CN109134914B - 一种双敏感性纤维素基气凝胶的制备方法 - Google Patents

一种双敏感性纤维素基气凝胶的制备方法 Download PDF

Info

Publication number
CN109134914B
CN109134914B CN201810764978.3A CN201810764978A CN109134914B CN 109134914 B CN109134914 B CN 109134914B CN 201810764978 A CN201810764978 A CN 201810764978A CN 109134914 B CN109134914 B CN 109134914B
Authority
CN
China
Prior art keywords
cellulose
dac
pdmaema
product
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810764978.3A
Other languages
English (en)
Other versions
CN109134914A (zh
Inventor
曾宪海
闫贵花
孙勇
唐兴
林鹿
雷廷宙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201810764978.3A priority Critical patent/CN109134914B/zh
Publication of CN109134914A publication Critical patent/CN109134914A/zh
Priority to PCT/CN2019/095649 priority patent/WO2020011240A1/zh
Application granted granted Critical
Publication of CN109134914B publication Critical patent/CN109134914B/zh
Priority to US17/147,419 priority patent/US20210130567A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/005Crosslinking of cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
    • C08B15/06Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur containing nitrogen, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • C08F251/02Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof on to cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/026Aerogel, i.e. a supercritically dried gel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2387/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines

Abstract

本发明公开了一种双敏感性纤维素基气凝胶的制备方法,先后制备二醛纤维素、二醛纤维素/甲基丙烯酸二甲胺乙酯共聚物、二醛纤维素/甲基丙烯酸二甲胺乙酯/聚乙烯亚胺共聚物,然后进行冷冻干燥,即得产物;所述产物为双敏感性纤维素基气凝胶,其累积吸附量达250mg/g,其在0.2%NaCl(pH<3),0.05mol/L NaH2PO4(pH=3‑8)或NaOH(pH>8)的溶液中的累积释放量达63~90%,所得产物具有质量轻、生物相容性好、孔隙度高和pH/温度双敏感性等优点,可作为生物医用材料,如药物缓释、创口敷料等方面有广阔的应用前景。

Description

一种双敏感性纤维素基气凝胶的制备方法
技术领域
本发明属于天然高分子材料领域,具体涉及一种双敏感性纤维素基气凝胶的制备方法。
背景技术
传统的药物制剂通常存在很多副作用,包括胃肠道或肾脏的副作用。而且,大多数药物半衰期较短,必须每日多次剂量服用,才能维持治疗性血液水平。因此,针对药物释放、药物作用强度和药效持续时间等已成为相关学科研究的主题。
目前,已经开发了一些聚合物来实现药物缓释从而增加药效持续时间。然而,大多数药物制剂,如Pe、PP和PDMS是化学合成的且非生物降解的。目前,天然多糖或其衍生物因具有可生物降解性、可再生性和低毒性成为载药制剂研究的首选。特别是纤维素在众多天然多糖中显示出的独特性质,如较大的比表面积,高强度和刚度,易化学修饰等优势引起各研究领域的广泛关注。
常用的药物传递系统包括离子交换树脂,薄膜,微球,凝胶等。气凝胶作为一种特殊的高孔材料,引起生物医学和医药应用领域的广泛兴趣。然而,对于原始纤维素,药物负载能力很低。因此,纤维素的化学改性成为提高其实用性的重要一步。聚乙烯亚胺(PEI)含有大量的伯胺和仲胺基在分子上,表现出优异的给药性能。聚甲基丙烯酸二甲胺乙酯(PDMAEMA)含有对H+和OH-敏感的基团,对外界pH和温度的变化有较敏锐的感知。可以作为智能材料递送载体使药物靶向性直达病灶部位,进而提高药物疗效,是目前给药系统发展的一种趋势。
发明内容
本发明的目的在于克服现有技术的不足之处,提供了一种双敏感性纤维素基气凝胶的制备方法,解决了上述背景技术中的问题。
本发明解决其技术问题所采用的技术方案是:提供了一种双敏感性纤维素基气凝胶的制备方法,包括如下步骤:
(1)制备DAC:将纤维素和IO4 -供体以1:0.2~2.0%的摩尔比充分混合,25~75℃避光搅拌0.5~48h,经去离子水洗涤、透析得DAC,分子量为5000-20000;
(2)制备DAC/PDMAEMA共聚物:将步骤(1)产物和PDMAEMA加入到去离子水中,N2氛围下搅拌均匀,得到混合液;调节混合液的pH≤3,并向混合液中加入CAN,在N2保护下搅拌至少5h,经透析,得到DAC/PDMAEMA共聚物,分子量为5000-20000;其中,DAC、PDMAEMA和CAN的质量比为DAC:PDMAEMA:CAN=1.0g:5.0~50.0mg:0.5~5.0mg;
(3)制备DAC/PDMAEMA/PEI共聚物:将DAC/PDMAEMA共聚物与分子量小于10000的PEI以1:0.5~5.0的质量比充分混合,室温下搅拌进行接枝共聚,然后进行透析,即得DAC/PDMAEMA/PEI共聚物,分子量为5000-20000;
(4)制备气凝胶:取DAC/PDMAEMA/PEI共聚物的悬浮液快速冷冻,然后进行冷冻干燥,即得产物;所述产物为pH/温度双敏感性纤维素基气凝胶,其累积吸附量达250mg/g,其在0.05mol/L NaH2PO4(pH=3-8)或0.2%NaCl(pH<3)或NaOH(pH>8)溶液中的累积释放量达63~90%。
在本发明一较佳实施例中,所述步骤(1)还包括制备DAC水分散体:将DAC加入去离子水中,于200~1000rpm的搅拌速度下70~150℃反应0.5h~4h,离心、浓缩后得到透明DAC水分散体。
在本发明一较佳实施例中,所述纤维素包括天然生物质纤维素和纤维素化学品,所述天然生物质纤维素包括从竹子、木材、棉花提取的纤维素;所述的纤维素化学品包括微晶纤维素、纳米纤维素。
在本发明一较佳实施例中,所述的IO4 -供体包括高碘酸、高碘酸钠、高碘酸钾。
在本发明一较佳实施例中,所述步骤(3)中加入还原剂,所述还原剂包括氢化铝锂、硼氢化钾、硼氢化钠、氰基硼氢化钠中的至少一种。
在本发明一较佳实施例中,所述步骤(4)中将产物在NaSA溶液中搅拌22~26h,测吸附量;然后在0.05mol/L、pH=7.4的NaH2PO4溶液或质量分数为0.2%、pH=2的NaCl溶液中测最高释放量。
本技术方案与背景技术相比,它具有如下优点:
1.本发明制备方法操作简单,原料价格低廉、来源广泛、环保,成本低,具有良好的生物相容性,符合可持续发展的要求。
2.本发明所制备的纤维素气凝胶密度小,质量轻,毒副作用小,具有较好的pH、温度敏感性,能够将药物特异性递送到胃内或肠内,从而提高药物效率和靶向性,适合用于药物缓释,医用敷料等方面,在生物医用材料方面具有广阔的应用前景。
具体实施方式
实施例1
本实施例的一种双敏感性纤维素基气凝胶的制备方法,采用生物质纤维素为原料进行制备,包括如下步骤:
(0)前处理-制备纤维素悬浮液:将200g的纸浆(竹浆)在水中浸泡1~2h,采用转速小于100rpm的机械搅拌2~5h;然后使用超微研磨机在转速1000~2000rpm,磨盘间隙从2mm逐渐降到0μm甚至更低,通过循环加料的方式对纸浆进行开纤化处理;最后采用高压均质法将分散液均质10~30次,再经一定程度的旋蒸浓缩得到稳定性良好的纤维素悬浮液(纸浆浓度为0.55wt%、竹浆浓度为0.48wt%);
(1)制备DAC(二醛纤维素):取100mL 0.55wt%木浆纤维素和1.5g NaIO4于250ml锥形瓶中,室温下避光搅拌6h,然后经离心、去离子水洗涤、透析得到0.42g/g的DAC水分散体;
(2)~(3)制备共聚物:取1g所得的DAC水分散体和50mg可聚合单体PDMAEMA(聚甲基丙烯酸二甲胺乙酯,分子式:C8H15NO2,分子量157.21)加入到盛有去离子水的三口烧瓶中在N2氛围下搅拌均匀,用70%的HNO3调节溶液的pH=3,向混合液中加入5mg CAN(硝酸铈铵)继续搅拌6h,透析,即得DAC/PDMAEMA共聚物。取1g上述所得的共聚物与2.5g PEI(Mw=600)充分混合,室温下搅拌12h,然后进行透析,并调节悬浮液浓度至约0.1%,得DAC/PDMAEMA/PEI共聚物;
其中,PDMAEMA是一种具有温度和pH敏感性的高分子,其分子结构单元中同时存在亲水性的叔胺基、羰基和疏水性的烷基基团,两类基团在空间结构上互相匹配。
(4)制备气凝胶:取10mlDAC/PDMAEMA/PEI共聚物的均匀分散液在-196℃的液氮中快速成型,然后将其放入冷冻干燥室12h,即得产物;
称取0.1g上述产物,在0.2M NaSA溶液中搅拌24h,吸附量达到95mg/g;在0.2%NaCl(pH=2)溶液中最高释放量达到近60%。
实施例2
实施例2与实施例1的区别在于:
(1)取2g实施例1步骤(1)的DAC水分散体于盛有100ml去离子水的圆底烧瓶中,100℃下搅拌2h,离心得浓度为3.2mg/mL的DAC水溶液。
(2)~(3):取50ml所得的DAC水溶液和20mg可聚合单体PDMAEMA加入到盛有去离子水的三口烧瓶中在N2氛围下搅拌均匀,用70%的HNO3调节溶液的pH<3,向混合液中加入5mgCAN继续搅拌6h,透析,即得DAC/PDMAEMA共聚物;取0.1g上述所得的共聚物与0.5g PEI(Mw=600)充分混合,室温下搅拌12h,然后进行透析,并调节悬浮液浓度至约0.1%,得DAC/PDMAEMA/PEI共聚物。
(4)取10mlDAC/PDMAEMA/PEI共聚物均匀分散液在-196℃的液氮中快速成型,然后将其放入冷冻干燥室12h,即得产物。
称取0.1g产物,在0.1M NaSA溶液中搅拌24h,吸附量达到80mg/g;在0.05mol/LNaH2PO4(pH=7.4)溶液中最高释放量达到近90%。
实施例3
(1)取100mL 0.48wt%竹浆纤维素和1.75g NaIO4于250ml锥形瓶中,室温下避光搅拌48h,然后经离心、去离子水洗涤、透析得到0.35g/g的DAC水分散体;
(2)~(3):取1g所得的DAC水分散体和50mg可聚合单体PDMAEMA加入到盛有去离子水的三口烧瓶中在N2氛围下搅拌均匀,用70%的HNO3调节溶液的pH=1,向混合液中加入3mgCAN继续搅拌12h,透析,即得DAC/PDMAEMA共聚物。取1g上述所得的共聚物与5.0g PEI(Mw=1800)充分混合,室温下搅拌12h,然后进行透析,并调节悬浮液浓度至约0.1%,得DAC/PDMAEMA/PEI共聚物。
(4)取10ml DAC/PDMAEMA/PEI共聚物均匀分散液在-196℃的液氮中快速成型,然后将其放入冷冻干燥室12h,即得产物。
(3)称取0.1g产物,在0.5M NaSA溶液中搅拌24h,吸附量达到90mg/g;在0.2%NaCl(pH=2)溶液中最高释放量达到近63%。
实施例4
(1)取2g实施例3中得到的DAC水分散体于盛有100ml去离子水的圆底烧瓶中,100℃下搅拌2h,离心得浓度为2.1mg/mL的DAC水溶液。
(2)~(3)取50ml所得的DAC水溶液和20mg可聚合单体PDMAEMA加入到盛有去离子水的三口烧瓶中在N2氛围下搅拌均匀,用70%的HNO3调节溶液的pH=2,向混合液中加入2mgCAN继续搅拌24h,透析,即得DAC/PDMAEMA共聚物。取0.1g上述所得的共聚物与0.5g PEI(Mw=1800)充分混合,室温下搅拌12h,然后进行透析,并调节悬浮液浓度至约0.1%,得DAC/PDMAEMA/PEI共聚物。
(4)取10ml步骤(1)所得的共聚物均匀分散液在-196℃的液氮中快速成型,然后将其放入冷冻干燥室12h,即得产物。
称取0.1g产物,在2.0M NaSA溶液中搅拌24h,吸附量达到64mg/g;在0.2%NaCl(pH=2)溶液中最高释放量达到近50%。
实施例5
本实施例采用的是微晶纤维素,为购置于市面的纤维素化学品,无需经步骤(0)的生物质纤维素为原料制备纤维素悬浮液,具体步骤如下:
(1)取1g微晶纤维素和0.5g NaIO4于250ml锥形瓶中,室温下避光搅拌6h,然后经离心、去离子水洗涤、透析得到0.51g/g的DAC水分散体;
(2)取1g所得的DAC水分散体和30mg可聚合单体PDMAEMA加入到盛有去离子水的三口烧瓶中在N2氛围下搅拌均匀,用70%的HNO3调节溶液的pH=2,向混合液中加入5mg CAN继续搅拌12h,透析,即得DAC/PDMAEMA共聚物。
(3)取1g上述所得的共聚物与0.5g PEI(Mw=600)充分混合,室温下搅拌12h,然后进行透析,并调节悬浮液浓度至约0.1%,得DAC/PDMAEMA/PEI共聚物。
(4)取10ml DAC/PDMAEMA/PEI共聚物均匀分散液在-196℃的液氮中快速成型,然后将其放入冷冻干燥室12h,即得产物。
称取0.1g产物,在1.0M NaSA溶液中搅拌24h,吸附量达到82mg/g;在NaOH(pH=10.0)溶液中最高释放量达到近87%。
实施例6
实施例6同样采用购置于市面的纤维素化学品,无需经步骤(0)的生物质纤维素为原料制备纤维素悬浮液:
(1)取1g纳米纤维素和2.0g NaIO4于250ml锥形瓶中,室温下避光搅拌6h,然后经离心、去离子水洗涤、透析得到0.44g/g的DAC水分散体;
(2)取1g所得的DAC水分散体和5mg可聚合单体PDMAEMA加入到盛有去离子水的三口烧瓶中在N2氛围下搅拌均匀,用HNO3调节溶液的pH=2,向混合液中加入5mg CAN继续搅拌6h,透析,即得DAC/PDMAEMA共聚物。
(3)取1g上述所得的共聚物与5.0g PEI(Mw=10000)充分混合,室温下搅拌12h,然后进行透析,并调节悬浮液浓度至约0.1%,得DAC/PDMAEMA/PEI共聚物。
(4)取10ml DAC/PDMAEMA/PEI共聚物均匀分散液在-196℃的液氮中快速成型,然后将其放入冷冻干燥室12h,即得产物。
称取0.1g产物,在0.01M NaSA溶液中搅拌24h,吸附比例为56%;在0.05mol/LNaH2PO4(pH=5.7)溶液中最高释放量达到近60%。
实施例7
(1)取1g纳米纤维素和1.0g NaIO4于250ml锥形瓶中,室温下避光搅拌60h,然后经离心、去离子水洗涤、透析得到0.37g/g的DAC水分散体;
(2)取1g所得的DAC水分散体和50mg可聚合单体PDMAEMA加入到盛有去离子水的三口烧瓶中在N2氛围下搅拌均匀,用HNO3调节溶液的pH=2,向混合液中加入5mg CAN继续搅拌12h,透析,即得DAC/PDMAEMA共聚物。
(3)取1g上述所得的共聚物与2.5g PEI(Mw=1800)充分混合,添加室温下搅拌12h,然后进行透析,并调节悬浮液浓度至约0.1%,得DAC/PDMAEMA/PEI共聚物。
(4)取10ml DAC/PDMAEMA/PEI共聚物均匀分散液在-196℃的液氮中快速成型,然后将其放入冷冻干燥室12h,即得产物。
称取0.1g产物,在0.02M NaSA溶液中搅拌24h,吸附比例为70%;在0.2%NaCl(pH=2)溶液中最高释放量达到近55%。
实施例8
(1)取1g纳米纤维素和1.0g NaIO4于250ml锥形瓶中,室温下避光搅拌60h,然后经离心、去离子水洗涤、透析得到0.37g/g的DAC水分散体;
(2)取1g所得的DAC水分散体和50mg可聚合单体PDMAEMA加入到盛有去离子水的三口烧瓶中在N2氛围下搅拌均匀,用HNO3调节溶液的pH=2,向混合液中加入5mg CAN继续搅拌12h,透析,即得DAC/PDMAEMA共聚物。
(3)取1g上述所得的共聚物与2.5g PEI(Mw=600)充分混合,添加0.1g的硼氢化钠室温下搅拌2h,然后进行透析,并调节悬浮液浓度至约0.1%,得DAC/PDMAEMA/PEI共聚物。
(2)取10ml DAC/PDMAEMA/PEI共聚物均匀分散液在-196℃的液氮中快速成型,然后将其放入冷冻干燥室12h,即得产物。
称取0.1g产物,在0.05M NaSA溶液中搅拌24h,吸附量达到91mg/g;在0.05mol/LNaH2PO4(pH=7.4)溶液中最高释放量达到近70%。
本领域技术人员可知,当本发明的技术参数在如下范围内变化时,可以预期得到与上述实施例相同或相近的技术效果:所述步骤(3)中加入还原剂,所述还原剂包括氢化铝锂、硼氢化钾、硼氢化钠、氰基硼氢化钠中的至少一种。
以上所述,仅为本发明较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

Claims (6)

1.一种双敏感性纤维素基气凝胶的制备方法,其特征在于,包括如下步骤:
(1)制备DAC:将纤维素和IO4 -供体以1:0.2~2.0%的摩尔比充分混合,25~75℃避光搅拌0.5~48h,经去离子水洗涤、透析得DAC,分子量为5000-20000;
(2)制备DAC/PDMAEMA共聚物:将步骤(1)产物和PDMAEMA加入到去离子水中,N2氛围下搅拌均匀,得到混合液;调节混合液的pH≤3,并向混合液中加入CAN,在N2保护下搅拌至少5h,经透析,得到DAC/PDMAEMA共聚物,分子量为5000-20000;其中,DAC、PDMAEMA和CAN的质量比为DAC:PDMAEMA:CAN=1.0g:5.0~50.0mg:0.5~5.0mg;
(3)制备DAC/PDMAEMA/PEI共聚物:将DAC/PDMAEMA共聚物与分子量小于10000的PEI以1:0.5~5.0的质量比充分混合,室温下搅拌进行接枝共聚,然后进行透析,即得DAC/PDMAEMA/PEI共聚物,分子量为5000-20000;
(4)制备气凝胶:取DAC/PDMAEMA/PEI共聚物的悬浮液快速冷冻,然后进行冷冻干燥,即得产物;所述产物为pH/温度双敏感性纤维素基气凝胶,其累积吸附量达250mg/g,其在pH为3-8的0.05mol/L NaH2PO4或pH<3的0.2%NaCl或pH>8的NaOH的累积释放量达63~90%。
2.根据权利要求1所述的一种双敏感性纤维素基气凝胶的制备方法,其特征在于,所述步骤(1)还包括制备DAC水分散体:将DAC加入去离子水中,于200~1000rpm的搅拌速度下70~150℃反应0.5h~4h,离心、浓缩后得到透明DAC水分散体。
3.根据权利要求1所述的一种双敏感性纤维素基气凝胶的制备方法,其特征在于:所述纤维素包括天然生物质纤维素和纤维素化学品,所述天然生物质纤维素包括从竹子、木材、棉花提取的纤维素;所述的纤维素化学品包括微晶纤维素、纳米纤维素。
4.根据权利要求1所述的一种双敏感性纤维素基气凝胶的制备方法,其特征在于:所述的IO4 -供体包括高碘酸、高碘酸钠、高碘酸钾。
5.根据权利要求1所述的一种双敏感性纤维素基气凝胶的制备方法,其特征在于:所述步骤(3)中加入还原剂,所述还原剂包括氢化铝锂、硼氢化钾、硼氢化钠、氰基硼氢化钠中的至少一种。
6.根据权利要求1所述的一种双敏感性纤维素基气凝胶的制备方法,其特征在于:所述步骤(4)中将产物在NaSA溶液中搅拌22~26h,测吸附量;然后在0.05mol/L、pH=7.4的NaH2PO4溶液或质量分数为0.2%、pH=2的NaCl溶液中测最高释放量。
CN201810764978.3A 2018-07-12 2018-07-12 一种双敏感性纤维素基气凝胶的制备方法 Active CN109134914B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810764978.3A CN109134914B (zh) 2018-07-12 2018-07-12 一种双敏感性纤维素基气凝胶的制备方法
PCT/CN2019/095649 WO2020011240A1 (zh) 2018-07-12 2019-07-11 一种双敏感性纤维素基气凝胶的制备方法
US17/147,419 US20210130567A1 (en) 2018-07-12 2021-01-12 Method for preparing dual-sensitive cellulose-based aerogel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810764978.3A CN109134914B (zh) 2018-07-12 2018-07-12 一种双敏感性纤维素基气凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN109134914A CN109134914A (zh) 2019-01-04
CN109134914B true CN109134914B (zh) 2020-04-21

Family

ID=64800383

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810764978.3A Active CN109134914B (zh) 2018-07-12 2018-07-12 一种双敏感性纤维素基气凝胶的制备方法

Country Status (3)

Country Link
US (1) US20210130567A1 (zh)
CN (1) CN109134914B (zh)
WO (1) WO2020011240A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109134914B (zh) * 2018-07-12 2020-04-21 厦门大学 一种双敏感性纤维素基气凝胶的制备方法
CN109826015B (zh) * 2019-01-30 2021-03-26 广西大学 一种温敏/pH双响应智能纳米纤维材料及其制备方法和应用
CN109881489B (zh) * 2019-01-30 2021-04-13 广西大学 一种多重响应性智能纳米纤维功能材料及其制备方法和应用
CN112911920B (zh) * 2021-02-08 2022-09-02 浙江环龙新材料科技有限公司 一种MXene-碳气凝胶/TPU复合材料的制备方法
CN112979997B (zh) * 2021-02-22 2022-01-21 厦门大学 一种各向异性纤维素基水凝胶的制备方法
CN114874619B (zh) * 2022-05-11 2023-06-16 浙江大学 一种聚乙烯亚胺/氧化纤维素纳米凝胶、制备方法及用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105622869A (zh) * 2015-11-27 2016-06-01 南京林业大学 一种木质纤维温敏型半互穿网络凝胶材料的制备方法
CN106632925A (zh) * 2016-12-26 2017-05-10 同济大学 一种具有pH和温度敏感性的两亲性多嵌段共聚物的制备方法
CN107474263A (zh) * 2016-06-08 2017-12-15 中国科学院武汉物理与数学研究所 以聚离子多糖作为大分子交联剂的温度‑pH敏感嵌段纳米水凝胶的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106821963A (zh) * 2016-12-28 2017-06-13 浙江理工大学 一种利用纤维素基温度和pH敏感型水凝胶负载与缓释药物的方法
CN109134914B (zh) * 2018-07-12 2020-04-21 厦门大学 一种双敏感性纤维素基气凝胶的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105622869A (zh) * 2015-11-27 2016-06-01 南京林业大学 一种木质纤维温敏型半互穿网络凝胶材料的制备方法
CN107474263A (zh) * 2016-06-08 2017-12-15 中国科学院武汉物理与数学研究所 以聚离子多糖作为大分子交联剂的温度‑pH敏感嵌段纳米水凝胶的制备方法
CN106632925A (zh) * 2016-12-26 2017-05-10 同济大学 一种具有pH和温度敏感性的两亲性多嵌段共聚物的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Polyethylenimine-Grafted Cellulose Nanofibril Aerogels as Versatile Vehicles for Drug Delivery";Jiangqi Zhao等;《Applied Materials & Interfaces》;20150106;第2607-2615页 *
"Preparation and Characterization of Thermo- and pH Dual-Responsive 3D Cellulose-Based Aerogel for Oil/Water Separation";Linyan等;《Applied Physics A Materials Science & Processing》;20171130;第124卷(第1期);第1-9页 *

Also Published As

Publication number Publication date
WO2020011240A1 (zh) 2020-01-16
CN109134914A (zh) 2019-01-04
US20210130567A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
CN109134914B (zh) 一种双敏感性纤维素基气凝胶的制备方法
Kundu et al. Cellulose hydrogels: Green and sustainable soft biomaterials
Rao et al. Polysaccharide based bionanocomposite hydrogels reinforced with cellulose nanocrystals: drug release and biocompatibility analyses
Chang et al. A review on the properties and applications of chitosan, cellulose and deep eutectic solvent in green chemistry
Li et al. Recent advancement of molecular structure and biomaterial function of chitosan from marine organisms for pharmaceutical and nutraceutical application
Dutta et al. Chitin and chitosan: Chemistry, properties and applications
Ibrahim et al. Polysaccharide-based polymer gels and their potential applications
Yan et al. Recent advances on sustainable cellulosic materials for pharmaceutical carrier applications
CN106866998B (zh) 一种壳聚糖季铵盐/羧甲基纤维素超吸水凝胶及其制备方法和应用
Enescu et al. Functionalized chitosan and its use in pharmaceutical, biomedical, and biotechnological research
BR0007985B1 (pt) processo para a preparação de derivados multiplamente reticulados do ácido hialurÈnico (ha), ha multiplamente reticulado, ha reticulado em um ou mais polìmeros diferentes de ha, ha reticulado em um segundo polìmero, produto, e, uso de um derivado de ha multiplamente reticulado.
Huang et al. Applications and perspectives of quaternized cellulose, chitin and chitosan: A review
CN111956618B (zh) 一种木质素基抗肿瘤药物载体的制备方法和应用
Engkagul et al. One pot preparation of chitosan/hyaluronic acid-based triple network hydrogel via in situ click reaction, metal coordination and polyion complexation in water
CN107141519B (zh) 一种改性壳聚糖基超吸水凝胶及其制备和应用
CN110227069B (zh) 一种pH响应型单宁酸/壳聚糖纳米胶囊及其制备方法
CN102764447A (zh) 水凝胶敷料及其制备工艺
Shi et al. Preparation and sustainable release of modified konjac glucomannan/chitosan nanospheres
Goycoolea et al. Physical properties and stability of soft gelled chitosan‐based nanoparticles
Zafar et al. Role of crosslinkers for synthesizing biocompatible, biodegradable and mechanically strong hydrogels with desired release profile
Naeem et al. β-Cyclodextrin/chitosan-based (polyvinyl alcohol-co-acrylic acid) interpenetrating hydrogels for oral drug delivery
CN104623721A (zh) 一种创伤修复材料及其制备方法
Feng et al. Thermo-chemical modification to produce citric acid–yeast superabsorbent composites for ketoprofen delivery
JP5085976B2 (ja) 球状複合ゲル粒子の製造方法
Jun et al. Tunicate cellulose nanocrystals as stabilizers for PLGA-based polymeric nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant