成したときの表面積維持率が50%以上のものは、担持基材上の触媒貴金属の凝集を顕著に抑制することができる。
そのため、このような構成を有するリーンNOxトラップ型排気ガス浄化触媒は、より優れた耐久性を有するものとなる。
もちろん、白金(Pt)やロジウム(Rh)を担持する無機酸化物についても同様に凝集し難いものであることが好ましいが、必ずしも同じである必要はない。
まず、触媒は、リーン雰囲気において主に排出されるNOを触媒貴金属上でNO2に酸化し、バリウム(Ba)などのNOx吸着材に吸着する。
そして、NOx吸着材への吸着量が飽和に近づいたときに、エンジン制御によって触媒周囲の雰囲気がリッチ雰囲気にされると、触媒は、NOx吸着材に吸着していたNOxを脱離し、還元剤であるHC、CO、H2等と触媒貴金属上で反応させ、NOxを浄化する。
なお、従来のPt、Rhのみを含む触媒では、NOからNO2への酸化は、Pt上で多くが進行していると考えられる。
PdはPtと比較すると、酸化力が弱いため、PtをPdに置き換える場合には、NOからNO2への酸化反応が進行し難くなり、結果的にNOxの浄化性能の低下に繋がる。
但し、上記のメカニズムはあくまでも推測に基づくものである。従って、上記のメカニズム以外のメカニズムにより上述のような効果が得られていたとしても、本発明の範囲に含まれることは言うまでもない。
触媒全体量中のOSC材の量が20質量%超である場合に、OSC材から放出される酸素により還元剤の単純酸化が進行するため、NOx浄化においてリッチスパイクが有効に利用されなくなることがある。
図1は、本発明の一実施形態に係る排気ガス浄化システムの構成を示す概略図である。 図1に示すように、本実施形態の排気ガス浄化システム1は、上述した本発明の一実施形態に係るリーンNOxトラップ型排気ガス浄化触媒2と、排ガス流れ方向に対して該リーンNOxトラップ型排気ガス浄化触媒2より上流側に位置する他の触媒4とを備えたものである。なお、図示しないが、他の触媒は、触媒貴金属を含むものである。このような他の触媒の代表例としては、三元触媒やディーゼル用酸化触媒を挙げることができる。
三元触媒やディーゼル用酸化触媒などの他の触媒を配置する目的は、低温域(エンジンスタート時)のHC、CO浄化であり、リーンNOxトラップ型排気ガス浄化触媒を配置する目的は、NOxの浄化である。
三元触媒やディーゼル用酸化触媒中の貴金属量を増やすことにより、低温域でのHC、CO浄化率は向上するものの、リーンNOxトラップ型排気ガス浄化触媒におけるNOx浄化率がNOx浄化率は逆に低下する。
これは、三元触媒やディーゼル用酸化触媒中の貴金属量を増やすと、リッチスパイク時にリーンNOxトラップ型排気ガス浄化触媒中に流入するHCやCOなどのNOxの還元材が少なくなり、NOx浄化に必要な還元材が供給できなくなるためと考えられる。
よって、三元触媒やディーゼル用酸化触媒とリーンNOxトラップ型排気ガス浄化触媒との貴金属量を上記範囲内とすることにより、低温域でのHC、COの浄化率及びNOxの浄化率を向上させることが可能となる。
(工程1)セリウム添加アルミナ(Ce-Al2O3)に所定量の白金(Pt)を含浸担持させ、乾燥、焼成して、Pt(3.9質量%)/Ce-Al2O3粉末を得た。
(工程2)セリウム添加アルミナ(Ce-Al2O3)に所定量の白金(Pt)を含浸担持させ、乾燥、焼成して、Pt(0.9質量%)/Ce-Al2O3粉末を得た。
(工程3)CeO2換算で1質量%のセリウムを含むセリウム添加アルミナ(1質量%Ce-Al2O3)に所定量のパラジウム(Pd)を含浸担持させ、乾燥、焼成して、Pd(3質量%)/Ce(1質量%)-Al2O3粉末を得た。
(工程4)ランタン添加ジルコニア(La-ZrO2)に所定量のロジウム(Rh)を含浸担持させ、乾燥、焼成して、Rh(2.2質量%)/La-ZrO2粉末を得た。
(工程5)上記工程1、工程3及び工程4で得られた粉末、ベーマイトアルミナ、硝酸、イオン交換水を磁性ポットに投入し、アルミナボールと共に振とう粉砕し、表層スラリを得た。
(工程6)上記工程2及び工程3で得られた粉末、ベーマイトアルミナ、硝酸、イオン交換水を磁性ポットに投入し、アルミナボールと共に振とう粉砕し、内層スラリを得た。
(工程7)上記工程6で得られた内層スラリをセラミック製ハニカム担体(セル数:400セル/6ミル、容量:0.119L)に投入し、空気流にて余剰スラリを除去し、120℃にて乾燥させた。
(工程8)上記工程5で得られた表層スラリを上記工程7で得られた担体に投入し、空気流にて余剰スラリを除去し、120℃にて乾燥、400℃にて空気流通下焼成した。このときの触媒中の触媒貴金属量は6.7g/Lであった。
(工程9)上記工程8で得られた触媒にBa量が28g/Lとなるようにバリウム(Ba)を含浸担持させ、120℃で乾燥、400℃にて空気流通下焼成して、本例のリーンNOxトラップ型排気ガス浄化触媒を得た。
なお、本例のリーンNOxトラップ型排気ガス浄化触媒においては、触媒全体量に対してCeO2換算でセリウムを13.5質量%含有する。
また、パラジウムを担持する無機酸化物であるセリウム添加アルミナ(1質量%Ce-Al2O3)を、900℃で3時間焼成したときの表面積維持率は58%であった。
実施例1におけるPdの担体であるCeO2換算で1質量%のセリウムを含むセリウム添加アルミナ(1質量%Ce-Al2O3)を、CeO2換算で1質量%のセリウムを含むセリウム添加ジルコニア(1質量%Ce-ZrO2)に変更したこと以外は、実施例1と同様の操作を繰り返して、本例のリーンNOxトラップ型排気ガス浄化触媒を得た。
なお、本例のリーンNOxトラップ型排気ガス浄化触媒においては、触媒全体量に対してCeO2換算でセリウムを13.5質量%含有する。
また、パラジウムを担持する無機酸化物であるセリウム添加ジルコニア(1質量%Ce-ZrO2)を、900℃で3時間焼成したときの表面積維持率は67%であった。
実施例1におけるNOx吸着材であるバリウム(Ba)を、マグネシウム(Mg)に変更したこと以外は、実施例1と同様の操作を繰り返して、本例のリーンNOxトラップ型排気ガス浄化触媒を得た。
なお、本例のリーンNOxトラップ型排気ガス浄化触媒においては、触媒全体量に対してCeO2換算でセリウムを13.5質量%含有する。
また、パラジウムを担持する無機酸化物であるセリウム添加アルミナ(1質量%Ce-Al2O3)を、900℃で3時間焼成したときの表面積維持率は58%であった。
実施例1におけるNOx吸着材であるバリウム(Ba)を、ナトリウム(Na)に変更したこと以外は、実施例1と同様の操作を繰り返して、本例のリーンNOxトラップ型排気ガス浄化触媒を得た。
なお、本例のリーンNOxトラップ型排気ガス浄化触媒においては、触媒全体量に対してCeO2換算でセリウムを13.5質量%含有する。
また、パラジウムを担持する無機酸化物であるセリウム添加アルミナ(1質量%Ce-Al2O3)を、900℃で3時間焼成したときの表面積維持率は58%であった。
実施例1におけるNOx吸着材であるバリウム(Ba)を、カリウム(K)に変更したこと以外は、実施例1と同様の操作を繰り返して、本例のリーンNOxトラップ型排気ガス浄化触媒を得た。
なお、本例のリーンNOxトラップ型排気ガス浄化触媒においては、触媒全体量に対してCeO2換算でセリウムを13.5質量%含有する。
また、パラジウムを担持する無機酸化物であるセリウム添加アルミナ(1質量%Ce-Al2O3)を、900℃で3時間焼成したときの表面積維持率は58%であった。
実施例1におけるNOx吸着材であるバリウム(Ba)を、セシウム(Cs)に変更したこと以外は、実施例1と同様の操作を繰り返して、本例のリーンNOxトラップ型排気ガス浄化触媒を得た。
なお、本例のリーンNOxトラップ型排気ガス浄化触媒においては、触媒全体量に対してCeO2換算でセリウムを13.5質量%含有する。
また、パラジウムを担持する無機酸化物であるセリウム添加アルミナ(1質量%Ce-Al2O3)を、900℃で3時間焼成したときの表面積維持率は58%であった。
実施例1におけるPdの担体であるCeO2換算で1質量%のセリウムを含むセリウム添加アルミナ(1質量%Ce-Al2O3)を、CeO2換算で5質量%のセリウムを含むセリウム添加アルミナ(5質量%Ce-Al2O3)に変更したこと以外は、実施例1と同様の操作を繰り返して、本例のリーンNOxトラップ型排気ガス浄化触媒を得た。
なお、本例のリーンNOxトラップ型排気ガス浄化触媒においては、触媒全体量に対してCeO2換算でセリウムを13.9質量%含有する。
また、パラジウムを担持する無機酸化物であるセリウム添加アルミナ(5質量%Ce-Al2O3)を、900℃で3時間焼成したときの表面積維持率は62%であった。
実施例2におけるPdの担体であるCeO2換算で1質量%のセリウムを含むセリウム添加ジルコニア(1質量%Ce-ZrO2)を、CeO2換算で5質量%のセリウムを含むセリウム添加ジルコニア(5質量%Ce-ZrO2)に変更したこと以外は、実施例2と同様の操作を繰り返して、本例のリーンNOxトラップ型排気ガス浄化触媒を得た。
なお、本例のリーンNOxトラップ型排気ガス浄化触媒においては、触媒全体量に対してCeO2換算でセリウムを13.9質量%含有する。
また、パラジウムを担持する無機酸化物であるセリウム添加ジルコニア(5質量%Ce-ZrO2)を、900℃で3時間焼成したときの表面積維持率は78%であった。
実施例1におけるPdの担体であるCeO2換算で1質量%のセリウムを含むセリウム添加アルミナ(1質量%Ce-Al2O3)を、CeO2換算で20質量%のセリウムを含むセリウム添加アルミナ(20質量%Ce-Al2O3)に変更したこと以外は、実施例1と同様の操作を繰り返して、本例のリーンNOxトラップ型排気ガス浄化触媒を得た。
なお、本例のリーンNOxトラップ型排気ガス浄化触媒においては、触媒全体量に対してCeO2換算でセリウムを15.4質量%含有する。
また、パラジウムを担持する無機酸化物であるセリウム添加アルミナ(1質量%Ce-Al2O3)を、900℃で3時間焼成したときの表面積維持率は68%であった。
実施例2におけるPdの担体であるCeO2換算で1質量%のセリウムを含むセリウム添加ジルコニア(1質量%Ce-ZrO2)を、CeO2換算で20質量%のセリウムを含むセリウム添加ジルコニア(20質量%Ce-ZrO2)に変更したこと以外は、実施例2と同様の操作を繰り返して、本例のリーンNOxトラップ型排気ガス浄化触媒を得た。
なお、本例のリーンNOxトラップ型排気ガス浄化触媒においては、触媒全体量に対してCeO2換算でセリウムを15.4質量%含有する。
また、パラジウムを担持する無機酸化物であるセリウム添加アルミナ(1質量%Ce-Al2O3)を、900℃で3時間焼成したときの表面積維持率は71%であった。
ディーゼル用酸化触媒としては、触媒貴金属量8.2g/L(パラジウム/ロジウム=11/1)であるものを用い、リーンNOxトラップ型排気ガス浄化触媒としては、実施例1で得られたものを用い、図1に示すような排気ガス浄化システムを構築した。
ディーゼル用酸化触媒としては、触媒貴金属量4.2g/L(パラジウム/ロジウム=11/1)であるものを用い、リーンNOxトラップ型排気ガス浄化触媒としては、実施例1で得られたものを用い、図1に示すような排気ガス浄化システムを構築した。
ディーゼル用酸化触媒としては、触媒貴金属量2.1g/L(パラジウム/ロジウム=11/1)であるものを用い、リーンNOxトラップ型排気ガス浄化触媒としては、実施例1で得られたものを用い、図1に示すような排気ガス浄化システムを構築した。
実施例1におけるPdの担体であるCeO2換算で1質量%のセリウムを含むセリウム添加アルミナ(1質量%Ce-Al2O3)を、CeO2換算で60質量%のセリウムを含むセリウム添加アルミナ(60質量%Ce-Al2O3)に変更したこと以外は、実施例1と同様の操作を繰り返して、本例のリーンNOxトラップ型排気ガス浄化触媒を得た。
なお、本例のリーンNOxトラップ型排気ガス浄化触媒においては、触媒全体量に対してCeO2換算でセリウムを19.4質量%含有する。
また、パラジウムを担持する無機酸化物であるセリウム添加アルミナ(60質量%Ce-Al2O3)を、900℃で3時間焼成したときの表面積維持率は55%であった。
実施例2におけるPdの担体であるCeO2換算で1質量%のセリウムを含むセリウム添加ジルコニア(1質量%Ce-ZrO2)を、CeO2換算で60質量%のセリウムを含むセリウム添加ジルコニア(60質量%Ce-ZrO2)に変更したこと以外は、実施例2と同様の操作を繰り返して、本例のリーンNOxトラップ型排気ガス浄化触媒を得た。
なお、本例のリーンNOxトラップ型排気ガス浄化触媒においては、触媒全体量に対してCeO2換算でセリウムを19.4質量%含有する。
また、パラジウムを担持する無機酸化物であるセリウム添加ジルコニア(60質量%Ce-ZrO2)を、900℃で3時間焼成したときの表面積維持率は74%であった。
実施例1におけるPdの担体であるCeO2換算で1質量%のセリウムを含むセリウム添加アルミナ(1質量%Ce-Al2O3)を、アルミナ(Al2O3)に変更したこと以外は、実施例1と同様の操作を繰り返して、本例のリーンNOxトラップ型排気ガス浄化触媒を得た。
なお、本例のリーンNOxトラップ型排気ガス浄化触媒においては、触媒全体量に対してCeO2換算でセリウムを13.4質量%含有する。
また、パラジウムを担持する無機酸化物であるアルミナ(Al2O3)を、900℃で3時間焼成したときの表面積維持率は23%であった。
実施例2におけるPdの担体であるCeO2換算で1質量%のセリウムを含むセリウム添加ジルコニア(1質量%Ce-ZrO2)を、ジルコニア(ZrO2)に変更したこと以外は、実施例2と同様の操作を繰り返して、本例のリーンNOxトラップ型排気ガス浄化触媒を得た。
なお、本例のリーンNOxトラップ型排気ガス浄化触媒においては、触媒全体量に対してCeO2換算でセリウムを13.4質量%含有する。
また、パラジウムを担持する無機酸化物であるジルコニア(ZrO2)を、900℃で3時間焼成したときの表面積維持率は18%であった。
各例のリーンNOxトラップ型排気ガス浄化触媒及び排気ガス浄化システムの仕様の一部を表1に示す。なお、表1中、ディーゼル用酸化触媒をDOC、リーンNOxトラップ型排気ガス浄化触媒をLNTと略記する。
上記各例のリーンNOxトラップ型排気ガス浄化触媒及び排気ガス浄化システムについて、下記条件の耐久処理後に、下記条件において、NOx浄化率(排気ガス浄化システムについては更にHC浄化率)を測定した。なお、ガス流量は40L/minとした。得られた結果を表1に併記する。
日産自動車株式会社製V型6気筒3.5Lエンジン後方に各例のリーンNOxトラップ型排気ガス浄化触媒を配置し、触媒入口温度が750℃となるように調整し、排気ガス雰囲気下にて60時間耐久処理を行った。なお、燃料は無鉛ガソリンを使用した。
各例のリーンNOxトラップ型排気ガス浄化触媒の容量を0.040Lとなるように切断後、ラボ評価装置にて表2に示すガス条件になるようなガス種、濃度を調整し、リーン(60sec)リッチ(4sec)切り替え評価を実施した。
このとき、評価温度(触媒入口温度)は250℃とした。
また、NOx浄化率は、下記式(I)により算出した。
各例の酸化触媒の容量を0.010L、リーンNOxトラップ型排気ガス浄化触媒の容量を0.040Lとなるように切断後、図1に示すように配置し、ラボ評価装置にて表3に示すガス条件になるようなガス種、濃度を調整し、リーン(60sec)、リッチ(4sec)切り替え評価を実施した。
このとき、評価温度(触媒入口温度)は250℃とした。
また、HC浄化率は、下記式(II)により算出した。また、NOx浄化率は、上記式(I)より算出した。
また、実施例1~実施例10、比較例1及び比較例2のリーンNOxトラップ型排気ガス浄化触媒と、比較例3及び比較例4のリーンNOxトラップ型排気ガス浄化触媒とを比較すると、Pd担体の表面積維持率が50%以上であると、耐久後のNOx浄化率が優れていることが分かる。
更に、実施例1~実施例10のリーンNOxトラップ型排気ガス浄化触媒は、CeO2換算で20質量%以下のセリウムを含有するため、NOx浄化率が優れていることが分かる。
更に、実施例11~実施例13の排気ガス浄化システムの比較より、他の触媒における触媒貴金属の量に対するリーンNOxトラップ型排気ガス浄化触媒における触媒貴金属の量の比が質量比で1~1.6である実施例12排気ガス浄化システムが、耐久後のNOx浄化率及びHC浄化率が優れていることが分かる。
2 リーンNOxトラップ型排気ガス浄化触媒
4 他の触媒
Claims (5)
- 触媒貴金属である白金、パラジウム及びロジウムと、該触媒貴金属を担持する無機酸化物と、マグネシウム、バリウム、ナトリウム、カリウム及びセシウムからなる群より選ばれる少なくとも1種のNOx吸着材とを含み、
上記無機酸化物のうち上記パラジウムを担持する無機酸化物が、CeO2換算で1~20質量%のセリウムと、アルミニウム及び/又はジルコニウムとを含有することを特徴とするリーンNOxトラップ型排気ガス浄化触媒。 - 上記NOx吸着材がバリウム又はセシウムであることを特徴とする請求項1に記載のリーンNOxトラップ型排気ガス浄化触媒。
- 触媒全体量に対してCeO2換算で20質量%以下のセリウムを含有することを特徴とする請求項1又は2に記載のリーンNOxトラップ型排気ガス浄化触媒。
- 請求項1~3のいずれか1つの項に記載されたリーンNOxトラップ型排気ガス浄化触媒と、排ガス流れ方向に対して該リーンNOxトラップ型排気ガス浄化触媒より上流側に位置し、触媒貴金属を含む他の触媒とを備えたことを特徴とする排気ガス浄化システム。
- 上記他の触媒における触媒貴金属の量に対する上記リーンNOxトラップ型排気ガス浄化触媒における触媒貴金属の量の比が質量比で1~1.6であることを特徴とする請求項4に記載の排気ガス浄化システム。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2013003568A MX2013003568A (es) | 2011-04-28 | 2012-03-06 | Catalizador purificador de gas de escape tipo trampa para nox de mezcla pobre y sistema de limpieza del gas de escape. |
CN201280004813.7A CN103313788B (zh) | 2011-04-28 | 2012-03-06 | 稀燃NOx捕集式废气净化催化剂和废气清洗系统 |
US13/821,520 US8992844B2 (en) | 2011-04-28 | 2012-03-06 | Lean NOx type exhaust gas purifying catalyst |
RU2013113950/04A RU2557056C2 (ru) | 2011-04-28 | 2012-03-06 | Катализатор ловушечного типа для очистки бедных по nox выхлопных газов и система очистки выхлопных газов |
BR112013006552-4A BR112013006552B1 (pt) | 2011-04-28 | 2012-03-06 | catalisador de purificação de gás de escape tipo coletor de nox de mistura pobre e sistema de limpeza de gás de escape |
EP12776289.6A EP2636447B1 (en) | 2011-04-28 | 2012-03-06 | Lean nox trap type exhaust gas purifying catalyst and exhaust gas cleaning system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-100747 | 2011-04-28 | ||
JP2011100747A JP5768474B2 (ja) | 2011-04-28 | 2011-04-28 | 排気ガス浄化システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012147411A1 true WO2012147411A1 (ja) | 2012-11-01 |
Family
ID=47071939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/055655 WO2012147411A1 (ja) | 2011-04-28 | 2012-03-06 | リーンNOxトラップ型排気ガス浄化触媒及び排気ガス浄化システム |
Country Status (9)
Country | Link |
---|---|
US (1) | US8992844B2 (ja) |
EP (1) | EP2636447B1 (ja) |
JP (1) | JP5768474B2 (ja) |
CN (1) | CN103313788B (ja) |
BR (1) | BR112013006552B1 (ja) |
MX (1) | MX2013003568A (ja) |
MY (1) | MY166150A (ja) |
RU (1) | RU2557056C2 (ja) |
WO (1) | WO2012147411A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014164876A1 (en) * | 2013-03-13 | 2014-10-09 | Basf Corporation | Nox storage catalyst with improved hydrothermal stability and nox conversion |
US9611774B2 (en) | 2013-03-13 | 2017-04-04 | Basf Corporation | Catalyst with improved hydrothermal stability |
RU2667911C2 (ru) * | 2013-03-12 | 2018-09-25 | Басф Корпорейшн | Каталитические материалы для окисления no |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5954260B2 (ja) * | 2013-05-27 | 2016-07-20 | マツダ株式会社 | 排気ガス浄化用触媒及びその製造方法 |
JP5949662B2 (ja) * | 2013-05-27 | 2016-07-13 | マツダ株式会社 | 排気ガス浄化用触媒及びその製造方法 |
CN105828933A (zh) * | 2013-08-28 | 2016-08-03 | 庄信万丰股份有限公司 | Co泄漏催化剂和使用方法 |
BR112017002085A2 (pt) * | 2014-08-25 | 2018-01-30 | Basf Corp | catalisador e sistema |
MX2017011250A (es) * | 2015-03-03 | 2018-08-14 | Basf Corp | Catalizador adsorbedor de nox, metodos y sistemas. |
KR102611568B1 (ko) * | 2015-03-03 | 2023-12-11 | 바스프 코포레이션 | 고온 및 저온 성능이 향상된 희박 NOx 트랩 |
PL3461263T3 (pl) | 2016-04-26 | 2024-08-26 | Basf Corporation | Strefowa konfiguracja dla kombinacji katalizatorów utleniających |
CN108636431A (zh) * | 2018-04-20 | 2018-10-12 | 中自环保科技股份有限公司 | 一种壁流式lnt催化剂、制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004351243A (ja) * | 2003-05-27 | 2004-12-16 | Nissan Motor Co Ltd | 排気ガス浄化システム |
JP3741303B2 (ja) | 1997-12-08 | 2006-02-01 | トヨタ自動車株式会社 | 排ガス浄化用触媒 |
JP2009297616A (ja) * | 2008-06-11 | 2009-12-24 | Toyota Motor Corp | NOx吸蔵還元型触媒 |
JP2010242602A (ja) * | 2009-04-03 | 2010-10-28 | Isuzu Motors Ltd | 排気ガス浄化システム及び排気ガス浄化システムの制御方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1064985B1 (en) * | 1999-07-02 | 2008-02-20 | Nissan Motor Co., Ltd. | Exhaust gas purifying system |
US7189375B2 (en) * | 2002-09-16 | 2007-03-13 | Delphi Technologies, Inc. | Exhaust treatment device |
WO2005092481A1 (en) * | 2004-03-27 | 2005-10-06 | Umicore Ag & Co. Kg | Nitrogen oxide storage material and nitrogen oxide storage catalyst produced therefrom |
RU2395341C1 (ru) * | 2006-03-28 | 2010-07-27 | Тойота Дзидося Кабусики Кайся | Катализатор для очистки выхлопных газов, способ регенерации такого катализатора, а также устройство и способ очистки выхлопных газов при использовании данного катализатора |
JP5551329B2 (ja) * | 2006-11-14 | 2014-07-16 | 日産自動車株式会社 | 排気ガス浄化触媒及びその製造方法 |
WO2010013574A1 (ja) * | 2008-07-31 | 2010-02-04 | 日産自動車株式会社 | 排気ガス浄化触媒 |
-
2011
- 2011-04-28 JP JP2011100747A patent/JP5768474B2/ja not_active Expired - Fee Related
-
2012
- 2012-03-06 RU RU2013113950/04A patent/RU2557056C2/ru active
- 2012-03-06 BR BR112013006552-4A patent/BR112013006552B1/pt not_active IP Right Cessation
- 2012-03-06 MX MX2013003568A patent/MX2013003568A/es active IP Right Grant
- 2012-03-06 EP EP12776289.6A patent/EP2636447B1/en active Active
- 2012-03-06 CN CN201280004813.7A patent/CN103313788B/zh not_active Expired - Fee Related
- 2012-03-06 WO PCT/JP2012/055655 patent/WO2012147411A1/ja active Application Filing
- 2012-03-06 MY MYPI2013000739A patent/MY166150A/en unknown
- 2012-03-06 US US13/821,520 patent/US8992844B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3741303B2 (ja) | 1997-12-08 | 2006-02-01 | トヨタ自動車株式会社 | 排ガス浄化用触媒 |
JP2004351243A (ja) * | 2003-05-27 | 2004-12-16 | Nissan Motor Co Ltd | 排気ガス浄化システム |
JP2009297616A (ja) * | 2008-06-11 | 2009-12-24 | Toyota Motor Corp | NOx吸蔵還元型触媒 |
JP2010242602A (ja) * | 2009-04-03 | 2010-10-28 | Isuzu Motors Ltd | 排気ガス浄化システム及び排気ガス浄化システムの制御方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2667911C2 (ru) * | 2013-03-12 | 2018-09-25 | Басф Корпорейшн | Каталитические материалы для окисления no |
WO2014164876A1 (en) * | 2013-03-13 | 2014-10-09 | Basf Corporation | Nox storage catalyst with improved hydrothermal stability and nox conversion |
KR20150131126A (ko) * | 2013-03-13 | 2015-11-24 | 바스프 코포레이션 | 개선된 열수 안정성 및 NOx 전환율을 갖는 NOx 저장 촉매 |
US9611774B2 (en) | 2013-03-13 | 2017-04-04 | Basf Corporation | Catalyst with improved hydrothermal stability |
US9610564B2 (en) | 2013-03-13 | 2017-04-04 | Basf Corporation | NOx storage catalyst with improved hydrothermal stability and NOx conversion |
KR102358141B1 (ko) | 2013-03-13 | 2022-02-07 | 바스프 코포레이션 | 개선된 열수 안정성 및 NOx 전환율을 갖는 NOx 저장 촉매 |
Also Published As
Publication number | Publication date |
---|---|
RU2013113950A (ru) | 2015-06-10 |
CN103313788B (zh) | 2015-08-26 |
EP2636447B1 (en) | 2019-11-20 |
US20130177484A1 (en) | 2013-07-11 |
MX2013003568A (es) | 2013-10-01 |
EP2636447A4 (en) | 2015-02-25 |
JP2012232231A (ja) | 2012-11-29 |
BR112013006552B1 (pt) | 2019-11-05 |
BR112013006552A2 (pt) | 2016-06-07 |
RU2557056C2 (ru) | 2015-07-20 |
US8992844B2 (en) | 2015-03-31 |
EP2636447A1 (en) | 2013-09-11 |
MY166150A (en) | 2018-06-06 |
JP5768474B2 (ja) | 2015-08-26 |
CN103313788A (zh) | 2013-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5768474B2 (ja) | 排気ガス浄化システム | |
JP4092441B2 (ja) | 排ガス浄化用触媒 | |
WO2010010747A1 (ja) | 排気ガス浄化触媒装置、並びに排気ガス浄化方法 | |
EP3097977B1 (en) | Exhaust-gas purifying catalyst for lean-burn engine | |
JP3952617B2 (ja) | 内燃機関の排ガス浄化装置,排ガス浄化方法及び排ガス浄化触媒 | |
JP3965676B2 (ja) | 排ガス浄化用触媒及び排ガス浄化システム | |
JP4923412B2 (ja) | 排ガス浄化触媒 | |
JP5391664B2 (ja) | 排気ガス浄化用触媒 | |
JP2021079313A (ja) | 排ガス浄化用触媒 | |
JP3685463B2 (ja) | 排ガス浄化用触媒 | |
JP3789231B2 (ja) | 排ガス浄化用触媒 | |
JP2002143683A (ja) | 排気ガス浄化用触媒及びその製造方法 | |
JP4941731B2 (ja) | 排気ガス浄化システム | |
JP5094199B2 (ja) | 排ガス浄化装置 | |
JP5328133B2 (ja) | 排ガス浄化用触媒 | |
JP5163955B2 (ja) | 排ガス浄化用触媒 | |
JP2015093227A (ja) | 排ガス浄化触媒とその製造方法 | |
JP4239679B2 (ja) | 排ガス浄化用触媒及び排ガス浄化方法 | |
JP3925015B2 (ja) | 内燃機関の排ガスの浄化装置,浄化方法及び浄化触媒 | |
JP2010110732A (ja) | 排ガス浄化用触媒 | |
JP2018164896A (ja) | 希薄混合気燃焼エンジンからの排出ガス浄化用吸蔵還元型触媒 | |
JP2003200061A (ja) | 排ガス浄化触媒及び排ガス浄化装置 | |
JP2001300302A (ja) | 窒素酸化物吸着材 | |
JP2020168587A (ja) | 自動車用排ガス浄化触媒 | |
JP2010017693A (ja) | NOx吸蔵触媒 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12776289 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012776289 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13821520 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/003568 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2013113950 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013006552 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013006552 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130322 |