WO2012147179A1 - バンパー構造およびバンパーステイ - Google Patents

バンパー構造およびバンパーステイ Download PDF

Info

Publication number
WO2012147179A1
WO2012147179A1 PCT/JP2011/060274 JP2011060274W WO2012147179A1 WO 2012147179 A1 WO2012147179 A1 WO 2012147179A1 JP 2011060274 W JP2011060274 W JP 2011060274W WO 2012147179 A1 WO2012147179 A1 WO 2012147179A1
Authority
WO
WIPO (PCT)
Prior art keywords
bumper
stay
wall
bumper stay
reinforcement
Prior art date
Application number
PCT/JP2011/060274
Other languages
English (en)
French (fr)
Inventor
栄徳 斎藤
島野 裕年
太一 寺田
季 李
Original Assignee
日軽金アクト株式会社
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日軽金アクト株式会社, 日本軽金属株式会社 filed Critical 日軽金アクト株式会社
Priority to PCT/JP2011/060274 priority Critical patent/WO2012147179A1/ja
Priority to JP2013511836A priority patent/JP5671612B2/ja
Publication of WO2012147179A1 publication Critical patent/WO2012147179A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R19/26Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R19/26Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
    • B60R19/34Arrangements for mounting bumpers on vehicles comprising yieldable mounting means destroyed upon impact, e.g. one-shot type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R2019/247Fastening of bumpers' side ends

Definitions

  • the present invention relates to a bumper structure and a bumper stay.
  • the bumper structure for automobiles disclosed in Patent Documents 1 to 3 includes a bumper reinforcement and a pair of left and right bumper stays that support the bumper reinforcement.
  • This bumper structure absorbs collision energy in the process of bending deformation in the bumper reinforcement (hereinafter referred to as “beam bending process”) and the process in which the bumper stay is reduced to the bumper reinforcement (hereinafter referred to as “beam collapse process”). ))
  • beam bending process the process in which the bumper stay is reduced to the bumper reinforcement
  • beam collapse process the process in which the bumper stay is reduced to the bumper reinforcement
  • Damage to the vehicle body can be reduced while preventing a malfunction of a safety device (for example, an air bag).
  • a safety device for example, an air bag.
  • the collision energy can be absorbed even in the process of extending the refracting part or the curved part linearly.
  • Patent Documents 1 to 3 disclose examples in which bumper stays are formed by an extruded profile, and the bumper stays are arranged so that the extrusion direction of the extruded profile is the vertical direction.
  • This bumper stay is a bumper stay of a cross-sectional crushing type, and cross-sectional crushing mainly occurs in the stay crushing process.
  • Patent Document 4 discloses an example in which a bumper stay is formed by an extruded profile, and the bumper stay is arranged so that the extrusion direction of the extruded profile is the front-rear direction (vehicle straight direction).
  • This bumper stay is an axial crush type bumper stay, and axial crushing (bellows-like buckling deformation) mainly occurs in the stay crushing process.
  • the bumper stay with the crushing section of the cross section allows the peak of the supporting force to be kept low, but if the thickness of each part of the stay is reduced to reduce the weight, the deformation resistance of the bumper stay is reduced, and the supporting force is reduced. Since the low state continues, the amount of collision energy absorbed may be reduced.
  • each stay thinner than the cross-sectional crushing type, so that it is possible to reduce the weight, but the bearing force is higher than that of the cross-sectional crushing type. Tend to be higher.
  • the present invention provides a bumper structure and a bumper stay that can secure the expected amount of collision energy absorption while reducing the weight and can keep the peak of the supporting force low.
  • the issue is to provide.
  • a bumper structure according to the present invention that solves such a problem is a bumper structure comprising a bumper reinforcement, and a pair of left and right bumper stays interposed between a vehicle body and the bumper reinforcement,
  • Each bumper stay is made of a hollow extruded shape, and is arranged such that when the bumper stay is viewed from above, the extrusion direction of the hollow extruded shape is oblique to the vehicle straight direction. It is characterized by that.
  • the bumper stay is formed of a hollow extruded shape, and the bumper stay is arranged so that the extrusion direction of the hollow extruded shape does not coincide with the vehicle straight direction. That is, when a straight line extending in the extrusion direction is used as a virtual reference line, the virtual reference line projected on the horizontal plane is not parallel to the vehicle straight direction and approaches the center in the vehicle width direction from the vehicle body toward the bumper reinforcement, Or it will go away.
  • the component force in the direction along the extrusion direction of the hollow extruded shape causes axial crushing on the bumper stay. Due to the component force in the direction orthogonal to the direction, cross-sectional crushing occurs in the bumper stay. That is, according to the present invention, energy absorption due to axial crushing can be expected, and therefore, compared to a “cross-sectional crushing type” bumper stay (a bumper stay arranged such that the extrusion direction is the vertical direction or the horizontal direction).
  • the “axial crushing type” bumper stay (arranged so that the extrusion direction is the front-rear direction)
  • the bumper stays are arranged so that the virtual reference line approaches the center in the vehicle width direction from the vehicle body toward the bumper reinforcement, the distance between the fulcrums of the bumper reinforcement is reduced. It is possible to reduce the thickness (light weight) of the bumper reinforcement while maintaining the deformation resistance of the bumper reinforcement.
  • a recess or an opening may be formed in the outer shell of each bumper stay. If it does in this way, it will become possible to control the starting position of buckling which arises in a bumper stay. In addition, since the rigidity of the bumper stay is lowered, it is possible to suppress the peak of the supporting force.
  • a flange is provided at the end of the bumper stay on the vehicle body side, and a bolt insertion hole is formed in the flange.
  • a portion of the bumper stay that intersects the central axis of the bolt insertion hole may be cut off. If it does in this way, since it becomes easy to insert a volt
  • the flange may be formed by bending a part of a hollow extruded profile that becomes a bumper stay, or may be formed separately from the bumper stay.
  • the present invention it is possible to secure the expected amount of collision energy absorption while reducing the weight, and to suppress the peak of the supporting force to a low level.
  • FIG. 4 is a sectional view taken along line AA in FIG.
  • A) is a top view of a hollow extruded profile that is a base of a bumper stay
  • (b) is a top view of a block cut out from the hollow extruded profile.
  • (A) is a top view showing the bumper structure before deformation
  • (b) is a top view showing the beam bending process
  • (c) is a top view showing the progress of the beam crushing process and the stay crushing process
  • (d) is a collision. It is a top view which shows the bumper structure after.
  • (A) is a top view showing a modification of the bumper stay
  • (b) is a top view showing another modification of the bumper stay.
  • (A) is a top view showing a modification of the bumper structure
  • (b) is a top view showing another modification of the bumper structure.
  • the bumper structure according to the embodiment of the present invention is applied to a front bumper. As shown in FIG. 1, a bumper reinforcement R, a pair of left and right bumper stays S and S, and a pair of left and right flanges F and F are provided. And.
  • left and right”, “front and rear”, and “up and down” are based on a state in which a bumper structure is attached to side members M and M that are part of the vehicle body. That is, the “left-right direction” is synonymous with the “vehicle width direction” and coincides with a direction along a virtual horizontal axis X connecting the front ends of the side members M, M.
  • the “front-rear direction” is synonymous with the “straight vehicle direction” and coincides with a direction along a virtual vertical axis Y orthogonal to the horizontal axis X.
  • the bumper reinforcement R is a hollow horizontal beam disposed in front of the side members M and M (that is, in front of the horizontal axis X), and is supported by the side members M and M via bumper stays S and S. .
  • the bumper reinforcement R has an arc shape in a plan view and is curved so as to be convex toward the front side.
  • the central axis of the bumper reinforcement R is inclined with respect to the horizontal axis X except at the center in the vehicle width direction.
  • the curved portion of the bumper reinforcement R is formed by pressing a bending die against the rear surface of the hollow extruded shape member while holding both ends of the hollow extruded shape member made of aluminum alloy.
  • the bumper reinforcement R includes an upper plate 11, a lower plate 12, a front plate 13, and a rear plate 14, as shown in FIG.
  • the upper plate 11 and the lower plate 12 are parallel to each other and are opposed to each other with an interval in the vertical direction.
  • the front plate 13 and the rear plate 14 are parallel to each other and face each other with a space in the front-rear direction.
  • the front plate 13 connects the front edges of the upper plate 11 and the lower plate 12, and the rear plate 14 connects the rear edges of the upper plate 11 and the lower plate 12.
  • Work openings 13 a and 13 b are formed at the end of the front plate 13 as shown in FIG.
  • work openings 14 a and 14 b are formed at the end of the rear plate 14.
  • the work openings 13a and 14a closer to the center in the vehicle width direction are located on the central axis of the bolt insertion hole 2a of the flange F, and the work openings 13b and 14b closer to the fender are located on the bolt insertion hole 2b of the flange F. Located on the central axis.
  • the bumper reinforcement R undergoes bending deformation (including deformation in which the curved portion is straightened), and cross-sectional crushing occurs near the joint with the bumper stay S. appear.
  • the dimension of each part of bumper reinforcement R is set so that cross-sectional crushing may occur after bending deformation progresses to some extent.
  • the bending stiffness of the entire bumper reinforcement R that affects the bending deformation. Since the bending rigidity can be adjusted by increasing or decreasing the second moment of section, the thickness of the front plate 13 and the rear plate 14, the distance between the front plate 13 and the rear plate 14, etc. By increasing / decreasing, the start / end timing of the beam bending process can be adjusted. On the other hand, the cross-sectional crushing is mainly affected by the thickness of the upper plate 11 and the lower plate 12 and the size of the separation distance between the front plate 13 and the rear plate 14. The start / end time of the beam crushing process can be adjusted.
  • the flange F is interposed between the bumper stay S and the side member M as shown in FIG.
  • the flange F is made of a separate member from the bumper stay S.
  • the flange F of the present embodiment is formed by bending a flat plate made of an aluminum alloy, and includes a main plate 21 and a sub plate 22.
  • the main plate 21 is a part that is abutted against the front end of the side member M. As shown in FIG. 3A, a plurality of bolt insertion holes 2 a, 2 b, 2 c are formed on the peripheral edge of the main plate 21.
  • the bolt insertion holes 2 a and 2 b are formed on the left and right sides of the contour O at the rear end of the bumper stay S, and the other bolt insertion holes 2 c are formed below the contour O.
  • Bolts for fixing the main plate 21 to the front end of the side member M are inserted through the bolt insertion holes 2a, 2b, 2c.
  • the sub-plate 22 is a part along the upper surface of the side member M as shown in FIG.
  • the sub plate 22 protrudes rearward from the upper end of the main plate 21 and is orthogonal to the main plate 21.
  • the sub-plate 22 has a bolt insertion hole 2d. Bolts for fixing the sub plate 22 to the upper surface of the side member M (see FIG. 1) are inserted into the bolt insertion holes 2d.
  • the bumper stay S is fixed to the end of the bumper reinforcement R in the longitudinal direction and is fixed to the side member M via the flange F.
  • the bumper stay S is made of an aluminum alloy hollow extruded shape (hollow shape). Note that the virtual reference line P in FIG. 1 is a straight line extending in the extrusion direction of the hollow extruded shape member.
  • the bumper stay S is arranged such that when viewed from above, the pushing direction (virtual reference line P) is oblique to the vehicle straight direction (vertical axis Y).
  • the bumper stay S is arranged so that the pushing direction does not coincide with the straight traveling direction of the vehicle, and the virtual reference line P projected on the horizontal plane is oblique to the vertical axis Y as shown in FIG.
  • the bumper stay S of the present embodiment is configured such that the virtual reference line P approaches the vehicle width direction center (center line C) as it goes from the side member M to the bumper reinforcement R.
  • the inclination angle ⁇ of the virtual reference line P with respect to the vertical axis Y is 35 (deg) in FIG.
  • the inclination angle ⁇ exceeds 45 (deg), energy absorption due to axial crushing may be reduced, and if the inclination angle ⁇ is less than 15 (deg), energy absorption due to cross-sectional crushing may be reduced.
  • the inclination angle ⁇ is preferably 15 (deg) or more and 45 (deg) or less.
  • the shape when the bumper stay S is viewed from above is not limited, but in the present embodiment, it exhibits a pentagonal shape in plan view.
  • a dotted line attached to the upper surface of the bumper stay S indicates a virtual vertical plane for dividing the bumper stay S into three regions S1 to S3. Both the front and rear virtual vertical planes are parallel to the horizontal axis X, the virtual vertical plane near the bumper reinforcement R passes through the front end of the outer wall 34, and the virtual vertical plane near the flange F is the rear end of the outer wall 34. Pass through.
  • the foremost region S1 is referred to as “triangular portion S1”
  • the intermediate region S2 is referred to as “parallelogram portion S2”
  • the last region S3 is referred to as “triangular portion S2.” This is referred to as “trapezoidal part S3”.
  • Triangle portion S1 is a region where the shape viewed from above exhibits a substantially obtuse triangle.
  • the front end of the triangular portion S ⁇ b> 1 is formed along the rear surface of the bumper reinforcement R and abuts on the rear surface of the bumper reinforcement R.
  • the parallelogram portion S2 is a region whose shape when viewed from above is a parallelogram, and is located between the triangle portion S1 and the trapezoidal portion S3.
  • the trapezoidal portion S3 is an area where the shape when viewed from above exhibits a trapezoid.
  • the rear end of the trapezoidal portion S3 is formed along the main plate 21 of the flange F, and abuts against the front surface of the main plate 21.
  • the width dimension of the trapezoidal portion S3 gradually increases from the side member M toward the bumper reinforcement R.
  • the bumper stay S includes an upper wall 31, a lower wall 32, an inner wall 33, an outer wall 34, a partition wall 35, an upper rib 36, and a lower rib 37. ing.
  • the upper wall 31 and the lower wall 32 are formed to have the same planar shape, and are opposed to each other with an interval in the vertical direction (see FIG. 4).
  • the upper wall 31 and the lower wall 32 are both flat and parallel to each other.
  • the upper wall 31 is located at the same height as the upper plate 11, and the lower wall 32 is located at the same height as the lower plate 12.
  • illustration is abbreviate
  • the inner wall 33 connects the side edges of the upper wall 31 and the lower wall 32 on the vehicle center side.
  • the intermediate part of the height direction of the inner wall 33 is exhibiting flat form
  • the upper part and lower part of the inner wall 33 are curving in cross-sectional arc shape.
  • the front end of the inner wall 33 abuts on the rear plate 14, and the rear end of the inner wall 34 abuts on the main plate 21 (see FIG. 3B).
  • the distance from the front end of the inner wall 33 to the center line C is smaller than the distance from the rear end of the inner wall 33 to the center line C.
  • illustration is abbreviate
  • the form of the inner wall 33 is good also as a corrugated plate shape or a folded plate shape.
  • the outer wall 34 connects the fender side edges of the upper wall 31 and the lower wall 32 as shown in FIG.
  • the front end of the outer wall 34 abuts on the side edge of the rear plate 14.
  • the outer wall 34 of the present embodiment has a flat plate shape, but may have a curved plate shape, a corrugated plate shape, a folded plate shape, or the like.
  • the partition wall 35 is located between the inner wall 33 and the outer wall 34 and connects the upper wall 31 and the lower wall 32.
  • the partition wall 35 of the present embodiment has a flat plate shape.
  • the front end of the partition wall 35 contacts the rear plate 14, and the rear end of the partition wall 35 contacts the main plate 21 (see FIG. 3B).
  • the distance from the front end of the partition wall 35 to the center line C is smaller than the distance from the rear end of the partition wall 35 to the center line C.
  • the partition wall 35 may have a curved plate shape, a corrugated plate shape, a folded plate shape, or the like.
  • the upper rib 36 protrudes from the lower surface of the upper wall 31, and the lower rib 37 protrudes from the upper surface of the lower wall 32.
  • the upper rib 36 and the lower rib 37 of the present embodiment are located between the outer wall 34 and the partition wall 35 and extend in the extrusion direction.
  • the front ends of the upper rib 36 and the lower rib 37 abut against the rear plate 14 (see FIG. 3B).
  • the outer shell of the bumper stay S is formed by an upper wall 31, a lower wall 32, an inner wall 33 and an outer wall 34, and the inner portion of the outer shell is divided into a first space H1 and a second space H2 by a partition wall 35. ing.
  • the front periphery of the outer shell (the front ends of the upper wall 31, the lower wall 32, the inner wall 33, and the outer wall 34) is joined to the bumper reinforcement R by welding.
  • the rear edge of the outer shell (the rear ends of the upper wall 31, the lower wall 32, and the inner wall 33) and the rear end of the partition wall 35 are joined to the flange F by welding.
  • the first space H1 is a space having a rectangular cross section surrounded by the upper wall 31, the lower wall 32, the inner wall 33, and the partition wall 35 (see FIG. 4B).
  • the opening end on the front side of the first space H1 is closed by the bumper reinforcement R, and the opening end on the rear side of the first space H1 is closed by the flange F.
  • the second space H2 is a space having a rectangular cross section surrounded by the upper wall 31, the lower wall 32, the outer wall 34, and the partition wall 35 (see FIG. 4).
  • the opening end on the front side of the second space H2 is closed by the bumper reinforcement R.
  • the opening end on the rear side of the second space H2 is not closed and is open.
  • a recess 3a for adjusting buckling and an opening 3b are formed in the outer shell of the bumper stay S.
  • the recess 3a is recessed toward the first space H1, and the opening 3b communicates with the first space H1.
  • the recess 3 a is formed in two places at the top and bottom.
  • One recess 3 a is formed in the upper wall 31, and the other recess 3 a is formed in the lower wall 32.
  • Both concave portions 3a, 3a are formed at positions adjacent to the inner wall 33, and face each other in the vertical direction.
  • the outer shell of the bumper stay S may be subjected to dish drawing between the inner wall 33 and the partition wall 35, and a part of the outer shell may be recessed toward the first space H1.
  • the recess 3a of the present embodiment is formed in the triangular portion S1 and has an oval shape in plan view (see FIG. 3), but the position and size of the recess 3a. .
  • the shape and the like may be changed as appropriate.
  • the opening 3b is formed in the inner wall 33 as shown in FIG.
  • the outer shell of the bumper stay S may be cut off.
  • the opening 3b of the present embodiment has a substantially rectangular shape, and most of the opening 3b is formed in the triangular portion S1, as shown in FIG. Note that the position, size, shape, and the like of the opening 3b may be changed as appropriate.
  • the bumper stay S is formed with working defects 3c and 3d.
  • one of the missing portions 3 c is an oval opening formed in the inner wall 33
  • the other missing portion 3 d is a rectangular shape formed in the partition wall 35. It is a notch.
  • the defect portions 3c and 3d are arranged on the central axis of the bolt insertion hole 2a so that the bolt insertion hole 2a of the flange F can be seen from the work openings 13a and 14a of the bumper reinforcement R. positioned.
  • a portion of the bumper stay S that intersects the central axis of the bolt insertion hole 2a may be cut off.
  • missing portions 3c and 3d are provided on the central axis of the bolt insertion hole 2a, it is easy to insert a bolt or a bolt fastening tool, so that the mounting work to the vehicle body is facilitated. Note that the size, shape, and the like of the missing portions 3c and 3d may be changed as appropriate.
  • the central axis of the other bolt insertion hole 2b passes between the upper rib 36 and the lower rib 37 and does not intersect with the outer shell of the bumper stay S or the partition wall 35. Therefore, the bumper stay S is removed. Even if not, the bolt insertion hole 2b can be seen through the work openings 13b and 14b.
  • Bumper stay S is formed using a hollow extruded shape made of aluminum alloy.
  • This hollow extruded shape has the same cross-sectional shape as FIG.
  • the angle ⁇ 1 formed by the first cutting line C1 and the outer wall 34 is equal to the angle formed by the rear surface of the bumper reinforcement R and the outer wall 34.
  • the second cutting line C2 is a straight line that is inclined at an angle ⁇ 2 with respect to a plane whose normal is the extrusion direction.
  • the angle ⁇ 2 is equal to the inclination angle ⁇ of the virtual reference line P shown in FIG.
  • the third cutting line C3 is a straight line that intersects the second cutting line C2.
  • the angle ⁇ 3 formed by the second cutting line C2 and the third cutting line C3 is 90 (deg) or more and less than 180 (deg).
  • the end of the block 30 on the first cutting line C1 side is cut out along the finishing line C4.
  • the finishing line C4 is the same as the shape of the rear surface of the bumper reinforcement R.
  • the front surface of the flange F is brought into contact with the rear end of the bumper stay S, and then the upper wall 31 and the lower wall 32, the inner wall 33 and the partition wall 35 may be welded along the rear ends.
  • the opening end on the rear side of the first space H1 is closed by the flange F. Since the fender side surface of the partition wall 35 is exposed to the outside, the welding operation of the partition wall 35 and the flange F can be performed easily and quickly.
  • the front end of the bumper stay S is brought into contact with the rear surface of the bumper reinforcement R while the front end of the outer wall 34 is aligned with the side edge of the rear plate 14. What is necessary is just to weld along the front end of the upper wall 31, the lower wall 32, the inner wall 33, and the outer wall 34.
  • FIG. When the bumper stay S is joined to the bumper reinforcement R, the opening ends on the front side of the first space H1 and the second space H2 are closed by the bumper reinforcement R.
  • the front end of the outer wall 34 and the side edge of the rear plate 14 are aligned, the welding operation of the outer wall 34 and the rear plate 14 can be performed easily and quickly.
  • the main plate 21 of the flange F is brought into contact with the front end surface of the side member M while the sub-plate 22 of the flange F is placed on the upper surface of the side member M.
  • the bolts inserted into the bolt insertion holes 2a to 2d may be fastened to the side member M.
  • the bumper reinforcement R can be stably supported.
  • the cross-section crushing of the bumper reinforcement R starts to progress in the region adjacent to the bumper stay S from the middle of the beam bending process (beam crushing process).
  • the bumper stay S (particularly the partition wall 35) is reduced to the rear surface of the bumper reinforcement R, and the bumper reinforcement R is crushed to absorb the collision energy.
  • the upper plate 11 and the lower plate 12 are buckled and deformed in a bellows shape.
  • the crushing load L acting on the bumper reinforcement R is subjected to axial crushing on the bumper stay S by the component force L1 in the direction along the extrusion direction. Due to the component force L2 in the direction orthogonal to the extrusion direction of the hollow extruded shape, cross-sectional crushing occurs in the bumper stay S (stay crushing process). That is, in the stay crushing process, as shown in FIG. 6D, the bumper stay S absorbs collision energy by causing axial crushing and cross-sectional crushing.
  • the beam bending process, the beam crushing process, and the stay crushing process proceed sequentially, so that the supporting force (transmitted to the side member M) is transmitted.
  • the peak of (load) also appears sequentially with a time difference.
  • the bumper structure according to the present embodiment energy absorption by axial crushing of the bumper stay S can be expected, so that the “cross-sectional crushing type” bumper stay (the extrusion direction is arranged in the vertical direction or the horizontal direction).
  • the “cross-sectional crushing type” bumper stay (the extrusion direction is arranged in the vertical direction or the horizontal direction).
  • the peak of the support force can be kept low, and it is possible to suppress a sudden drop in the support force after the peak.
  • the distance between the fulcrums of the bumper reinforcement R is reduced, so that the bumper reinforcement R is maintained while maintaining the deformation resistance of the bumper reinforcement R between the bumper stays S and S.
  • the bumper stay S projects to the center line C side from the virtual line Q, and the bumper stay S is supported up to the intersection point q ′.
  • the bumper reinforcement R Since the inner edge of the bumper reinforcement R is located on the side of the center line C from the virtual line Q, the end of the bumper reinforcement R is supported up to the support point q closer to the center line C than the intersection q ′. As described above, according to the bumper stay S, the bumper reinforcement R is supported by the triangular portion extending from the imaginary line Q toward the center line C, so that the fulcrum of the bumper reinforcement R is supported. The distance between the members is smaller than the distance between the side members M and M. In addition, since the bumper stay S comes into contact with the bumper reinforcement R over a wide range, it is possible to increase the crushing range of the bumper reinforcement R and, in turn, increase the amount of collision energy absorbed. Become.
  • the buckling start position can be controlled. As a result, the reproducibility of the crush pattern is increased.
  • the recess 3a and the opening 3b are provided, the rigidity of the bumper stay S is reduced as compared with the case where these are not provided, and thus it becomes possible to suppress the peak of the supporting force.
  • defect portions 2c and 2d are formed in the bumper stay S on the central axis of the bolt insertion hole 2a of the flange F, it is easy to insert a bolt or a bolt fastening tool into the bumper stay S, and as a result The mounting work becomes easy.
  • the case where the recess 3a and the opening 3b are provided in the outer shell of the bumper stay S is illustrated, but one or both of the recess 3a and the opening 3b may be omitted.
  • the buckling adjustment openings 3b, 3b, 3b are formed at three locations (the upper wall 31, the lower wall 32, and the inner wall 33) of the outer shell. . All of the openings 3b, 3b, 3b are located in the triangular portion S1 (see FIG. 2) of the bumper stay S and communicate with the first space H1.
  • the recessed portion 3a formed by post-processing is illustrated, but it may be formed by extrusion molding as recessed portions 3a 'and 3a' shown in FIG.
  • One recess 3 a ′ is formed in the upper wall 31, and the other recess 3 a ′ is formed in the lower wall 32.
  • Both concave portions 3a 'and 3a' are formed at positions adjacent to the inner wall 33 and are continuous in the extrusion direction.
  • the arc-shaped bumper reinforcement R is exemplified, but the shape of the bumper reinforcement applicable to the present invention is not limited.
  • the bumper reinforcement that forms an elliptical arc or a parabola the bumper reinforcement that has a combination of a plurality of arcs with different curvatures or a combination of a curve and a straight line, and the back of both sides of the straight line part Bumper reinforcement having an inclined portion inclined toward the surface (bumper reinforcement having a refractive portion) may be used.
  • a bumper reinforcement R ' having a linear shape may be used.
  • the bumper stay S 'combined with the bumper reinforcement R' has a shape in which the triangular portion S1 is omitted from the bumper stay S.
  • the portion of the bumper reinforcement R ′ between the left and right bumper stays S ′ and S ′ is deformed so as to be convex toward the vehicle body, thereby absorbing the collision energy at the initial stage of the collision. Will be.
  • the bumper stay S is illustrated as being arranged so that the virtual reference line P approaches the center line C as it goes from the side member M to the bumper reinforcement R (see FIG. 2).
  • the virtual reference line P may be arranged so as to move away from the center line C as it goes from the side member M to the bumper reinforcement R, as in the bumper stay S ′′ shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

 本発明は、軽量化を図りながらも所期の衝突エネルギーの吸収量を確保することができ、かつ、支持力のピークを低く抑えることが可能なバンパー構造を提供することを課題とする。 本発明は、バンパーリインフォースメント(R)と、サイドメンバ(M)とバンパーリインフォースメント(R)との間に介設される左右一対のバンパーステイ(S,S)と、を備えるバンパー構造であって、各バンパーステイ(S)は、中空押出形材からなり、かつ、各バンパーステイ(S)を上から見たときに、中空押出形材の押出方向が車両直進方向に斜交する方向となるように配置される、ことを特徴とする。

Description

バンパー構造およびバンパーステイ
 本発明は、バンパー構造およびバンパーステイに関する。
 特許文献1~3に開示された自動車用のバンパー構造は、バンパーリインフォースメントと、これを支持する左右一対のバンパーステイとを備えている。このバンパー構造は、バンパーリインフォースメントに曲げ変形が生じる過程(以下「ビーム曲げ過程」という。)で衝突エネルギーを吸収するとともに、バンパーステイがバンパーリインフォースメントに減り込む過程(以下「ビーム圧潰過程」という。)で衝突エネルギーを吸収し、さらには、バンパーステイに圧潰が生じる過程(以下「ステイ圧潰過程」という。)で衝突エネルギーを吸収する。このようなバンパー構造によれば、支持力(車体に伝わる荷重)のピークを低く抑えつつ衝突エネルギーの吸収量(支持力-変位曲線の積分値)を大きくすることができるので、軽衝突時における安全装置(例えば、エアーバックなど)の誤作動を防ぎつつ車体に与えるダメージを緩和することができる。なお、屈折部分または湾曲部分を有するバンパーリインフォースメントにおけるビーム曲げ過程では、屈折部分または湾曲部分が直線状に伸ばされる過程でも衝突エネルギーを吸収し得る。
 特許文献1~3には、押出形材にてバンパーステイを形成し、押出形材の押出方向が上下方向となるようにバンパーステイを配置した例が開示されている。このバンパーステイは、断面圧潰型のバンパーステイであり、ステイ圧潰過程では、主として断面圧潰が発生する。
 また、特許文献4には、押出形材にてバンパーステイを形成し、押出形材の押出方向が前後方向(車両直進方向)となるようにバンパーステイを配置した事例が開示されている。このバンパーステイは、軸圧潰型のバンパーステイであり、ステイ圧潰過程では、主として軸圧潰(蛇腹状の座屈変形)が発生する。
国際公開第2007/110938号パンフレット 国際公開第2009/110461号パンフレット 特開2011-51361号公報 実開平7-35252号公報
 断面圧潰型のバンパーステイによれば、支持力のピークを低く抑えることが可能になるものの、軽量化を図るべくステイ各部の肉厚を小さくすると、バンパーステイの変形抵抗が小さくなり、支持力の低い状態が続くようになるので、衝突エネルギーの吸収量が小さくなる虞がある。
 軸圧潰型のバンパーステイによれば、断面圧潰型のものよりもステイ各部を薄肉にすることができるので、軽量化を図ることが可能になるものの、断面圧潰型のものに比べて、支持力のピークが高くなる傾向にある。
 このような観点から、本発明は、軽量化を図りながらも所期の衝突エネルギーの吸収量を確保することができ、かつ、支持力のピークを低く抑えることが可能なバンパー構造およびバンパーステイを提供することを課題とする。
 このような課題を解決する本発明に係るバンパー構造は、バンパーリインフォースメントと、車体と前記バンパーリインフォースメントとの間に介設される左右一対のバンパーステイと、を備えるバンパー構造であって、前記各バンパーステイは、中空押出形材からなり、かつ、前記各バンパーステイを上から見たときに、前記中空押出形材の押出方向が車両直進方向に斜交する方向となるように配置される、ことを特徴とする。
 要するに、本発明は、バンパーステイを中空押出形材にて構成し、当該中空押出形材の押出方向が車両直進方向と一致しないようにバンパーステイを配置する、というものである。すなわち、押出方向に延びる直線を仮想基準線としたとき、水平面に投影された仮想基準線は、車両直進方向と平行にならず、車体からバンパーリインフォースメントに向かうに従って車両幅方向中央に近づくか、あるいは、遠ざかるようになる。
 本発明によれば、バンパーリインフォースメントに作用した衝突荷重のうち、中空押出形材の押出方向に沿う方向の分力によって、バンパーステイに軸圧潰が発生するようになり、中空押出形材の押出方向と直交する方向の分力によって、バンパーステイに断面圧潰が発生するようになる。すなわち、本発明によれば、軸圧潰によるエネルギー吸収を期待できるので、「断面圧潰型」のバンパーステイ(押出方向が上下方向あるいは左右方向となるように配置されたバンパーステイ)に比べて、ステイ各部の薄肉化(バンパーステイの軽量化)を図ることが可能となり、さらには、断面圧潰によるエネルギー吸収も期待できるので、「軸圧潰型」のバンパーステイ(押出方向が前後方向となるように配置されたバンパーステイ)に比べて、支持力(=車体に伝わる荷重)のピークを低く抑えることができ、なおかつ、ピーク後における支持力の急低下を抑制することが可能となる。
 なお、前記車体から前記バンパーリインフォースメントに向かうに従って前記仮想基準線が車両幅方向中央に近づくように各バンパーステイを配置すると、バンパーリインフォースメントの支点間距離が狭まるようになるので、バンパーステイ間におけるバンパーリインフォースメントの変形抵抗を維持したままバンパーリインフォースメントの薄肉化(軽量化)を図ることが可能となる。
 前記各バンパーステイの外殻に、凹部または開口を形成するとよい。このようにすると、バンパーステイに生じる座屈の開始位置をコントロールすることが可能になる。また、バンパーステイの剛性が低下するため、支持力のピークを抑えることが可能になる。
 バンパーステイを車体にボルト接合する場合には、前記バンパーステイの車体側の端部にフランジを設け、前記フランジにボルト挿通孔を形成するとよい。ボルト挿通孔の中心軸線上にバンパーステイが位置している場合には、前記バンパーステイのうち、前記ボルト挿通孔の中心軸線と交差する部分を切除するとよい。このようにすると、ボルトあるいはボルト締結用の工具を挿入し易くなるので、車体への取付作業が容易になる。なお、フランジは、バンパーステイとなる中空押出形材の一部分を折り曲げて形成してもよいし、バンパーステイと別体としてもよい。
 本発明によれば、軽量化を図りながらも所期の衝突エネルギーの吸収量を確保することができ、かつ、支持力のピークを低く抑えることが可能となる。
バンパー構造の分解斜視図である。 バンパー構造の上面図である。 (a)はバンパー構造の端部を車体側から見た分解斜視図、(b)はバンパー構造の端部の断面図である。 図3の(b)のA-A線断面図である。 (a)はバンパーステイの素となる中空押出形材の上面図、(b)は中空押出形材から切り出したブロックの上面図である。 (a)は変形前のバンパー構造を示す上面図、(b)はビーム曲げ過程を示す上面図、(c)はビーム圧潰過程およびステイ圧潰過程の進行状況を示す上面図、(d)は衝突後のバンパー構造を示す上面図である。 (a)はバンパーステイの変形例を示す上面図、(b)はバンパーステイの他の変形例を示す上面図である。 (a)はバンパー構造の変形例を示す上面図、(b)はバンパー構造の他の変形例を示す上面図である。
 本発明の実施形態に係るバンパー構造は、フロントバンパーに適用されるものであり、図1に示すように、バンパーリインフォースメントRと、左右一対のバンパーステイS,Sと、左右一対のフランジF,Fとを備えている。
 以下の説明において、「左右」、「前後」、「上下」は、車体の一部であるサイドメンバM,Mにバンパー構造を取り付けた状態を基準にする。つまり、「左右方向」は、「車両幅方向」と同義であり、サイドメンバM,Mの前端同士を結ぶ仮想の横軸Xに沿う方向と一致する。また、「前後方向」は、「車両直進方向」と同義であり、横軸Xに直交する仮想の縦軸Yに沿う方向と一致する。
 バンパーリインフォースメントRは、サイドメンバM,Mの前方(すなわち、横軸Xの前方)に配置される中空の横梁であり、バンパーステイS,Sを介してサイドメンバM,Mに支持されている。
 バンパーリインフォースメントRは、図2にも示すように、平面視弧状を呈しており、前側に凸となるように湾曲している。バンパーリインフォースメントRの中心軸線は、車両幅方向中央以外においては、横軸Xに対して傾斜している。バンパーリインフォースメントRの湾曲部分は、アルミニウム合金製の中空押出形材の両端部を把持した状態で、当該中空押出形材の後面に曲げ型を押圧することで形成する。
 バンパーリインフォースメントRは、図1に示すように、上プレート11、下プレート12、前プレート13および後プレート14を備えている。
 上プレート11および下プレート12は、互いに平行であり、上下に間隔をあけて対向している。
 前プレート13および後プレート14は、互いに平行であり、前後に間隔をあけて対向している。前プレート13は、上プレート11および下プレート12の前縁同士を繋いでおり、後プレート14は、上プレート11および下プレート12の後縁同士を繋いでいる。
 前プレート13の端部には、図3の(b)にも示すように、作業用開口13a,13bが形成されている。同様に、後プレート14の端部には、作業用開口14a,14bが形成されている。車両幅方向中央寄りの作業用開口13a,14aは、フランジFのボルト挿通孔2aの中心軸線上に位置しており、フェンダー寄りの作業用開口13b,14bは、フランジFのボルト挿通孔2bの中心軸線上に位置している。
 バンパー構造がフラットバリアに正面衝突した場合、バンパーリインフォースメントRには、曲げ変形(湾曲部分が直線状に伸ばされる変形も含む)が発生するとともに、バンパーステイSとの接合部付近において断面圧潰が発生する。本実施形態では、曲げ変形がある程度進行した後に断面圧潰が生じるように、バンパーリインフォースメントRの各部の寸法が設定されている。
 ちなみに、曲げ変形に影響を及ぼすのは、主としてバンパーリインフォースメントR全体の曲げ剛性である。当該曲げ剛性は、断面2次モーメントを増減させることで調整することができるので、前プレート13および後プレート14の肉厚の大きさや、前プレート13と後プレート14との離間距離の大きさなどを増減させることで、ビーム曲げ過程の開始・終了のタイミングを調整することができる。一方、断面圧潰に影響を及ぼすのは、主に、上プレート11および下プレート12の肉厚と、前プレート13と後プレート14との離間距離の大きさであるから、これらを増減させることで、ビーム圧潰過程の開始・終了の時期を調整することができる。
 フランジFは、図1に示すように、バンパーステイSとサイドメンバMとの間に介設される。フランジFは、バンパーステイSとは別体の部材からなる。本実施形態のフランジFは、アルミニウム合金製の平板に折り曲げ加工を施して形成したものであり、メインプレート21と、サブプレート22とを備えている。
 メインプレート21は、サイドメンバMの前端に突き合わされる部位である。図3の(a)に示すように、メインプレート21の周縁部には、複数のボルト挿通孔2a,2b,2cが形成されている。ボルト挿通孔2a,2bは、バンパーステイSの後端の輪郭Oの左右に形成されており、他のボルト挿通孔2cは、輪郭Oの下に形成されている。ボルト挿通孔2a,2b,2cには、メインプレート21をサイドメンバM(図1参照)の前端に固定するためのボルトが挿通される。
 サブプレート22は、図1に示すように、サイドメンバMの上面に沿わされる部位である。サブプレート22は、メインプレート21の上端から後方に向かって張り出しており、かつ、メインプレート21に直交している。図3の(a)に示すように、サブプレート22には、ボルト挿通孔2dが形成されている。ボルト挿通孔2dには、サブプレート22をサイドメンバM(図1参照)の上面に固定するためのボルトが挿通される。
 バンパーステイSは、図1に示すように、バンパーリインフォースメントRの長手方向の端部に固定されるとともに、フランジFを介してサイドメンバMに固定される。バンパーステイSは、アルミニウム合金製の中空押出形材(ホロー形材)からなる。なお、図1中の仮想基準線Pは、中空押出形材の押出方向に延びる直線である。
 バンパーステイSは、これを上から見たときに、押出方向(仮想基準線P)が車両直進方向(縦軸Y)に斜交する方向となるように配置されている。すなわち、バンパーステイSは、押出方向が車両直進方向と一致しないように配置されていて、図2に示すように、水平面に投影された仮想基準線Pは、縦軸Yに斜交する。本実施形態のバンパーステイSは、サイドメンバMからバンパーリインフォースメントRに向かうに従って仮想基準線Pが車両幅方向中央(中央線C)に近づくように構成されている。縦軸Yに対する仮想基準線Pの傾斜角度θは、図2においては35(deg)である。なお、傾斜角度θが45(deg)を上回ると、軸圧潰によるエネルギー吸収が少なくなる虞があり、傾斜角度θが15(deg)を下回ると、断面圧潰によるエネルギー吸収が少なくなる虞があるので、傾斜角度θは、15(deg)以上45(deg)以下であることが望ましい。
 バンパーステイSを上から見たときの形状は、限定されるものではないが、本実施形態では、平面視五角形状を呈している。なお、バンパーステイSの上面に付した点線は、バンパーステイSを三つの領域S1~S3に区分けするための仮想鉛直面を示している。前後二つの仮想鉛直面は、いずれも横軸Xに平行であり、バンパーリインフォースメントR寄りの仮想鉛直面は、外壁34の前端を通り、フランジF寄りの仮想鉛直面は、外壁34の後端を通る。
 以下の説明では、複数の領域S1~S3のうち、最前部の領域S1を「三角形部S1」と称し、中間部の領域S2を「平行四辺形部S2」と称し、最後部の領域S3を「台形部S3」と称する。
 三角形部S1は、上から見た形状が略鈍角三角形を呈する領域である。三角形部S1の前端は、バンパーリインフォースメントRの後面に沿うように成形されており、バンパーリインフォースメントRの後面に当接する。
 平行四辺形部S2は、上から見たときの形状が平行四辺形を呈する領域であり、三角形部S1と台形部S3との間に位置している。
 台形部S3は、上から見たときの形状が台形を呈する領域である。台形部S3の後端は、フランジFのメインプレート21に沿うように成形されており、メインプレート21の前面に当接する。台形部S3の幅寸法は、サイドメンバMからバンパーリインフォースメントRに向かうに従って漸増する。
 バンパーステイSの構成をより詳細に説明する。
 図3の(a)に示すように、バンパーステイSは、上壁31と、下壁32と、内壁33と、外壁34と、仕切壁35と、上リブ36と、下リブ37とを備えている。
 上壁31および下壁32は、同一の平面形状となるように成形されており、上下に間隔をあけて対向している(図4参照)。上壁31および下壁32は、いずれも平板状であり、かつ、互いに平行である。上壁31は、上プレート11と同じ高さに位置しており、下壁32は、下プレート12と同じ高さに位置している。なお、図示は省略するが、上壁31および下壁32の形態を曲板状、波板状、折れ板状などとしてもよい。
 内壁33は、上壁31および下壁32の車両中央側の側縁同士を繋いでいる。なお、内壁33の高さ方向の中間部分は、平板状を呈しているが、内壁33の上部および下部は、断面円弧状に湾曲している。内壁33の前端は、後プレート14に当接し、内壁34の後端は、メインプレート21に当接する(図3の(b)参照)。図2に示すように、内壁33の前端から中央線Cまでの距離は、内壁33の後端から中央線Cまでの距離よりも小さい。なお、図示は省略するが、内壁33の形態を波板状や折れ板状としてもよい。
 外壁34は、図3の(a)に示すように、上壁31および下壁32のフェンダー側の側縁同士を繋いでいる。外壁34の前端は、後プレート14の側縁に当接する。本実施形態の外壁34は、平板状を呈しているが、曲板状、波板状、折れ板状などとしてもよい。
 仕切壁35は、内壁33と外壁34との間に位置し、上壁31および下壁32を繋いでいる。本実施形態の仕切壁35は、平板状を呈している。仕切壁35の前端は、後プレート14に当接し、仕切壁35の後端は、メインプレート21に当接する(図3の(b)参照)。図2に示すように、仕切壁35の前端から中央線Cまでの距離は、仕切壁35の後端から中央線Cまでの距離よりも小さい。なお、図示は省略するが、仕切壁35の形態を曲板状、波板状、折れ板状などとしてもよい。
 上リブ36は、上壁31の下面に突設されており、下リブ37は、下壁32の上面に突設されている。本実施形態の上リブ36および下リブ37は、外壁34と仕切壁35との間に位置し、押出方向に延在している。上リブ36および下リブ37の前端は、後プレート14に当接する(図3の(b)参照)。
 バンパーステイSの外殻は、上壁31、下壁32、内壁33および外壁34によって形成されており、外殻の内部は、仕切壁35によって第一空間H1と第二空間H2とに分けられている。外殻の前側の周縁(上壁31、下壁32、内壁33および外壁34の前端)は、溶接によってバンパーリインフォースメントRに接合されている。外殻の後側の周縁(上壁31、下壁32および内壁33の後端)および仕切壁35の後端は、溶接によってフランジFに接合される。
 第一空間H1は、上壁31、下壁32、内壁33および仕切壁35によって囲まれた断面矩形状の空間である(図4の(b)参照)。第一空間H1の前側の開口端は、バンパーリインフォースメントRによって閉塞されており、第一空間H1の後側の開口端は、フランジFによって閉塞される。
 第二空間H2は、上壁31、下壁32、外壁34および仕切壁35によって囲まれた断面矩形状の空間である(図4参照)。第二空間H2の前側の開口端は、バンパーリインフォースメントRによって閉塞されている。第二空間H2の後側の開口端は、閉塞されておらず、開口している。
 バンパーステイSの外殻には、座屈調整用の凹部3aおよび開口3bが形成されている。凹部3aは、第一空間H1側に窪んでおり、開口3bは、第一空間H1に通じている。
 凹部3aは、図4に示すように、上下二箇所に形成されている。一方の凹部3aは、上壁31に形成されており、他方の凹部3aは、下壁32に形成されている。両凹部3a,3aは、内壁33に隣接する位置に形成されており、かつ、上下に対向している。凹部3aを形成するには、内壁33と仕切壁35の間においてバンパーステイSの外殻に皿絞り加工を施し、外殻の一部を第一空間H1側に窪ませればよい。図3の(b)に示すように、本実施形態の凹部3aは、三角形部S1に形成されており、平面視長円形を呈しているが(図3参照)、凹部3aの位置、大きさ。形状等は、適宜変更しても差し支えない。
 開口3bは、図3の(a)に示すように、内壁33に形成されている。開口3bを形成するには、バンパーステイSの外殻を切除すればよい。本実施形態の開口3bは、略矩形を呈しており、図3の(b)に示すように、その大部分が三角形部S1に形成されている。なお、開口3bの位置、大きさ、形状等は、適宜変更しても差し支えない。
 バンパーステイSには、作業用の欠損部3c,3dが形成されている。図3の(a)にも示すように、一方の欠損部3cは、内壁33に形成された長円形状の開口であり、他方の欠損部3dは、仕切壁35に形成された矩形状の切欠きである。欠損部3c,3dは、図3の(b)に示すように、バンパーリインフォースメントRの作業用開口13a,14aからフランジFのボルト挿通孔2aを見通せるよう、ボルト挿通孔2aの中心軸線上に位置している。欠損部3c,3dを形成するには、バンパーステイSのうち、ボルト挿通孔2aの中心軸線と交差する部分を切除すればよい。ボルト挿通孔2aの中心軸線上に欠損部3c,3dを設けると、ボルトあるいはボルト締結用の工具を挿入し易くなるので、車体への取付作業が容易になる。なお、欠損部3c,3dの大きさや形状等は、適宜変更しても差し支えない。
 なお、他のボルト挿通孔2bの中心軸線は、上リブ36および下リブ37の間を通過しており、バンパーステイSの外殻や仕切壁35と交差していないので、バンパーステイSを切除せずとも、作業用開口13b,14bからボルト挿通孔2bを見通すことができる。
 バンパーステイSは、アルミニウム合金製の中空押出形材を利用して形成する。この中空押出形材は、図4と同様の断面形状を備えている。
 バンパーステイSを製造する際には、まず、図5の(a)に示すように、中空押出形材3の一端側を第一切断線C1に沿って切断するとともに、中空押出形材3の他端側を第二切断線C2および第三切断線C3に沿って切断する。第一切断線C1と外壁34とのなす角度θ1は、バンパーリインフォースメントRの後面と外壁34とのなす角度と等しい。第二切断線C2は、押出方向を法線とする平面に対して角度θ2で傾斜する直線である。角度θ2は、図2に示す仮想基準線Pの傾斜角度θと等しい。第三切断線C3は、第二切断線C2と交差する直線である。第二切断線C2と第三切断線C3とのなす角度θ3は、90(deg)以上180(deg)未満である。
 中空押出形材3からブロック30を切り出したら、図5の(b)に示すように、ブロック30の第一切断線C1側の端部を仕上線C4に沿って切除する。仕上線C4は、バンパーリインフォースメントRの後面の形状と同じである。その後、ブロック30の適所に、図3の(a)に示す凹部3a、開口3bおよび欠損部3c,3dを形成すると、バンパーステイSとなる。
 バンパーステイSにフランジFを接合する場合には、図3の(b)に示すように、まず、バンパーステイSの後端にフランジFの前面を当接させ、その後、上壁31、下壁32、内壁33および仕切壁35の後端に沿って溶接を施せばよい。バンパーステイSをフランジFに接合すると、第一空間H1の後側の開口端がフランジFによって閉塞される。なお、仕切壁35のフェンダー側の側面は、外部に露出しているので、仕切壁35とフランジFとの溶接作業を簡易且つ迅速に行うことができる。
 バンパーステイSをバンパーリインフォースメントRに接合する場合には、外壁34の前端を後プレート14の側縁に一致させつつ、バンパーステイSの前端をバンパーリインフォースメントRの後面に当接させ、その後、上壁31、下壁32、内壁33および外壁34の前端に沿って溶接を施せばよい。バンパーステイSをバンパーリインフォースメントRに接合すると、第一空間H1および第二空間H2の前側の開口端がバンパーリインフォースメントRによって閉塞される。なお、外壁34の前端と後プレート14の側縁とが揃っているので、外壁34と後プレート14との溶接作業を簡易且つ迅速に行うことができる。
 バンパーステイSをサイドメンバMに固定する場合には、フランジFのサブプレート22をサイドメンバMの上面に載置しつつ、フランジFのメインプレート21をサイドメンバMの前端面に当接させ、ボルト挿通孔2a~2dに挿入したボルトをサイドメンバMに締着すればよい。
 次に、図6を参照して、フラットバリアに正面衝突した場合における衝突エネルギーの吸収過程を説明する。
 図6の(a)に示すバンパー構造に対して、正面側(車体前方)から衝突荷重Lが作用すると、図6の(b)に示すように、まず、バンパーステイS,S間においてバンパーリインフォースメントRの湾曲部分が直線状に伸ばされることで、衝突エネルギーが吸収される(ビーム曲げ過程)。なお、バンパーリインフォースメントRに作用した衝突荷重は、バンパーステイSによって受け止められるので、バンパーリインフォースメントRには、バンパーステイSからの反力が作用する。
 バンパーリインフォースメントRの湾曲部分が直線状に伸ばされる際には、三角形部S1の凹部3aおよび開口3b(図3参照)の開口縁部に局所的な座屈(圧潰)が生じるものの、三角形部S1に座屈が集中する結果、バンパーステイS全体の圧潰が抑制されるので、バンパーステイSは、ビーム曲げ過程中のバンパーリインフォースメントRを安定して支持することができる。
 なお、衝突荷重Lの作用位置が上下にオフセットした場合でも、凹部3aおよび開口3bの周囲に座屈が集中する結果、バンパーステイSの座屈開始時期を遅らせることが可能となるので、少なくとも衝突の初期段階においては、バンパーリインフォースメントRを安定的に支持することが可能になる。
 衝突荷重Lが大きい場合には、ビーム曲げ過程の途中から、バンパーステイSに隣接した領域においてバンパーリインフォースメントRの断面圧潰が進行し始める(ビーム圧潰過程)。ビーム圧潰過程では、バンパーステイS(特に仕切壁35)がバンパーリインフォースメントRの後面に減り込み、バンパーリインフォースメントRが潰れることで衝突エネルギーを吸収する。なお、上プレート11および下プレート12は、蛇腹状に座屈変形する。
 ビーム圧潰過程がある程度進行すると、図6の(c)に示すように、バンパーリインフォースメントRに作用した衝突荷重Lのうち、押出方向に沿う方向の分力L1によって、バンパーステイSに軸圧潰が発生するようになり、中空押出形材の押出方向と直交する方向の分力L2によって、バンパーステイSに断面圧潰が発生するようになる(ステイ圧潰過程)。すなわち、ステイ圧潰過程では、図6の(d)に示すように、バンパーステイSに軸圧潰と断面圧潰とが生じることで衝突エネルギーを吸収する。
 このように、本実施形態のバンパー構造によれば、少なくとも正面衝突の場合においては、ビーム曲げ過程、ビーム圧潰過程およびステイ圧潰過程が順次進行するようになるので、支持力(サイドメンバMに伝わる荷重)のピークも時間差をもって順次現れるようになる。
 しかも、本実施形態に係るバンパー構造によれば、バンパーステイSの軸圧潰によるエネルギー吸収を期待できるので、「断面圧潰型」のバンパーステイ(押出方向が上下方向あるいは左右方向となるように配置されたバンパーステイ)に比べて、ステイ各部の薄肉化(バンパーステイの軽量化)を図ることが可能となり、さらには、バンパーステイSの断面圧潰によるエネルギー吸収も期待できるので、「軸圧潰型」のバンパーステイ(押出方向が前後方向となるように配置されたバンパーステイ)に比べて、支持力のピークを低く抑えることができ、なおかつ、ピーク後における支持力の急低下を抑制することが可能となる。
 また、本実施形態に係るバンパー構造によれば、バンパーリインフォースメントRの支点間距離が狭まるようになるので、バンパーステイS,S間におけるバンパーリインフォースメントRの変形抵抗を維持したままバンパーリインフォースメントRの薄肉化(軽量化)を図ることが可能となる。すなわち、押出方向が車両直進方向と一致するようにバンパーステイを配置すると、バンパーステイの内側縁は、図2の仮想線Qの位置となり、バンパーリインフォースメントRの端部は、仮想線Qとの交点q’まで支持されることになるが、押出方向が車両直進方向と一致しない本実施形態のバンパー構造では、バンパーステイSが仮想線Qよりも中央線C側に張り出していて、バンパーステイSの内側縁が仮想線Qよりも中央線C側の位置となるので、バンパーリインフォースメントRの端部は、交点q’よりも中央線Cに近い支持点qまで支持されるようになる。このように、バンパーステイSによれば、仮想線Qから中央線C側に張り出す平面視三角形状の部分によっても、バンパーリインフォースメントRが支持されるようになるので、バンパーリインフォースメントRの支点間距離がサイドメンバM,Mの離間距離よりも小さくなる。また、バンパーステイSがバンパーリインフォースメントRと広範囲に接触するようになるので、バンパーリインフォースメントRの圧潰範囲を増大させることが可能になり、ひいては、衝突エネルギーの吸収量を増大させることが可能となる。
 また、本実施形態に係るバンパー構造によれば、バンパーステイSの外殻に座屈調整用の凹部3aおよび開口3bを設けているので、座屈の開始位置をコントロールすることが可能になり、ひいては、圧潰パターンの再現性が高まる。また、凹部3aおよび開口3bを設けると、これらを設けない場合に比べて、バンパーステイSの剛性が低下するため、支持力のピークを抑えることが可能になる。
 また、フランジFのボルト挿通孔2aの中心軸線上においてバンパーステイSに欠損部2c,2dを形成しているので、ボルトあるいはボルト締結用の工具をバンパーステイSに挿入し易くなり、ひいては、車体への取付作業が容易になる。
 本実施形態では、バンパーステイSの外殻に凹部3aおよび開口3bを設けた場合を例示したが、凹部3aおよび開口3bの一方あるいは両方を省略してもよい。例えば、図7の(a)に示すバンパーステイSでは、その外殻の三箇所(上壁31,下壁32および内壁33)に座屈調整用の開口3b,3b,3bを形成している。開口3b,3b,3bは、いずれも、バンパーステイSの三角形部S1(図2参照)に位置し、第一空間H1に通じている。
 また、本実施形態では、後加工にて形成した凹部3aを例示したが、図7の(b)に示す凹部3a’,3a’のように、押出成形によって形成してもよい。一方の凹部3a’は、上壁31に形成されており、他方の凹部3a’は、下壁32に形成されている。両凹部3a’,3a’は、内壁33に隣接する位置に形成されており、かつ、押出方向に連続している。
 本実施形態においては、円弧状のバンパーリインフォースメントRを例示したが、本発明に適用可能なバンパーリインフォースメントの形状を限定する趣旨ではない。図示は省略するが、楕円弧や放物線をなすバンパーリインフォースメントのほか、曲率の異なる複数の円弧を組み合わせた形状や曲線と直線とを組み合わせた形状のバンパーリインフォースメント、さらには、直線部の両側に後方に向けて傾斜する傾斜部を具備するバンパーリインフォースメント(屈折部分を具備するバンパーリインフォースメント)を使用してもよい。
 また、図8の(a)に示すように、直線状を呈するバンパーリインフォースメントR’を使用しても差し支えない。バンパーリインフォースメントR’に組み合わされるバンパーステイS’は、前記のバンパーステイSにおいて三角形部S1を省略した形状となる。なお、ビーム曲げ過程では、バンパーリインフォースメントR’のうち、左右のバンパーステイS’,S’の間の部分が車体側に凸となるように変形することで、衝突初期における衝突エネルギーが吸収されることになる。
 また、本実施形態では、バンパーステイSを、サイドメンバMからバンパーリインフォースメントRに向かうに従って仮想基準線Pが中央線Cに近づくように配置した場合を例示したが(図2参照)、図7の(b)に示すバンパーステイS”のように、サイドメンバMからバンパーリインフォースメントRに向かうに従って仮想基準線Pが中央線Cから遠ざかるように配置してもよい。
M  サイドメンバ(車体)
R  バンパーリインフォースメント
F  フランジ
2a ボルト挿通孔
S  バンパーステイ
3  中空押出形材
3a 凹部
3b 開口
X  横軸(車両幅方向)
Y  縦軸(車両直進方向)
P  仮想基準線

Claims (5)

  1.  バンパーリインフォースメントと、
     車体と前記バンパーリインフォースメントとの間に介設される左右一対のバンパーステイと、を備えるバンパー構造であって、
     前記各バンパーステイは、中空押出形材からなり、かつ、前記各バンパーステイを上から見たときに、前記中空押出形材の押出方向が車両直進方向に斜交する方向となるように配置される、ことを特徴とするバンパー構造。
  2.  前記中空押出形材の押出方向に延びる直線を仮想基準線としたとき、各バンパーステイは、前記車体から前記バンパーリインフォースメントに向かうに従って前記仮想基準線が車両幅方向中央に近づくように配置される、ことを特徴とする請求の範囲第1項に記載のバンパー構造。
  3.  前記各バンパーステイの外殻に、凹部または開口が形成されている、ことを特徴とする請求の範囲第1項に記載のバンパー構造。
  4.  前記バンパーステイの車体側の端部にフランジが設けられており、
     前記フランジには、ボルト挿通孔が形成されており、
     前記バンパーステイのうち、前記ボルト挿通孔の中心軸線と交差する部分が切除されている、ことを特徴とする請求の範囲第1項に記載のバンパー構造。
  5.  中空押出形材からなるバンパーステイであって、上から見たときに、前記中空押出形材の押出方向が車両直進方向に斜交する方向となるように配置される、ことを特徴とするバンパーステイ。
PCT/JP2011/060274 2011-04-27 2011-04-27 バンパー構造およびバンパーステイ WO2012147179A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/060274 WO2012147179A1 (ja) 2011-04-27 2011-04-27 バンパー構造およびバンパーステイ
JP2013511836A JP5671612B2 (ja) 2011-04-27 2011-04-27 バンパー構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/060274 WO2012147179A1 (ja) 2011-04-27 2011-04-27 バンパー構造およびバンパーステイ

Publications (1)

Publication Number Publication Date
WO2012147179A1 true WO2012147179A1 (ja) 2012-11-01

Family

ID=47071721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060274 WO2012147179A1 (ja) 2011-04-27 2011-04-27 バンパー構造およびバンパーステイ

Country Status (2)

Country Link
JP (1) JP5671612B2 (ja)
WO (1) WO2012147179A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107662651A (zh) * 2016-07-27 2018-02-06 保时捷股份公司 机动车辆缓冲器横梁和机动车辆前部或后部布置结构
JP6292279B1 (ja) * 2016-11-08 2018-03-14 マツダ株式会社 車両の衝撃吸収構造
EP3566911A1 (en) * 2018-05-08 2019-11-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Bumper reinforcement
EP4187121A1 (en) * 2021-11-30 2023-05-31 Constellium Singen GmbH Deformation element in an impact absorbing structure
JP7420666B2 (ja) 2020-07-02 2024-01-23 Maアルミニウム株式会社 衝撃吸収部材

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5881117B2 (ja) * 2012-12-25 2016-03-09 本田技研工業株式会社 自動車の車体構造

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07265988A (ja) * 1994-03-31 1995-10-17 Showa Alum Corp 取付け部材が取り付けられた曲がり品の製造方法及び同製造装置
JPH0986309A (ja) * 1995-09-28 1997-03-31 Fuji Heavy Ind Ltd バンパステー
JP2004182139A (ja) * 2002-12-05 2004-07-02 Toyota Motor Corp 車両用バンパ支持構造

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07265988A (ja) * 1994-03-31 1995-10-17 Showa Alum Corp 取付け部材が取り付けられた曲がり品の製造方法及び同製造装置
JPH0986309A (ja) * 1995-09-28 1997-03-31 Fuji Heavy Ind Ltd バンパステー
JP2004182139A (ja) * 2002-12-05 2004-07-02 Toyota Motor Corp 車両用バンパ支持構造

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107662651A (zh) * 2016-07-27 2018-02-06 保时捷股份公司 机动车辆缓冲器横梁和机动车辆前部或后部布置结构
JP6292279B1 (ja) * 2016-11-08 2018-03-14 マツダ株式会社 車両の衝撃吸収構造
WO2018088099A1 (ja) * 2016-11-08 2018-05-17 マツダ株式会社 車両の衝撃吸収構造
JP2018075906A (ja) * 2016-11-08 2018-05-17 マツダ株式会社 車両の衝撃吸収構造
EP3527436A4 (en) * 2016-11-08 2019-12-18 Mazda Motor Corporation SHOCK ABSORBING STRUCTURE FOR VEHICLES
US10882482B2 (en) 2016-11-08 2021-01-05 Mazda Motor Corporation Impact absorption structure for vehicles
EP3566911A1 (en) * 2018-05-08 2019-11-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Bumper reinforcement
CN110450745A (zh) * 2018-05-08 2019-11-15 株式会社神户制钢所 机动车的保险杠加强件
US11318899B2 (en) 2018-05-08 2022-05-03 Kobe Steel, Ltd. Bumper reinforcement
CN110450745B (zh) * 2018-05-08 2023-01-10 株式会社神户制钢所 机动车的保险杠加强件
JP7420666B2 (ja) 2020-07-02 2024-01-23 Maアルミニウム株式会社 衝撃吸収部材
EP4187121A1 (en) * 2021-11-30 2023-05-31 Constellium Singen GmbH Deformation element in an impact absorbing structure

Also Published As

Publication number Publication date
JP5671612B2 (ja) 2015-02-18
JPWO2012147179A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
JP6368851B2 (ja) 車体構造
US9463758B2 (en) Crash box and automobile chassis
JP5671612B2 (ja) バンパー構造
JP6236046B2 (ja) 車体構造
JP5211133B2 (ja) 車体前部構造
US9868472B2 (en) Bonnet structure of automotive vehicle
JP4208005B2 (ja) 車両用フェンダパネル取付構造
US20010013705A1 (en) Impact absorbing mechanism and bumper reinforcement having the mechanism
KR101376024B1 (ko) 차량용 후드
JP6718726B2 (ja) 車両用フード
KR20140116412A (ko) 정현파형 크러시 캔 조립체
RU2686287C1 (ru) Конструкция заднего участка транспортного средства
US20150084355A1 (en) Bumper reinforcement
JP5513903B2 (ja) 車両用緩衝装置
JP5214397B2 (ja) 車両構造
JP5462674B2 (ja) バンパーステイ
JP2012162108A (ja) 車両前部構造
JP3632654B2 (ja) 車体前部構造
KR101435418B1 (ko) 차량용 범퍼빔
JP2007030778A (ja) クラッシュボックス
JP2009107445A (ja) 車体前部構造
WO2011158621A1 (ja) ステアリングコラムの取付ブラケット
JP2007076433A (ja) 自動車のドアビーム
KR101424529B1 (ko) 차량용 범퍼빔
CN220615741U (zh) 一种汽车前防撞梁总成

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864265

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013511836

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864265

Country of ref document: EP

Kind code of ref document: A1