WO2012146031A1 - 透明质酸与羟丙基甲基纤维素复合凝胶及制备方法 - Google Patents

透明质酸与羟丙基甲基纤维素复合凝胶及制备方法 Download PDF

Info

Publication number
WO2012146031A1
WO2012146031A1 PCT/CN2011/084096 CN2011084096W WO2012146031A1 WO 2012146031 A1 WO2012146031 A1 WO 2012146031A1 CN 2011084096 W CN2011084096 W CN 2011084096W WO 2012146031 A1 WO2012146031 A1 WO 2012146031A1
Authority
WO
WIPO (PCT)
Prior art keywords
hyaluronic acid
quaternary ammonium
solution
gel
composite gel
Prior art date
Application number
PCT/CN2011/084096
Other languages
English (en)
French (fr)
Inventor
简军
李睿智
Original Assignee
北京爱美客生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201110104213 external-priority patent/CN102226011B/zh
Priority claimed from CN201110289906A external-priority patent/CN102321258B/zh
Priority claimed from CN201110392624.9A external-priority patent/CN102435702B/zh
Priority claimed from CN201110392623.4A external-priority patent/CN102495154B/zh
Priority claimed from CN201110392570.6A external-priority patent/CN102492180B/zh
Priority claimed from CN201110392621.5A external-priority patent/CN102643440B/zh
Application filed by 北京爱美客生物科技有限公司 filed Critical 北京爱美客生物科技有限公司
Publication of WO2012146031A1 publication Critical patent/WO2012146031A1/zh
Priority to US13/844,842 priority Critical patent/US20130217872A1/en
Priority to US15/202,664 priority patent/US20160310522A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/08Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals with hydroxylated hydrocarbon radicals; Esters, ethers, or acetals thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/005Crosslinking of cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/284Alkyl ethers with hydroxylated hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/26Cellulose ethers
    • C08J2301/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds

Definitions

  • the invention relates to a composite gel of hyaluronic acid and hydroxypropylmethylcellulose cross-linking and a preparation method thereof, which adopts a double epoxy cross-linking agent 1,2,7,8-diepoxyoctane (DEO) Or 1,4-butanediol diglycidyl ether (BDDE) to synthesize hyaluronic acid monohydroxypropyl methylcellulose cross-linked composite modified gel.
  • DEO 1,2,7,8-diepoxyoctane
  • BDDE 1,4-butanediol diglycidyl ether
  • Hyaluronic acid also known as hyaluronic acid
  • hyaluronic acid is an acid mucopolysaccharide.
  • Meyer a professor of ophthalmology at the University of Columbia, USA, first isolated the substance from the vitreous of the bovine eye.
  • hyaluronic acid exhibits many important physiological functions in the body, such as lubricating joints, regulating the permeability of blood vessel walls, regulating protein, water and electrolyte diffusion and operation, and promoting wound healing. It is especially important that hyaluronic acid has a special water retention effect and is the most moisturizing substance found in nature. It is called the ideal natural moisturizing factor (NMF).
  • NMF ideal natural moisturizing factor
  • Hyaluronic acid is a multifunctional substrate, and hyaluronic acid (hyaluronic acid) HA is widely distributed in various parts of the human body.
  • the skin also contains a large amount of hyaluronic acid.
  • Human skin maturation and aging process It also changes with the content of hyaluronic acid and metabolism, it can improve the skin's nutrient metabolism, make the skin soft, smooth, wrinkle, increase elasticity, prevent aging, and is a good transdermal absorption enhancer at the same time as moisturizing.
  • the combination of other nutrients can promote the absorption of nutrients.
  • the hyaluronic acid gel is used for subcutaneous injection, which can instantly moisturize, increase skin elasticity and tension, help restore normal skin oil and water balance, and improve dryness. Relax the skin.
  • Hydroxypropyl methylcellulose is known as hypromellose; cellulose hydroxypropyl methyl ether; Hypromellose, Cellulose (HPMC) o does not provide heat in medicines, and is a safe pharmaceutical excipient. It is widely used in the field of pharmacy for tablets, sustained release and controlled release agents, ocular administration systems, suspension liquid preparations, gels and ointments.
  • hyaluronic acid gels of the subcutaneous injection grade popular in the domestic market have a residence time of about one year under the skin, and under the action of enzymatic hydrolysis by hyaluronidase in vitro, within two hours. Can be completely degraded.
  • 1,2,7,8-diepoxyoctane (DEO)
  • the molecular chain is longer due to the longer carbon chain of 1,2,7,8-diepoxyoctane (DEO).
  • the cross-linking activity of acid and hydroxypropyl methylcellulose is worse than that of water-miscible 1,4-butanediol diglycidyl ether (BDDE).
  • BDDE water-miscible 1,4-butanediol diglycidyl ether
  • the composite gel with a lower degree of crosslinking ( ⁇ 10%) prepared by using its weak solubility in water; if the amount of cross-linking agent is more than doubled, there is a large amount of undissolved
  • the crosslinking agent of the aqueous phase the crosslinking agent present in the oil phase cannot fully react with the hyaluronic acid and hydroxypropyl methylcellulose in the aqueous phase, resulting in low utilization of the crosslinking agent ( ⁇ 20%). ), a composite gel that is expected to have a high degree of crosslinking is not obtained.
  • 1,2,7,8-diepoxyoctane is used as a crosslinking agent for hyaluronic acid to crosslink the hydroxyl group and carboxyl group of hyaluronic acid.
  • the stability of the hyaluronic acid molecule is improved, the hyaluronidase and the free radical are effectively prevented from degrading the hyaluronic acid, and the residence time of the hyaluronic acid in the skin is obviously improved, and the amount is good as the skin filling.
  • the effect of the agent should be.
  • MSDS Material Safety Data Sheets
  • 1,2,7,8-diepoxyoctane (DEO) is irritating or even toxic to the skin.
  • the object of the present invention is to provide a composite gel of hyaluronic acid and hydroxypropylmethylcellulose cross-linking, which has the advantages of high thermal stability, biocompatibility and the like, and can obtain anti-enzymatic degradation in vitro.
  • the highly modified hyaluronic acid gel has a wide range of uses in medicine, surgery, and cosmetics, laying the foundation for further development of injection cosmetic and cosmetic products.
  • Another object of the present invention is to provide a process for preparing a crosslinked composite gel of hyaluronic acid and hydroxypropylmethylcellulose.
  • Hyaluronic acid is used in a strongly alkaline environment using a bis-epoxide crosslinker 1,2,7,8-diepoxyoctane (DEO) or 1,4-butanediol diglycidyl ether (BDDE). It is crosslinked with an etherification crosslinking reaction of hydroxypropylmethylcellulose to obtain a water-insoluble hyaluronic acid monohydroxypropylmethylcellulose composite modification.
  • the method of the invention is simple, easy to operate, low in cost, safe and reliable.
  • the hyaluronic acid and hydroxypropyl methylcellulose composite gel provided by the invention is prepared by using hyaluronic acid and hydroxypropylmethylcellulose as raw materials in the presence of a double epoxy crosslinker, hyaluronic acid single
  • the mass ratio of hydroxypropyl methylcellulose to hydroxypropyl methylcellulose is 1% to 50%, and the specific preparation methods are as follows:
  • Method 1 Mix hyaluronic acid and hydroxypropyl methylcellulose solution in proportion, stir the reaction, add strong alkali to the solution to make the solution strong alkaline, mix well, then add hydrophilic or hydrazine to the reaction system.
  • the water double epoxy cross-linking agent is neutralized with an acid solution after stirring, and the system is solidified and dehydrated with acetone, and the product is washed with an organic solvent (anhydrous ethanol or acetone), vacuum dried, and dissolved.
  • Method 2 After mixing the quaternary ammonium alkali solution with the hydroxypropyl methylcellulose solution, the hyaluronic acid dry powder is added in proportion, and after mixing, the hydrophobic double-epoxide crosslinking agent is added to the system, and the reaction is carried out under stirring.
  • the acid-adjusted solution is acidic, concentrated in a vacuum to cause the carboxyl group to participate in the crosslinking reaction, and then neutralized and dehydrated with an alkaline ethanol solution, and dried under vacuum to obtain a hyaluronic acid monohydroxypropylmethylcellulose gel powder, which is then dissolved to obtain a transparent Acid-hydroxypropyl methylcellulose composite gel.
  • the hydrophobic double epoxy crosslinking agent is a long-chain alkane double epoxy compound, such as 1,2,7,8-diepoxyoctane (DEO), etc.
  • the hydrophilic double epoxy is an ether double-epoxidation.
  • This method is suitable for the preparation of various cross-linking degree (1 ⁇ 300) composite gels using 1,4-butanediol diglycidyl ether (BDDE) as a crosslinking agent, and using 1,2,7,8-two Epoxyoctane (DEO) is used as a crosslinking agent to prepare a composite gel with a low degree of crosslinking ( ⁇ 10).
  • BDDE 1,4-butanediol diglycidyl ether
  • DEO 1,2,7,8-two Epoxyoctane
  • the specific steps of the second method are as follows: It is suitable for preparing a high cross-linking degree (10% ⁇ 300%) of a double cross-linking of a hydroxyl group and a carboxyl group by using 1,2,7,8-diepoxyoctane (DEO) as a crosslinking agent.
  • DEO 1,2,7,8-diepoxyoctane
  • the mass ratio of HA to DEO is 1:0.2-1:3, and the amount of quaternary ammonium base is 0.5-30% of the total mass of the reaction system.
  • Vacuum concentration conditions 30-35 ° C, O.lMPa;
  • Vacuum drying conditions drying at 50-60 ° C, 0.08-0.09 MPa for 10-12 h.
  • the quaternary ammonium base can be synthesized in two ways:
  • Oxidation method which is characterized in that the elemental silver and the quaternary ammonium salt aqueous solution are thoroughly mixed, and then hydrogen peroxide is added as an oxidizing agent, and the quaternary ammonium alkali aqueous solution can be rapidly synthesized at room temperature, and the silver halide precipitate can be removed by filtration to dissolve.
  • Hyaluronic acid the method uses less material, does not introduce impurity ions and organic solvent, and the precipitated silver halide can be recycled and reused, and the operation is simple and convenient and environmentally friendly;
  • the quaternary ammonium salt is preferably tetrabutylammonium bromide.
  • X C1, Br; Rl, R2, R3, R4 are four identical or different aliphatic or aromatic hydrocarbon groups.
  • An optional quaternary ammonium salt is tetrabutylammonium bromide.
  • the ethanol method the sodium salt is precipitated in ethanol to precipitate and prepare the quaternary ammonium base: firstly, the halogenated quaternary ammonium salt and sodium hydroxide are dissolved in 90% ethanol, and then the two solutions are mixed and stirred. After the sodium halide precipitate is filtered off, a quaternary ammonium base alcohol solution is obtained, and after concentration in a vacuum, a high concentration of the quaternary ammonium alkali solution can be obtained.
  • the biggest advantage of this method is that it can prepare high concentration of quaternary ammonium base.
  • the quaternary ammonium salt is preferably: trimethyloctyl ammonium chloride. + _ EtOH
  • X C1, Br; Rl, R2, R3, R4 are respectively four identical or different aliphatic hydrocarbon or aromatic hydrocarbon groups.
  • An optional quaternary ammonium salt is trimethyloctyl ammonium chloride.
  • the present invention adds a quaternary ammonium base as a catalyst during the reaction, and the catalyst can function as a base catalyst and a phase transfer catalyst, and increases 1, 2, 7, 8- The solubility of dioctocene octane (DEO) in water (>20%, mass fraction), while allowing it to be uniformly dissolved in the aqueous phase, further increasing 1,2,7,8-diepoxyoctane ( The utilization of DEO) (>90%) allows the synthesis of cross-linked hyaluronic acid with a high degree of crosslinking (>20%).
  • DEO dioctocene octane
  • DEO 1,2,7,8-diepoxyoctane
  • BDDE 4-butanediol diglycidyl ether
  • BDDE 1,4-butanediol diglycidyl ether
  • DEO 1,2,7,8-diepoxyoctane
  • the advantages of using a simple quaternary ammonium base in combination with a quaternary ammonium salt and sodium hydroxide are:
  • the ionic strength of a simple quaternary ammonium base is lower than that of a quaternary ammonium salt and sodium hydroxide, and the increase in particle strength affects hyaluronic acid.
  • the solubility property causes hyaluronic acid to be too large in local concentration, which leads to uneven local crosslinking of the crosslinking reaction, which affects the utilization of the gel and the crosslinking agent. Therefore, in combination with the above considerations, a quaternary ammonium base is used as a combination of a phase transfer catalyst and a base catalyst, so that the uniformity of crosslinking is better, and the utilization ratio of the crosslinking agent is higher.
  • the present invention still further provides a method for purifying a crosslinked composite gel of hyaluronic acid and hydroxypropylmethylcellulose, that is, a method for removing a crosslinking agent 1,2,7,8-diepoxyoctane, using a high pressure
  • the steam emptying method removes 1,2,7,8-diepoxyoctane from the crosslinked hyaluronic acid product to a safe range, ensuring the safety of the crosslinked hyaluronic acid product.
  • the method of removing the crosslinking agent 1,2,7,8-diepoxyoctane includes the following steps:
  • step 3) to increase the temperature pressure to the previous reading, and repeat the 4-5 times to remove the cross-linking 1,2,7,8-diepoxyoctane in the cross-linked hyaluronic acid ( The purpose of DEO).
  • the hydrogel concentration is 15-35 mg/mL, preferably 20 mg/mL.
  • the high pressure time from step 3) to step 4) is 25-35 min, preferably 30 min.
  • the invention adopts 1,2,7,8-diepoxyoctane (DEO) as a crosslinking agent for hyaluronic acid, and adds hyaluronic acid to the quaternary ammonium alkali solution before the hyaluronic acid crosslinking reaction, which is transparent
  • DEO 1,2,7,8-diepoxyoctane
  • the hydroxyl group and carboxyl group of the acid acid are cross-linked, which improves the stability of the hyaluronic acid molecule and effectively prevents the degradation of hyaluronic acid by hyaluronidase and free radicals.
  • the reaction condition of the invention is simple, and the quaternary ammonium base is used as a combination of a base catalyst and a phase transfer catalyst, and 1,2,7,8-diepoxyoctane is added.
  • the solubility of alkane (DEO) in water >20%, mass fraction), while allowing it to be uniformly dissolved in a solution of hyaluronic acid, further increasing 1,2,7,8-diepoxyoctane (DEO)
  • the utilization rate >90%), high cross-linking agent utilization, and high cross-linking degree (>20%) of cross-linked hyaluronic acid can be synthesized.
  • the method is characterized in that the alkali is acid and then concentrated under reduced pressure to synthesize a hyaluronic acid gel or a hyaluronic acid film which is double crosslinked with a hydroxyl group and a carboxyl group, has a high degree of crosslinking, is highly stable, and has high biocompatibility.
  • the gel of the invention has the advantages of good thermal stability, aseptic, non-toxic, pyrogen-free, biocompatibility and the like.
  • the crosslinked hyaluronic acid gel prepared by the invention detects the residual amount of 1,2,7,8-diepoxyoctane (DEO) by gas chromatography, and the residual value thereof is lower than the detection limit of gas chromatography.
  • DEO 1,2,7,8-diepoxyoctane
  • the invention obviously improves the residence time of hyaluronic acid in the skin, and has good curative effect as a skin filler.
  • the invention utilizes a solution polymerization method, using injection grade hyaluronic acid and hydroxypropyl methylcellulose as raw materials,
  • hyaluronic acid and hydroxypropyl methylcellulose composite gel has better stability under the premise of ensuring that the original chemical properties of hyaluronic acid are not significantly changed, and can resist the high temperature of 125 ° C.
  • the acid and alkali resistance, under the action of high concentration (300ii/ml) hyaluronidase in vitro, can not exceed 2% within 10h.
  • the invention provides a new way for the modification of hyaluronic acid, and the composite modified product prepared by the method of the invention has the advantages of high thermal stability and biocompatibility, and can obtain a strong anti-enzymatic degradation in vitro.
  • Sexual hyaluronic acid gel has a wide range of uses in medicine, surgery and cosmetics, laying the foundation for further development of injection beauty and plastic products.
  • the method of the invention is simple, easy to operate, low in cost, safe and reliable.
  • Figure 1 is a FTIR comparison of the present invention with a hyaluronic acid material.
  • Figure 2 is a 13 C NMR comparative spectrum of the present invention and hyaluronic acid starting material.
  • Fig. 3 is a GPC spectrum of the molecular weight change of the composite gel of the present invention in vitro.
  • Figure 4 GPC spectrum of in vitro enzymatic molecular weight change of cross-linked hyaluronic acid.
  • the quaternary ammonium halide in this reaction is selected from tetrabutylammonium bromide (TBAB).
  • the by-product silver bromide in the reaction can be recycled after decomposition.
  • Example 1-b Synthesis of quaternary ammonium base by ethanol method
  • the quaternary ammonium halide in this reaction is selected from octyltrimethylammonium chloride (OTMAC).
  • the quaternary ammonium alkali high concentration solution obtained by any one of the methods of Example 1 is diluted to prepare a quaternary ammonium alkali solution having a concentration of 0.1 mol/L, and 100 mL is added, and 8 g of sodium hyaluronate and 2 g of hydroxypropylmethyl group are added.
  • DEO 1,2,7,8-diepoxyoctane
  • the concentration of 200 mL of NaOH was 0.01%. Soak the 50% ethanol solution three times, neutralize the gel of hydrochloric acid and dehydrate the gel.
  • the neutralized gel was transferred to a vacuum drying oven, dried at 50 ° C for 0.08 to 0.09 MPa for 10 h, and then reconstituted with neutral phosphate buffer (PBS) to obtain hyaluronic acid monohydroxypropylmethyl.
  • PBS neutral phosphate buffer
  • the cellulose composite modified gel has a theoretical crosslinking degree of 30%.
  • the lg hyaluronic acid monohydroxypropyl methylcellulose composite gel dry powder in Example 2 was placed in 200 mL of neutral phosphate buffer solution, and the swelling water absorption balance was reached after 72 hours (the weight of the gel no longer changed with time). And change), the gel was taken out after filtration, and the gel weight was 50 g. The gel has a water absorption of 50:1.
  • Example 2-b In vitro anti-enzymatic test
  • the enzymatic supernatant was taken within 5 hours, and the molecular weight of the supernatant was measured by water gel permeation chromatography (GPC).
  • GPC water gel permeation chromatography
  • the molecular weight of the composite gel of the present invention is the molecular weight of hyaluronidase in the first hour, and the molecular weight increases and a peak appears after lh, which is not within 5 hours. It can degrade completely; while the molecular weight of cross-linked hyaluronic acid decreases linearly and degrades completely at around 90 minutes. It is indicated that the composite gel of the present invention has a strong ability to resist hyaluronic acid hydrolysis.
  • the degradation rate is not more than 1%; at this temperature, the seal is kept for 2h, and after cooling to room temperature, the gel is taken out, and the gel mass is 3.78g, indicating that the degradation rate of the gel under this condition does not exceed 25%. . It is indicated that the composite gel of the present invention has good thermal stability.
  • Example 2-d FTIR spectroscopy, solid 13 C NMR spectroscopy
  • Example 2 The gel powder of Example 2 was taken as a sample, and compared with pure hyaluronic acid by FTIR, solid 13 C NMR detection (see Fig. 1, Fig. 2), the crosslinker 1, 2 can be clearly seen from the figure. , characteristic peak of 7,8-diepoxyoctane (DEO), indicating that the cross-linking agent successfully participates in the cross-linking reaction; in addition to the characteristic peak of the cross-linking agent, hyaluronic acid monohydroxypropyl methylcellulose composite coagulation There is basically no difference between the glue and the hyaluronic acid raw material in the map.
  • DEO 7,8-diepoxyoctane
  • the composite modified material can improve the anti-enzymatic property and thermal stability of hyaluronic acid while ensuring the original chemical and safety properties of hyaluronic acid, and has very good practical value.
  • the composite gel dry powder of Example 2 was formulated into a hydrogel at a concentration of 20 mg/mL, and the pH was adjusted to 7-8 with hydrochloric acid, and placed on a roller for 20 hours to reach a hyaluronic acid water absorption balance.
  • Seal the bottle mouth with ventilated non-permeable paper place it in an autoclave, and after heating to boiling, turn off the vent valve on the autoclave.
  • the air pressure rises to 0.12 MPa
  • the temperature rises to 105 °C.
  • the high pressure time is The purpose of removing the crosslinking agent 1,2,7,8-diepoxyoctane (DEO) in cross-linked hyaluronic acid can be achieved in about 30 minutes.
  • DEO 1,2,7,8-
  • the concentration of 200 mL of NaOH was 0.01%. Soak the 50% ethanol solution three times, neutralize the gel of hydrochloric acid and dehydrate the gel.
  • the neutralized gel is transferred into a vacuum drying oven, and dried at 50 ° C, 0.08 ⁇ 0.09 MPa for 10 h to solidify the gel to obtain a highly crosslinked hyaluronic acid gel, and the theoretical crosslinking degree is 30. %.

Description

透明质酸与羟丙基甲基纤维素复合凝胶及制备方法
技术领域
本发明涉及一种透明质酸与羟丙基甲基纤维素交联复合凝胶及制备方法, 它是采用双 环氧化物交联剂 1,2,7,8-二环氧辛烷 (DEO) 或 1,4-丁二醇二縮水甘油醚 (BDDE) 合成透 明质酸一羟丙基甲基纤维素交联复合改性凝胶。 本发明具有反应条件简单, 交联剂利用率 高且残留量低, 凝胶的热稳定性较高、 生物相容性好等优点。 背景技术
透明质酸 (Hyaluronic acid、 HA) 又名玻尿酸, 是一种酸性粘多糖, 1934年美国哥伦 比亚大学眼科教授 Meyer等首先从牛眼玻璃体中分离出该物质。 透明质酸以其独特的分 子结构和理化性质在机体内显示出多种重要的生理功能, 如润滑关节, 调节血管壁的通透 性, 调节蛋白质, 水电解质扩散及运转, 促进创伤愈合等。 尤为重要的是, 透明质酸具有 特殊的保水作用, 是目前发现的自然界中保湿性最好的物质, 被称为理想的天然保湿因子 (Natural moisturizing factor, NMF, 例如: 2%的纯透明质酸水溶液能牢固地保持 98 %水 分。 透明质酸是一种多功能基质, 透明质酸 (玻尿酸) HA广泛分布于人体各部位。 其中 皮肤也含有大量的透明质酸。 人类皮肤成熟和老化过程也随着透明质酸的含量和新陈代谢 而变化, 它可以改善皮肤营养代谢, 使皮肤柔嫩、 光滑、 去皱、 增加弹性、 防止衰老, 在 保湿的同时又是良好的透皮吸收促进剂。 与其他营养成分配合使用, 可以起到促进营养吸 收的更理想效果。而透明质酸凝胶用于皮下注射, 可瞬间深层保湿、增加皮肤弹性与张力, 有助恢复肌肤正常油水平衡, 改善干燥及松弛皮肤。
羟丙基甲基纤维素别名为羟丙甲纤维素; 纤维素羟丙基甲基醚; Hypromellose , Cellulose(HPMC) o 在药品中不提供热量, 为安全的药用辅料。 其在药剂学领域中片剂、 缓 释与控释剂、 眼部给药系统、 混悬型液体制剂、 凝胶和软膏有广泛应用。
目前国内市场上流行的皮下注射级的各类透明质酸凝胶, 在皮下的停留时间都在一年 左右, 而在体外用透明质酸酶进行酶解的作用下, 在两小时之内便可被完全降解。
当以 1,2,7,8-二环氧辛烷 (DEO) 作为交联剂时, 由于 1,2,7,8-二环氧辛烷 (DEO) 的 碳链较长, 分子极性较小, 使得 1,2,7,8-二环氧辛烷 (DEO) 在水中的溶解度非常小, (一 般不超过 1%, 质量分数), 这也导致了其在水相中与透明质酸和羟丙基甲基纤维素的交联 活性比能与水混溶的 1, 4-丁二醇双縮水甘油醚(BDDE)要差。 一般实验中都是利用了其 在水中微弱的溶解度来制备的较低交联度(<10% )的复合凝胶; 若将交联剂的用量增加两 倍以上, 由于存在大量未能溶解进入水相的交联剂, 存在于油相中的交联剂就不能与水相 中的透明质酸和羟丙基甲基纤维素充分反应而造成交联剂的利用率很低 (<20% ), 无法得 到预期高交联度的复合凝胶。
采用 1,2,7,8-二环氧辛烷作为透明质酸的交联剂,将透明质酸的羟基和羧基都交联起来, 提高了透明质酸分子的稳定性, 有效地防止了透明质酸酶和自由基对透明质酸的降解作 用, 明显地提高了透明质酸在皮肤内的停留时间,具有量好的作为皮肤填充剂应有的疗效。 但是, 依据化学材料安全评估报告 (Material Safety Data Sheets, 简称 MSDS), 1,2,7,8-二 环氧辛烷 (DEO) 对皮肤具有刺激性甚至毒性。 在透明质酸交联反应完全结束后, 此交联 剂必须被清除, 达到安全的含量范围内以避免残留的交联剂对皮肤造成不良的影响。 发明内容
本发明的目的在于提供一种透明质酸与羟丙基甲基纤维素交联复合凝胶, 该复合凝胶 具有较高的热稳定性、 生物相容性等优点, 可以得到体外抗酶降解性强的改性的透明质酸 凝胶, 在医药、 外科手术、 化妆品方面有着广泛的用途,为进一步开发注射美容和整形产品 奠定了基础。
本发明的目的另一目的是提供一种透明质酸与羟丙基甲基纤维素交联复合凝胶的制备 方法。 在强碱性环境下, 采用双环氧化物交联剂 1,2,7,8-二环氧辛烷(DEO)或者 1,4-丁二 醇二縮水甘油醚(BDDE), 将透明质酸与羟丙基甲基纤维素醚化交联反应交联而制得非水 溶性的透明质酸一羟丙基甲基纤维素复合改性物。本发明方法简单, 容易操作, 成本低廉, 安全可靠。
本发明提供的透明质酸与羟丙基甲基纤维素复合凝胶是以透明质酸、 羟丙基甲基纤维 素为原料, 在双环氧化物交联剂存在下制成, 透明质酸单体与羟丙基甲基纤维素的质量比 中, 羟丙基甲基纤维素的质量分数为 1%~50%, 具体制备方法分为:
方法一: 将透明质酸与羟丙基甲基纤维素溶液按照比例混合, 搅拌反应后向溶液中加 入强碱使溶液呈强碱性, 混合均匀后, 再向反应体系中加入亲水或憎水双环氧交联剂, 搅 拌下反应后用酸调溶液为中性, 用丙酮使体系固化脱水, 产物经有机溶剂 (无水乙醇或丙 酮) 洗涤, 真空干燥, 复溶解。
方法二: 将季铵碱溶液与羟丙基甲基纤维素溶液混合均匀后, 按比例加入透明质酸干 粉, 混合均匀后向体系中加入憎水双环氧化物交联剂, 搅拌下反应后用酸调溶液为酸性, 真空浓縮使羧基参与交联反应, 然后用碱性乙醇溶液中和脱水, 真空干燥, 得到透明质酸 一羟丙基甲基纤维素凝胶粉末, 再复溶解得到透明质酸一羟丙基甲基纤维素复合凝胶。
所述的憎水双环氧化物交联剂为长链烷烃类双环氧化合物, 如 1,2,7,8-二环氧辛烷 (DEO) 等, 亲水双环氧化物为醚类双环氧化物, 如 1,4-丁二醇二縮水甘油醚 (BDDE) 等。
所述的双环氧化物交联剂与透明质酸单体的质量比: HA:交联剂 =1:0.01~3
本发明提供的透明质酸与羟丙基甲基纤维素复合凝胶的制备步骤:
方法一具体步骤如下:
1 ) 按计量比将透明质酸与羟丙基甲基纤维素溶液均匀混合, 搅拌反应 16-18h;
2) 加入氢氧化钠溶液呈强碱性 (pH=13) 后, 再向反应体系中加入双环氧化物交联剂 1,2,7,8-二环氧辛烷 (DEO) 或者 1,4-丁二醇二縮水甘油醚 (BDDE), 搅拌均匀, 室温下反 应 24-36h;
3)用盐酸调 pH=5-6, 用丙酮使体系固化脱水, 产物经无水乙醇或丙酮洗涤干净, 50。C 真空干燥, 得到透明质酸一羟丙基甲基纤维素凝胶粉末, 再用中性磷酸缓冲液 (PBS ) 复 溶解得到透明质酸一羟丙基甲基纤维素复合凝胶;
此方法适用于采用 1,4-丁二醇二縮水甘油醚 (BDDE) 作为交联剂制备各种交联度 ( 1 ~300 ) 的复合凝胶, 与采用 1,2,7,8-二环氧辛烷 (DEO) 作为交联剂制备低交联度 (<10 ) 的复合凝胶。
方法二具体步骤如下: 适用于采用 1,2,7,8-二环氧辛烷 (DEO) 作为交联剂制备高交联 度 (10%~300% ) 的羟基与羧基双交联的复合凝胶:
1 )按计量比将强碱性季铵碱(可选用: 四丁基氢氧化铵或辛基三甲基氢氧化铵)溶液 (pH=13 )、 羟丙基甲基纤维素溶液与透明质酸干粉均匀混合, 搅拌反应 16-18h;
2)向反应体系中加入交联剂 1,2,7,8-二环氧辛烷(DEO)搅拌均匀,室温下反应 24-36h, 使透明质酸的羟基先与交联剂反应;
3 ) 用盐酸调 pH=5-6, 真空浓縮除水使羧基参与交联反应, 用 pH=8~9 的乙醇溶液
(20-40%, 质量) 中和盐酸并使凝胶脱水, 真空干燥, 得到透明质酸一羟丙基甲基纤维素 凝胶粉末, 再用中性磷酸缓冲液 (PBS ) 复溶解得到透明质酸一羟丙基甲基纤维素复合凝 胶。
HA与 DEO质量比为 1:0.2-1:3, 季铵碱的用量占反应体系总质量的 0.5-30% 。
真空浓縮条件: 为 30-35°C, O.lMPa;
真空干燥条件: 为 50-60°C, 0.08-0.09MPa的条件下干燥 10-12h。
所述的季铵碱可用两种方法来合成:
1 )氧化法, 该方法是将单质银与^化季铵盐水溶液充分混合, 再加入双氧水作为氧化 剂, 在室温下就可以快速的合成季铵碱水溶液, 过滤除去卤化银沉淀后即可用来溶解透明 质酸, 该方法用料少, 不引入杂质离子与有机溶剂, 沉淀卤化银可以回收再利用, 操作简 单方便环保; 所述的季胺盐优选为: 四丁基溴化铵。
+ - °C + - I
R R2R3R4N X + Ag + H202 ► R^R^N OH + AgXj
X=C1, Br; Rl, R2, R3, R4为四个相同或不相同的脂肪烃基或芳烃基。
可选的季胺盐为四丁基溴化铵。
2) 乙醇法, 用钠盐在乙醇中的溶解度突降而沉淀来制备季铵碱的: 先将卤化季胺盐与 氢氧化钠分别溶解于 90%乙醇中, 再将两种溶液混合搅拌, 过滤掉卤化钠沉淀后得到季铵 碱的醇溶液, 经过真空浓縮后可以得到高浓度的季铵碱溶液。 此法最大的优点就是可以制 备高浓度的季铵碱。 所述的季胺盐优选为: 三甲基辛基氯化铵。 + _ EtOH
RiR2R3R4N X + NaOH RiR2R3R4N OH + NaX ,
25 °C
X=C1, Br; Rl, R2, R3, R4分别为四个相同或不相同的脂肪烃基或芳烃基。
可选季胺盐为三甲基辛基氯化铵。
为了制备高交联度的复合凝胶, 本发明在反应过程中添加了季铵碱作为催化剂, 该催 化剂可以起到碱催化剂以及相转移催化剂的双重作用, 增加了 1,2,7,8-二环氧辛烷 (DEO) 在水中的溶解度 (>20%, 质量分数), 同时让其能够均匀地溶解在水相中, 进一步增大 1,2,7,8-二环氧辛烷(DEO) 的利用率(>90% ), 使高交联度(>20% ) 的交联透明质酸得以 合成。
本发明的反应过程:
透明质酸(HA)与羟丙基甲基纤维素(HPMC)在交联剂 1,2,7,8-二环氧辛烷(DEO) 存 4-丁二醇二縮水甘油醚 (BDDE), 则与此反应类似。
Figure imgf000006_0001
1,4-丁二醇二縮水甘油醚 (BDDE) 1,2,7,8-二环氧辛烷 (DEO)
1. NaOH or 季接碱
2. HC1
Figure imgf000006_0002
采用单纯季铵碱相比季胺盐与氢氧化钠组合的好处在于: 单纯的季铵碱的离子强度 要低于季胺盐与氢氧化钠组合, 由于粒子强度的增大会影响到透明质酸的溶解性能, 而造 成透明质酸会在局部浓度过大, 而导致了交联反应的局部交联不均匀, 影响了凝胶的性状 与交联剂的利用率。 因此, 综合上述考虑, 采用季铵碱作为相转移催化剂与碱催化剂的结 合体, 使得交联的均匀度更好, 且交联剂的利用率更高。
本发明还进一步提供了一种透明质酸与羟丙基甲基纤维素交联复合凝胶的纯化方法 即除去交联剂 1,2,7,8-二环氧辛烷的方法, 采用高压蒸汽空法去除交联透明质酸产品中 1,2,7,8-二环氧辛烷, 达到安全的含量范围内, 确保交联透明质酸产品的安全性。 除去交联 剂 1,2,7,8-二环氧辛烷的方法包括如下步骤:
1 )将复合凝胶的水凝胶溶液用酸 pH值调整至 7-8, 放置滚床上滚动 18-24h, 至达到 透明质酸吸水平衡。
2) 用透气非透菌纸封住瓶口, 置于高压灭菌锅中, 加热至沸腾后, 关掉高压灭菌锅 上的放气阀门。
3 ) 当气压升至 0.12MPa, 温度升至 105 °C时, 打开放气阀放气, 至压力降至 O.lMPa, 温度降至 ioo°c时关掉放气阀门。
4) 重复步骤 3), 让温度压力上升至之前的读数, 如此反复 4-5次, 即可达到去除交 联透明质酸中交联剂 1,2,7,8-二环氧辛烷 (DEO) 的目的。
所述的水凝胶浓度为 15-35mg/mL, 优选浓度为 20mg/mL。
步骤 3 ) 至步骤 4) 的高压时间为 25-35min, 优选 30min。
本发明采用 1,2,7,8-二环氧辛烷 (DEO) 作为透明质酸的交联剂, 在透明质酸交联反 应之前将透明质酸加入到季铵碱溶液中, 将透明质酸的羟基和羧基都交联起来, 提高了透 明质酸分子的稳定性, 有效地防止了透明质酸酶和自由基对透明质酸的降解作用。 本发明 反应条件简单, 以季铵碱作为碱催化剂与相转移催化剂的结合体, 增加了 1,2,7,8-二环氧辛 烷 (DEO) 在水中的溶解度 (>20%, 质量分数), 同时让其能够均匀地溶解在透明质酸的 溶液中, 进一步增大 1,2,7,8-二环氧辛烷(DEO) 的利用率 (>90% ), 交联剂利用率高, 使 高交联度(>20% ) 的交联透明质酸得以合成。 先碱后酸再减压浓縮的方法, 合成羟基与羧 基双交联且交联度高, 稳定性强, 并且高生物相容性的透明质酸凝胶或者透明质酸膜。 本 发明凝胶的热稳定性较好, 无菌无毒无热原, 生物相容性等优点。 本发明所制得的交联透 明质酸凝胶, 用气相色谱检测 1,2,7,8-二环氧辛烷(DEO) 的残留量, 其残留值均低于气相 色谱的检出限, 说明了交联剂 1,2,7,8-二环氧辛烷(DEO)在交联反应中的利用率很高。 本 发明明显地提高了透明质酸在皮肤内的停留时间, 具有良好的作为皮肤填充剂应有的疗 效。 本发明利用溶液聚合的方法, 以注射级的透明质酸与羟丙基甲基纤维素为原料, 使用
1,2,7,8-二环氧辛烷(DEO)或者 1,4-丁二醇二縮水甘油醚(BDDE)作为交联剂, 由于羟丙 基甲基纤维素的热稳定性, 可以使透明质酸与羟丙基甲基纤维素复合凝胶在保证透明质酸 原有的化学特性没有明显改变的前提下而具备了更好的稳定性, 可以抵抗住 125°C的高温,
0.5h的分解率仅不到 1%; 而在常温强酸性 (pH=l ) 或者强碱性 (pH=13) 的条件下, 10h 内凝胶的降解率均不超过 10%, 具有较好的耐酸碱性能, 而在体外高浓度 (300ii/ml)透明 质酸酶的作用下, 可在 10h之内降解率不超过 2%。
本发明为透明质酸的改性提供了新的途径,用本发明方法制备的复合改性物具有较高 的热稳定性、 生物相容性等优点, 可以得到体外抗酶降解性强的改性的透明质酸凝胶, 在 医药、外科手术、化妆品方面有着广泛的用途,为进一步开发注射美容和整形产品奠定了基 础。 本发明方法简单, 容易操作, 成本低廉, 安全可靠。 附图说明
图 1 本发明与透明质酸原料的 FTIR对比谱图。
图 2 本发明与透明质酸原料的 13C NMR对比谱图。
图 3 本发明复合凝胶体外酶解分子量变化的 GPC谱图。
图 4 交联透明质酸的体外酶解分子量变化的 GPC谱图。
图 5 1,2,7,8-二环氧辛烷 (DEO) 标准样的顶空法气相色谱图,
图 6 经高压蒸汽后交联透明质酸的顶空法气相色谱图。 具体实 Sfe^式
以下实施例用于说明本发明, 但不限制本发明。
实施例 1 :
季铵碱的制备反应 实施例 1-a: 氧化法合成季铵碱
此反应中的卤化季铵盐选用的是四丁基溴化铵 (TBAB)。
将 6.44g四丁基溴化铵溶解于 100ml水中, 加入 2.5g单质银粉, 在 25 V电磁搅拌中迅 速分散均匀后, 缓慢滴加 30% 的双氧水 10ml, 继续在此条件下反应 6h。 停止电磁搅拌, 取 lml左右上层清液, 用硝酸中和后滴加几滴硝酸银, 若此时无淡黄色溴化银沉淀出现, 则可确定氧化反应完全。 反应液在过滤除去溴化银沉淀后即可用来溶解透明质酸, 参与交 联反应。
反应中的副产物溴化银可在分解后循环使用。
实施例 1-b: 乙醇法合成季铵碱
此反应中的卤化季铵盐选用的是辛基三甲基氯化铵 (OTMAC)。
将 4.18g辛基三甲基氯化铵溶解于 100ml 90%的乙醇中, 再加入到 100ml溶解了 0.8g
NaOH的 90%的乙醇中, 于 25 °C电磁搅拌中迅速混合, 并在此条件下反应 12-18h。 过滤除 去 NaCl沉淀, 于 35-40°C, 真空度为 0.09MPa的条件下浓縮, 得到高浓度的季铵碱溶液, 乙醇含量不超过 5%。
实施例 2:
以 1,2,7,8-二环氧辛烷 (DEO) 为交联剂制备高交联度的透明质酸 (HA) -羟丙基甲基 纤维素 (HPMC) 复合凝胶
将实施例 1中任意一种方法得到的季铵碱高浓度溶液,稀释配成浓度为 O.lmol/L的季 铵碱溶液, 取 lOOmL, 加入 8g透明质酸钠与 2g羟丙基甲基纤维素, 搅拌 12-14h, 搅拌至 溶液完全透明后, 再向反应体系中加入 3mL 1,2,7,8-二环氧辛烷 (DEO), 迅速搅拌均匀, 在 25 °C下反应 24h。 反应用 2mol/L盐酸终止, 调至 pH=5左右, 同时在 40°C, O.lMPa的 真空度条件下蒸馏去除反应体系中的水, 当蒸馏出的水达到 50mL 时停止减压蒸馏。 用 200mL NaOH浓度为 0.01%。的 50%乙醇溶液浸泡 3次, 中和凝胶的盐酸并使凝胶脱水。 将 中和后的凝胶转入真空干燥箱中,于 50°C 0.08~0.09MPa的条件下干燥 10h,再用中性磷酸 缓冲液(PBS )复溶解得到透明质酸一羟丙基甲基纤维素复合改性凝胶, 理论交联度 30%。
实施例 2-a: 溶胀度测试
取实施例 2中的 lg透明质酸一羟丙基甲基纤维素复合凝胶干粉, 放置在 200mL中性 磷酸缓冲液中, 72h后达到溶胀吸水平衡(凝胶的重量不再随时间的变化而变化), 过滤后 取出凝胶, 得凝胶重量为 50g。 则此凝胶吸水率为 50:1。
实施例 2-b: 体外抗酶解测试
取浓度均为 20mg/mL实施例 2中的透明质酸一羟丙基甲基纤维素复合凝胶与单纯交联 透明质酸(见对比例)各 0.5mL于比色管中, 加入透明质酸酶 1500单位, 加水 2mL稀释, 放置在 37°C恒温水浴振荡器中, 从稀释后起计时, 从第二十分钟开始, 每二十分钟用微量 注射器取 50μί上清液,取出的上清液置于冰箱迅速冷却至 5°C,取 5h之内的酶解上清液, 分别用水相凝胶渗透色谱 (GPC) 检测不同时段的上清液分子量, 当分子量趋于常数时, 则可确定该产品酶解完成。 酶解结果如附图 3, 附图 4所示, 本发明的复合凝胶在前一小 时内的分子量均为透明质酸酶的分子量, lh后分子量增大并出现一个峰值, 在 5h内未能 降解完全; 而交联透明质酸的分子量呈线性下降趋势, 并在 90min左右降解完全。 说明本 发明的复合凝胶具有很强的抗透明质酸酶解的能力。
实施例 2-c: 热稳定性测试
精确称量实施例 2中已经达到吸水溶胀平衡的透明质酸一羟丙基甲基纤维素复合改性 凝胶 5.00g, 加水 100ml, 于 80°C烤箱中密封恒温 24h, 冷却至室温后过滤取出凝胶, 称量 凝胶质量为 4.99g, 说明此凝胶的降解率不超过 0.2%。 再取该凝胶 5.00g, 置于高压灭菌锅 中, 直接加热至 125 °C, 并密封保持 0.5h, 冷却至室温后过去取出凝胶, 称量凝胶质量为 4.96g, 说明凝胶在此条件下降解率不超过 1% ; 在此温度下密封保持 2h, 冷却至室温后过 去取出凝胶, 称量凝胶质量为 3.78g, 说明凝胶在此条件下降解率不超过 25%。 说明本发 明的复合凝胶有很好的热稳定性能。
实施例 2-d: FTIR光谱, solid 13C NMR谱检测
取实施例 2中的凝胶粉末作为样品, 与纯透明质酸进行 FTIR, solid 13C NMR检测对 比(见附图 1, 附图 2), 从图中可以清楚看到交联剂 1,2,7,8-二环氧辛烷(DEO)的特征峰, 说明交联剂成功地参与交联反应; 除交联剂的特征峰外, 透明质酸一羟丙基甲基纤维素复 合凝胶与透明质酸原料在图谱中的基本没有区别。 说明透明质酸原有的特征官能团在透明 质酸一羟丙基甲基纤维素复合改性物中并没有明显的改变。 所以此复合改性物在保证透明 质酸原有的化学性质与安全性能的同时, 又提高了透明质酸的抗酶解性能与热稳定性, 具 有非常好的实用价值。
实施例 2-e: 残留交联剂 1,2,7,8-二环氧辛烷 (DEO) 的去除与检测
将实施例 2中的复合凝胶干粉按照 20mg/mL的浓度配成水凝胶, 并且将 pH值用盐酸 调整至 7~8, 放置滚床上滚动 20h, 至达到透明质酸吸水平衡。 用透气非透菌纸封住瓶口, 置于高压灭菌锅中, 加热至沸腾后, 关掉高压灭菌锅上的放气阀门, 当气压升至 0.12MPa, 温度升至 105 °C时, 打开放气阀放气, 至压力降至 O.lMPa, 温度降至 100 °C时关掉放气阀 门, 让温度压力上升至之前的水平, 如此反复放气 4-5次, 高压时间在 30min左右, 即可 达到去除交联透明质酸中交联剂 1,2,7,8-二环氧辛烷 (DEO) 的目的。
用微量注射器抽取 2μί 1,2,7,8-二环氧辛烷 (DEO) 置于顶空瓶中, 加 10mL纯化水溶 解作为储备液。密封后顶空瓶于 95°C恒温 40min后, 取顶空气体 lmL, 进样检测, 得到气 相色谱图 (见附图 5)。
精密称取经高压蒸汽法处理过的复合凝胶 2g左右, 置于顶空瓶中, 加水 8mL。 密封 后顶空瓶于 95°C恒温 40min后,取顶空气体 lmL,进样检测,得到气相色谱图(见附图 6)。 由附图 5, 附图 6中对比可以看出, 经过高压蒸汽处理后, 复合凝胶中 1,2,7,8-二环氧 辛烷(DEO)含量已经低于气相色谱的最低检出限, 即低于 O.lppm, 保证了本发明的复合 凝胶的安全性。 实施例 3:
以 1,4-丁二醇二縮水甘油醚(BDDE)为交联剂制备高交联度的透明质酸(HA) -羟丙 基甲基纤维素 (HPMC) 复合凝胶
将 8g透明质酸与 2g羟丙基甲基纤维素混合, 加入蒸馏水 90ml, 25°C搅拌 18h, 向反 应体系中加入 2ml 1,4-丁二醇二縮水甘油醚 (BDDE), 继续搅拌 18h, 再向溶液中加入 10 NaOH溶液 10mL,混合均匀后,迅速搅拌均匀,在 25°C下反应 14h。反应用 2mol/L盐 酸终止,调至 pH=7左右即可,洗净后用 500ml丙酮使体系固化脱水,产品经有机溶剂(例 如: 无水乙醇、 丙酮)洗涤, 于 50°C真空干燥后, 得到透明质酸一羟丙基甲基纤维素凝胶 粉末, 再用中性磷酸缓冲液 (PBS ) 复溶解得到透明质酸一羟丙基甲基纤维素复合改性物 凝胶。
对比例: 合成交联透明质酸
取实施例 1中任意一种方法得到的季铵碱高浓度溶液,稀释配成浓度为 O.lmol/L的季铵碱 溶液, 取 lOOmL, 加入 10g透明质酸钠, 搅拌 12-14h, 搅拌至透明质酸钠完全溶解后, 再 向反应体系中加入 3mL 1,2,7,8-二环氧辛烷 (DEO), 迅速搅拌均匀, 在 25°C下反应 24小 时。 反应用 2mol/L盐酸终止, 调至 pH=5左右, 同时在 40°C, O.lMPa的真空度条件下蒸 馏去除反应体系中的水, 当蒸馏出的水达到 50mL时停止减压蒸馏。 用 200mL NaOH浓度 为 0.01%。的 50%乙醇溶液浸泡 3次, 中和凝胶的盐酸并使凝胶脱水。 将中和后的凝胶转入 真空干燥箱中, 于 50°C, 0.08~0.09MPa的条件下干燥 10h使凝胶固化定型, 得到高交联的 透明质酸凝胶, 理论交联度 30%。

Claims

权利要求书
1、 一种透明质酸与羟丙基甲基纤维素交联复合凝胶, 其特征在于它是以透明质酸、 羟丙基甲基纤维素为原料, 在双环氧化物交联剂存在下制成, 具体制备方法为: 将透明质 酸与羟丙基甲基纤维素溶液按照比例混合, 搅拌反应后向溶液中加入氢氧化钠溶液呈强碱 性, 混合均匀后, 再向反应体系中加入双环氧化物交联剂, 搅拌下反应后用酸调溶液为弱 酸性, 用丙酮使体系固化脱水, 产物经有机溶剂洗涤, 真空干燥, 得到透明质酸一羟丙基 甲基纤维素凝胶粉末, 再复溶解得到透明质酸一羟丙基甲基纤维素复合凝胶;
2、 根据权利要求 1 所述的交联复合凝胶, 其特征在于所述的双环氧化物交联剂是 1,2,7,8-二环氧辛烷或者 1,4-丁二醇二縮水甘油醚。
3、 根据权利要求 2所述的交联复合凝胶, 其特征在于采用交联剂 1,2,7,8-二环氧辛烷 制备高交联度复合凝胶时, 采用的催化剂为四丁基氢氧化铵或辛基三甲基氢氧化铵等季胺 碱催化剂。
4、 根据权利要求 1所述的交联复合凝胶, 其特征在于所述的羟丙基甲基纤维素的质 量分数为 1%~50%。
5、 根据权利要求 1所述的交联复合凝胶, 其特征在于所述的双环氧化物交联剂与透 明质酸单体的质量比: HA:交联剂 =1:0.05~3 。
6、 一种权利要求 2所述的透明质酸与羟丙基甲基纤维素复合凝胶的制备方法, 其特 征在于它包括的步骤:
1 ) 按计量比将透明质酸与羟丙基甲基纤维素溶液均匀混合, 搅拌反应 16-18h;
2) 加入氢氧化钠溶液呈强碱性后, 再向反应体系中加入双环氧化物交联剂 1,2,7,8-二 环氧辛烷或者 1,4-丁二醇二縮水甘油醚, 搅拌均匀, 室温下反应 24-36h;
3)用盐酸调 pH=5-6, 用丙酮使体系固化脱水, 产物经无水乙醇或丙酮洗涤干净, 50。C 真空干燥, 得到透明质酸一羟丙基甲基纤维素凝胶粉末, 再用中性磷酸缓冲液复溶解得到 透明质酸一羟丙基甲基纤维素复合凝胶。
7、 一种权利要求 2所述的透明质酸与羟丙基甲基纤维素复合凝胶的制备方法, 其特 征在于它包括的步骤:
1 ) 按计量比将强碱性季铵碱溶液, 羟丙基甲基纤维素溶液与透明质酸干粉均匀混合, 搅拌 16-18h;
2) 向反应体系中加入交联剂 1,2,7,8-二环氧辛烷搅拌均匀, 室温下反应 18-36h;
3)用盐酸调 pH=5-6, 真空浓縮除水使羧基参与交联反应, 用 pH=8~9的乙醇溶液中和 盐酸并使凝胶脱水, 真空干燥, 得到透明质酸一羟丙基甲基纤维素凝胶粉末, 再用中性磷 酸缓冲液 (PBS ) 复溶解得到透明质酸一羟丙基甲基纤维素复合凝胶。
8、 根据权利要求 7所述的方法, 其特征在于所述的季铵碱是四丁基氢氧化铵或辛基 三甲基氢氧化铵。
9、 根据权利要求 7所述的方法, 其特征在于所述的透明质酸 (HA) 与 1,2,7,8-二环 氧辛烷 (DEO) 质量比为 1:0.2-3。
10、根据权利要求 7所述的方法, 其特征在于所述的真空浓縮条件为 30-35°C,0.1MPa;
11、 根据权利要求 7 所述的方法, 其特征在于所述的真空干燥条件为 50-60°C, 0.08-0.09MPa的条件下干燥 10-12h。
12、 根据权利要求 7所述的方法, 其特征在于所述的乙醇溶液为质量浓度 20-40%。
13、根据权利要求 7所述的方法, 其特征在于所述的季铵碱的用量占反应体系总质量 的 0.5-30%。
14、根据权利要求 7所述的方法, 其特征在于所述的季铵碱的制备方法是将单质银与 卤化季胺盐水溶液充分混合,再加入双氧水作为氧化剂,在室温下快速合成季铵碱水溶液, 过 滤 除 去 卤 化 银 沉 淀 后 即 可 :
+ - °C + - I
R R^N X + Ag + H202 ► R R2R3R4N OH + AgXj
X=C1, Br; Rl, R2, R3, R4为四个相同或不相同的脂肪烃基或芳烃基。
15、 根据权利要求 14所述的方法, 其特征在于: 所述的季胺盐为四丁基溴化铵。
16、 根据权利要求 Ί所述的方法, 其特征在于: 所述的季铵碱的的制备方法是乙醇法 制备季铵碱,先将卤化季胺盐与氢氧化钠分别溶解于 90%乙醇中,再将两种溶液混合搅拌, 过 滤 掉 卤 化 钠 沉 淀 后 得 到 季 铵 碱 的 醇 溶 液 , 经 过 真 空 浓 縮 ;
+ ― EtOH + 一 I
R!R2R3R4N X~ + NaOH ► R1R2R3R4 OH + NaX I
V "
X=C1, Br; Rl, R2, R3, R4为四个相同或不相同的脂肪烃基或芳烃基。
17、 根据权利要求 16所述的方法, 其特征在于: 所述的季胺盐为三甲基辛基氯化铵。
18、 一种权利要求 7所述的方法制备的透明质酸与羟丙基甲基纤维素交联复合凝胶的 纯化方法, 其特征在于包括的步骤:
1 ) 将复合凝胶的水凝胶溶液用酸 pH值调整至 7-8, 放置滚床上滚动 18-24h, 至达到 透明质酸吸水平衡;
2)用透气非透菌纸封住瓶口, 置于高压灭菌锅中, 加热至沸腾后, 关掉高压灭菌锅上 的放气阀门;
3 ) 当气压升至 0.12MPa, 温度升至 105 °C时, 打开放气阀放气, 至压力降至 O.lMPa, 温度降至 10CTC时关掉放气阀门;
4)重复步骤 3), 让温度压力上升至之前的读数, 如此反复 4-5次, 即可达到去除交联 透明质酸中交联剂 1,2,7,8-二环氧辛烷 (DEO) 的目的。
19、 根据权利要求 18所述的方法, 其特征在于: 所述的水凝胶浓度为 15-35mg/mL, 优选浓度为 20mg/mL。
20、 根据权利要求 18所述的方法, 其特征在于: 步骤 3 ) 至步骤 4) 所述的高压 时间为 25-35min。
PCT/CN2011/084096 2011-04-26 2011-12-16 透明质酸与羟丙基甲基纤维素复合凝胶及制备方法 WO2012146031A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/844,842 US20130217872A1 (en) 2011-04-26 2013-03-16 Method for producing composite gel by cross-linking hyaluronic acid and hydroxypropyl methylcellulose
US15/202,664 US20160310522A1 (en) 2011-04-26 2016-07-06 Method for producing composite gel by cross-linking hyaluronic acid and hydroxylpropyl methylcellulose

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN 201110104213 CN102226011B (zh) 2011-04-26 2011-04-26 透明质酸与羟丙基甲基纤维素复合非水凝胶及制备方法
CN201110104213.5 2011-04-26
CN201110289906A CN102321258B (zh) 2011-09-28 2011-09-28 季铵碱参与合成的高交联度透明质酸及其工艺方法
CN201110289906.6 2011-09-28
CN201110392624.9A CN102435702B (zh) 2011-12-01 2011-12-01 交联透明质酸水凝胶中交联剂1,2,7,8-二环氧辛烷残留量的测定方法
CN201110392621.5 2011-12-01
CN201110392570.6 2011-12-01
CN201110392623.4A CN102495154B (zh) 2011-12-01 2011-12-01 水相凝胶渗透色谱法检测交联透明质酸体外酶解的方法
CN201110392623.4 2011-12-01
CN201110392570.6A CN102492180B (zh) 2011-12-01 2011-12-01 交联透明质酸与羟丙基甲基纤维素组合水凝胶及其制备方法
CN201110392624.9 2011-12-01
CN201110392621.5A CN102643440B (zh) 2011-12-01 2011-12-01 除去交联透明质酸中交联剂1,2,7,8-二环氧辛烷的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/844,842 Continuation-In-Part US20130217872A1 (en) 2011-04-26 2013-03-16 Method for producing composite gel by cross-linking hyaluronic acid and hydroxypropyl methylcellulose

Publications (1)

Publication Number Publication Date
WO2012146031A1 true WO2012146031A1 (zh) 2012-11-01

Family

ID=47071590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084096 WO2012146031A1 (zh) 2011-04-26 2011-12-16 透明质酸与羟丙基甲基纤维素复合凝胶及制备方法

Country Status (2)

Country Link
US (1) US20130217872A1 (zh)
WO (1) WO2012146031A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104387609A (zh) * 2014-11-18 2015-03-04 中国林业科学研究院林产化学工业研究所 一种纤维素多孔吸附材料的制备方法
CN108623697A (zh) * 2017-03-23 2018-10-09 信越化学工业株式会社 羟丙基甲基纤维素的生产方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3066386B1 (fr) 2017-05-18 2020-08-28 Bioxis Pharmaceuticals Procede de preparation d'un gel aqueux d'acide hyaluronique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003019194A (ja) * 2001-07-11 2003-01-21 Denki Kagaku Kogyo Kk ヒアルロン酸とカルボキシメチルセルロースからなる共架橋ゲル組成物
CN1837265A (zh) * 2006-04-25 2006-09-27 江南大学 一种透明质酸-羧甲基纤维素复合改性的方法
CN102226011A (zh) * 2011-04-26 2011-10-26 北京爱美客生物科技有限公司 透明质酸与羟丙基甲基纤维素复合非水凝胶及制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975397A (en) * 1971-04-14 1976-08-17 Ciba-Geigy Corporation Heterocyclic triglycidyl compounds and process
US4716224A (en) * 1984-05-04 1987-12-29 Seikagaku Kogyo Co. Ltd. Crosslinked hyaluronic acid and its use
US5827937A (en) * 1995-07-17 1998-10-27 Q Med Ab Polysaccharide gel composition
DE10348965A1 (de) * 2003-10-22 2005-05-25 Degussa Ag Epoxidgruppenhaltige Pulverlackzusammensetzungen, die bei niedrigen Temperaturen aushärten
US9205046B2 (en) * 2005-04-25 2015-12-08 The Governing Council Of The University Of Toronto Enhanced stability of inverse thermal gelling composite hydrogels
KR100881456B1 (ko) * 2007-12-07 2009-02-06 주식회사 잉크테크 산화 은의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003019194A (ja) * 2001-07-11 2003-01-21 Denki Kagaku Kogyo Kk ヒアルロン酸とカルボキシメチルセルロースからなる共架橋ゲル組成物
CN1837265A (zh) * 2006-04-25 2006-09-27 江南大学 一种透明质酸-羧甲基纤维素复合改性的方法
CN102226011A (zh) * 2011-04-26 2011-10-26 北京爱美客生物科技有限公司 透明质酸与羟丙基甲基纤维素复合非水凝胶及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104387609A (zh) * 2014-11-18 2015-03-04 中国林业科学研究院林产化学工业研究所 一种纤维素多孔吸附材料的制备方法
CN108623697A (zh) * 2017-03-23 2018-10-09 信越化学工业株式会社 羟丙基甲基纤维素的生产方法

Also Published As

Publication number Publication date
US20130217872A1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
CN109293948B (zh) 一种水凝胶及其制备方法和应用
JP4460617B2 (ja) 膨潤性架橋ヒアルロン酸粉末及びその製造方法
CA2567532C (en) Methods for making injectable polymer hydrogels
BR0007985B1 (pt) processo para a preparação de derivados multiplamente reticulados do ácido hialurÈnico (ha), ha multiplamente reticulado, ha reticulado em um ou mais polìmeros diferentes de ha, ha reticulado em um segundo polìmero, produto, e, uso de um derivado de ha multiplamente reticulado.
CN103113600B (zh) 一种光响应可逆壳聚糖水凝胶及其制备方法
CN102226011B (zh) 透明质酸与羟丙基甲基纤维素复合非水凝胶及制备方法
CN108752501B (zh) 一种含有机酸盐的壳聚糖季铵盐及其制备方法和应用
CN106279729A (zh) 一种透明质酸交联凝胶及其制备方法与应用
CN109134914B (zh) 一种双敏感性纤维素基气凝胶的制备方法
CN107141519B (zh) 一种改性壳聚糖基超吸水凝胶及其制备和应用
CN105670008A (zh) 一种水溶性交联透明质酸干粉及应用
JP2004323453A (ja) 分解性ゲル及びその製造法
CN102643498A (zh) 一种含动植物纤维和无机纳米粒子的吸水凝胶的制备方法
WO2012146031A1 (zh) 透明质酸与羟丙基甲基纤维素复合凝胶及制备方法
Kil’deeva et al. Peculiarities of obtaining biocompatible films based on chitosan cross linked by genipin
CN104072709A (zh) 一种可光聚合医用透明质酸衍生物水凝胶的制备方法
CN101928355B (zh) 一种氨基化海藻酸及其制备方法
CN112516075B (zh) 一种载有泼尼松的透明质酸-壳聚糖温敏水凝胶及其制备方法
CN109762183A (zh) 一种三偏磷酸钠交联透明质酸凝胶的制备方法及其产品
CN110229357B (zh) 一种交联透明质酸凝胶的制备方法
CN102321258B (zh) 季铵碱参与合成的高交联度透明质酸及其工艺方法
CN107759711B (zh) 环氧壳聚糖季铵盐及其制备方法
CN109513043A (zh) 一种注射用修饰透明质酸钠凝胶及其制备方法
CN115779145A (zh) 一种面部填充的含壳聚糖微球的透明质酸类凝胶的制备方法
CN112125984A (zh) 一种羧甲基壳聚糖的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864592

Country of ref document: EP

Kind code of ref document: A1