WO2012139742A1 - Lithium-ionen-batterie mit hoher spannung - Google Patents

Lithium-ionen-batterie mit hoher spannung Download PDF

Info

Publication number
WO2012139742A1
WO2012139742A1 PCT/EP2012/001535 EP2012001535W WO2012139742A1 WO 2012139742 A1 WO2012139742 A1 WO 2012139742A1 EP 2012001535 W EP2012001535 W EP 2012001535W WO 2012139742 A1 WO2012139742 A1 WO 2012139742A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
carbonate
battery according
separator
ion
Prior art date
Application number
PCT/EP2012/001535
Other languages
English (en)
French (fr)
Inventor
Joerg Kaiser
Original Assignee
Li-Tec Battery Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li-Tec Battery Gmbh filed Critical Li-Tec Battery Gmbh
Priority to CN201280018391.9A priority Critical patent/CN103534836A/zh
Priority to JP2014504203A priority patent/JP2014514712A/ja
Priority to US14/111,373 priority patent/US20140127536A1/en
Priority to KR1020137029021A priority patent/KR20140034779A/ko
Priority to EP12714968.0A priority patent/EP2697844A1/de
Publication of WO2012139742A1 publication Critical patent/WO2012139742A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a secondary battery, in particular a lithium-ion battery, which has good stability even at high voltage output.
  • Secondary batteries can be used as a driving force for mobile information devices because of their high energy density and high capacity.
  • such batteries are used in tools, electric automobiles and hybrid-powered automobiles.
  • the batteries should have high voltage, high capacity, and long life, with high safety and reliability.
  • lithium metal phosphates with olivine structure As the cathode material in lithium-ion batteries, since these materials may have a high redox potential compared to lithium metal.
  • lithium manganese phosphate is a value of 4.1 V
  • lithium cobalt phosphate a value of 5 V known.
  • the object of the present invention is to provide a secondary battery, in particular a lithium-ion secondary battery, in which the separator used remains as stable as possible even at high voltages.
  • the and other object (s) is / are achieved by a lithium-ion battery, which comprises
  • a positive electrode comprising at least one olivine-structured lithium transition metal phosphate, wherein the transition metal is selected from manganese, cobalt, nickel, or a mixture of two or three of these elements;
  • separator which separates the positive and negative electrodes and is permeable to lithium ions; wherein the separator comprises a nonwoven web of non-woven, non-electrically conductive polymer fibers which is coated on one or both sides with an ion-conducting inorganic material;
  • lithium-ion battery and “lithium-ion secondary battery” are used interchangeably.
  • the terms also include the terms
  • Lithium battery lithium ion battery
  • lithium ion cell lithium ion cell
  • a lithium-ion battery generally consists of a series or
  • Lithium-ion battery is used as a collective term for the abovementioned terms used in the prior art.
  • positive electrode means the electrode that is capable of accepting electrons when the battery is connected to a consumer, such as an electric motor. So it represents the cathode.
  • negative electrode means the electrode that is capable of delivering electrons when in use. This electrode thus represents the anode.
  • a cathode material which comprises a lithium transition metal with olivine structure.
  • Preferred lithium transition metal phosphates are lithium manganese phosphate, lithium cobalt phosphate and lithium nickel phosphate.
  • lithium manganese phosphate and lithium cobalt phosphate are known in the art and can be prepared by known methods, for example by sintering mixtures containing the corresponding oxides as starting compounds or containing, as starting compounds, compounds which form the corresponding oxides during sintering.
  • the positive electrode may also contain mixtures of two or more of said substances.
  • the positive electrode contains the lithium transition metal phosphate, preferably in the form of nanoparticles.
  • the nanoparticles can take any shape, that is, they can be coarse-spherical or elongated.
  • the lithium transition metal phosphate has a particle size measured as a D95 value of less than 15 pm. Preferably, the particle size is less than 10 pm.
  • the lithium transition metal phosphate has a particle size measured as D95 value between 0.005 pm to 10 pm. In a further embodiment, the lithium transition metal phosphate has a particle size measured as a D95 value of less than 10 pm, wherein the D50 value is 4 pm ⁇ 2 pm and the D10 value is less than 1.5 pm.
  • the lithium transition metal phosphate contains carbon to increase the conductivity.
  • Such compounds can be prepared by known methods, for example by coating with carbon compounds such as acrylic acid or ethylene glycol. It is then pyrolyzed, for example at a temperature of 2500 ° C.
  • the negative electrode may be fabricated from a variety of materials known for use in a prior art lithium-ion battery. In principle, all materials that are capable of forming lithium intercalation compounds can be used.
  • the negative electrode may contain lithium metal or lithium in the form of an alloy, either in the form of a foil, a grid or in Form of particles held together by a suitable binder.
  • lithium metal oxides such as lithium titanium oxide are also possible.
  • Suitable negative electrode materials also include graphite, synthetic graphite, carbon black, mesocarbon, doped carbon, fullerenes.
  • Niobium pentoxide, tin alloys, titanium dioxide, tin dioxide, silicon can also be used as the electrode material for the negative electrode.
  • the materials used for the positive as well as for the negative electrode are preferably held together by a binder holding these materials on the electrode.
  • a binder holding these materials on the electrode.
  • polymeric binders can be used.
  • the binder for example, polyvinylidene fluoride, polyethylene oxide, polyethylene, polypropylene, polytetrafluoroethylene, polyacrylate, ethylene (propylene-diene monomer) copolymer (EPDM), and mixtures and copolymers thereof may be used.
  • the separator used for the battery must be permeable to lithium ions to ensure ion transport of lithium ions between the positive and negative electrodes.
  • the separator for electrons must be insulating.
  • the separator comprises a nonwoven web of non-woven polymer fibers which are not electrically conductive. Such nonwovens are produced in particular by spinning processes with subsequent solidification.
  • the term “fleece” is used synonymously with terms such as “nonwoven fabrics", “knits” or “felt”. Instead of the term “unwoven” the term “not woven” is used.
  • the polymer fibers are selected from the group of polymers consisting of polyacrylonitrile, polyolefin, polyester, polyimide, polyetherimide, polysulfone, polyamide, polyether.
  • Suitable polyolefins are, for example, polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride.
  • Preferred polyesters are, for example, polyethylene terephthalates.
  • the nonwoven contained in the separator is preferably coated on one or both sides with an ion-conducting inorganic material.
  • coating also implies that the ion-conducting inorganic material may be located not only on one side or both sides of the web, but also within the web.
  • the ionically conductive inorganic material is ion conducting in a temperature range of -40 ° C to 200 ° C, i. ion-conducting for lithium ions.
  • the material used for the coating is at least one compound from the group of oxides, phosphates, sulfates, titanates, silicates, aluminosilicates at least one of zirconium, aluminum, silicon or lithium.
  • the ion-conducting material comprises or consists of alumina or zirconia or alumina and zirconia.
  • a separator is used in the battery according to the invention, which consists of an at least partially permeable carrier, which is not or only poorly electron-conducting.
  • This support is coated on at least one side with an inorganic material.
  • the organic material is in the form of polymer fibers, preferably polymer fibers of polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the nonwoven is coated with an inorganic ion-conducting material, which is preferably ion-conducting in a temperature range of from -40.degree. C. to 200.degree.
  • the inorganic ion-conducting material preferably comprises at least one compound from the group of oxides, phosphates, sulfates, titanates, silicates, aluminosilicates with at least one of the elements zirconium, aluminum, lithium, particularly preferably zirconium oxide.
  • the inorganic ion-conducting material preferably has particles with a maximum diameter of less than 100 nm.
  • Such a separator is sold, for example, under the trade name "Separation®” by Evonik AG in Germany. Methods for producing such separators are known from the prior art, for example from EP 1 017 476 B1, WO 2004/021477 and WO 2004/021499.
  • shut-down temperature which is typically around 120 ° C.
  • break-down temperature is exceeded at approx. 150 to 180 ° C. From this temperature it comes in conventional separators to melt the separator, which contracts.
  • a pressure relief valve a rupture disk
  • separator used in the battery according to the invention comprising a nonwoven made of non-woven polymer fibers and the inorganic coating, it can only come to shutdown (shutdown), when melted by the high temperature, the polymer structure of the carrier material and penetrates into the pores of the inorganic material and this thereby closing.
  • shutdown the polymer structure of the carrier material and penetrates into the pores of the inorganic material and this thereby closing.
  • break-down there is no such break-down (collapse) as the inorganic particles ensure that complete melting of the separator can not occur. This ensures that there are no operating states in which a large-area short-circuit can occur.
  • separators can be produced that can meet the requirements for separators in high-performance batteries, especially lithium high-performance batteries.
  • the resulting separators are free or virtually free of closed pores, in which the electrolyte can not penetrate.
  • the separators used for the invention also have the advantage that the anions of the conductive salt partly adhere to the inorganic surfaces of the separator material, which leads to an improvement in the dissociation and thus to a better ion conductivity in the high-current range.
  • Another not inconsiderable advantage of the separator is the very good wettability. Due to the hydrophilic ceramic coating, wetting with electrolytes takes place very rapidly, which likewise leads to improved conductivity.
  • the separator used for the battery according to the invention comprising a flexible nonwoven fabric with a porous inorganic coating on and in this nonwoven, wherein the material of the nonwoven fabric is selected from unwoven, non-electrically conductive polymer fibers, is also characterized in that the nonwoven fabric has a thickness of less than 30 ⁇ m, a porosity of more than 50%, preferably of 50 to 97%, and a pore radius distribution in which at least 50% of the pores have a pore radius of 75 to 150 ⁇ m.
  • the separator particularly preferably comprises a nonwoven which has a thickness of 5 to 30 ⁇ m, preferably a thickness of 10 to 20 ⁇ m. Also particularly important is a homogeneous distribution of pore radii in the web as indicated above. An even more homogeneous distribution of pore radii in the nonwoven leads in conjunction with optimally matched oxide particles of a certain size to one optimized porosity of the separator.
  • the thickness of the substrate has a great influence on the properties of the separator, since on the one hand the flexibility but also the sheet resistance of the electrolyte-impregnated separator depends on the thickness of the substrate. Due to the small thickness, a particularly low electrical resistance of the separator is achieved in the application with an electrolyte.
  • the separator itself has a very high electrical resistance, since it itself must have insulating properties. In addition, thinner separators allow increased packing density in a battery pack so that one can store a larger amount of energy in the same volume.
  • the web has a porosity of 60 to 90%, more preferably from 70 to 90%.
  • the porosity is defined as the volume of the web (100%) minus the volume of the fibers of the web, ie the proportion of the volume of the web that is not filled by material.
  • the volume of the fleece can be calculated from the dimensions of the fleece.
  • the volume of the fibers results from the measured weight of the fleece considered and the density of the polymer fibers.
  • the large porosity of the substrate also allows a higher porosity of the separator, which is why a higher uptake of electrolytes with the separator can be achieved.
  • this has as polymer fibers for the nonwoven preferably non-electrically conductive fibers of polymers as defined above, which are preferably selected from polyacrylonitrile (PAN), polyester, such as.
  • PET polyethylene terephthalate
  • PO polyolefin
  • PP polypropylene
  • PE polyethylene
  • the polymer fibers of the nonwovens preferably have a diameter of from 0.1 to 10 ⁇ m, more preferably from 1 to 4 ⁇ m.
  • Particularly preferred flexible nonwovens have a basis weight of less than 20 g / m 2 , preferably from 5 to 10 g / m 2 .
  • the nonwoven is flexible and has a thickness of less than 30 ⁇ .
  • the separator has a porous, electrically insulating, ceramic coating on and in the fleece.
  • the porous inorganic coating on and in the nonwoven preferably has oxide particles of the elements Li, Al, Si and / or Zr with an average particle size of 0.5 to 7 ⁇ m, preferably 1 to 5 ⁇ m and very particularly preferably 1 , 5 to 3 pm up.
  • the separator has a porous inorganic coating on and in the nonwoven, which has aluminum oxide particles.
  • these have an average particle size of 0.5 to 7 pm, preferably from 1 to 5 pm and most preferably from 1, 5 to 3 pm.
  • the alumina particles are bonded to an oxide of the elements Zr or Si.
  • more than 50% by weight, and more preferably more than 80% by weight, of all particles are preferably in the abovementioned limits of average particle size.
  • the maximum particle size is preferably 1/3 to 1/5 and particularly preferably less than or equal to 1/10 of the thickness of the nonwoven used.
  • the separator preferably has a porosity of from 30 to 80%, preferably from 40 to 75% and particularly preferably from 45 to 70%.
  • the porosity refers to the achievable, ie open pores.
  • the porosity can be determined by the known method of mercury porosimetry or can be calculated from the volume and density of the starting materials used, if it is assumed that only open pores available.
  • the separators used for the battery according to the invention are also distinguished by the fact that they can have a tensile strength of at least 1 N / cm, preferably of at least 3 N / cm and very particularly preferably of 3 to 10 N / cm.
  • the separators can preferably be bent without damage to any radius down to 100 mm, preferably down to 50 mm and most preferably down to 1 mm.
  • the high tensile strength and the good bendability of the separator have the advantage that changes in the geometries of the electrodes occurring during the charging and discharging of a battery can be through the separator without being damaged.
  • the flexibility also has the advantage that commercially standardized winding cells can be produced with this separator. In these cells, the electrode / separator layers are spirally wound together in a standardized size and contacted.
  • the separator it is possible to design the separator to have the shape of a concave or convex sponge or pad, or the shape of wires or a felt. This embodiment is well suited to compensate for volume changes in the battery. Corresponding preparation methods are known to the person skilled in the art.
  • the polymer fleece used in the separator comprises a further polymer.
  • this polymer is arranged between the separator and the negative electrode and / or the separator and the positive electrode, preferably in the form of a polymer layer.
  • the separator is coated with this polymer on one or both sides.
  • Said polymer may be in the form of a porous membrane, ie as a film, or in the form of a nonwoven, preferably in the form of a nonwoven web of nonwoven polymer fibers.
  • These polymers are preferably selected from the group consisting of polyester, polyolefin, polyacrylonitrile, polycarbonate, polysulfone, polyethersulfone, polyvinylidene fluoride, polystyrene, polyetherimide.
  • the further polymer is a polyolefin.
  • Preferred polyolefins are polyethylene and polypropylene.
  • the separator is preferably coated with one or more layers of the further polymer, preferably of the polyolefin, which is preferably likewise present as a nonwoven, that is to say as nonwoven polymer fibers.
  • a non-woven of polyethylene terephthalate is used in the separator, which is coated with one or more layers of the further polymer, preferably of the polyolefin, which is preferably also present as a nonwoven, that is, as nonwoven polymer fibers.
  • separator of the above-described type of separation which is coated with one or more layers of the further polymer, preferably of the polyolefin, which is preferably likewise present as a nonwoven, that is to say as nonwoven polymer fibers.
  • the coating with the further polymer can be achieved by gluing, lamination, by a chemical reaction, by welding or by a mechanical connection.
  • Such polymer composites and processes for their preparation are known from EP 1 852 926.
  • the fiber diameters of the polyethylene terephthalate fleece are preferably larger than the fiber diameters of the further polymer fleece, preferably the polyolefin fleece, with which the separator is coated on one or both sides.
  • the nonwoven made of polyethylene terephthalate then has a higher pore diameter than the nonwoven, which is made of the other polymer.
  • the nonwovens usable in the separator are made of nanofibers of the polymers used, whereby nonwovens are formed which have a high porosity with formation of small pore diameters.
  • the use of a polyolefin in addition to the polyethylene terephthalate ensures increased safety of the electrochemical cell, since in unwanted or excessive heating of the cell, the pores of the polyolefin contract and the charge transport through the separator is reduced or terminated. Should the temperature of the electrochemical cell increase to such an extent that the polyolefin begins to melt, the polyethylene terephthalate effectively counteracts the melting together of the separator and thus an uncontrolled destruction of the electrochemical cell.
  • This combination is for use as a driving force for mobile Information devices, for tools, electric cars and hybrid cars.
  • Suitable electrolytes for the battery according to the invention are known from the prior art.
  • the electrolytes preferably comprise a liquid and a conducting salt.
  • the liquid is a solvent for the conducting salt.
  • the electrolyte is present as an electrolyte solution.
  • Suitable solvents are preferably inert.
  • Suitable solvents include, for example, solvents such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, dipropyl carbonate, cyclopentanones, sulfolanes, dimethylsulfoxide, 3-methyl-1,3-oxazolidine-2-one, Butyrolactone, 1, 2-diethoxymethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1, 3-dioxolane, methyl acetate, ethyl acetate, nitromethane, 1, 3-propanesultone.
  • solvents such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl
  • ionic liquids may also be used.
  • Ionic liquids are known in the art. They contain only ions. Examples of useful cations which may in particular be alkylated are imidazolium, pyridinium, pyrrolidinium, guanidinium, uronium, thiuronium, piperidinium, morpholinium, sulfonium, ammonium and phosphonium cations. Examples of useful anions are halide, tetrafluoroborate, trifluoroacetate, triflate, hexafluorophosphate, phosphinate and tosylate anions.
  • Suitable ionic liquids are: N-methyl-N-propyl-piperidinium bis (trifluoromethylsulfonyl) imide, N-methyl-N-butyl-pyrrolidinium bis (trifluoromethyl-sulfonyl) imide, N-butyl-N-trimethyl-ammonium - bis (trifluoromethylsulfonyl) imide, triethylsulfonium bis (trifluoromethylsulfonyl) imide,
  • Preferred conductive salts are lithium salts which have inert anions and which are non-toxic.
  • Suitable lithium salts are, for example, lithium hexafluorophosphate, lithium hexafluoroarsenate, lithium bis (trifluoromethylsulfonylimide), lithium trifluoromethanesulfonate, lithium tris (trifluoromethylsulfonyl) methide, lithium tetrafluoroborate, lithium perchlorate, lithium tetrachloroaluminate, lithium chloride, lithium bisoxalatoborate, lithium difluoroxalatoborate, and mixtures of two or more of these salts ,
  • the preparation of the lithium-ion battery according to the invention may preferably be carried out by precipitating the lithium transition metal phosphate as a powder on the electrode and compacting it into a thin film, optionally with the use of a binder, to produce the positive electrode.
  • the other electrode may be laminated on the first electrode, the separator being laminated in the form of a foil beforehand on the negative or the positive electrode. It is also possible to simultaneously process the positive electrode, the separator and the negative electrode under mutual lamination.
  • the positive electrode of the battery according to the invention comprises lithium manganese phosphate or lithium cobalt phosphate as the lithium transition metal phosphate.
  • the lithium manganese phosphate or lithium cobalt phosphate is carbon coated.
  • the separator comprises a nonwoven web of nonwoven polyethylene terephthalate fibers which is coated on both sides with an ion-conducting inorganic material which comprises aluminum oxide.
  • the nonaqueous electrolyte comprises a liquid selected from: ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, dipropyl carbonate, an ionic liquid, and mixtures of two or more of these liquids.
  • the lithium salt is LiPF 6 .
  • the battery according to the invention a high energy density and capacity can be made available at high voltage, wherein the battery has good stability even at high voltage output. Therefore, it can be preferably used for supplying power to mobile information devices, tools, electric automobiles and hybrid automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Lithium-Ionen-Batterie, aufweisend: (i) eine positive Elektrode zumindest aufweisend ein Lithium- Übergangsmetallphosphat mit Olivinstruktur, wobei das Übergangsmetall ausgewählt ist aus Mangan, Kobalt, Nickel, oder einer Mischung aus zwei oder drei dieser Elemente; (ii) eine negative Elektrode; (iii) einen Separator, der die positive und die negative Elektrode voneinander trennt und für Lithium-Ionen durchlässig ist; wobei der Separator ein Vlies aus ungewebten, nicht elektrisch leitfähigen Polymerfasern aufweist, das ein- oder beidseitig mit einem ionenleitenden anorganischen Material beschichtet ist; (iv) einen nicht-wässerigen Elektrolyt.

Description

Lithium-Ionen-Batterie mit hoher Spannung
Hiermit wird der gesamte Inhalt der Prioritätsanmeldung DE 10 2011 017 105.3 durch Bezugnahme Bestandteil der vorliegenden Anmeldung.
Beschreibung Die vorliegende Erfindung betrifft eine Sekundärbatterie, insbesondere eine Lithium-Ionen-Batterie, die auch bei hoher Spannungsabgabe eine gute Stabilität aufweist.
Sekundärbatterien, insbesondere Lithium-Ionen-Batterien, können wegen ihrer hohen Energiedichte und hohen Kapazität als Antriebskraft für mobile Informationsvorrichtungen eingesetzt werden. Darüber hinaus werden derartige Batterien in Werkzeugen, elektrisch betriebenen Automobilen und in Automobilen mit Hybridantrieb verwendet. Damit sie für diese Verwendungen geeignet sind, sollten die Batterien bei hoher Sicherheit und Verlässlichkeit eine hohe Spannung, eine hohe Kapazität und eine hohe Langlebigkeit aufweisen.
Es ist bekannt, Lithiummetallphosphate mit Olivinstruktur als Kathodenmaterial in Lithium-Ionen-Batterien zu verwenden, da diese Materialien gegenüber Lithiummetall ein hohes Redoxpotential aufweisen können. Für Lithiummangan- phosphat ist ein Wert von 4,1 V, für Lithiumkobaltphosphat ein Wert von 5 V bekannt. Allerdings ist auch bekannt, dass unter dem Einfluss der hohen Spannung die Leistung und Sicherheit der Batterie beeinträchtigt werden kann. Beispielweise können sich der in der Batterie befindliche Elektrolyt und/oder der Separator nachteilig verändern. Dies kann zum Versagen der Batterie führen, etwa durch Kurzschlussreaktionen, und/oder die Sicherheit der Batterie anderweitig beeinträchtigen. Aufgabe der vorliegenden Erfindung ist es, eine Sekundärbatterie bereitzustellen, insbesondere eine Lithium-Ionen-Sekundärbatterie, in welcher der verwendete Separator auch bei hohen Spannungen möglichst stabil bleibt.
Die und andere Aufgabe(n) wird/werden durch eine Lithium-Ionen-Batterie gelöst, welche aufweist:
(i) eine positive Elektrode zumindest aufweisend ein Lithium- Übergangsmetallphosphat mit Olivinstruktur, wobei das Übergangsmetall ausgewählt ist aus Mangan, Kobalt, Nickel, oder einer Mischung aus zwei oder drei dieser Elemente;
(ii) eine negative Elektrode;
(iii) einen Separator, der die positive und die negative Elektrode voneinander trennt und für Lithium-Ionen durchlässig ist; wobei der Separator ein Vlies aus ungewebten, nicht elektrisch leitfähigen Polymerfasern aufweist, das ein- oder beidseitig mit einem ionenleitenden anorganischen Material beschichtet ist;
(iv) einen nicht-wässerigen Elektrolyt.
Batterie
Im Folgenden werden die Begriffe "Lithium-Ionen-Batterie" und "Lithium-Ionen- Sekundärbatterie" synonym verwendet. Die Begriffe schließen auch die Begriffe
"Lithium-Batterie", "Lithium-Ionen-Akkumulator" und "Lithium-Ionen-Zelle" ein.
Ein Lithium-Ionen-Akkumulator besteht im Allgemeinen aus einer Serien- bzw.
Reihenschaltung einzelner Lithium-Ionen-Zellen. Dies bedeutet, dass der Begriff
"Lithium-Ionen-Batterie" als Sammelbegriff für die im Stand der Technik ge- bräuchlichen vorgenannten Begriffe verwendet wird. Elektrode
Der Begriff "positive Elektrode" bedeutet die Elektrode, die bei Anschluss der Batterie an einen Verbraucher, beispielsweise an einen Elektromotor, in der Lage ist, Elektronen aufzunehmen. Sie stellt also die Kathode dar.
Der Begriff "negative Elektrode" bedeutet die Elektrode, die bei Betrieb in der Lage ist, Elektronen abzugeben. Diese Elektrode stellt also die Anode dar.
Positive Elektrode
Für die erfindungsgemäße Lithium-Ionen-Batterie wird ein Kathodenmaterial verwendet, das ein Lithium-Übergangsmetall mit Olivinstruktur umfasst. Damit weist in einer Ausführungsform das Phosphat die Summenformel LiXP04 auf, mit X = Mn, Fe, Co oder Ni, oder Kombinationen hiervon. Bevorzugte Lithium-Übergangsmetallphosphate sind Lithiummanganphosphat, Lithiumkobaltphosphat und Lithiumnickelphosphat.
Besonders bevorzugt sind Lithiummanganphosphat und Lithiumkobaltphosphat. Lithium-Übergangsmetallphosphate als solche sind aus dem Stand der Technik bekannt und können nach bekannten Verfahren hergestellt werden, beispielsweise durch Sintern von Gemischen, die als Ausgangsverbindungen die entsprechenden Oxide enthalten, oder die als Ausgangsverbindungen Verbindungen enthalten, die beim Sintern die entsprechenden Oxide bilden.
Die positive Elektrode kann auch Mischungen aus zwei oder mehreren der genannten Substanzen enthalten.
Die positive Elektrode enthält das Lithium-Übergangsmetallphosphat vorzugs- weise in Form von Nanopartikeln. Die Nanopartikel können eine beliebige Form annehmen, das heißt, sie können grob-sphärisch oder langgestreckt sein.
In einer Ausführungsform weist das Lithium-Übergangsmetallphosphat eine Par- tikelgröße gemessen als D95-Wert von kleiner als 15 pm auf. Vorzugsweise ist die Partikelgröße kleiner als 10 pm.
In einer weiteren Ausführungsform weist das Lithium-Übergangsmetallphosphat eine Partikelgröße gemessen als D95-Wert zwischen 0,005 pm bis 10 pm auf. In einer weiteren Ausführungsform weist das Lithium-Übergangsmetallphosphat eine Partikelgröße gemessen als D95-Wert von kleiner 10 pm auf, wobei der D50-Wert 4 pm ± 2 pm beträgt und der D10-Wert kleiner als 1 ,5 pm ist.
Die angegebenen Werte werden durch Messung unter Verwendung der stati- sehen Laserlichtstreuung (Laserbeugung, Laser-Diffraktometrie) bestimmt, wie diese aus dem Stand der Technik bekannt ist.
Ferner ist es auch möglich, dass das Lithium-Übergangsmetallphosphat zur Erhöhung der Leitfähigkeit Kohlenstoff enthält. Derartige Verbindungen können nach bekannten Verfahren hergestellt werden, beispielsweise durch Beschichten mit Kohlenstoffverbindungen wie Acrylsäure oder Ethylenglykol. Anschließend wird pyrolisiert, beispielsweise bei einer Temperatur von 2500 °C.
Negative Elektrode
Die negative Elektrode kann aus einer Vielzahl von Materialien hergestellt werden, die für die Verwendung in einer Lithium-Ionen-Batterie aus dem Stand der Technik bekannt sind. Grundsätzlich können alle Materialien verwendet werden, die in der Lage sind, mit Lithium Interkalationsverbindungen zu bilden. Beispielsweise kann die negative Elektrode Lithium-Metall oder Lithium in Form einer Legierung enthalten, entweder in Form einer Folie, eines Gitters oder in Form von Partikeln, die durch ein geeignetes Bindemittel zusammengehalten werden.
Die Verwendung von Lithium-Metall-Oxiden wie Lithium-Titan-Oxid ist gleichfalls möglich.
Geeignete Materialien für die negative Elektrode umfassen auch Graphit, synthetischer Graphit, Ruß, Mesokohlenstoff, dotiertem Kohlenstoff, Fullerene.
Als Elektrodenmaterial für die negative Elektrode sind auch Niobpentoxid, Zinn- legierungen, Titandioxid, Zinndioxid, Silizium einsetzbar.
Die für die positive wie auch für die negative Elektrode verwendeten Materialien werden vorzugsweise durch ein Bindemittel, das diese Materialien auf der Elektrode hält, zusammengehalten. Beispielsweise können polymere Bindemittel verwendet werden. Als Bindemittel können beispielsweise Polyvinylidenfluorid, Polyethylenoxid, Polyethylen, Polypropylen, Polytetrafluorethylen, Polyacrylat, Ethylen-(Propylen-DienMonomer)-Copolymer (EPDM) und Mischungen und Co- polymere davon verwendet werden. Separator
Der für die Batterie verwendete Separator muss für Lithium-Ionen durchlässig sein, um den lonentransport der Lithium-Ionen zwischen der positiven und der negativen Elektrode zu gewährleisten. Andererseits muss der Separator für E- lektronen isolierend sein.
Der Separator umfasst ein Vlies aus ungewebten Polymerfasern, die elektrisch nicht leitend sind. Derartige Vliese werden insbesondere durch Spinnverfahren mit nachfolgender Verfestigung hergestellt. Der Begriff "Vlies" wird synonym mit Begriffen wie "nonwoven fabrics", "Gewirke" oder "Filz" verwendet. Statt des Begriffs "ungewebt" wird auch der Begriff "nicht verwebt" verwendet. Vorzugsweise werden die Polymerfasern ausgewählt aus der Gruppe von Polymeren bestehend aus Polyacrylnitril, Polyolefin, Polyester, Polyimid, Polyetheri- mid, Polysulfon, Polyamid, Polyether. Geeignete Polyolefine sind beispielsweise Polyethylen, Polypropylen, Polytetrafluorethylen, Polyvinylidenfluorid. Bevorzugte Polyester sind beispielsweise Polyethylenterephthalate.
Das im Separator enthaltene Vlies ist im Sinne der vorliegenden Erfindung vorzugsweise ein- oder beidseitig mit einem ionenleitenden anorganischen Material beschichtet. Der Begriff "Beschichtung" beinhaltet auch, dass sich das ionenlei- tende anorganische Material nicht nur auf einer Seite oder beiden Seiten des Vlieses befinden kann, sondern auch innerhalb des Vlieses.
Das ionenleitende anorganische Material ist in einem Temperaturbereich von - 40 °C bis 200 °C ionenleitend, d.h. ionenleitend für Lithium-Ionen. Das für die Beschichtung verwendete Material ist wenigstens eine Verbindung aus der Gruppe der Oxide, Phosphate, Sulfate, Titanate, Silikate, Aluminosilikate wenigstens eines der Elemente Zirkon, Aluminium, Silizium oder Lithium.
In einer bevorzugten Ausführungsform umfasst oder besteht das ionenleitende Material aus Aluminiumoxid oder Zirkonoxid oder Aluminiumoxid und Zirkonoxid.
In einer Ausführungsform wird in der erfindungsgemäßen Batterie ein Separator verwendet, welcher aus einem zumindest teilweise stoffdurchlässigen Träger besteht, welcher nicht oder nur schlecht elektronenleitend ist. Dieser Träger ist auf mindestens einer Seite mit einem anorganischen Material beschichtet. Als wenigstens teilweise stoffdurchlässiger Träger wird ein organisches Material verwendet, welches als nichtverwebtes Vlies ausgestaltet ist. Das organische Material ist in Form von Polymerfasern ausgestaltet, vorzugsweise Polymerfasern des Polyethylenterephthalats (PET). Das Vlies ist mit einem anorganischen ionenleitenden Material beschichtet, welches vorzugsweise in einem Tempera- turbereich von - 40 °C bis 200 °C ionenleitend ist. Das anorganische ionenleitende Material umfasst bevorzugt wenigstens eine Verbindung aus der Gruppe der Oxide, Phosphate, Sulfate, Titanate, Silikate, Aluminosilikate mit wenigstens einem der Elemente Zirkon, Aluminium, Lithium, besonders bevorzugt Zirkon- oxid. Bevorzugt weist das anorganische ionenleitende Material Partikel mit ei- nem größten Durchmesser unter 100 nm auf.
Ein solcher Separator wird beispielsweise unter dem Handelsnamen "Separi- on®" von der Firma Evonik AG in Deutschland vertrieben. Verfahren zur Herstellung derartiger Separatoren sind aus dem Stand der Technik bekannt, bei- spielsweise aus der EP 1 017 476 B1 , WO 2004/021477 und WO 2004/021499.
Im Folgenden werden besonders bevorzugte Ausführungsformen des in der erfindungsgemäßen Batterie verwendeten Separators sowie Vorteile der Batterie insbesondere unter Sicherheitsaspekten zusammengefasst.
Prinzipiell können zu große Poren und Löcher in Separatoren, die in Sekundärbatterien verwendet werden, zu einem inneren Kurzschluss führen. Die Batterie kann sich dann in einer gefährlichen Reaktion sehr schnell selbst entladen. Hierbei können so große elektrische Ströme auftreten, dass eine geschlossene Batteriezelle im ungünstigsten Fall sogar explodieren kann. Aus diesem Grund kann der Separator entscheidend zur Sicherheit bzw. zur fehlenden Sicherheit einer Lithiumhochleistungs- oder LithiumhochenergieBatterie beitragen.
Polymerseparatoren unterbinden i.A. ab einer bestimmten Temperatur (der so- genannten "Shut-Down-Temperatur", die typischerweise bei ca. 120 °C liegt) jeglichen Stromtransport durch den Elektrolyten. Dies geschieht dadurch, dass bei dieser Temperatur das Porengefüge des Separators zusammenbricht und alle Poren verschlossen werden. Dadurch, dass keine Ionen mehr transportiert werden können, kommt die gefährliche Reaktion, die zur Explosion führen kann, zum Erliegen. Wird die Zelle aufgrund äußerer Umstände aber weiter erwärmt, so wird bei ca. 150 bis 180 °C die sogenannte "Break-Down-Temperatur" überschritten. Ab dieser Temperatur kommt es bei herkömmlichen Separatoren zum Schmelzen des Separators, wobei dieser sich zusammenzieht. An vielen Stellen in der Batteriezelle kommt es nun zu einem direkten Kontakt zwischen den beiden Elektroden und somit zu einem großflächigem inneren Kurzschluss. Dieser führt zur unkontrollierten Reaktion, die mit einer Explosion der Zelle enden kann, bzw. der entstehende Druck muss durch ein Überdruckventil (eine Berstscheibe) häufig unter Feuererscheinungen abgebaut werden.
Bei dem in der erfindungsgemäßen Batterie verwendeten Separator umfassend ein Vlies aus ungewebten Polymerfasern und die anorganische Beschichtung kann es nur zum Shut-Down (Abschaltung) kommen, wenn durch die hohe Temperatur das Polymergefüge des Trägermaterials schmilzt und in die Poren des anorganischen Materials eindringt und diese dadurch verschließt. Zum Break-Down (Zusammenbruch) kommt es bei diesem Separator dagegen nicht, da die anorganischen Partikel dafür sorgen, dass ein völliges Schmelzen des Separators nicht eintreten kann. Somit ist sichergestellt, dass es keine Betriebs- zustände gibt, in denen ein großflächiger Kurzschluss entstehen kann. Durch die Art des eingesetzten Vlieses, welches eine besonders gut geeignete Kombination aus Dicke und Porosität aufweist, können Separatoren hergestellt werden, die den Anforderungen an Separatoren in Hochleistungsbatterien, insbesondere Lithium-Hochleistungsbatterien gerecht werden können. Durch die gleichzeitige Verwendung von in ihrer Partikelgröße genau abgestimmten Oxid-Partikeln zur Herstellung der porösen (keramischen) Beschichtung wird eine besonders hohe Porosität des fertigen Separators erreicht, wobei die Poren immer noch genü- gend klein sind um ein unerwünschtes Durchwachsen von "Lithium-Whiskern" durch den Separator zu verhindern. Aufgrund der hohen Porosität in Verbindung mit der geringen Dicke des Separators ist es außerdem möglich, den Separator vollständig oder zumindest nahezu vollständig mit dem Elektrolyten zu tränken, so dass keine Toträume in einzelnen Bereichen des Separators und damit in bestimmten Wicklungen oder Schichtungen der Batteriezellen entstehen können, in denen kein Elektrolyt vorliegt. Dies wird insbesondere dadurch erreicht, dass durch die Einhaltung der Partikelgröße der Oxid-Partikel die erhaltenen Separatoren frei bzw. nahezu frei von geschlossenen Poren sind, in welche der Elektrolyt nicht eindringen kann. Die für die Erfindung eingesetzten Separatoren haben außerdem den Vorteil, dass sich an den anorganischen Oberflächen des Separatormaterials die Anio- nen des Leitsalzes teilweise anlagern, was zu einer Verbesserung der Dissoziation und somit zu einer besseren lonenleitfähigkeit im Hochstrombereich führt. Ein weiterer, nicht unerheblicher Vorteil des Separators liegt in der sehr guten Benetzbarkeit. Aufgrund der hydrophilen keramischen Beschichtung erfolgt die Benetzung mit Elektrolyten sehr rasch, was ebenfalls zu einer verbesserten Leitfähigkeit führt.
Der für die erfindungsgemäße Batterie verwendete Separator, umfassend ein flexibles Vlies mit einer auf und in diesem Vlies befindlichen porösen anorgani- sehen Beschichtung, wobei das Material des Vlieses ausgewählt ist aus unge- webten, nicht elektrisch leitfähigen Polymerfasern, zeichnet sich auch dadurch aus, dass das Vlies eine Dicke von weniger als 30 pm, eine Porosität von mehr als 50 %, vorzugsweise von 50 bis 97 % und eine Porenradienverteilung aufweist, bei der mindestens 50 % der Poren einen Porenradius von 75 bis 150 μιη aufweisen.
Besonders bevorzugt umfasst der Separator ein Vlies, welches eine Dicke von 5 bis 30 pm, vorzugsweise eine Dicke von 10 bis 20 pm aufweist. Besonders wichtig ist auch eine möglichst homogene Porenradienverteilung im Vlies wie oben angegeben. Eine noch homogenere Porenradienverteilung im Vlies führt in Verbindung mit optimal abgestimmten Oxid-Partikeln bestimmter Größe zu einer optimierten Porosität des Separators. Die Dicke des Substrates hat einen großen Einfluss auf die Eigenschaften des Separators, da zum einen die Flexibilität aber auch der Flächenwiderstand des mit Elektrolyt getränkten Separators von der Dicke des Substrates abhängig ist. Durch die geringe Dicke wird ein beson- ders geringer elektrischer Widerstand des Separators in der Anwendung mit einem Elektrolyten erzielt. Der Separator selbst weist einen sehr hohen elektrischen Widerstand auf, da er selbst isolierende Eigenschaften aufweisen muss. Zudem erlauben dünnere Separatoren eine erhöhte Packungsdichte in einem Batteriestapel, so dass man im gleichen Volumen eine größere Energiemenge speichern kann.
Vorzugsweise weist das Vlies eine Porosität von 60 bis 90 %, besonders bevorzugt von 70 bis 90 % auf. Die Porosität ist dabei definiert als das Volumen des Vlieses (100 %) minus dem Volumen der Fasern des Vlieses, also dem Anteil am Volumen des Vlieses, der nicht von Material ausgefüllt wird.
Das Volumen des Vlieses kann dabei aus den Abmessungen des Vlieses berechnet werden. Das Volumen der Fasern ergibt sich aus dem gemessen Gewicht des betrachteten Vlieses und der Dichte der Polymerfasern. Die große Porosität des Substrates ermöglicht auch eine höhere Porosität des Separators, weshalb eine höhere Aufnahme an Elektrolyten mit dem Separator erzielt werden kann. Damit ein Separator mit isolierenden Eigenschaften erhalten werden kann, weist dieser als Polymerfasern für das Vlies vorzugsweise nicht elektrisch leitfähige Fasern von Polymeren auf wie oben definiert, die vorzugsweise aus- gewählt sind aus Polyakrylnitril (PAN), Polyester, wie z. B. Polyethylenterephtha- lat (PET) und/oder Polyolefin (PO), wie z. B. Polypropylen (PP) oder Polyethylen (PE), oder Mischungen solcher Polyolefine.
Die Polymerfasern der Vliese weisen vorzugsweise einen Durchmesser von 0,1 bis 10 μιη, besonders bevorzugt von 1 bis 4 μιη auf. Besonders bevorzugte flexible Vliese weisen ein Flächengewicht von kleiner 20 g/m2, vorzugsweise von 5 bis 10 g/m2 auf.
Vorzugsweise ist das Vlies flexibel und weist eine Dicke von weniger als 30 μηη auf.
Der Separator weist auf und im Vlies eine poröse, elektrisch isolierende, keramische Beschichtung auf. Vorzugsweise weist die auf und in dem Vlies befindliche poröse anorganische Beschichtung Oxid-Partikel der Elemente Li, AI, Si und/oder Zr mit einer mittleren Partikelgröße von 0,5 bis 7 pm, bevorzugt von 1 bis 5 pm und ganz besonders bevorzugt von 1 ,5 bis 3 pm auf.
Besonders bevorzugt weist der Separator eine auf und in dem Vlies befindliche poröse anorganische Beschichtung auf, die Aluminiumoxid-Partikel aufweist. Vorzugsweise haben diese eine mittlere Partikelgröße von 0,5 bis 7 pm, bevorzugt von 1 bis 5 pm und ganz besonders bevorzugt von 1 ,5 bis 3 pm. In einer Ausführungsform sind die Aluminiumoxid-Partikel mit einem Oxid der Elemente Zr oder Si verklebt sind. Um eine möglichst hohe Porosität zu erzielen, liegen bevorzugt mehr als 50 Gew.-% und besonders bevorzugt mehr als 80 Gew.-% aller Partikel in den o- ben genannten Grenzen der mittleren Partikelgröße. Wie bereits oben beschrieben beträgt die maximale Partikelgröße vorzugsweise 1/3 bis 1/5 und besonders bevorzugt kleiner oder gleich 1/10 der Dicke des eingesetzten Vlieses.
Vorzugsweise weist der Separator eine Porosität von 30 bis 80 %, bevorzugt von 40 bis 75 % und besonders bevorzugt von 45 bis 70 % auf. Die Porosität bezieht sich dabei auf die erreichbaren, also offenen Poren. Die Porosität kann dabei mittels der bekannten Methode der Quecksilber-Porosimetrie bestimmt werden oder kann aus dem Volumen und der Dichte der verwendeten Einsatzstoffe errechnet werden, wenn davon ausgegangen wird, dass nur offene Poren vorliegen. Die für die erfindungsgemäße Batterie verwendeten Separatoren zeichnen sich auch dadurch aus, dass sie eine Reißfestigkeit von mindestens 1 N/cm, vorzugsweise von mindestens 3 N/cm und ganz besonders bevorzugt von 3 bis 10 N/cm aufweisen können. Die Separatoren lassen sich vorzugsweise ohne Beschädigung bis auf jeden Radius bis herab zu 100 mm, vorzugsweise bis herab zu 50 mm und ganz besonders bevorzugt bis herab zu 1 mm biegen.
Die hohe Reißfestigkeit und die gute Biegbarkeit des Separators haben den Vorteil, dass beim Laden und Entladen einer Batterie auftretende Veränderungen der Geometrien der Elektroden durch den Separator mitgemacht werden können, ohne dass dieser beschädigt wird. Die Biegbarkeit hat zudem den Vorteil, dass mit diesem Separator kommerziell standardisierte Wickelzellen produziert werden können. Bei diesen Zellen werden die Elektroden/Separator-Lagen in standardisierter Größe miteinander spiralförmig aufgewickelt und kontaktiert.
In einer Ausführungsform ist es möglich, den Separator so zu gestalten, dass er die Form eines konkaven oder konvexen Schwamms oder Kissens oder die Form von Drähten oder eines Filzes aufweist. Diese Ausführungsform ist gut geeignet, Volumenveränderungen in der Batterie auszugleichen. Entsprechende Herstellverfahren sind dem Fachmann bekannt.
In einer weiteren Ausführungsform umfasst das im Separator verwendete Polymervlies ein weiteres Polymer. Vorzugsweise ist dieses Polymer zwischen dem Separator und der negativen Elektrode und/oder dem Separator und der positi- ven Elektrode angeordnet, vorzugsweise in Form einer Polymerschicht.
In einer Ausführungsform ist der Separator mit diesem Polymer einseitig oder beidseitig beschichtet. Besagtes Polymer kann in Form einer porösen Membran, d.h. als Folie, oder in Form eines Vlieses vorliegen, vorzugsweise in Form eines Vlieses aus nicht verwebten Polymerfasern. Diese Polymeren werden vorzugsweise ausgewählt aus der Gruppe bestehend aus Polyester, Polyolefin, Polyacrylnitril, Polycarbonat, Polysulfon, Polyethersul- fon, Polyvinylidenfluorid, Polystyrol, Polyetherimid.
Vorzugsweise ist das weitere Polymer ein Polyolefin. Bevorzugte Polyoleflne sind Polyethylen und Polypropylen.
Vorzugsweise ist der Separator mit einer oder mehreren Schichten des weiteren Polymers, vorzugsweise des Polyoleflns, das vorzugsweise gleichfalls als Vlies, also als nicht verwebte Polymerfasern vorliegt, beschichtet.
Vorzugsweise wird im Separator ein Vlies aus Polyethylenterephthalat verwendet, das mit einer oder mehreren Schichten des weiteren Polymers, vorzugsweise des Polyoleflns, das vorzugsweise gleichfalls als Vlies, also als nicht verwebte Polymerfasern vorliegt, beschichtet ist.
Besonders bevorzugt ist ein Separator des oben beschriebenen Separion-Typs, der mit einer oder mehreren Schichten des weiteren Polymers, vorzugsweise des Polyoleflns, das vorzugsweise gleichfalls als Vlies, also als nicht verwebte Polymerfasern vorliegt, beschichtet ist.
Die Beschichtung mit dem weiteren Polymeren, vorzugsweise mit dem Polyolefin, kann durch Verklebung, Laminierung, durch eine chemische Reaktion, durch Verschweißung oder durch eine mechanische Verbindung erzielt werden. Derartige Polymerverbunde sowie Verfahren zu ihrer Herstellung sind aus der EP 1 852 926 bekannt. Vorzugsweise sind die Faserdurchmesser des Polyethylenterephthalatvlieses größer als die Faserdurchmesser des weiteren Polymervlieses, vorzugsweise des Polyolefinvlieses, mit dem der Separator einseitig oder beidseitig beschichtet ist.
Vorzugsweise weist das aus Polyethylenterephthalat gefertigte Vlies dann einen höheren Porendurchmesser auf als das Vlies, das aus dem weiteren Polymeren gefertigt ist. Vorzugsweise werden die im Separator einsetzbaren Vliese aus Nanofasern der verwendeten Polymeren gefertigt, wodurch Vliese gebildet werden, die eine hohe Porosität unter Ausbildung geringer Porendurchmesser aufweisen. Damit kann sowohl die Gefahr von Kurzschlussreaktionen weiter vermindert werden. Die Verwendung eines Polyolefins zusätzlich zum Polyethylenterephthalat gewährleistet eine erhöhte Sicherheit der elektrochemischen Zelle, da bei unerwünschter oder zu starker Erwärmung der Zelle sich die Poren des Polyolefins zusammenziehen und der Ladungstransport durch den Separator hindurch reduziert bzw. beendet wird. Sollte sich die Temperatur der elektrochemischen Zelle soweit erhöhen, dass das Polyolefin zu schmelzen beginnt, wirkt das Polyethylenterephthalat dem Zusammenschmelzen des Separators und damit einer unkontrollierten Zerstörung der elektrochemischen Zelle wirksam entgegen.
Die Kombination der positiven Elektrode enthaltend ein Lithium- Übergangsmetallphosphat, insbesondere Lithiummanganphosphat oder Lithiumkobaltphosphat, mit dem Separator umfassend ein Vlies aus ungewebten Polymerfasern, das ein- oder beidseitig mit einem ionenleitenden anorganischen Material beschichtet ist, die außerordentlich betriebssicher ist, was vorliegend insbesondere bei den hohen Energiedichten und Spannungen von Bedeutung ist, welche durch die erfindungsgemäß eingesetzten Kathodenmaterialien bedingt sind. Diese Kombination ist für die Verwendung als Antriebskraft für mobile Informationsvorrichtungen, für Werkzeuge, elektrisch betriebene Automobile und für Automobile mit Hybridantrieb außerordentlich günstig.
Nicht-wässriaer Elektrolyt
Geeignete Elektrolyte für die erfindungsgemäße Batterie sind aus dem Stand der Technik bekannt. Die Elektrolyte umfassen vorzugsweise eine Flüssigkeit und ein Leitsalz. Vorzugsweise ist die Flüssigkeit ein Lösungsmittel für das Leitsalz. Vorzugsweise liegt der Elektrolyt als Elektrolytlösung vor. Geeignete Lösungsmittel sind vorzugsweise inert. Geeignete Lösungsmittel umfassen beispielsweise Lösungsmittel wie Ethylencarbonat, Propylencarbonat, Butylencarbonat, Dimethylcarbonat, Diethylcarbonat, Ethylmethylcarbonat, Me- thylpropylcarbonat, Butylmethylcarbonat, Ethylpropylcarbonat, Dipropylcarbonat, Cyclopentanone, Sulfolane, Dimethylsufoxid, 3-Methyl-1 ,3-oxazolidine-2-on, v- Butyrolacton, 1 ,2-Diethoxymethan, Tetrahydrofuran, 2-Methyltetrahydrofuran, 1 ,3-Dioxolan, Methylacetat, Ethylacetat, Nitromethan, 1 ,3-Propansulton.
In einer Ausführungsform können auch ionische Flüssigkeiten verwendet werden.
Ionische Flüssigkeiten sind aus dem Stand der Technik bekannt. Sie enthalten ausschließlich Ionen. Beispiele für verwendbare Kationen, die insbesondere al- kyliert sein können, sind Imidazolium-, Pyridinium-, Pyrrolidinium-, Guanidinium-, Uronium-, Thiuronium-, Piperidinium-, Morpholinium-, Sulfonium-, Ammonium- und Phosphonium-Kationen. Beispiele für verwendbare Anionen sind Halogenid- , Tetrafluoroborat-, Trifluoracetat-, Triflat-, Hexafluorophosphat-, Phosphinat- und Tosylat-Anionen.
Als beispielhafte ionische Flüssigkeiten seien genannt: N-Methyl-N-propyl-piperidinium- bis(trifluormethylsulfonyl)imid, N-Methyl-N-butyl- pyrrolidinium-bis(trifluormethyl-sulfonyl)imid, N-Butyl-N-trimethyl-ammonium- bis(trifluormethylsulfonyl)imid, Triethylsulfonium-bis(trifIuormethylsulfonyl)imid,
N,N-Diethyl-N-methyl-N-(2-methoxyethyl)-ammonium-bis(trifluormeth
imid. Es können zwei oder mehrere der oben genannten Flüssigkeiten verwendet werden.
Bevorzugte Leitsalze sind Lithium-Salze, welche inerte Anionen aufweisen und welche sind nicht-toxisch sind. Geeignete Lithium-Salze sind beispielsweise Lithiumhexafluorophosphat, Lithiumhexafluoroarsenat, Lithium- bis(trifluoromethylsulfonylimid), Lithiumtrifluoromethansulfonat, Lithium- tris(trifluoromethylsulfonyl)-methid, Lithiumtetrafluoroborat, Lithiumperchlorat, Lithiumtetrachloraluminat, Lithiumchlorid, Lithiumbisoxalatoborat, Lithiumdifluor- oxalatoborat, und Mischungen aus zwei oder mehreren dieser Salze.
Batterieherstellunp
Die Herstellung der erfindungsgemäßen Lithium-Ionen-Batterie kann vorzugsweise dadurch erfolgen, dass zur Herstellung der positiven Elektrode das Lithium-Übergangsmetallphosphat als Pulver auf der Elektrode niedergeschlagen und zu einem dünnen Film verdichtet werden, gegebenenfalls unter Verwendung eines Bindemittels. Die andere Elektrode kann auf die erste Elektrode laminiert werden, wobei der Separator in Form einer Folie vorher auf die negative oder die positive Elektrode laminiert wird. Es ist auch möglich, die positive Elektrode, den Separator und die negative Elektrode gleichzeitig unter gegenseitiger Laminierung zu verarbeiten.
In einer Ausführungsform weist die positive Elektrode der erfindungsgemäßen Batterie als Lithium-Übergangsmetallphosphat Lithiummanganphosphat oder Lithiumkobaltphosphat auf. ln einer Ausführungsform ist das Lithiummanganphosphat oder Lithiumkobaltphosphat mit Kohlenstoff beschichtet.
In einer Ausführungsform weist der Separator ein Vlies aus ungewebten Polye- thylenterephthalatfasern auf, das beidseitig mit einem ionenleitenden anorganischen Material beschichtet ist, welches Aluminiumoxid aufweist.
In einer Ausführungsform weist der nicht-wässerige Elektrolyt eine Flüssigkeit auf ausgewählt aus: Ethylencarbonat, Propylencarbonat, Butylencarbonat, Di- methylcarbonat, Diethylcarbonat, Ethylmethylcarbonat, Methylpropylcarbonat, Butylmethylcarbonat, Ethylpropylcarbonat, Dipropylcarbonat, einer ionischen Flüssigkeit, und Mischungen aus zwei oder mehreren dieser Flüssigkeiten.
In einer Ausführungsform ist das Lithiumsalz LiPF6 .
Verwendung
Mit der erfindungsgemäßen Batterie kann bei hoher Spannung eine hohe Energiedichte und Kapazität zur Verfügung gestellt werden, wobei die Batterie auch bei hoher Spannungsabgabe eine gute Stabilität aufweist. Deshalb kann sie vor- zugsweise zur Energieversorgung für mobile Informationsvorrichtungen, Werkzeuge, elektrisch betriebene Automobile und für Automobile mit Hybridantrieb eingesetzt werden.

Claims

Patentansprüche
Lithium-Ionen-Batterie, aufweisend:
(i) eine positive Elektrode zumindest aufweisend ein Lithium- Übergangsmetallphosphat mit Olivinstruktur, wobei das Übergangsmetall ausgewählt ist aus Mangan, Kobalt, Nickel, oder einer Mischung aus zwei oder drei dieser Elemente;
(ii) eine negative Elektrode;
(iii) einen Separator, der die positive und die negative Elektrode voneinander trennt und für Lithium-Ionen durchlässig ist; wobei der Separator ein Vlies aus ungewebten, nicht elektrisch leitfähigen Polymerfasern aufweist, das ein- oder beidseitig mit einem ionenleitenden anorganischen Material beschichtet ist;
(iv) einen nicht-wässerigen Elektrolyt.
Batterie nach Anspruch 1 , wobei das Lithium-Übergangsmetallphosphat mit Kohlenstoff beschichtet ist.
Batterie nach einem der vorstehenden Ansprüche, wobei die negative E- lektrode ein Material aufweist ausgewählt aus: Kohlenstoff, metallisches Lithium, Lithiumtitanat, Silizium, oder zwei oder mehrere dieser Materialien.
Batterie nach einem der vorstehenden Ansprüche, wobei die Polymerfasern ausgewählt sind aus: Polyacrylnitril, Polyolefin, Polyester, Polyimid, Polyetherimid, Polysulfon, Polyamid, Polyether, oder zwei oder mehrere dieser Materialien.
Batterie nach einem der vorstehenden Ansprüche, wobei die Polymerfasern ein Polyethylenterephthalat enthalten oder aus einem Polyethylente- rephthalat bestehen.
Batterie nach einem der. orstehenden Ansprüche, wobei das ionenleitende anorganischen Material wenigstens eine Verbindung aus der Gruppe der Oxide, Phosphate, Sulfate, Titanate, Silikate, Aluminosilikate wenigstens eines der Elemente Zr, AI, Li ist.
Batterie nach einem der vorstehenden Ansprüche, wobei das ionenleitende anorganische Material Aluminiumoxid, Zirkonoxid, Siliziumdioxid oder zwei oder mehrere dieser Verbindungen aufweist.
Batterie nach einem der vorstehenden Ansprüche, wobei das anorganische, ionenleitende Material Partikel mit einem größten Durchmesser unter 100 nm aufweist.
Batterie nach einem der vorstehenden Ansprüche, wobei der Elektrolyt eine Flüssigkeit mit einem Lithiumsalz aufweist.
Batterie nach Anspruch 9, wobei die Flüssigkeit ausgewählt ist aus: Ethy- lencarbonat, Propylencarbonat, Butylencarbonat, Dimethylcarbonat, Diethylcarbonat, Ethylmethylcarbonat, Methylpropylcarbonat, Butylmethyl- carbonat, Ethylpropylcarbonat, Dipropylcarbonat, Cyclopentanonen, Sulfo- lanen, Dimethylsulfoxid, 3-Methyl-1 ,3-oxazolidine-2-on, γ-Butyrolacton, 1 ,2-Diethoxymethan, Tetrahydrofuran, 2-Methyltetrahydrofuran, 1 ,3- Dioxolan, Methylacetat, Ethylacetat, Nitromethan, 1 ,3-Propansulton, einer ionischen Flüssigkeit, und Mischungen aus zwei oder mehreren dieser Flüssigkeiten.
Batterie nach einem der Ansprüche 9 oder 10, wobei das Lithiumsalz ausgewählt ist aus: LiPF6, LiBF4, LiCI04, LiAsF6, L1CF3SO3, LiN(CF3S02)2, LiC(CF3S02)3, LiS03CxF2x+i , LiN(S02CxF2x+i)2 oder LiC(S02CxF2x+i)3 mit 0 < x < 8, Li[(C204)2B], Li[(C204)BF2], und Mischungen von zwei oder mehreren dieser Salze.
12. Batterie nach einem der vorstehenden Ansprüche, wobei das Lithium- Übergangsmetallphosphat Lithiummanganphosphat oder Lithiumkobaltphosphat ist.
13. Batterie nach Anspruch 12, wobei das Lithium-Übergangsmetallphosphat Kohlenstoff aufweist.
Batterie nach Anspruch 13, wobei der Separator ein Vlies aus ungewebten Polyethylenterephthalatfasern aufweist, das einseitig oder beidseitig mit einem ionenleitenden anorganischen Material beschichtet ist, welches A- luminiumoxid aufweist.
15. Batterie nach einem der Ansprüche 12 bis 14, wobei die Flüssigkeit aus- gewählt ist aus: Ethylencarbonat, Propylencarbonat, Butylencarbonat, Di- methylcarbonat, Diethylcarbonat, Ethylmethylcarbonat, Methylpropylcar- bonat, Butylmethylcarbonat, Ethylpropylcarbonat, Dipropylcarbonat, einer ionischen Flüssigkeit, und Mischungen aus zwei oder mehreren dieser Flüssigkeiten.
16. Batterie nach einem der Ansprüche 12 bis 15, wobei das Lithiumsalz LiPF6 ist.
17. Verwendung einer Lithium-Ionen-Batterie nach einem der vorstehenden Ansprüche zur Energieversorgung für mobile Informationsvorrichtungen, Werkzeuge, elektrisch betriebene Automobile und für Automobile mit Hyb- ridantrieb.
PCT/EP2012/001535 2011-04-14 2012-04-05 Lithium-ionen-batterie mit hoher spannung WO2012139742A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280018391.9A CN103534836A (zh) 2011-04-14 2012-04-05 具有高电压的锂离子电池
JP2014504203A JP2014514712A (ja) 2011-04-14 2012-04-05 高電圧のリチウムイオンバッテリー
US14/111,373 US20140127536A1 (en) 2011-04-14 2012-04-05 Lithium-ion battery having high voltage
KR1020137029021A KR20140034779A (ko) 2011-04-14 2012-04-05 고전압 리튬 이온 배터리
EP12714968.0A EP2697844A1 (de) 2011-04-14 2012-04-05 Lithium-ionen-batterie mit hoher spannung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011017105A DE102011017105A1 (de) 2011-04-14 2011-04-14 Lithium-Ionen-Batterie mit hoher Spannung
DE102011017105.3 2011-04-14

Publications (1)

Publication Number Publication Date
WO2012139742A1 true WO2012139742A1 (de) 2012-10-18

Family

ID=45976279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/001535 WO2012139742A1 (de) 2011-04-14 2012-04-05 Lithium-ionen-batterie mit hoher spannung

Country Status (7)

Country Link
US (1) US20140127536A1 (de)
EP (1) EP2697844A1 (de)
JP (1) JP2014514712A (de)
KR (1) KR20140034779A (de)
CN (1) CN103534836A (de)
DE (1) DE102011017105A1 (de)
WO (1) WO2012139742A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015188914A1 (de) * 2014-06-12 2015-12-17 Daimler Ag Elektrochemischer energiespeicher und batterie

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014205234A1 (de) * 2014-03-20 2015-09-24 Bayerische Motoren Werke Aktiengesellschaft Separator für eine galvanische Zelle, galvanische Zelle umfassend den Separator, Batterie enthaltend wenigstens zwei galvanische Zellen, mobile Konsumer-Geräte und Kraftfahrzeug mit der Batterie
DE102014106002A1 (de) * 2014-04-29 2015-11-12 Westfälische Wilhelms-Universität Münster Elektrodenmaterial für Natrium-basierte elektrochemische Energiespeicher
US11050284B2 (en) * 2015-05-11 2021-06-29 Eaglepicher Technologies, Llc Electrolyte, a battery including the same, and methods of reducing electrolyte flammability
CN106920910A (zh) * 2015-12-27 2017-07-04 深圳市沃特玛电池有限公司 一种锂电池
JP6369818B2 (ja) * 2016-10-14 2018-08-08 Attaccato合同会社 骨格形成剤を用いた電極
JP6960176B2 (ja) * 2018-03-12 2021-11-05 Attaccato合同会社 骨格形成剤、これを用いた電極及び電極の製造方法
JP2018101639A (ja) * 2018-03-12 2018-06-28 Attaccato合同会社 セパレータ
JP6678358B2 (ja) * 2018-03-12 2020-04-08 Attaccato合同会社 骨格形成剤、これを用いた電極及び電極の製造方法
JP6635616B2 (ja) * 2018-10-10 2020-01-29 Attaccato合同会社 非水電解質二次電池用の正極及びこれを用いた電池
JP2021193693A (ja) * 2019-09-06 2021-12-23 Attaccato合同会社 骨格形成剤、これを用いた電極及び電極の製造方法
CN113131088A (zh) * 2019-12-30 2021-07-16 荣盛盟固利新能源科技有限公司 一种锂离子软包电池
DE102020207597A1 (de) * 2020-06-19 2021-12-23 Robert Bosch Gesellschaft mit beschränkter Haftung Elektroaktive Faser, deren Herstellung und deren Anwendung in Textilien
DE102021211679B3 (de) 2021-10-15 2023-04-20 Volkswagen Aktiengesellschaft Batterierundzelle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004021477A1 (de) 2002-08-27 2004-03-11 Creavis Gesellschaft Für Technologie Und Innovation Mbh Ionenleitender batterieseparator für lithiumbatterien, verfahren zu dessen herstellung und die verwendung desselben
WO2004021499A2 (de) 2002-08-24 2004-03-11 Creavis Gesellschaft Für Technologie Und Innovation Mbh Elektrischer separator, verfahren zu dessen herstellung und verwendung in lithium-hochleistungsbatterien
EP1017476B1 (de) 1998-06-03 2006-10-18 Degussa AG Ionenleitender, stoffdurchlässiger verbundwerkstoff, verfahren zu dessen herstellung und die verwendung des verbundwerkstoffes
EP1852926A1 (de) 2006-05-05 2007-11-07 Carl Freudenberg KG Separator zur Anordnung in Batterien und Batterie
EP2015382A1 (de) * 2007-07-13 2009-01-14 High Power Lithium S.A. Kohlenstoffbeschichtetes Lithium-Mangan-Phosphat-Kathodenmaterial
DE102009034674A1 (de) * 2009-07-24 2011-01-27 Li-Tec Battery Gmbh Lithium-Ionen-Batterie

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226994B (zh) * 2007-12-21 2010-06-30 成都中科来方能源科技有限公司 无纺布增强微孔聚合物隔膜及其制备方法和用途
CN101388454B (zh) * 2008-10-23 2010-09-22 天津斯特兰能源科技有限公司 利用超临界流体制备锂离子电池的碳包覆磷酸盐正极材料的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1017476B1 (de) 1998-06-03 2006-10-18 Degussa AG Ionenleitender, stoffdurchlässiger verbundwerkstoff, verfahren zu dessen herstellung und die verwendung des verbundwerkstoffes
WO2004021499A2 (de) 2002-08-24 2004-03-11 Creavis Gesellschaft Für Technologie Und Innovation Mbh Elektrischer separator, verfahren zu dessen herstellung und verwendung in lithium-hochleistungsbatterien
WO2004021477A1 (de) 2002-08-27 2004-03-11 Creavis Gesellschaft Für Technologie Und Innovation Mbh Ionenleitender batterieseparator für lithiumbatterien, verfahren zu dessen herstellung und die verwendung desselben
EP1852926A1 (de) 2006-05-05 2007-11-07 Carl Freudenberg KG Separator zur Anordnung in Batterien und Batterie
EP2015382A1 (de) * 2007-07-13 2009-01-14 High Power Lithium S.A. Kohlenstoffbeschichtetes Lithium-Mangan-Phosphat-Kathodenmaterial
DE102009034674A1 (de) * 2009-07-24 2011-01-27 Li-Tec Battery Gmbh Lithium-Ionen-Batterie

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI H H ET AL: "Fast synthesis of core-shell LiCoPO4/C nanocomposite via microwave heating and its electrochemical Li intercalation performances", ELECTROCHEMISTRY COMMUNICATIONS, ELSEVIER, AMSTERDAM, NL, vol. 11, no. 1, 1 January 2009 (2009-01-01), pages 95 - 98, XP025839009, ISSN: 1388-2481, [retrieved on 20081101], DOI: 10.1016/J.ELECOM.2008.10.025 *
See also references of EP2697844A1

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015188914A1 (de) * 2014-06-12 2015-12-17 Daimler Ag Elektrochemischer energiespeicher und batterie
US10490819B2 (en) 2014-06-12 2019-11-26 Daimler Ag Electrochemical energy storage system and battery

Also Published As

Publication number Publication date
US20140127536A1 (en) 2014-05-08
KR20140034779A (ko) 2014-03-20
DE102011017105A1 (de) 2012-10-18
JP2014514712A (ja) 2014-06-19
EP2697844A1 (de) 2014-02-19
CN103534836A (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
EP2564461B1 (de) Lithium-schwefel-batterie
WO2012139742A1 (de) Lithium-ionen-batterie mit hoher spannung
WO2013135353A1 (de) Graphen-haltiger separator für lithiumionen-batterien
EP2583335A1 (de) Lithium-ionen-batterie mit amorphen elektrodenmaterialien
WO2014082700A1 (de) Separator für eine lithium-ionen-batterie sowie lithium-ionen-batterie enthaltend den separator
WO2013017217A1 (de) Lithiumionen-batterie
WO2014079542A1 (de) Elektrochemische zelle
DE102011109137A1 (de) Lithiumionen-Batterie
EP2652820A1 (de) Elektrochemische zelle
DE102019115873A1 (de) Schutzbeschichtungen für lithiummetallelektroden
EP2572399A1 (de) Additiv für elektrolyte in wiederaufladbaren lithiumionen-batterien
DE102016216267A1 (de) Chemische Lithiierung von Elektrodenaktivmaterial
EP2514019B1 (de) Lithium-ionen-batterie
WO2013135351A1 (de) Graphen in lithiumionen-batterien
WO2013020661A1 (de) Lithiumionen-batterie und verfahren zur herstellung einer lithiumionen-batterie
DE102013018235A1 (de) Elektrochemische Zelle
EP2705558A1 (de) Elektrode für lithiumionen-batterien
EP2422390A1 (de) Elektrochemische zelle mit lithiumtitanat
WO2015000579A1 (de) Separator für eine lithium-ionen-batterie, sowie lithium-ionen-batterie enthaltend den separator
WO2011009620A1 (de) Lithium-ionen-batterie
DE102014001025A1 (de) Elektrochemische Zelle
DE102016220048A1 (de) Verwendung von graphen in einer lithiumionen-batterie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12714968

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012714968

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012714968

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014504203

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137029021

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14111373

Country of ref document: US