RU2667911C2 - Каталитические материалы для окисления no - Google Patents
Каталитические материалы для окисления no Download PDFInfo
- Publication number
- RU2667911C2 RU2667911C2 RU2015143100A RU2015143100A RU2667911C2 RU 2667911 C2 RU2667911 C2 RU 2667911C2 RU 2015143100 A RU2015143100 A RU 2015143100A RU 2015143100 A RU2015143100 A RU 2015143100A RU 2667911 C2 RU2667911 C2 RU 2667911C2
- Authority
- RU
- Russia
- Prior art keywords
- catalytic material
- cerium
- oxide
- alumina
- substrate
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 122
- 239000000463 material Substances 0.000 title claims abstract description 80
- 230000003647 oxidation Effects 0.000 title claims abstract description 59
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 59
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 166
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 151
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 87
- 230000003197 catalytic effect Effects 0.000 claims abstract description 60
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 52
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 49
- 238000000034 method Methods 0.000 claims abstract description 21
- 239000000758 substrate Substances 0.000 claims description 114
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 60
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 58
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 43
- 229910052684 Cerium Inorganic materials 0.000 claims description 28
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 26
- 239000000377 silicon dioxide Substances 0.000 claims description 21
- 239000007789 gas Substances 0.000 claims description 20
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 claims description 18
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 16
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 9
- 239000000395 magnesium oxide Substances 0.000 claims description 9
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 9
- 235000012239 silicon dioxide Nutrition 0.000 claims description 7
- 238000010531 catalytic reduction reaction Methods 0.000 claims description 4
- 238000004891 communication Methods 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 3
- 238000002485 combustion reaction Methods 0.000 abstract description 6
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 abstract description 4
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 106
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 25
- 229910002091 carbon monoxide Inorganic materials 0.000 description 25
- -1 but not limited to Chemical class 0.000 description 24
- 239000000243 solution Substances 0.000 description 23
- 239000002245 particle Substances 0.000 description 22
- 239000000725 suspension Substances 0.000 description 20
- 239000000843 powder Substances 0.000 description 17
- 229930195733 hydrocarbon Natural products 0.000 description 16
- 150000002430 hydrocarbons Chemical class 0.000 description 16
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 15
- 229910002651 NO3 Inorganic materials 0.000 description 15
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 15
- 239000000446 fuel Substances 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 238000005470 impregnation Methods 0.000 description 12
- 229910000510 noble metal Inorganic materials 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 9
- 239000011148 porous material Substances 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- 229910004298 SiO 2 Inorganic materials 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000008367 deionised water Substances 0.000 description 8
- 229910021641 deionized water Inorganic materials 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 238000001354 calcination Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- 239000003870 refractory metal Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 5
- 239000010457 zeolite Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 229910021536 Zeolite Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000002808 molecular sieve Substances 0.000 description 4
- 239000013618 particulate matter Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- KSSJBGNOJJETTC-UHFFFAOYSA-N COC1=C(C=CC=C1)N(C1=CC=2C3(C4=CC(=CC=C4C=2C=C1)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC(=CC=C1C=1C=CC(=CC=13)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC=C(C=C1)OC Chemical compound COC1=C(C=CC=C1)N(C1=CC=2C3(C4=CC(=CC=C4C=2C=C1)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC(=CC=C1C=1C=CC(=CC=13)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC=C(C=C1)OC KSSJBGNOJJETTC-UHFFFAOYSA-N 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 description 3
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 3
- 239000011865 Pt-based catalyst Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- NTWUDWUVKKRQRK-UHFFFAOYSA-N aluminum;cerium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Ce+3] NTWUDWUVKKRQRK-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000008246 gaseous mixture Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 150000003057 platinum Chemical class 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 230000010718 Oxidation Activity Effects 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- YAIQCYZCSGLAAN-UHFFFAOYSA-N [Si+4].[O-2].[Al+3] Chemical compound [Si+4].[O-2].[Al+3] YAIQCYZCSGLAAN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- VQYHBXLHGKQYOY-UHFFFAOYSA-N aluminum oxygen(2-) titanium(4+) Chemical compound [O-2].[Al+3].[Ti+4] VQYHBXLHGKQYOY-UHFFFAOYSA-N 0.000 description 1
- HEHRHMRHPUNLIR-UHFFFAOYSA-N aluminum;hydroxy-[hydroxy(oxo)silyl]oxy-oxosilane;lithium Chemical compound [Li].[Al].O[Si](=O)O[Si](O)=O.O[Si](=O)O[Si](O)=O HEHRHMRHPUNLIR-UHFFFAOYSA-N 0.000 description 1
- CNLWCVNCHLKFHK-UHFFFAOYSA-N aluminum;lithium;dioxido(oxo)silane Chemical compound [Li+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O CNLWCVNCHLKFHK-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052670 petalite Inorganic materials 0.000 description 1
- NWAHZABTSDUXMJ-UHFFFAOYSA-N platinum(2+);dinitrate Chemical compound [Pt+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O NWAHZABTSDUXMJ-UHFFFAOYSA-N 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052851 sillimanite Inorganic materials 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052642 spodumene Inorganic materials 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000002602 strong irritant Substances 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9427—Processes characterised by a specific catalyst for removing nitrous oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9459—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2062—Ammonia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2067—Urea
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2065—Cerium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/635—0.5-1.0 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0205—Impregnation in several steps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/10—Capture or disposal of greenhouse gases of nitrous oxide (N2O)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Toxicology (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
Настоящее изобретение относится к каталитическому материалу для окисления NO, содержащему носитель катализатора, содержащий подложку из оксида церия-алюминия с диспергированными на ней платиной и палладием, при этом массовое отношение платины к палладию составляет по меньшей мере 1:1, а количество оксида церия в подложке составляет от 1% до 12% по массе. Также предложены система для обработки выхлопных газов двигателя, работающего на обедненной смеси, содержащая указанный выше каталитический материал, способ обработки выхлопных газов двигателя, работающего на обедненной смеси, включающий использование такого каталитического материала и вариант указанного выше каталитического материала. Технический результат – обеспечение каталитического материала, обогащенного Pd в системах сгорания обедненной смеси и имеющего улучшенную способность к окислению NO и в то же время улучшенную характеристику температуры «light-off» CO. 4 н. и 11 з.п. ф-лы, 5 табл., 3 ил.
Description
ОБЛАСТЬ ТЕХНИКИ
[0001] Настоящее изобретение относится к каталитическим материалам, подходящим для окисления NO в выхлопном потоке. В частности, указанные каталитические материалы содержат носитель катализатора, содержащий подложку из оксида церия-алюминия с диспергированными на ней платиной и необязательно палладием, которые эффективны для окисления NO в выхлопе двигателей, работающих на обедненной смеси.
УРОВЕНЬ ТЕХНИКИ
[0002] Эксплуатация двигателей сгорания, работающих на обедненной смеси, например, дизельных двигателей и бензиновых двигателей сгорания, работающих обедненной смеси, обеспечивает потребителю превосходную экономию топлива и относительно низкие выбросы газофазных углеводородов и монооксида углерода благодаря их работе при высоких отношениях воздуха/топлива в условиях сжигания обедненной топливной смеси. Дизельные двигатели, в частности, обеспечивают также значительные преимущества в сравнении с бензиновыми двигателями в отношении их надежности и способности создавать высокий крутящий момент при низкой скорости.
[0003] Однако с точки зрения выбросов дизельные двигатели создают более сложные проблемы, чем их конкуренты с искровым зажиганием. Проблемы выбросов относятся к твердым частицам (РМ), оксидам азота (NOx), несгоревшим углеводородам (НС) и монооксиду углерода (СО). NOx представляет собой термин, используемый для описания различных химических разновидностей оксидов азота, включая, среди прочих, монооксид азота (NO) и диоксид азота (NO2). NO и NO2 являются предметом беспокойства, поскольку они предположительно участвуют в образовании фотохимического смога в ходе серии реакций в присутствии солнечного света и углеводородов. Кроме того, NO2 вносит существенный вклад в явление кислотных дождей, имеет большую окислительную способность и является сильным раздражителем легких. Твердые частицы (РМ) также вызывают дыхательные проблемы. Однако поскольку делаются различные модификации работы двигателей для снижения выбросов твердых частиц и несгоревших углеводородов из дизельных двигателей, выбросы NO и NO2 демонстрируют тенденцию к росту.
[0004] Эффективное снижение выбросов NOx из двигателей, работающих на обедненной топливной смеси, труднодостижимо, поскольку для высокой степени превращения NOx обычно необходимы условия с богатым топливом (т.е. с высоким содержанием восстановителей). Для превращения компонента NOx в выхлопных потоках в безопасные компоненты обычно необходимы специальные стратегии снижения NOx для работы в условиях обедненной топливной смеси.
[0005] Катализаторы окисления, содержащие благородный металл, диспергированный на подложке тугоплавкого оксида металла, используют при обработке выхлопа дизельных двигателей для превращения газообразных загрязняющих углеводородов и монооксида углерода в диоксид углерода и воду. Как правило, катализаторы окисления дизеля (DOC, англ.: diesel oxidation catalysts) получают на керамических или металлических подложках-носителях (таких как проточные монолитные носители), на которые наносят одну или более композиций покрытия-катализатора. Помимо превращения газообразных НС, СО и растворимой органической фракции (SOF, англ.: soluble organic fraction) твердых частиц в диоксид углерода и воду, катализаторы окисления, содержащие металлы платиновой группы (которые обычно диспергированы на подложке из тугоплавкого оксида), ускоряют окисление NO до NO2.
[0006] Для многих каталитических компонентов зачастую используют тугоплавкие оксиды металлов с большой площадью поверхности. Например, оксиды алюминия с большой площадью поверхности, которые называют также «гамма-оксидом алюминия» или «активированным оксидом алюминия», используемые с катализаторами окисления, обычно имеют площадь поверхности по БЭТ более 60 м2/г и зачастую до примерно 200 м2/г или более. Такой активированный оксид алюминия обычно представляет собой смесь гамма и дельта фаз оксида алюминия, но может содержать также значительные количества эта-, каппа- и тетафаз оксида алюминия. Тугоплавкие оксиды металлов, отличные от активированного оксида алюминия, могут быть использованы в качестве подложки по меньшей мере для некоторых каталитических компонентов в данном катализаторе. Например, для указанного применения известен сыпучий оксид церия, оксид циркония, альфа-оксид алюминия и другие материалы. Хотя многие из указанных материалов имеют меньшую площадь поверхности по БЭТ, чем активированный оксид алюминия, этот недостаток нивелируется благодаря большей износостойкости готового катализатора или преимущественному взаимодействию с благородным металлом, нанесенным на подложку.
[0007] Катализаторы, используемые для обработки выхлопов двигателей внутреннего сгорания, менее эффективны в период эксплуатации при относительно низкой температуре, такой как период первоначального запуска холодного двигателя, поскольку температура выхлопа двигателя недостаточно высока для эффективного каталитического превращения вредных компонентов в выхлопе.
[0008] Катализаторы окисления, содержащие металл платиновой группы (PGM), диспергированный на подложке из тугоплавкого оксида металла, известны для применения при обработке выхлопных газообразных выбросов дизельных двигателей. Платина (Pt) представляет собой металл, эффективно окисляющий СО и НС в DOC после выдержки при высокой температуре в обедненных условиях и в присутствии серы в топливе. С другой стороны, палладиевые (Pd) катализаторы окисления дизеля или катализаторы с высоким содержанием Pd обычно демонстрируют более высокие температуры «light-off» окисления СО и НС, особенно при использовании для обработки выхлопа с высоким содержанием серы (из топлива с высоким содержанием серы). Температура «light-off» для конкретного компонента представляет собой температуру, при которой происходит преобразование 50% указанного компонента. DOC с высоким процентным содержанием Pd могут снижать способность Pt превращать СО и НС и также могут приводить к усилению восприимчивости катализатора к серному отравлению. Указанные характеристики обычно препятствуют применению катализаторов окисления с высоким содержанием Pd при сжигании обедненной смеси, особенно для дизельных двигателей с небольшим рабочим объемом, где температура двигателя сохраняется на уровне ниже 250°С в большинстве условий движения.
[0009] Как указано выше, главная функция катализаторов окисления дизеля в дизельных транспортных средствах заключается в окислении монооксида углерода и углеводородов до диоксида углерода и воды. Однако недавнее внедрение селективных катализаторов каталитического восстановления (SCR) в выхлопных системах дизельных транспортных средств для удовлетворения нормативных требований к выбросам NOx обусловило также необходимость функционирования DOC в качестве эффективных катализаторов окисления NO. Хотя было показано, что каталитические системы SCR значительно снижают NOx при отношении NO2 к NO в выхлопе примерно 50%, типичные концентрации NO2 выхлопе гораздо ниже. Из-за высоких температур сжигания основной компонент NOx, выходящий из двигателя, представляет собой NO.
[0010] Кроме того, катализаторы DOC на основе Pt/Pd, как известно, являются малоэффективными для окисления NO в NO2. Это особенно справедливо для DOC, содержащих значительные количества Pd (например, при массовом отношении Pt к Pd 2:1 или 1:1). Для применения в DOC Pt и Pd представляют собой предпочтительные благородные металлы для окисления СО и НС, содержащихся в выхлопе дизельных двигателей, и выбор указанных активных металлов обусловлен сочетанием характеристик (т.е. смеси Pt и Pd обладают улучшенными характеристиками в сравнении с использованием Pt и Pd по отдельности) и стоимости (т.е. цена Pd значительно ниже цены Pt). Однако чем больше Pd добавлено в DOC, тем хуже характеристики окисления NO, и катализаторы SCR, расположенные после DOC, подвергаются воздействию концентраций NO2 ниже оптимальных. Хотя характеристики окисления NO катализаторов DOC могут быть улучшены за счет увеличения количества Pt (и соответственно, снижения количества Pd), это не является экономически обоснованным решением из-за высокой цены платины по сравнению с палладием. Кроме того, если отношение Pt/Pd становится слишком большим, то может быть значительно ухудшена активность окисления СО и НС.
[ОО11] Поскольку нормативные требования к выбросам становятся все более жесткими, существует постоянная потребность в разработке каталитических систем окисления дизеля, обеспечивающих улучшенные характеристики, например, улучшенную способность окисления NO. Существует также потребность в максимально эффективном использовании компонентов DOC, например, Pt и Pd.
[0012] Соответственно, необходимо обеспечить улучшенные каталитические материалы, содержащие носители для платины и палладия, которые обладают улучшенными характеристиками.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0013] Варианты реализации первого аспекта настоящего изобретения относятся к каталитическому материалу для окисления N0. В одном или более вариантах реализации каталитический материал содержит носитель катализатора, содержащий подложку из оксида церия-алюминия с диспергированными на ней платиной и необязательно палладием. В одном или более вариантах реализации при наличии палладия массовое отношение платины к палладию составляет по меньшей мере 1:1, а количество оксида церия в подложке составляет от 1% до 12% по массе.
[0014] В одном или более вариантах реализации подложка из оксида церия-алюминия дополнительно содержит диоксид кремния, оксид циркония, оксид бария или оксид магния.
[0015] В конкретных вариантах реализации содержание Pt составляет 1-6 масс. %, а содержание Pd составляет 0-6 масс. %. В одном или более вариантах реализации содержание оксида церия составляет 1-10 масс. %. В конкретных вариантах реализации содержание оксида церия составляет 1-6 масс. %.
[0016] В одном или более вариантах реализации массовое отношение платины к палладию составляет по меньшей мере 2:1.
[0017] Второй аспект настоящего изобретения относится к системе обработки выхлопных газов двигателя, работающего на обедненной топливной смеси. Система для выхлопных газов двигателя, работающего на обедненной топливной смеси, может содержать каталитический материал согласно одному или более вариантам реализации, двигатель, работающий на обедненном топливе, и трубопровод для выхлопных газов, сообщающийся по текучей среде с двигателем, работающим на обедненной топливной смеси. В одном или более вариантах реализации каталитический материал находится в трубопроводе для выхлопных газов.
[0018] В одном или более вариантах реализации указанная система дополнительно содержит катализатор окисления дизеля и/или каталитический сажевый фильтр (CSF, англ.: catalyzed soot filter). В одном или более вариантах реализации каталитический материал может быть расположен на катализаторе окисления дизеля и/или на CSF.
[0019] В одном или более вариантах реализации указанная система дополнительно содержит селективный катализатор каталитического восстановления, расположенный после указанного каталитического материала. Каталитический материал согласно одному или более вариантам реализации может быть расположен на катализаторе окисления дизеля. В конкретных вариантах реализации каталитический материал расположен на катализаторе окисления дизеля и/или на CSF.
[0020] Третий аспект настоящего изобретения относится к способу обработки выхлопных газов двигателя, работающего на обедненной топливной смеси. В одном или более вариантах реализации указанный способ включает приведение потока выхлопных газов в контакт с каталитическим материалом, содержащим носитель катализатора, содержащий подложку из оксида церия-алюминия с диспергированными на ней платиной и необязательно палладием. В одном или более вариантах реализации при наличии палладия массовое отношение платины к палладию составляет по меньшей мере 1:1, а количество оксида церия в подложке составляет от 1% до 12% по массе.
[0021] В одном или более вариантах реализации подложка из оксида церия-алюминия дополнительно содержит диоксид кремния, оксид циркония, оксид бария или оксид магния.
[0022] В одном или более вариантах реализации выхлопные газы содержат NOx. В конкретных вариантах реализации выхлопные газы дополнительно содержат аммиак и/или мочевину.
[0023] Дополнительный аспект настоящего изобретения относится к каталитическому материалу для окисления NO. В одном или более вариантах реализации каталитический материал содержит носитель катализатора, содержащий подложку из оксида церия-алюминия с диспергированными на ней платиной и палладием. В одном или более вариантах реализации массовое отношение платины к палладию составляет примерно 2:1, а количество оксида церия в подложке составляет от 1% до 5% по массе. В конкретных вариантах реализации подложка из оксида церия-алюминия дополнительно содержит диоксид кремния, оксид циркония, оксид бария или оксид магния.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0024] На фиг. 1 представлена диаграмма, демонстрирующая результаты образования NO2 для катализаторов в соответствии с приведенными примерами;
[0025] На фиг. 2 представлена диаграмма, демонстрирующая результаты температуры «light-off» СО и НС для катализаторов в соответствии с приведенными примерами; и
[0026] На фиг. 3 представлены графики, демонстрирующие результаты образования NO2 для катализаторов в соответствии с приведенными примерами.
ПОДРОБНОЕ ОПИСАНИЕ
[0027] Перед описанием некоторых иллюстративных вариантов реализации настоящего изобретения следует понимать, что указанные варианты реализации лишь иллюстрируют принципы и применения настоящего изобретения. Поэтому следует понимать, что могут быть сделаны многочисленные модификации иллюстративных вариантов реализации, и что могут быть разработаны другие схемы без отклонения от общей идеи и границ объема настоящего изобретения, описанного в настоящем документе.
[0028] Для применения в катализаторах окисления дизеля Pt и Pd являются предпочтительными благородными металлами для окисления СО и НС, содержащихся в выхлопе дизельного двигателя. Выбор указанных активных металлов обусловлен сочетанием качества (смеси Pt и Pd обладают улучшенными характеристиками по сравнению с Pt и Pd по отдельности) и цены (цена Pd значительно ниже цены Pt). Однако чем больше Pd добавлено в катализатор окисления дизеля, тем хуже характеристики окисления NO, и катализаторы SCR, расположенные после DOC, подвергаются воздействию концентраций NO2 ниже оптимальных. Хотя характеристики окисления NO катализаторов DOC могут быть улучшены за счет увеличения количества Pt (и соответственно, снижения количества Pd), это не является экономически обоснованным решением из-за высокой цены платины по сравнению с палладием. Таким образом, существует потребность в улучшении способности Pt/Pd катализаторов окисления дизеля окислять NO.
[0029] Следовательно, в соответствии с вариантами реализации настоящего изобретения было обнаружено, что модификации подложки катализатора могут существенно улучшать окисление NO на Pt/Pd. В частности, было обнаружено, что применение подложки для Pt/Pd с оксидом алюминия, содержащей небольшие количества оксида церия, улучшает характеристики катализаторов окисления дизеля.
[0030] Один или более вариантов реализации первого аспекта относятся к каталитическому материалу для окисления NO. Указанный каталитический материал содержит носитель катализатора, содержащий подложку из оксида церия-алюминия с диспергированными на ней платиной и необязательно палладием. В одном или более вариантах реализации при наличии палладия массовое отношение платины к палладию составляет по меньшей мере 1:1, а количество оксида церия в подложке составляет от 1% до 12% по массе.
[0031] В отношении терминов, используемых в настоящем описании, предложены следующие определения.
[0032] При использовании в настоящем документе термин «активированный оксид алюминия» относится к фазе оксида алюминия с большой площадью поверхности, такой как, но не ограничиваясь им, гамма-оксид алюминия.
[0033] При использовании в настоящем документе термин «носитель катализатора» относится к композиционной подложке, которая поддерживает конкретную композицию и/или каталитические частицы, такие как металл платиновой группы или катализатор на основе оксида неблагородного металла. При использовании в настоящем документе термин «подложка» относится к лежащему в основе материалу с большой площадью поверхности (например, оксиду алюминия, оксиду церия-алюминия), на который нанесены дополнительные химические соединения или элементы. Так, подложка может содержать частицы оксида церия-алюминия, а носитель катализатора может содержать частицы подложки из оксида церия-алюминия, на которых диспергированы платина и необязательно палладий.
[0034] Более конкретно, «подложка» в носителе катализатора представляет собой материал, который принимает благородные металлы, стабилизаторы, промоторы, связующие вещества и т.п. посредством ассоциации, диспергирования, пропитывания или других подходящих способов. Подходящие подложки с большой площадью поверхности включают один или более тугоплавких оксидов. Указанные оксиды включают, например, диоксид кремния, оксид алюминия, диоксид титана, оксид церия, оксид бария, оксид магния и оксид циркония, а также их смешанные оксидные формы, такие как оксид кремния-алюминия, алюмосиликаты (которые могут быть аморфными или кристаллическими), оксид алюминия-циркония, оксид алюминия-церия, оксид титана-алюминия и силикат циркония. В одном из вариантов реализации подложка выбрана из оксида церия-алюминия, легированного оксидом церия оксида алюминия и легированного оксидом церия оксида кремния-алюминия. Оксид алюминия включает элементы гамма, дельта, тета или переходных оксидов алюминия, такие как гамма и бета-оксиды алюминия и, при его наличии, небольшого количества другого тугоплавкого оксида, например, до примерно 20 массовых процентов. Например, в других вариантах реализации подложка выбрана из смешанных подложек на основе оксида алюминия, содержащих оксид церия, включая СеО2-ZrO2-Al2O3, СеО2-ВаО-Al2O3 и CeO2-MgO-Al2O3. Подложки из тугоплавких оксидов металлов с большой площадью поверхности относятся к частицам подложки, имеющим большую площадь внешней поверхности, поры крупнее и широкое распределение пор. Подложки из тугоплавких оксидов металла с большой площадью поверхности, например, материалы подложек из оксида церия-алюминия, обычно имеют площадь поверхности по БЭТ более 60 квадратных метров на грамм («м2/г»), зачастую до примерно 200 м2/г или более. «Площадь поверхности по БЭТ» относится к способу определения площади поверхности Брунауэра-Эмметта-Теллера по адсорбции N2. Подходящий активный оксид церия-алюминия имеет удельную площадь поверхности от 60 до 350 м2/г и типично от 60 до 250 м2/г.В конкретных вариантах реализации нагрузка подложки из оксида церия-алюминия на монолитную подложку составляет от примерно 0,5 до примерно 6 г/дюйм3, более конкретно от примерно 2 до примерно 5 г/дюйм3 и наиболее конкретно от примерно 3 до примерно 4 г/дюйм3 (все подсчеты выполнены в расчете на объем монолита с покрытием).
[0035] Термин «подложка» относится к монолитному материалу, на который наносят носитель катализатора, обычно в форме покрытия из пористого оксида, содержащего множество частиц носителя с расположенными на них каталитическими частицами. Покрытие из пористого оксида формируют посредством получения суспензии, имеющее определенное содержание твердых частиц (например, 20-50% по массе) подложки в жидком носителе, которую затем наносят на подложку и высушивают с получением слоя покрытия из пористого материала.
[0036] При использовании в настоящем документе «каталитическое изделие» относится к подложке, на которой расположено множество носителей катализатора с расположенными на них каталитическими частицами. Каталитическое изделие может содержать одно или более покрытий из пористого оксида на подложке.
[0037] При использовании в настоящем документе термин «металл платиновой группы» или «PGM» относится к одному или более химическим элементам VIII группы, представленным в периодической таблице элементов, включая платину (Pt), палладий (Pd), родий (Rh), осмий (Os), иридий (Ir) и рутений (Ru), а также их смеси.
[0038] В одном или более вариантах реализации носитель катализатора содержит подложку из оксида церия-алюминия, на которой диспергирована смесь платины и палладия. В одном или более вариантах реализации массовое отношение платины к палладию составляет по меньшей мере 1:1. В одном или более вариантах реализации каталитический материал имеет отношение Pt/Pd по меньшей мере 2:1. В одном или более вариантах реализации каталитический материал имеет отношение Pt/Pd по меньшей мере 4:1. В конкретных вариантах реализации каталитический материал имеет отношение Pt/Pd по меньшей мере 16:1. В одном или более вариантах реализации каталитический материал содержит только платину и не содержит палладия.
[0039] Как правило, каталитический материал может быть нанесен на подложку для обеспечения требуемого количества каталитических частиц. Например, носитель катализатора может содержать примерно от 20 примерно до 300 г/фут3, например, 20-150 г/фут3 каталитических частиц PGM. Носитель катализатора, нанесенный на подложку, обычно формируют в виде слоя покрытия на большинстве, если не на всех поверхностях подложки, с которой его приводят в контакт. Содержание платинового компонента может составлять от примерно 20 г/фут3 до примерно 300 г/фут3 (включая 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 и 300 г/фут3). При наличии и платины, и палладия общая нагрузка палладия и платины в некоторых аспектах составляет от примерно 20 г/фут3 до примерно 300 г/фут3 (включая 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 и 300 г/фут3). При наличии Pd содержание Pd компонента может составлять от примерно 1 г/фут3 до примерно 150 г/фут3 (включая 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, ПО, 120, 130, 140 и 150 г/фут3). В одном или более вариантах реализации палладий отсутствует.
[0040] Как правило, содержание палладия в нагрузке составляет от примерно 0,1 до примерно 6 масс. % на подложке из тугоплавкого оксида. В одном или более вариантах реализации палладий отсутствует.
[0041] Как правило, содержание платины в нагрузке составляет от примерно 1 до примерно 6 масс. % на подложке из тугоплавкого оксида.
[0042] В конкретных вариантах реализации каталитический материал для окисления NO содержит носитель катализатора, содержащий подложку из оксида церия-алюминия, на которой диспергирована смесь платины и палладия. Массовое отношение платины к палладию составляет примерно 2:1, а количество оксида церия в подложке составляет от 1% до 5% по массе. В одном или более вариантах реализации подложка из оксида церия-алюминия дополнительно содержит диоксид кремния, оксид циркония, оксид бария или оксид магния.
[0043] Термически стабильный оксид алюминия с высокой площадью поверхности долгое время использовали в качестве носителя для тонкодисперсных частиц благородных металлов. В настоящем изобретении оксид церия включен в частицы оксида алюминия или смешан с ними в качестве подложки. В одном или более вариантах реализации подложка содержит смесь оксида алюминия с оксидом церия. Количество оксида церия в подложке составляет от 1% до 12% по массе. Подложка может содержать 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11% или 12% оксида церия по массе. Подложки, такие как Ce/Al/Si (5/89/6) и Се/Al (9/91), могут быть приобретены у коммерческих поставщиков, где массовые проценты рассчитаны на основании оксидов (оксид церия/оксид алюминия/диоксид кремния = СеО2/Al2O3/SiO2 и оксид церия/оксид алюминия = СеО2/Al2O3). Кроме того, традиционные подложки из оксида алюминия и оксида кремния-алюминия, предлагаемые коммерческими поставщиками, могут быть легированы оксидом церия в количестве от 1% до 125 по массе для получения подложек из оксида церия-алюминия и из оксида церия-алюминия-кремния в соответствии с одним или более вариантами реализации. Массовые проценты рассчитаны на основании оксидов (оксид церия/оксид алюминия = СеО2/Al2O3 и оксид церия/оксид алюминия/диоксид кремния = СеО2/Al2O3/SiO2).
[0044] В одном или более вариантах реализации каталитический материал для окисления NO содержит носитель катализатора, содержащий подложку из оксида церия-алюминия, на которой диспергирована смесь платины и палладия. В одном или более конкретных вариантах реализации массовое отношение платины к палладию составляет примерно 2:1. Количество оксида церия в подложке составляет от 1% до 6% по массе (включая 1%, 1,5%, 2%, 2,5%, 3%, 3,5%, 4%, 4,5%, 5%, 5,5% или 6% по массе).
[0045] В одном или более вариантах реализации подложка дополнительно содержит диоксид кремния, оксид циркония, оксид бария или оксид магния в количестве от 0% до 10% по массе (включая 0%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% или 10% по массе).
[0046] В одном или более вариантах реализации подложка представляет собой керамический или металлический материал, имеющий ячеистую структуру. Может быть использована любая подходящая подложка, такая как монолитная подложка такого типа, которая имеет узкие параллельные протоки для газа, проходящего через нее с входной к выходной стороне подложки, при этом указанные протоки открыты для прохода через них потока. Протоки, которые по существу представляют собой прямые каналы с входящей стороны к исходящей стороне, ограничены стенками, которые покрыты каталитическим материалом в виде покрытия из пористого оксида, так что газы проходят через указанные протоки и приводятся в контакт с каталитическим материалом. Протоки монолитной подложки представляют собой тонкостенные каналы, которые могут иметь любую форму и размер поперечного сечения, например поперечное сечение может быть трапециевидным, прямоугольным, квадратным, синусоидальным, гексагональным, овальным, круглым и т.д. Указанные монолитные структуры могут содержать до примерно 700 или более протоков (или «ячеек») на квадратный дюйм поперечного сечения, хотя могут быть использованы структуры с гораздо меньшим количеством протоков. Например, монолит может иметь от примерно 7 до 600, более часто от примерно 100 до 400 ячеек на квадратный дюйм («cpsi»). Ячейки могут иметь поперечные сечения, которые имеют прямоугольную, квадратную, круглую, овальную, треугольную, шестиугольную или любую другую многоугольную форму. Керамическая подложка может быть изготовлена из любого подходящего тугоплавкого материала, например, кордиерита, кордиерит-α-оксида алюминия, нитрида кремния, карбида кремния, муллита циркония, сподумена, оксида алюминия-кремния-марганца, силиката циркония, силлиманита, силиката магния, циркона, петалита, α-оксида алюминия, алюмосиликата и т.п.
[0047] Подложки, подходящие для носителей катализаторов согласно вариантам реализации настоящего изобретения, также могут быть металлическими по своей природе и могут состоять из одного или более металлов или металлических сплавов. Металлические подложки могут быть использованы в различных формах, таких как гранулы, гофрированный лист или монолитная форма. Конкретные примеры металлических подложек включают термостойкие сплавы металлов, особенно те, в которых основным или главным компонентом является железо.
[0048] Каталитические материалы согласно вариантам реализации настоящего изобретения могут быть нанесены на подложку известным в данной области техники способом. Например, каталитический материал может быть сформирован в виде покрытия из пористого оксида, которое может быть нанесено распылением, порошковым напылением или покраской, или погружением поверхности в каталитический материал.
[0049] В одном или более вариантах реализации каталитический материал наносят на ячеистую подложку.
[0050] Для получения подложки, содержащей частицы оксида церия-алюминия, могут быть использованы промышленные подложки. В качестве альтернативного варианта, промышленные подложки из оксида алюминия и оксида кремния-алюминия могут быть пропитаны оксидом церия с применением технологии пропитки по влагоемкости. Например, промышленная подложка из оксида кремния-алюминия может быть пропитана до 100% влагоемкости раствором нитрата Се с последующим высушиванием и прокаливанием при 850°С в течение 2 часов на воздухе с получением подложки, содержащей SiO2/Al2O3/CeO2. Затем подложки могут быть использованы для получения носителя катализатора в соответствии с одним или более вариантами реализации.
[0051] Для получения носителя катализатора с диспергированными на нем платиной и необязательно палладием подложку из оксида церия-алюминия сначала пропитывают водной смесью раствора соли металла, содержащего по меньшей мере один из ацетата, нитрата, гидроксида или карбоната палладия. Затем пропитанную подложку высушивают/прокаливают с получением носителя катализатора, пропитанного палладием. Указанные стадии известны также как термическое закрепление. Как правило, термическое закрепление означает, что соль-предшественник требуемого благородного металла в водном растворе наносят на требуемую подложку и прокаливают подложку при высокой температуре, например, 400°С или выше. При высушивании/прокаливании происходит удаление свободной влаги, а также разложение солей с образованием металлов, оксидов, гидроксидов и карбонатов.
[0052] После пропитывания палладием подложку смешивают с водой с получением суспензии. Затем добавляют водный раствор соли платины. Соли платины включают, но не ограничиваются ими, платину А, нитрат платины, платины тетрааминацетат, платины тетрааминнитрат и платины тетраамингидроксид. Затем суспензию измельчают до достижения размера частиц, обычно необходимого для получения монолитного покрытия (например, d90<20 мкм). Суспензию высушивают при перемешивании, а затем прокаливают порошок на воздухе при 450°С с получением каталитического материала.
[0053] Оксидные материалы, содержащие оксид церия, как известно, не являются эффективными подложками для катализаторов на основе Pt. Не ограничиваясь теорией, предполагают, что оксид церия в непосредственной близости к Pt склонен к удерживанию Pt в окисленной и, следовательно, каталитически менее активной форме. Однако в одном или более вариантах реализации подложка из оксида алюминия, содержащая оксид кремния, улучшает окисление NO при сохранении хороших показателей по монооксиду углерода и углеводородам. Количество NO2, образованного при 250°С на катализаторах с подложкой из оксида алюминия-церия в соответствии с одним или более вариантами реализации, было примерно в два раза выше, чем его количество, образованное с применением эталонных катализаторов из оксида алюминия и оксида кремния-алюминия. Не были ухудшены характеристики «light-off» ни для СО, ни для НС катализаторов, полученных с подложкой из оксида церия-алюминия, по сравнению с характеристиками эталонных катализаторов.
[0054] Внедрение оксида церия в промышленную подложку из оксида кремния-алюминия перед ее пропиткой благородными металлами обеспечивает значительное улучшение способности образования NO2. В соответствии с одним или более вариантами реализации количество NO2, образованного при 250°С с помощью катализаторов на подложке из оксида кремния-алюминия, содержащей оксид церия, после выдерживания при 800°С удвоилось по сравнению с его количеством, образованным с помощью эталонных катализаторов на основе оксида кремния-алюминия. Кроме того, в одном или более вариантах реализации было обнаружено, что более высокое содержание оксида церия (примерно 6% по сравнению с примерно 4%) является целесообразным.
[0055] Ожидается, что носители катализаторов, полученные в соответствии с принципами, описанными выше, будет пригодным для получения подходящих каталитических изделий для обработки выхлопных газов, применимых в системах обработки или регулирования выбросов. Например, указанные носители катализаторов для обработки выхлопных газов могут быть нанесены на одну или более подходящих подложек для обработки и/или обработки газообразных продуктов, исходящих из двигателя внутреннего сгорания.
[0056] Система обработки выбросов для двигателя, работающего на обедненной смеси, может содержать двигатель, работающий на обедненной смеси, трубопровод для выхлопных газов, сообщающийся по текучей среде с двигателем, работающим на обедненной смеси, и каталитический материал в соответствии с одним или более вариантами реализации. Каталитический материал может находиться в трубопроводе для выхлопных газов.
[0057] Положение каталитического материала в соответствии с одним или более вариантами реализации в системе обработки выхлопных газов не ограничено конкретным модулем катализатора (например, катализатором окисления дизеля или каталитическим сажевым фильтром (CSF)). Однако каталитический материал в соответствии с одним или более вариантами реализации должен быть расположен до катализатора SCR, при его наличии. В одном или более вариантах реализации каталитический материал согласно настоящему изобретению может быть расположен на DOC и/или CSF. В одном или более вариантах реализации селективный катализатор каталитического восстановления (SCR) может быть расположен после указанного каталитического материала. В конкретном варианте реализации система содержит, в указанном порядке, катализатор окисления дизеля, сажевый фильтр в форме фильтра с проточными стенками, каталитический сажевый фильтр, содержащий катализатор CSF и CSR, с инжектором восстановителя непосредственно перед катализатором SCR. Каталитический материал в соответствии с настоящим изобретением может быть использован в катализаторе окисления дизеля или в CSF в соответствии с конкретным вариантом реализации.
[0058] В случае системы DOC/SCR улучшенный каталитический материал в соответствии с одним или более вариантами реализации может быть расположен на DOC. В случае системы DOC/SCRF (катализатор SCR на фильтре, таком как фильтр с проточными стенками) улучшенный каталитический материал может быть дополнительно расположен на указанном фильтре. В случае системы DOC/CSF/SCR улучшенный каталитический материал в соответствии с одним или более вариантами реализации может быть расположен на DOC и/или CSF, но предпочтительно как минимум на CSF для максимального образования NO2.
[0059] Компонент SCR может быть расположен после компонента сажевого фильтра. Подходящий компонент катализатора SCR для применения в системе обработки выхлопа может эффективно катализировать восстановление компонента NOx при температурах ниже 600°С, поэтому надлежащие количества NOx могут быть обработаны даже в условиях низкой нагрузки, которые обычно связаны с более низкими температурами выхлопа. Предпочтительно, каталитическое изделие SCR может обеспечивать превращение по меньшей мере 50% компонента NOx в N2, в зависимости от количества восстановителя, добавленного в систему. Другая желательная особенность композиции SCR заключается в том, чтобы она обладала способностью катализировать реакцию О2 с избытком NH3 с образованием N2 и Н2О, чтобы не происходило выброса NH3 в атмосферу. Подходящие каталитические композиции SCR, используемые в указанной системе обработки выбросов, должны также обладать термической устойчивостью к температурам более 650°С. Такие высокие температуры могут возникать при регенерации предшествующего каталитического сажевого фильтра.
[0060] Подходящие каталитические композиции SCR описаны, например, в патентах США №4961917 (патент '917) и 5516497, полное содержание которых включено в настоящий документ посредством ссылки. Композиции, описанные в патенте '917, содержат один или оба из железного и медного промотора, содержащихся в цеолите в количестве от примерно 0,1 до 30 процентов по массе, предпочтительно от примерно 1 до 5 процентов по массе относительно общей массы промотора с цеолитом. Помимо их способности катализировать восстановление NOx и NH3 до N2, описанные композиции также могут ускорять окисление избытка NH3 под действием О2, особенно те композиции, которые имеют более высокие концентрации промотора. Другие конкретные композиции SCR, которые могут быть использованы в соответствии с одним или более вариантами реализации настоящего изобретения, включают молекулярные сита с мелкими 8-кольцевыми порами, например, молекулярные сита, имеющие тип структуры, выбранный из группы, состоящей из AEI, AFT, AFX, СНА, ЕАВ, ERI, KFI, LEV, SAS, SAT и SAV. В конкретном варианте реализации молекулярные сита с мелкими 8-кольцевыми порами имеют структуру СНА и представляют собой цеолит. Цеолит СНА может содержать медь. Иллюстративные цеолиты СНА имеют отношение диоксида кремния к оксиду алюминия (SAR) более примерно 15 и содержание меди более примерно 0,2 масс. %. В более конкретном варианте реализации молярное отношение диоксида кремния к оксиду алюминия составляет от примерно 15 до примерно 256, а содержание меди составляет от примерно 0,2 масс. % до примерно 5 масс. %. Другие подходящие композиции для SCR включают нецеолитные молекулярные сита, имеющие кристаллическую структуру СНА. Например, в соответствии с одним или более вариантами реализации могут быть использованы кремнеалюмофосфаты, такие как SAPO-34, SAPO-44 и SAPO-18. Другие подходящие катализаторы SCR могут включать смешанные оксиды, содержащие один или более из V2O5, WO3 и TiO2.
[0061] Варианты реализации дополнительного аспекта настоящего изобретения относятся к способу обработки выхлопного газа. Выхлопной газ может содержать NOx, аммиак и/или мочевину. Указанный способ включает приведение выхлопного газа в контакт с каталитическим материалом, содержащим носитель катализатора, содержащий подложку из оксида церия-алюминия с диспергированными на ней платиной и необязательно палладием. Количество оксида церия в подложке составляет от 1% до 12% по массе. При наличии палладия массовое отношение платины к палладию составляет по меньшей мере 1:1.
[0062] Использование терминов в единственном числе в отношении описания материалов и способов, рассмотренных в настоящем документе (особенно в контексте следующей формулы изобретения) следует толковать как включающие единственное и множественное число, если в тексте не указано иное или очевидно не опровергается контекстом. Перечисление диапазонов значений в настоящем документе предназначено лишь для краткости отдельного упоминания каждого отдельного значения, входящего в указанный диапазон, если не указано иное, и каждое отдельное значение включено в настоящее описание, как если бы оно было специально перечислено в настоящем документе. Все способы, описанные в настоящем документе, могут быть выполнены в любом подходящем порядке, если в настоящем документе не указано иное, или если очевидно не опровергается контекстом. Применение любого или всех примеров или иллюстративной формулировки (например, «такой как»), представленных в настоящем документе, предназначено только для лучшего освещения материалов и способов и не ориентировано на ограничение границ объема настоящего изобретения, если не указано иное. Никакие формулировки настоящего описания не следует толковать как указывающие на незаявленный элемент, существенный для практического осуществления описанных материалов и способов.
[0063] Далее настоящее описание описано со ссылкой на следующие примеры. Перед описанием некоторых иллюстративных вариантов реализации настоящего изобретения следует понимать, что настоящее изобретение не ограничено деталями конструкции или технологическими стадиями, представленными в следующем описании. Настоящее изобретение может иметь другие варианты реализации и может быть осуществлено на практике или реализовано различными способами.
ПРИМЕРЫ
[0064] Пример 1
[0065] Подложку из оксида церия-алюминия, приобретенную у коммерческого поставщика, номинально содержащую 9% оксида церия (СеО2) по массе и имеющую площадь поверхности по БЭТ 100 м2/г и объем внутренних пор 0,81 см3/г, пропитывали раствором нитрата Pd, используя стандартную технологию пропитки по плагоемкости. Порошок, пропитанный Pd, поместили в деионизированную воду и добавили раствор Pt А. После снижения рН до 4 добавлением кислоты суспензию измельчили до размера 90% частиц менее 15 мкм. Измельченную суспензию высушили при перемешивании и прокаливали на воздухе при 450°С в течение 2 часов. Общая нагрузка Pt на подложку из оксида церия-алюминия составила 2,6%, а общая нагрузка Pd составила 1,3% (массовое отношение Pt/Pd=2:1).
[0066] Пример 2
[0067] Подложку из оксида церия-кремния-алюминия, приобретенную у коммерческого поставщика, номинально содержащую 5% оксида церия (СеО2) и 6% диоксида кремния (SiO2) по массе и имеющую площадь поверхности по БЭТ 208 м2/г и объем внутренних пор 1,03 см3/г, пропитывали раствором нитрата Pd, используя стандартную технологию пропитки по плагоемкости. Порошок, пропитанный Pd, поместили в деионизированную воду и добавили раствор Pt А. После снижения рН до 4 добавлением кислоты суспензию измельчили до размера 90% частиц менее 15 мкм. Измельченную суспензию высушили при перемешивании и прокаливали на воздухе при 450°С в течение 2 часов. Общая нагрузка Pt на подложку из оксида церия-кремния-алюминия составила 2,6%, а общая нагрузка Pd составила 1,3% (массовое отношение Pt/Pd=2:1).
[0068] Пример 3
[0069] Материал подложки из оксида церия-кремния-алюминия, номинально содержащий 4% оксида церия (СеО2), 5% диоксида кремния (SiO2) и 91% оксида алюминия (Al2O3) по массе получили пропитыванием имеющейся в продаже подложки из оксида кремния-алюминия, номинально содержащей 5% диоксида кремния (SiO2) по массе и имеющей площадь поверхности по БЭТ 180 м2/г и объем внутренних пор 0,70 см3/г, до 100% влагоемкости раствором нитрата Се с последующим высушиванием и прокаливанием на воздухе при 850°С в течение 2 часов. Затем материал подложки пропитывали раствором нитрата Pd, используя стандартную технологию пропитки по влагоемкости. Порошок, пропитанный Pd, поместили в деионизированную воду и добавили раствор Pt А. После снижения рН до 4 добавлением кислоты суспензию измельчили до размера 90% частиц менее 15 мкм. Измельченную суспензию высушили при перемешивании и прокаливали на воздухе при 450°С в течение 2 часов. Общая нагрузка Pt на подложку из оксида церия-кремния-алюминия составила 2,6%, а общая нагрузка Pd составила 1,3% (массовое отношение Pt/Pd=2:1).
[0070] Пример 4
[0071] Материал подложки из оксида церия-кремния-алюминия, номинально содержащий 6% оксида церия (СеО2), 5% диоксида кремния (SiO2) и 89% оксида алюминия (Al2O3) по массе, получили пропитыванием промышленной подложки из оксида кремния-алюминия, использованной в примере 3, до 100% влагоемкости раствором нитрата Се с последующим высушиванием и прокаливанием на воздухе при 850°С в течение 2 часов. Затем материал подложки пропитывали раствором нитрата Pd, используя стандартную технологию пропитки по влагоемкости. Порошок, пропитанный Pd, поместили в деионизированную воду и добавили раствор Pt А. После снижения рН до 4 добавлением кислоты суспензию измельчили до размера 90% частиц менее 15 мкм. Измельченную суспензию высушили при перемешивании и прокаливали на воздухе при 450°С в течение 2 часов. Общая нагрузка Pt на подложку из оксида церия-кремния-алюминия составила 2,6%, а общая нагрузка Pd составила 1,3% (массовое отношение Pt/Pd=2:1).
[0072] Пример 5 - СРАВНИТЕЛЬНЫЙ
[0073] Промышленную подложку из оксида кремния-алюминия, использованную в примере 3, пропитывали раствором нитрата Pd, используя стандартную технологию пропитки по влагоемкости. Порошок, пропитанный Pd, поместили в деионизированную воду и добавили раствор Pt А. После снижения рН до 4 добавлением кислоты суспензию измельчили до размера 90% частиц менее 15 мкм. Измельченную суспензию высушили при перемешивании и прокаливали на воздухе при 450°С в течение 2 часов. Общая нагрузка Pt на подложку из оксида кремния-алюминия составила 2,6%, а общая нагрузка Pd составила 1,3% (массовое отношение Pt/Pd=2:1).
[0074] Пример 6 - СРАВНИТЕЛЬНЫЙ
[0075] Подложку из оксида алюминия, приобретенную у коммерческого поставщика, имеющую площадь поверхности по БЭТ 150 м2/г и объем внутренних пор 0,85 см3/г, пропитывали раствором нитрата Pd, используя стандартную технологию пропитки по влагоемкости. Порошок, пропитанный Pd, поместили в деионизированную воду и добавили раствор Pt А. После снижения рН до 4 добавлением кислоты суспензию измельчили до размера 90% частиц менее 15 мкм. Измельченную суспензию высушили при перемешивании и прокаливали на воздухе при 450°С в течение 2 часов. Общая нагрузка Pt на подложку из оксида алюминия составила 2,6%, а общая нагрузка Pd составила 1,3% (массовое отношение Pt/Pd=2:1).
[0076] Пример 7
[0077] Материал подложки из оксида церия-кремния-алюминия, номинально содержащий 1% оксида церия (СеО2), 5% диоксида кремния (SiO2) и 94% оксида алюминия (Al2O3) по массе, получили пропитыванием промышленной подложки из оксида кремния-алюминия, использованной в примере 3, до 100% влагоемкости раствором нитрата Се с последующим высушиванием и прокаливанием на воздухе при 850°С в течение 2 часов. Затем материал подложки пропитывали раствором нитрата Pd, используя стандартную технологию пропитки по влагоемкости. Порошок, пропитанный Pd, поместили в деионизированную воду и добавили раствор Pt А. После снижения рН до 4 добавлением кислоты суспензию измельчили до размера 90% частиц менее 15 мкм. Измельченную суспензию высушили при перемешивании и прокаливали на воздухе при 450°С в течение 2 часов. Общая нагрузка Pt на подложку из оксида церия-кремния-алюминия составила 2,6%, а общая нагрузка Pd составила 1,3% (массовое отношение Pt/Pd=2:1). Аналогичным образом получили два дополнительных образца с таким же массовым отношением Pt/Pd, используя подложки из оксида церия-кремния-алюминия, содержащие 3% и 5% оксида церия (СеО2), соответственно.
[0078] Пример 8
[0079] Повторили получение трех образцов Pt/Pd/оксида церия-кремния-алюминия, как описано в примере 7, используя тот же способ, который описан в примере 7, за исключением того, что количество Pt и Pd подобрали так, чтобы получить массовое отношение Pt/Pd 4:1, сохраняя такую же общую нагрузку благородных металлов, равную 3,9%.
[0080] Пример 9 - СРАВНИТЕЛЬНЫЙ
[0081] Получили эталонные образцы, используя подложку из оксида кремния-алюминия без оксида церия, с массовыми отношениями Pt/Pd 2:1 и 4:1 в соответствии со способом, описанным в примере 5.
[0082] Пример 10
[0083] Материал подложки из оксида церия-алюминия, номинально содержащий 1% оксида церия (СеО2) и 99% оксида алюминия (Al2O3) по массе, получили из имеющейся в продаже подложки из оксида алюминия в форме бемита, имеющей площадь поверхности по БЭТ 250 м2/г и объем пор 0,5 см3/г, пропитыванием после активации при 550°С до 100% влагоемкости раствором нитрата Се с последующим высушиванием и прокаливанием на воздухе при 850°С в течение 2 часов. Затем материал подложки пропитывали раствором нитрата Pd, используя стандартную технологию пропитки по влагоемкости. Порошок, пропитанный Pd, поместили в деионизированную воду и добавили раствор Pt А. После снижения рН до 4 добавлением кислоты суспензию измельчили до размера 90% частиц менее 15 мкм. Измельченную суспензию высушили при перемешивании и прокаливали на воздухе при 450°С в течение 2 часов. Общая нагрузка Pt на подложку из оксида церия-алюминия составила 2,6%, а общая нагрузка Pd составила 1,3% (массовое отношение Pt/Pd=2:1). Аналогичным образом получили два дополнительных образца с таким же массовым отношением Pt/Pd, используя подложки из оксида церия-алюминия, содержащие 3% и 5% оксида церия (СеО2), соответственно.
[0084] Пример 11
[0085] Повторили получение трех образцов Pt/Pd/оксида церия-алюминия, как описано в примере 10, используя тот же способ, который описан в примере 10, за исключением того, что количество Pt и Pd подобрали так, чтобы получить массовое отношение Pt/Pd 4:1, сохраняя такую же общую нагрузку благородных металлов, равную 3,9%.
[0086] Пример 12 - СРАВНИТЕЛЬНЫЙ
[0087] Получили эталонные образцы, используя подложку из оксида алюминия в форме бемита из примеров 10 и 11, но без оксида церия, с массовыми отношениями Pt/Pd 2:1 и 4:1 в соответствии со способом, описанным в примере 6.
[0088] Пример 13
[0089] Pt/Pd катализаторы с массовым отношением 2:1 получили в соответствии со способом, описанным в примере 1, используя следующие смешанные подложки из оксида алюминия, содержащего оксид церия, приобретенные у коммерческих поставщиков (в скобках указан номинальный оксидный состав по массе): CeO2-ZrO2-Al2O3 (10%-10%-80%), CeO2-ВаО-Al2O3 (10%-10%-80%) и CeO2-MgO-Al2O3 (8%-20%-72%).
РЕЗУЛЬТАТЫ
[0090] Порошки катализаторов согласно примерам 1-6 измельчили и просеяли до целевой фракции 250-500 мкм. Затем катализаторы выдерживали при 800°С в атмосфере 10% Н2О в воздухе в течение 20 часов. Затем состаренные порошки катализаторов (каждый по 100 мг) испытали на характеристики окисления СО, НС и NO, используя полностью автоматическую испытательную установку, имеющую 48 параллельных реакторов с неподвижным слоем, изготовленных из нержавеющей стали, с внутренним диаметром 7 мм для каждого отдельного реактора. Катализаторы испытывали в условиях работы на установившемся режиме при 120, 140, 160, 180, 200, 220, 250 и 300°С, пропуская газообразную смесь, имитирующую дизельный выхлоп (1500 ppm СО, 500 ppm C1 НС, 100 ррт NO, 13% O2, 10% CO2, 5% H2O в N2), через каждый реактор при каждой температуре в течение 4 минут с суммарным потоком 45 л/час.
[0091] Результаты окисления NO для катализаторов, полученных в примерах 1-6, представлены на фиг. 1. Количество NO2, образованного при 250°С с помощью новых катализаторов на подложке, содержащей оксид церия (примеры 1 и 2), было примерно в два раза больше, чем количество, образованное с помощью эталонных катализаторов на основе оксида алюминия (примеры 5 и 6). Внедрение оксида церия в эталонную подложку из оксида кремния-алюминия (примеры 3 и 4) перед ее пропиткой благородным металлом обеспечило значительное улучшение способности образования NO2. Количество NO2, образованного при 250°С с помощью новых катализаторов на подложке из оксида кремния-алюминия, содержащей оксид церия (примеры 3 и 4), после выдерживания при 800°С было примерно в два раза больше, чем количество, образованное с помощью эталонного катализатора на основе оксида кремния-алюминия (пример 5). Было также обнаружено, что более высокое содержание оксида церия (6% против 4%) имеет благоприятный эффект.
[0092] Кроме того, как показано на фиг. 2, характеристики «light-off» СО катализаторов, полученных на новых подложках (примеры 1-4), были лишь незначительно ухудшены по сравнению с эталонными катализаторами, тогда как характеристики «light-off» НС были немного улучшены. Полученные результаты являются весьма неожиданными, поскольку известно, что оксидные материалы, содержащие оксид церия, не являются эффективными подложками для катализаторов на основе Pt, так как оксид церия в непосредственной близости к Pt склонен к удерживанию Pt в окисленной и, следовательно, каталитически менее активной форме. Однако катализаторы, полученные в соответствии с вариантами реализации настоящего изобретения, улучшают окисление NO при сохранении хороших характеристик в отношении СО и НС. Превосходные результаты окисления NO на новых подложках, содержащих оксид церия, в зависимости от температуры представлены на фиг. 3.
[0093] Порошки катализаторов согласно примерам 7-13 измельчили и просеяли до целевой фракции 250-500 мкм. Затем катализаторы выдерживали при 800°С в атмосфере 10% Н2О в воздухе в течение 20 часов. Затем состаренные порошки катализаторов (каждый по 100 мг) испытали на характеристики окисления СО, НС и NO, используя полностью автоматическую испытательную установку, имеющую 48 параллельных реакторов с неподвижным слоем, изготовленных из нержавеющей стали, с внутренним диаметром 7 мм для каждого отдельного реактора. Катализаторы испытывали в условиях работы на установившемся режиме при 120, 135, 150, 165, 180, 195, 210, 225, 250, 300 и 350°С, пропуская газообразную смесь, имитирующую дизельный выхлоп (700 ppm СО, 440 ppm C1 НС, 70 ppm NO, 10% O2, 10% CO2, 5% H2O в N2), через каждый реактор при каждой температуре в течение 4 минут с суммарным потоком 45 л/час. Состав реагирующего газа был немного другим, чем состав газа, использованного для испытания порошков, полученных в примерах 1-6, здесь использовали более низкие концентрации СО, НС и NO.
[0094] Порошки катализаторов из примеров 7-12 подвергали старению и испытывали аналогично порошкам катализаторов из примеров 1-6. Результаты окисления NO для образцов приготовленных с использованием промышленной подложки оксид кремния-оксид алюминия приведены в Таблице 1. Включение оксида церия в стандартную подложку оксид кремния-оксид алюминия (Примеры 7 и 8) до пропитки драгоценным металлом обеспечило значительное улучшение возможности образования NO2, при уровне оксида церия выше 1%. Наилучшие характеристики окисления NO были получены для образцов, содержащих 3 и 5% оксида церия. Для образцов с массовым отношением Pt/Pd 2:1 количество NO2, образованного при 250°С с применением новой подложки с оксидом кремния-алюминия, содержащей оксид церия в количестве 3 или 5%, после выдерживания при 800°С было примерно в два раза больше, чем количество, образованное с применением эталонного катализатора на основе оксида кремния-алюминия (пример 9). Хотя количество NO2, образованного для образцов с отношением 4:1 было немного выше, чем для образцов с отношением 2:1 при нагрузке по оксиду церия 0 и 1%, результаты для образцов с отношением 2:1 и 4:1 были равными при нагрузке по оксиду церия 3 и 5%.
[0095] Результаты окисления NO для образцов, полученных с применением промышленной подложки с оксидом алюминия в форме бемита, представлены в Таблице 2. Внедрение оксида церия в эталонную подложку из оксида алюминия (примеры 10 и 11) перед ее пропиткой благородным металлом обеспечивает некоторое улучшение способности к образованию NO2. Для образцов с отношением 2:1 количество NO2, образованного при 250°С после выдерживания при 800°С, было в 1,7 раза больше, чем количество, образованное с применением эталонного катализатора на основе оксида алюминия.
[0096] Результаты окисления СО для примеров, полученных с применением промышленной подложки из оксида кремния-алюминия, представлены в Таблице 3, а результаты окисления СО для примеров, полученных с применением промышленной подложки из оксида алюминия в форме бемита, представлены в Таблице 4. Внедрение оксида церия в эталонные подложки из оксида алюминия и оксида кремния-алюминия не оказало влияния на температуру «light-off» СО в пределах экспериментальной погрешности испытательной системы. Не наблюдали никакого влияния нагрузки оксида церия, и наилучшие результаты были получены для образцов, полученных при массовом отношении Pt/Pd 4:1.
[0097] Результаты окисления NO для образцов, полученных в примере 13 с применением промышленных смешанных подложек из оксида церия-алюминия, представлены в Таблице 5. В сравнении с эталонным образцом из оксида алюминия, полученным без оксида церия в примере 12 (Таблица 2), при 250°С образовалось в четыре-пять раз больше NO2. В сравнении с эталонным образцом из оксида кремния-алюминия, полученным без оксида церия в примере 9 (пример 1), при 250°С образовалось примерно в три раза больше NO2.
[0098] Несмотря на то, что настоящее изобретение было описано со ссылкой на конкретные варианты реализации, следует понимать, что эти варианты реализации только иллюстрируют принципы и применение настоящего изобретения. Поэтому следует понимать, что могут быть сделаны многочисленные модификации иллюстративных вариантов реализации, и что могут быть разработаны другие схемы без отклонения от сущности и границ объема настоящего изобретения, описанного в настоящем документе. Таким образом, предполагается, что настоящее изобретение охватывает модификации и варианты настоящего изобретения, входящие в границы объема прилагаемой формулы изобретения и ее эквивалентов.
Claims (15)
1. Каталитический материал для окисления NO, содержащий носитель катализатора, содержащий подложку из оксида церия-алюминия с диспергированными на ней платиной и палладием, при этом массовое отношение платины к палладию составляет по меньшей мере 1:1, а количество оксида церия в подложке составляет от 1% до 12% по массе.
2. Каталитический материал по п.1, отличающийся тем, что подложка из оксида церия-алюминия дополнительно содержит диоксид кремния, оксид циркония, оксид бария или оксид магния.
3. Каталитический материал по п.1 или 2, отличающийся тем, что количество Pt составляет 1-6 масс. %.
4. Каталитический материал по пп.1 и 2, отличающийся тем, что количество Pd составляет 0,1-6 масс. %.
5. Каталитический материал по пп.1 и 2, отличающийся тем, что количество оксида церия составляет 1-10 масс. %.
6. Каталитический материал по пп.1 и 2, отличающийся тем, что массовое отношение платины к палладию составляет по меньшей мере 2:1 или по меньшей мере 4:1.
7. Система для обработки выхлопных газов двигателя, работающего на обедненной смеси, содержащая каталитический материал по п.1, двигатель, работающий на обедненной смеси, и трубопровод для выхлопных газов, сообщающийся по текучей среде с указанным двигателем, работающим на обедненной смеси, где указанный каталитический материал находится в указанном трубопроводе для выхлопных газов.
8. Система по п. 7, дополнительно содержащая катализатор окисления дизеля и/или каталитический сажевый фильтр (CSF).
9. Система по п.7 или 8, дополнительно содержащая селективный катализатор каталитического восстановления, расположенный после каталитического материала по п.1.
10. Система по пп.7 и 8, отличающаяся тем, что каталитический материал по п.1 размещен на катализаторе окисления дизеля.
11. Система по п.8, отличающаяся тем, что каталитический материал по п.1 размещен на катализаторе окисления дизеля и/или на CSF.
12. Способ обработки выхлопных газов двигателя, работающего на обедненной смеси, включающий приведение потока выхлопных газов в контакт с каталитическим материалом по п.1.
13. Способ по п.12, отличающийся тем, что подложка из оксида церия-алюминия дополнительно содержит диоксид кремния, оксид циркония, оксид бария или оксид магния.
14. Каталитический материал для окисления NO, содержащий носитель катализатора, содержащий подложку из оксида церия-алюминия с диспергированными на ней платиной и палладием, при этом массовое отношение платины к палладию составляет примерно 2:1, а количество оксида церия в подложке составляет от 1% до 6% по массе.
15. Каталитический материал по п.14, отличающийся тем, что подложка из оксида церия-алюминия дополнительно содержит диоксид кремния, оксид циркония, оксид бария или оксид магния.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361777532P | 2013-03-12 | 2013-03-12 | |
US61/777,532 | 2013-03-12 | ||
PCT/US2014/023353 WO2014164732A1 (en) | 2013-03-12 | 2014-03-11 | Catalyst materials for no oxidation |
US14/203,862 | 2014-03-11 | ||
US14/203,862 US9138725B2 (en) | 2013-03-12 | 2014-03-11 | Catalyst materials for NO oxidation |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2015143100A RU2015143100A (ru) | 2017-04-18 |
RU2667911C2 true RU2667911C2 (ru) | 2018-09-25 |
Family
ID=51527847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015143100A RU2667911C2 (ru) | 2013-03-12 | 2014-03-11 | Каталитические материалы для окисления no |
Country Status (11)
Country | Link |
---|---|
US (1) | US9138725B2 (ru) |
EP (1) | EP2969191B1 (ru) |
JP (2) | JP7114219B2 (ru) |
KR (1) | KR102255757B1 (ru) |
CN (1) | CN105188919B (ru) |
BR (1) | BR112015021005A2 (ru) |
CA (1) | CA2898316A1 (ru) |
MX (1) | MX369743B (ru) |
RU (1) | RU2667911C2 (ru) |
WO (1) | WO2014164732A1 (ru) |
ZA (1) | ZA201507509B (ru) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3119500A4 (en) * | 2014-03-21 | 2017-12-13 | SDC Materials, Inc. | Compositions for passive nox adsorption (pna) systems |
JP6594328B2 (ja) * | 2014-10-02 | 2019-10-23 | 株式会社キャタラー | 排ガス浄化用触媒 |
CN107106982B (zh) * | 2014-11-19 | 2021-03-02 | 庄信万丰股份有限公司 | 组合scr与pna用于低温排放控制 |
EP3256251B8 (en) * | 2015-02-13 | 2024-04-03 | Johnson Matthey Public Limited Company | Exhaust system for a compression ignition engine having a capture region for volatilised platinum |
KR102577494B1 (ko) | 2015-03-05 | 2023-09-12 | 바스프 코포레이션 | 연소 엔진을 위한 백금-함유 촉매 |
CA2997935A1 (en) * | 2015-09-22 | 2017-03-30 | Basf Corporation | Sulfur-tolerant catalytic system |
BR112019000978B1 (pt) * | 2016-07-22 | 2023-02-23 | Johnson Matthey Public Limited Company | Artigo catalítico |
WO2019069232A1 (en) * | 2017-10-03 | 2019-04-11 | Basf Corporation | SCR CATALYST COMPOSITIONS, CATALYSTS AND CATALYST SYSTEMS INCORPORATING SUCH CATALYSTS |
WO2022248205A1 (en) | 2021-05-28 | 2022-12-01 | Rhodia Operations | Composition of aluminium oxide and cerium oxide with a particular porosity profile |
JP2024529561A (ja) | 2021-07-30 | 2024-08-06 | ローディア オペレーションズ | 酸化アルミニウム及び酸化セリウムの組成物 |
KR102621234B1 (ko) * | 2021-08-13 | 2024-01-09 | 현대자동차 주식회사 | 알루미나 상에 담지된 나노-세리아의 구조 변형을 통한 황 피독 저항성 개선방법 |
US11772078B2 (en) * | 2022-01-21 | 2023-10-03 | GM Global Technology Operations LLC | Layered catalyst structures and methods of making the same |
JP7529713B2 (ja) | 2022-03-22 | 2024-08-06 | 株式会社豊田中央研究所 | 排ガス浄化用触媒及びその製造方法 |
WO2024009821A1 (ja) * | 2022-07-07 | 2024-01-11 | ユミコア日本触媒株式会社 | 排気ガス浄化用酸化触媒およびそれを用いた排気ガスの酸化方法 |
CN115869944A (zh) * | 2022-11-29 | 2023-03-31 | 江苏优尚环境工程有限公司 | 一种应用于高水份环境的催化氧化催化剂及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3993572A (en) * | 1972-08-04 | 1976-11-23 | Engelhard Minerals & Chemicals Corporation | Rare earth containing catalyst composition |
US5179059A (en) * | 1990-02-09 | 1993-01-12 | Degussa Ag | Catalyst for purifying the exhaust gases of internal combustion engines and method for making the catalyst |
WO2008070551A2 (en) * | 2006-12-01 | 2008-06-12 | Basf Catalysts Llc | Emission treatment systems and methods |
RU2436621C2 (ru) * | 2006-10-20 | 2011-12-20 | Джонсон Мэттей Паблик Лимитед Компани | Термически регенерируемый адсорбент оксидов азота |
WO2012079598A1 (en) * | 2010-12-14 | 2012-06-21 | Umicore Ag & Co. Kg | Architectural diesel oxidation catalyst for enhanced no2 generator |
WO2012121085A1 (ja) * | 2011-03-04 | 2012-09-13 | 株式会社アイシーティー | 排ガス浄化用触媒、その製造方法およびそれを用いた排ガス浄化方法 |
WO2012147411A1 (ja) * | 2011-04-28 | 2012-11-01 | 日産自動車株式会社 | リーンNOxトラップ型排気ガス浄化触媒及び排気ガス浄化システム |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1437216A (en) * | 1972-08-04 | 1976-05-26 | Engelhard Min & Chem | Oxidation of carbonaceous material |
US5212124A (en) * | 1986-08-13 | 1993-05-18 | Lanxide Technology Company, Lp | Ceramic composite articles with shape replicated surfaces |
JPH0626672B2 (ja) * | 1987-03-05 | 1994-04-13 | 株式会社豊田中央研究所 | 排気浄化触媒及びその製造方法 |
DE3830319C1 (ru) * | 1988-09-07 | 1989-07-20 | Degussa Ag, 6000 Frankfurt, De | |
CA2011484C (en) | 1989-04-19 | 1997-03-04 | Joseph C. Dettling | Palladium-containing, ceria-supported platinum catalyst and catalyst assembly including the same |
US5024981A (en) | 1989-04-20 | 1991-06-18 | Engelhard Corporation | Staged metal-promoted zeolite catalysts and method for catalytic reduction of nitrogen oxides using the same |
US4961917A (en) | 1989-04-20 | 1990-10-09 | Engelhard Corporation | Method for reduction of nitrogen oxides with ammonia using promoted zeolite catalysts |
CA2124441A1 (en) * | 1991-11-26 | 1993-06-10 | Robert J. Farrauto | Ceria-alumina oxidation catalyst and method of use |
JP3145175B2 (ja) * | 1992-03-31 | 2001-03-12 | 三井金属鉱業株式会社 | 排ガス浄化用触媒及びその製造方法 |
JP3375358B2 (ja) * | 1993-01-29 | 2003-02-10 | マツダ株式会社 | 排気ガス浄化用触媒 |
JPH09262471A (ja) * | 1996-03-29 | 1997-10-07 | Tokyo Roki Kk | 排気ガス浄化用触媒材料、排気ガス浄化用触媒及びその製造方法 |
US6221804B1 (en) * | 1998-01-27 | 2001-04-24 | Mazda Motor Corporation | Catalyst for purifying exhaust gas and manufacturing method thereof |
US6540968B1 (en) * | 1999-05-19 | 2003-04-01 | Ford Global Technologies, Inc. | Low-precious metal/high-rare earth oxide catalysts |
US6569392B1 (en) * | 2000-02-02 | 2003-05-27 | Ford Global Technologies Llc | Three-way rare earth oxide catalyst |
US7769619B1 (en) * | 2000-08-14 | 2010-08-03 | Imaging Portals, Inc. | Automated business machine management |
JP4889873B2 (ja) | 2000-09-08 | 2012-03-07 | 日産自動車株式会社 | 排気ガス浄化システム、これに用いる排気ガス浄化触媒及び排気浄化方法 |
JP2004188388A (ja) | 2002-12-13 | 2004-07-08 | Babcock Hitachi Kk | ディーゼル排ガス浄化用フィルタおよびその製造方法 |
JP4556716B2 (ja) | 2004-03-22 | 2010-10-06 | パナソニック株式会社 | 排ガス浄化用触媒及びその製造方法及び排ガス浄化材及び排ガス浄化システム |
JP4953586B2 (ja) | 2005-04-14 | 2012-06-13 | キャボットスーパーメタル株式会社 | フッ素の回収方法 |
CN101351267B (zh) | 2005-11-04 | 2012-08-29 | 丰田自动车株式会社 | 催化剂载体颗粒、废气净化催化剂及它们的制造方法 |
TWI449572B (zh) | 2006-11-29 | 2014-08-21 | Umicore Shokubai Japan Co Ltd | Oxidation catalyst and the oxidation catalyst using an exhaust gas purification system |
US8800268B2 (en) * | 2006-12-01 | 2014-08-12 | Basf Corporation | Zone coated filter, emission treatment systems and methods |
EP1970118A1 (en) * | 2007-03-14 | 2008-09-17 | Ford Global Technologies, LLC | Oxidation catalyst, method of making such catalyst and IC engine using such catalyst |
JP5350614B2 (ja) | 2007-08-22 | 2013-11-27 | 本田技研工業株式会社 | 排ガス浄化触媒及びこれを用いた排ガス浄化装置 |
ATE476246T1 (de) | 2008-05-23 | 2010-08-15 | Umicore Ag & Co Kg | Vorrichtung zur reinigung von dieselabgasen |
WO2010077843A2 (en) * | 2008-12-29 | 2010-07-08 | Basf Catalysts Llc | Oxidation catalyst with low co and hc light-off and systems and methods |
US8211392B2 (en) * | 2009-01-16 | 2012-07-03 | Basf Corporation | Diesel oxidation catalyst composite with layer structure for carbon monoxide and hydrocarbon conversion |
US8409518B2 (en) | 2009-03-16 | 2013-04-02 | GM Global Technology Operations LLC | Sulfur tolerant perovskite supported catalysts |
US8557203B2 (en) | 2009-11-03 | 2013-10-15 | Umicore Ag & Co. Kg | Architectural diesel oxidation catalyst for enhanced NO2 generator |
JP2011147901A (ja) * | 2010-01-22 | 2011-08-04 | Toyota Motor Corp | 排ガス浄化用触媒 |
JP5512374B2 (ja) | 2010-04-23 | 2014-06-04 | ニチダイフィルタ株式会社 | プラズマ溶射による触媒担持体の製造方法及び触媒担持体 |
JP5721346B2 (ja) | 2010-05-25 | 2015-05-20 | 本田技研工業株式会社 | 内燃機関の排気浄化システム |
US8734743B2 (en) * | 2010-06-10 | 2014-05-27 | Basf Se | NOx storage catalyst with improved hydrocarbon conversion activity |
EP2579985A4 (en) | 2010-06-10 | 2015-01-21 | Basf Se | NOX MEMORY CATALYST WITH IMPROVED HYDROCARBON FLUORATIVE ACTIVITY |
GB2481057A (en) | 2010-06-11 | 2011-12-14 | Johnson Matthey Plc | Exhaust system comprising a catalyst with a downstream filter and SCR catalyst |
US8057767B1 (en) | 2010-08-10 | 2011-11-15 | GM Global Technology Operations LLC | Base metal oxides oxidation catalyst |
US8950174B2 (en) * | 2010-09-02 | 2015-02-10 | Basf Se | Catalysts for gasoline lean burn engines with improved NH3-formation activity |
US9242242B2 (en) | 2010-09-02 | 2016-01-26 | Basf Se | Catalyst for gasoline lean burn engines with improved NO oxidation activity |
WO2012029050A1 (en) | 2010-09-02 | 2012-03-08 | Basf Se | Catalyst for gasoline lean burn engines with improved no oxidation activity |
US8668877B2 (en) | 2010-11-24 | 2014-03-11 | Basf Corporation | Diesel oxidation catalyst articles and methods of making and using |
GB201021887D0 (en) | 2010-12-21 | 2011-02-02 | Johnson Matthey Plc | Oxidation catalyst for a lean burn internal combustion engine |
EP3178552A1 (en) * | 2011-03-24 | 2017-06-14 | Umicore Shokubai Japan Co., Ltd. | Oxidation catalyst for exhaust gas purification, method for producing the same, and exhaust gas purification method using the same |
CN104321506B (zh) | 2012-05-14 | 2016-11-16 | 恩亿凯嘉股份有限公司 | 废气净化装置 |
-
2014
- 2014-03-11 EP EP14779335.0A patent/EP2969191B1/en active Active
- 2014-03-11 JP JP2016501211A patent/JP7114219B2/ja active Active
- 2014-03-11 BR BR112015021005A patent/BR112015021005A2/pt not_active Application Discontinuation
- 2014-03-11 CN CN201480010795.2A patent/CN105188919B/zh active Active
- 2014-03-11 MX MX2015011026A patent/MX369743B/es active IP Right Grant
- 2014-03-11 WO PCT/US2014/023353 patent/WO2014164732A1/en active Application Filing
- 2014-03-11 KR KR1020157024704A patent/KR102255757B1/ko active IP Right Grant
- 2014-03-11 RU RU2015143100A patent/RU2667911C2/ru not_active IP Right Cessation
- 2014-03-11 US US14/203,862 patent/US9138725B2/en active Active
- 2014-03-11 CA CA2898316A patent/CA2898316A1/en not_active Abandoned
-
2015
- 2015-10-09 ZA ZA201507509A patent/ZA201507509B/en unknown
-
2020
- 2020-08-06 JP JP2020133612A patent/JP2020196010A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3993572A (en) * | 1972-08-04 | 1976-11-23 | Engelhard Minerals & Chemicals Corporation | Rare earth containing catalyst composition |
US5179059A (en) * | 1990-02-09 | 1993-01-12 | Degussa Ag | Catalyst for purifying the exhaust gases of internal combustion engines and method for making the catalyst |
RU2436621C2 (ru) * | 2006-10-20 | 2011-12-20 | Джонсон Мэттей Паблик Лимитед Компани | Термически регенерируемый адсорбент оксидов азота |
WO2008070551A2 (en) * | 2006-12-01 | 2008-06-12 | Basf Catalysts Llc | Emission treatment systems and methods |
WO2012079598A1 (en) * | 2010-12-14 | 2012-06-21 | Umicore Ag & Co. Kg | Architectural diesel oxidation catalyst for enhanced no2 generator |
WO2012121085A1 (ja) * | 2011-03-04 | 2012-09-13 | 株式会社アイシーティー | 排ガス浄化用触媒、その製造方法およびそれを用いた排ガス浄化方法 |
WO2012147411A1 (ja) * | 2011-04-28 | 2012-11-01 | 日産自動車株式会社 | リーンNOxトラップ型排気ガス浄化触媒及び排気ガス浄化システム |
Also Published As
Publication number | Publication date |
---|---|
US9138725B2 (en) | 2015-09-22 |
EP2969191B1 (en) | 2021-11-10 |
CN105188919B (zh) | 2018-11-06 |
CN105188919A (zh) | 2015-12-23 |
JP2020196010A (ja) | 2020-12-10 |
WO2014164732A1 (en) | 2014-10-09 |
BR112015021005A2 (pt) | 2017-07-18 |
MX2015011026A (es) | 2015-10-22 |
EP2969191A1 (en) | 2016-01-20 |
EP2969191A4 (en) | 2016-11-16 |
KR20150131027A (ko) | 2015-11-24 |
MX369743B (es) | 2019-11-20 |
US20140271427A1 (en) | 2014-09-18 |
ZA201507509B (en) | 2020-11-25 |
CA2898316A1 (en) | 2014-10-09 |
JP7114219B2 (ja) | 2022-08-08 |
KR102255757B1 (ko) | 2021-05-26 |
JP2016517342A (ja) | 2016-06-16 |
RU2015143100A (ru) | 2017-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2667911C2 (ru) | Каталитические материалы для окисления no | |
JP7218995B2 (ja) | ディーゼル用途のための区域指定触媒 | |
US9034287B2 (en) | Catalyst compositions, articles, methods and systems | |
CN111389451A (zh) | 含锰的柴油氧化催化剂 | |
US9120077B2 (en) | Surface-coated zeolite materials for diesel oxidation applications | |
CN112246276A (zh) | 含锰的柴油氧化催化剂 | |
US20180169624A1 (en) | NOx ADSORBER CATALYST | |
KR20150111924A (ko) | 산화질소의 산화를 위한 촉매 물품, 시스템 및 방법 | |
US11358127B2 (en) | NOx adsorber catalyst | |
GB2561718A (en) | Three layer NOx adsorber catalyst | |
GB2562873A (en) | NOx adsorber catalyst | |
KR20170018914A (ko) | 배기 가스 처리 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20200312 |