WO2012137937A1 - 排ガス浄化用触媒 - Google Patents

排ガス浄化用触媒 Download PDF

Info

Publication number
WO2012137937A1
WO2012137937A1 PCT/JP2012/059559 JP2012059559W WO2012137937A1 WO 2012137937 A1 WO2012137937 A1 WO 2012137937A1 JP 2012059559 W JP2012059559 W JP 2012059559W WO 2012137937 A1 WO2012137937 A1 WO 2012137937A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
exhaust gas
mass
gas purifying
purification
Prior art date
Application number
PCT/JP2012/059559
Other languages
English (en)
French (fr)
Inventor
信之 高木
優一 祖父江
英恵 池田
雅也 鎌田
諒一 印出
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/110,274 priority Critical patent/US8828900B2/en
Priority to KR1020137027816A priority patent/KR101529416B1/ko
Priority to EP12767402.6A priority patent/EP2695673A4/en
Publication of WO2012137937A1 publication Critical patent/WO2012137937A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/912HC-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0684Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having more than one coating layer, e.g. multi-layered coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0835Hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/52712Plural layers on a support, each layer having a distinct function
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/52712Plural layers on a support, each layer having a distinct function
    • Y10S502/52713More than two overlapping layers

Definitions

  • the present invention relates to an exhaust gas purifying catalyst. More specifically, the present invention relates to an exhaust gas purifying catalyst suitable for a diesel engine.
  • This international application claims priority based on Japanese Patent Application No. 2011-86552 filed on April 8, 2011, the entire contents of which are incorporated herein by reference. ing.
  • Exhaust gas discharged from the engine includes hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx), particulate matter (particulate matter, PM), and the like.
  • an exhaust gas purifying catalyst is disposed in an automobile, for example, directly under an engine exhaust manifold.
  • the exhaust gas temperature is still low, such as when the engine is started, the exhaust gas purification catalyst is not sufficiently warmed up, so the purification performance of the catalyst is lowered.
  • low temperature exhaust gas contains a lot of HC and CO which are unburned substances of fuel. For this reason, when the exhaust gas temperature is low, there is a problem that the purification of HC and CO by the exhaust gas purification catalyst is insufficient.
  • HC and CO are oxidized and converted to H 2 O and CO 2 and discharged. Therefore, in the exhaust gas purifying catalyst, it is required to improve the low-temperature activity particularly with respect to the purifying performance by oxidation.
  • Patent Document 1 includes a first portion coated with a hydrocarbon trap for adsorbing or desorbing hydrocarbons, and a second portion coated with an oxidation catalyst for oxidizing hydrocarbons and carbon monoxide.
  • a diesel oxidation catalyst characterized in that it oxidizes with HC desorbed in the first portion and desorbs sulfur adsorbed on the oxidation catalyst using oxidation heat generated in the oxidation reaction. Yes.
  • Patent Documents 2 to 7 and the like are disclosed as exhaust gas purifying catalysts containing components that adsorb HC components.
  • the present invention has been made in view of the circumstances of such an exhaust gas purification catalyst. By suppressing the HC poisoning and the sulfur poisoning of the exhaust gas purification catalyst, carbon monoxide ( An object of the present invention is to provide an exhaust gas purifying catalyst having excellent CO) purification performance.
  • the exhaust gas-purifying catalyst disclosed herein includes a base material, a lower layer disposed on the base material, and an upper layer disposed on the lower layer.
  • the upper layer includes a first catalyst and a second catalyst.
  • the lower layer includes a first catalyst.
  • the first catalyst has Al 2 O 3 as a support, and Pt and Pd as noble metals supported on the Al 2 O 3 .
  • the second catalyst has at least one of Al 2 O 3 —ZrO 2 composite oxide and Al 2 O 3 —ZrO 2 —TiO 2 composite oxide as a carrier, and the Al 2 O 3 —ZrO 2 composite oxide.
  • the upper layer includes a hydrocarbon adsorbent.
  • the upper layer which is the layer in which the exhaust gas first contacts, includes a hydrocarbon adsorbent.
  • HC in the exhaust gas is effectively adsorbed by the hydrocarbon adsorbent in the upper layer. Therefore, the amount of HC that subsequently reaches the lower layer in contact with the exhaust gas is greatly reduced, and HC poisoning of the catalyst in the lower layer is suppressed.
  • the upper layer and the lower layer have the first catalyst, that is, Al 2 O 3 as a support, and Pt and Pd as noble metals supported on the Al 2 O 3. .
  • the exhaust gas purification catalyst having such a configuration is excellent in CO purification performance under high temperature conditions.
  • the upper layer is the second catalyst, that is, Al 2 O 3 —ZrO 2 composite oxide (hereinafter also referred to as “AZ composite oxide”) and Al 2 O 3 as the carrier.
  • AZ composite oxide Al 2 O 3 —ZrO 2 composite oxide
  • AZT composite oxide Al 2 O 3 —ZrO 2 composite oxide
  • It has Pd as a noble metal.
  • the second catalyst particularly exhibits high CO purification performance in a low temperature region (for example, less than 180 ° C.), and relatively high sulfur poisoning resistance in a low temperature region. For this reason, the exhaust gas purifying catalyst having such a configuration exhibits high CO purification performance even under a low temperature condition even when a sulfur component is present in the exhaust gas at a relatively high concentration.
  • the second catalyst in the second catalyst, at least one of the Al 2 O 3 —ZrO 2 composite oxide and the Al 2 O 3 —ZrO 2 —TiO 2 composite oxide is used.
  • the Pd loading is 2.5% by mass or less.
  • the loading ratio of the Pd in the second catalyst is 2.5% by mass or less (for example, 0.05% by mass to 2.5% by mass, preferably 0.5% by mass to 1.5% by mass, more preferably If it is 0.8 mass% or more and 1.3 mass% or less), the low-temperature activity for the CO purification performance of the second catalyst is improved. For this reason, the exhaust gas purifying catalyst having such a configuration is more excellent in CO purification performance under low temperature conditions (for example, less than 180 ° C.).
  • the content of the first catalyst is 30% by mass when the total of the first catalyst and the second catalyst is 100% by mass in the upper layer. % Or more and 99% by mass or less.
  • the sulfur poisoning resistance and the high CO purification performance are stably increased in any temperature range of a high temperature condition (for example, 180 ° C. or higher) and a low temperature condition (for example, less than 180 ° C.). Indicates.
  • the lower layer further includes the second catalyst.
  • the heat resistance characteristics of the catalyst itself are improved, and high CO purification performance is exhibited even after thermal endurance.
  • the sulfur poisoning resistance is further improved.
  • the content of the first catalyst is 30% by mass. % Or more and 99% by mass or less. According to the exhaust gas purifying catalyst having such a configuration, it stably exhibits high sulfur poisoning resistance and high CO purification performance in any temperature range under high temperature conditions and low temperature conditions.
  • the lower layer further includes a hydrocarbon adsorbent.
  • HC reaching the lower layer without being adsorbed in the upper layer can be captured by the hydrocarbon adsorbent in the lower layer, thereby further suppressing HC poisoning of the catalyst in the lower layer. Can do.
  • the noble metal supported on the second catalyst has an average particle size of 5 nm or less.
  • the CO purification performance under low temperature conditions is improved.
  • zeolite particles are provided as the hydrocarbon adsorbent. Since zeolite particles have a high selectivity for adsorbing substances, according to the exhaust gas purifying catalyst having such a structure, various HC components (for example, lower olefins having 6 or less carbon atoms, carbon atoms having 7 or more carbon atoms) can be efficiently used. Higher hydrocarbons) can be adsorbed.
  • exhaust gas purifying catalyst used for purifying exhaust gas of a diesel engine.
  • Exhaust gas discharged from a diesel engine tends to have a lower temperature than exhaust gas discharged from a gasoline engine.
  • diesel oil used in diesel engines has 15 or more carbon atoms (typically around 15 to 17), which is a higher carbon than gasoline used in gasoline engines (about 4 to 10 carbon atoms). Hydrogen.
  • the influence (HC poisoning) caused by the unburned light oil component adhering to the catalyst tends to be larger than the influence caused by the unburned gasoline component.
  • fuel containing sulfur at a relatively high concentration is often used at the same time.
  • the exhaust gas purification catalyst disclosed herein is excellent in low-temperature activity in CO purification, and further can suppress HC poisoning and sulfur poisoning of the catalyst, so it is used for exhaust gas purification for purifying exhaust gas from diesel engines. Particularly suitable as a catalyst.
  • FIG. 1 is a schematic view of an exhaust gas purifying apparatus according to an embodiment.
  • FIG. 2 is a diagram schematically illustrating the configuration of the control unit in the exhaust gas purifying apparatus according to the embodiment.
  • FIG. 3 is an overall view of an exhaust gas purifying catalyst according to an embodiment.
  • FIG. 4 is an enlarged view showing a structure of a rib wall portion in the exhaust gas purifying catalyst of FIG.
  • FIG. 5 is a diagram schematically illustrating the configuration of the upper layer portion in FIG.
  • FIG. 6 is a diagram schematically illustrating the configuration of the lower layer portion in FIG. FIG.
  • FIG. 7 is a graph showing the relationship between the Pd ratio and the low temperature activity for CO purification before and after sulfur poisoning treatment in the exhaust gas purification catalyst according to the reference example (vertical axis: CO 5% purification temperature (° C.), horizontal axis. : Pd ratio (mass ratio)).
  • FIG. 8 is a graph showing the relationship between the Pd ratio and the high temperature activity for CO purification before and after sulfur poisoning treatment in the exhaust gas purification catalyst according to the reference example (vertical axis: CO 80% purification temperature (° C.), horizontal axis. : Pd ratio (mass ratio)).
  • FIG. 8 is a graph showing the relationship between the Pd ratio and the high temperature activity for CO purification before and after sulfur poisoning treatment in the exhaust gas purification catalyst according to the reference example (vertical axis: CO 80% purification temperature (° C.), horizontal axis. : Pd ratio (mass ratio)).
  • FIG. 9 is a graph showing the relationship between the precious metal loading rate and the low temperature activity for CO purification in the exhaust gas purifying catalyst according to the reference example (vertical axis: CO 5% purification temperature (° C.), horizontal axis: precious metal loading rate ( mass%)).
  • FIG. 10 is a graph showing the relationship between the Pd loading rate and the average particle diameter of Pd particles in the exhaust gas purifying catalyst according to the reference example. (Vertical axis: Pd particle diameter (nm), horizontal axis: Pd loading (mass%)).
  • FIG. 10 is a graph showing the relationship between the Pd loading rate and the average particle diameter of Pd particles in the exhaust gas purifying catalyst according to the reference example. (Vertical axis: Pd particle diameter (nm), horizontal axis: Pd loading (mass%)).
  • FIG. 11 is a diagram showing the relationship between the mixing ratio of the first catalyst and the second catalyst and the CO purification performance in the exhaust gas purification catalyst according to the reference example (vertical axis: CO 5% purification temperature (° C.) (left). ), CO 80 purification temperature (° C.) (right), horizontal axis: PtPd / alumina content (mass ratio)).
  • FIG. 12 is a diagram showing an outline of a NEDC (New European Driving Cycle) mode used for evaluating the exhaust gas purification performance of the exhaust gas purification catalyst according to the example (vertical axis: rotational speed (rpm) (left), Temperature (° C) (right), horizontal axis: time (seconds).
  • FIG. 12 is a diagram showing the relationship between the mixing ratio of the first catalyst and the second catalyst and the CO purification performance in the exhaust gas purification catalyst according to the reference example (vertical axis: CO 5% purification temperature (° C.) (left). ), CO 80 purification temperature (° C.)
  • FIG. 13 is a diagram showing evaluation results in the exhaust gas purifying catalysts according to a plurality of examples and comparative examples.
  • the vertical axis shows the improvement rate of CO purification based on the CO purification rate after heat endurance according to Comparative Example 1 (vertical axis: improvement rate of CO purification (%)).
  • Embodiments of an exhaust gas purifying catalyst and an exhaust gas purifying apparatus including the exhaust gas purifying catalyst disclosed herein will be described with reference to the drawings.
  • a diesel engine is provided as an internal combustion engine
  • the scope of the present invention is not intended to be limited to such a diesel engine.
  • the present invention can be applied to, for example, a gasoline engine.
  • the exhaust gas purification apparatus 100 roughly includes an engine unit 1 mainly composed of a diesel engine (the engine unit 1 includes an accelerator for driving the engine, and the like). And an exhaust gas purification unit 40 provided in an exhaust system communicating with the engine unit 1, and an ECU (electronic control unit) 30 that controls the exhaust gas purification unit 40 and the engine unit 1. It is comprised by.
  • the engine unit 1 typically includes a plurality of combustion chambers 2 and a fuel injection valve 3 that injects fuel into each combustion chamber 2.
  • Each combustion chamber 2 communicates with an intake manifold 4 and an exhaust manifold 5.
  • the intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 via the intake duct 6.
  • An inlet of the compressor 7 a is connected to an air cleaner 9 via an intake air amount detector 8.
  • a throttle valve 10 is disposed in the intake duct 6.
  • a cooling device 11 for cooling the air flowing in the intake duct 6 is arranged.
  • the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7.
  • the outlet of the exhaust turbine 7 b is connected to the exhaust pipe 12.
  • the exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 18.
  • EGR exhaust gas recirculation
  • An electronically controlled control valve 19 is disposed in the EGR passage 18.
  • a cooling device 20 for cooling the EGR gas flowing in the EGR passage 18 is disposed around the EGR passage 18.
  • Each fuel injection valve 3 is connected to a common rail 22 via a fuel supply pipe 21.
  • the common rail 22 is connected to the fuel tank 24 via the fuel pump 23.
  • the fuel pump 23 is an electronically controlled fuel pump with variable discharge amount.
  • the configuration of the fuel pump 23 is not particularly limited.
  • the exhaust gas purification unit 40 includes an exhaust gas purification catalyst 50 for oxidizing CO and HC in exhaust gas, and a particulate filter 80 for collecting particulate matter (PM) in the exhaust gas.
  • the ECU 30 is a unit that performs control between the engine unit 1 and the exhaust gas purification unit 40, and includes a digital computer.
  • the ECU 30 has a ROM (read-on memory), a RAM (random access memory), a CPU (microprocessor), an input port, and an output port that are connected to each other via a bidirectional bus.
  • a load sensor that generates an output voltage proportional to the amount of depression of the accelerator pedal is connected to an accelerator pedal (not shown).
  • the output voltage of the load sensor is input to the input port via the corresponding AD converter.
  • a crank angle sensor that generates an output pulse every time the crankshaft rotates by a predetermined angle (for example, 15 °) is connected to the input port.
  • Output signals from the temperature sensor and the differential pressure sensor in the exhaust gas purification unit 40 are input to the input port via corresponding AD converters.
  • the output port is connected to the fuel injection valve 3, the step motor for driving the throttle valve 10, the control valve 19, the fuel pump 23, and the fuel supply valve 15 through corresponding drive circuits.
  • the fuel injection valve 3, the fuel supply valve 15, and the like are controlled by the ECU 30.
  • the above-described control system itself does not characterize the present invention, and may be conventionally employed in this type of internal combustion engine (automobile engine), and further detailed description thereof is omitted.
  • the exhaust gas purification catalyst 50 provided in the exhaust gas purification unit 40 characterizing the present invention will be described.
  • the base material constituting the exhaust gas purifying catalyst disclosed herein various materials and forms conventionally used for this kind of application can be used.
  • a honeycomb substrate having a honeycomb structure formed of ceramics such as silicon carbide (SiC) or an alloy (stainless steel, etc.) can be suitably employed.
  • a honeycomb base material having a cylindrical outer shape is provided with through holes (cells) as exhaust gas passages in the cylinder axis direction so that exhaust gas can contact partition walls (rib walls) that partition each cell.
  • the shape of the substrate may be a foam shape, a pellet shape, etc.
  • FIG. 3 is a schematic view of an exhaust gas purifying catalyst according to an embodiment. That is, the exhaust gas-purifying catalyst 50 of the present embodiment includes a honeycomb substrate 52, a plurality of regularly arranged cells 56, and rib walls (hereinafter, also referred to as “substrate”) constituting the cells 56. 54.
  • a honeycomb substrate 52 a plurality of regularly arranged cells 56, and rib walls (hereinafter, also referred to as “substrate”) constituting the cells 56. 54.
  • FIG. 4 is an enlarged view illustrating the structure of the surface portion of the rib wall (base material) 54 in the exhaust gas purifying catalyst 50 in the present embodiment of FIG. That is, the exhaust gas purifying catalyst 50 according to the present embodiment has a base material 54, a lower layer 57 disposed on the base material 54, and an upper layer 58 disposed on the lower layer 57.
  • the lower layer 57 has a lower layer carrier 60 and Pt particles 64 and Pd particles 66 as noble metals.
  • the upper layer 58 includes an upper layer carrier 62, Pt particles 64 and Pd particles 66 as noble metals, and a hydrocarbon adsorbent 68.
  • FIG. 5 is a schematic diagram illustrating the configuration of the upper layer 58 in the present embodiment of FIG. 4 in an enlarged manner.
  • the upper layer 58 includes a first catalyst 70, a second catalyst 72, and a hydrocarbon adsorbent 68.
  • the first catalyst 70 includes alumina (Al 2 O 3 ) 74 as a carrier, and Pt particles 64 and Pd particles 66 supported on the carrier 74.
  • the second catalyst 72 includes at least one of an AZ composite oxide and an AZT composite oxide (typically, an AZT composite oxide 76) as a support, and Pd particles 66 supported on the support 76.
  • FIG. 6 is a schematic diagram illustrating the configuration of the lower layer 57 in the present embodiment of FIG. 4 in an enlarged manner.
  • the lower layer 57 includes at least a first catalyst 70, and preferably further includes a second catalyst 72.
  • the carrier and the noble metal constituting the first catalyst 70 and the second catalyst 72 are the same as in the case of the upper layer 58. That is, the first catalyst 70 includes alumina (Al 2 O 3 ) 74 as a carrier, and Pt particles 64 and Pd particles 66 supported on the carrier 74.
  • the second catalyst 72 includes at least one of an AZ composite oxide and an AZT composite oxide (typically, an AZT composite oxide 76) as a support, and Pd particles 66 supported on the support 76.
  • the Al 2 O 3 74, the AZ composite oxide, or the AZT composite oxide 76 is preferably used as the carrier in the first catalyst 70 and the second catalyst 72 constituting the exhaust gas purification catalyst 50 disclosed here.
  • the production method of the AZ composite oxide and the AZT composite oxide 76 is not particularly limited, and is produced by, for example, a coprecipitation method, a sol-gel method, a hydrothermal synthesis method, or the like.
  • a method for preparing the AZT composite oxide 76 by a typical coprecipitation method is as follows.
  • a surfactant is mixed with a mixed aqueous solution composed of water-soluble salts of aluminum, zirconium, and titanium (for example, nitrate) as necessary, and then ammonia water, which is an alkaline substance, is added to gradually increase the pH.
  • ammonia water which is an alkaline substance
  • the exhaust gas-purifying catalyst 50 disclosed here includes Pt particles 64 and Pd particles 66 as noble metals.
  • the exhaust gas purifying catalyst 50 includes rhodium (Rh), ruthenium (Ru), osmium (Os), iridium (Ir), silver (Ag), and the like as noble metals. May be provided. These noble metals may be alloyed.
  • Such noble metals typically Pt particles 64, and Pd particles 66, particularly Pd particles 66 supported on AZ composite oxide or AZT composite oxide 76), increase the contact area with the exhaust gas, and support and From the viewpoint of the interaction, it is preferable to have a sufficiently small particle size.
  • the average particle diameter of the noble metals is preferably about 1 to 15 nm, but is more preferably 5 nm or less from the viewpoint of improving the low temperature activity with respect to the CO purification performance of the exhaust gas purification catalyst 50. More preferably, it is 4 nm or less and 3 nm or less.
  • the first catalyst 70 constituting the exhaust gas purifying catalyst 50 disclosed herein includes Pt particles 64 and Pd particles 66 as noble metals.
  • the content ratio of the Pd particles 66 is 0.2 to 0.8 (preferably 0.25 to 0.6, more preferably 0.00). 3 or more and 0.5 or less).
  • the content ratio of the Pd particles 66 in the precious metal in the first catalyst 70 is too small or too large than the above range, the CO purification performance of the exhaust gas purification catalyst may be deteriorated.
  • the second catalyst 72 constituting the exhaust gas purifying catalyst 50 disclosed herein includes Pd particles 66 as a noble metal.
  • the carrier typically, AZT composite oxide 76
  • the loading ratio of the Pd particles 66 is 2.5% by mass or less (eg, 0.05% by mass or more 2 0.5% by mass or less, preferably 0.5% by mass or more and 1.5% by mass or less, and more preferably 0.8% by mass or more and 1.3% by mass or less. If the loading ratio of the Pd particles 66 in the second catalyst 72 is too small from the above range, it is difficult to obtain the catalytic effect of the noble metal. In addition, if the loading ratio of the Pd particles 66 in the second catalyst 72 is too larger than the above range, there is a possibility that the noble metal grain growth proceeds, which is also disadvantageous in terms of cost.
  • the first catalyst 70 when the total of the first catalyst 70 and the second catalyst 72 is 100 mass%, the first catalyst 70. Is 30% by mass or more and 99% by mass or less (preferably 35% by mass or more and 70% by mass or less, more preferably 40% by mass or more and 60% by mass or less, and further preferably 45% by mass or more and 55% by mass or less). It is desirable.
  • the content rate of the said 1st catalyst 70 is too smaller than the said range, there exists a tendency for CO purification performance in high temperature conditions (for example, 180 degreeC or more) to fall.
  • the said content rate is too larger than the said range, there exists a possibility that the fall of CO purification performance in low temperature conditions may arise.
  • the upper layer 58 constituting the exhaust gas purifying catalyst 50 disclosed here includes a hydrocarbon adsorbent 68.
  • the hydrocarbon adsorbing material 68 referred to in the present specification means a material having a porous structure and adsorbing hydrocarbons in the porous structure.
  • the hydrocarbon adsorbent 68 include zeolites such as zeolite A, ferrilite zeolite, ZSM-5 zeolite, mordenite zeolite, ⁇ zeolite, X zeolite, and Y zeolite, and combinations thereof. Zeolite selected from the group consisting of: Moreover, a particulate thing can be used suitably.
  • the exhaust gas-purifying catalyst 50 disclosed herein is formed in a laminated structure having upper and lower layers.
  • the lower layer 57 is formed by wash-coating a slurry containing at least the first catalyst 70 on the surface of the base material 54, and at least the first catalyst 70 and the second catalyst 72 are formed on the surface of the lower layer 57.
  • the upper layer 58 is formed by wash-coating a slurry containing the hydrocarbon adsorbent 68.
  • alumina sol, silica sol or the like can be used as the binder.
  • the viscosity of the slurry should be such that the slurry can easily flow into the cells 56 of the honeycomb substrate 52.
  • the firing conditions of the slurry coated on the surface of the base material 54 or the lower layer 57 depend on the shape and dimensions of the base material 54 or the carrier, but are typically about 400 to 1000 ° C. (eg, 500 to 600 ° C.). About 1 to 4 hours.
  • the upper layer 58 constituting the exhaust gas-purifying catalyst 50 disclosed herein can have any thickness, but is preferably 30 ⁇ m or more and 100 ⁇ m or less, more preferably 40 ⁇ m or more, and 70 ⁇ m or less, or 60 ⁇ m.
  • Thiickness means average thickness.
  • the average layer thickness refers to the layer thickness of the corner portion and the side portion of an arbitrary four cells on each end surface side when the substrate is cut at a position of 35 mm from the inflow side end surface and the outflow side end surface. Can be obtained by measuring (average of 16 locations) and calculating the average value of the measured values.
  • the layer thickness in this specification is defined to be obtained by the above measurement method.
  • the thickness of the upper layer 58 When the thickness of the upper layer 58 is too thin than the above range, when the exhaust gas is at a low temperature, such as when the engine is started, and when the HC component is contained in the exhaust gas in a relatively large amount, the HC passes through the upper layer 58. It may reach the lower layer 57 and adhere to the catalyst in the lower layer 57 to reduce the catalytic activity. If the thickness of the upper layer 58 is too thick than the above range, exhaust gas components such as carbon monoxide to be purified may not reach the lower layer 57 sufficiently depending on diffusion.
  • the total thickness of the upper layer 58 and the lower layer 57 can be arbitrarily set, but is preferably 100 ⁇ m or more and 250 ⁇ m or less, more preferably 150 ⁇ m or more and 250 ⁇ m or less ( Similarly to the above, the average thickness may be used. If the total thickness of the upper layer 58 and the lower layer 57 is too thin than the above range, the absolute amount of the noble metal in the exhaust gas purification catalyst 50 may be insufficient, and sufficient exhaust gas purification may not be achieved. Moreover, when the said thickness is thicker than the said range, there exists a possibility that waste gas may not spread over the whole exhaust gas purification catalyst 50, and the noble metal carry
  • the laminated structure includes the catalyst layer as described above as the upper layer 58 and the catalyst layer as described above as the lower layer 57, and other layers (for example, close to the base material 54) in addition to the two layers. Three or more layers having another layer) may be used.
  • Al 2 O 3 —ZrO 2 —TiO 2 Composite Oxide Powder An Al 2 O 3 —ZrO 2 —TiO 2 (AZT) composite oxide was produced by the following process. That is, aluminum nitrate was dissolved in pure water to prepare an aqueous aluminum nitrate solution (aqueous solution 1). Next, zirconium oxynitrate and titanium tetrachloride were dissolved in pure water to prepare a mixed solution (aqueous solution 2). An aqueous ammonia solution containing 1.2 times the amount of ammonia necessary to neutralize the two solutions, aqueous solution 1 and aqueous solution 2, was prepared (aqueous solution 3).
  • the aqueous solution 1 was added to the aqueous solution 3 with stirring, and then the aqueous solution 2 was added thereto, followed by stirring for 1 hour or longer to obtain a precipitate.
  • the precipitate was dried by heating at 150 ° C. for 12 hours and then calcined at 600 ° C. for 5 hours to obtain an AZT composite oxide powder.
  • Al 2 O 3 powder was produced by the same production process except that aluminum nitrate was used in place of the raw materials zirconium oxynitrate and titanium tetrachloride in the production process related to the AZT composite oxide.
  • the supported amount of the supported Pt particles and / or Pd particles was adjusted to be as shown in Table 1 when the support was 100% by mass.
  • the obtained noble metal particle-supported powder was formed into a pellet shape by a press machine and used as an exhaust gas purifying catalyst according to Reference Examples 1 to 3.
  • the heat durability treatment for the exhaust gas purifying catalyst according to the reference example> A total of six types of exhaust gas purifying catalysts according to Reference Examples 1 to 6 were subjected to heat durability treatment. Specifically, the exhaust gas purifying catalysts according to Reference Examples 1 to 6 were heated in air at 750 ° C. for 5 hours. ⁇ Sulfur poisoning treatment for exhaust gas purifying catalyst according to reference example> The exhaust gas purifying catalysts according to Reference Examples 1 to 6 after the heat endurance treatment were subjected to sulfur poisoning treatment by contacting with a gas containing sulfur.
  • the exhaust gas purifying catalysts according to Reference Examples 1 to 6 after the heat endurance treatment were installed in the evaluation apparatus, and the gases having the gas compositions shown in Table 2 were flowed in at an input gas temperature of 400 ° C. .
  • the gas flow rate was 15 L / min.
  • the sulfur poisoning treatment was performed until the amount of sulfur passing through the evaluation apparatus was 5 g per liter of the catalyst.
  • the exhaust gas purifying catalyst according to Reference Example 2 after sulfur poisoning treatment is more effective for CO purification than the exhaust gas purifying catalyst according to Reference Example 2 before sulfur poisoning treatment (that is, after heat endurance). Low temperature activity decreased.
  • the exhaust gas purifying catalyst according to Reference Example 2 after the sulfur poisoning treatment still has a high low-temperature activity as compared with the exhaust gas purifying catalyst using Al 2 O 3 as a carrier (Reference Examples 4 to 6). I understand. That is, it was confirmed that the exhaust gas purifying catalyst (that is, the second catalyst) in which Pd particles are supported on the AZT composite oxide support has a low temperature activity for high CO purification. Further, it was confirmed that the catalyst has a relatively high resistance to sulfur under low temperature conditions.
  • the total four kinds of exhaust gas purification catalysts (Reference Examples 2, 4, 7, and 8) were subjected to the heat durability treatment, and then the activity evaluation was performed. The results are shown in FIG. As is clear from FIG. 9, in the exhaust gas purification catalyst using the AZT composite oxide as the carrier, it was confirmed that the CO purification performance in the low temperature range tends to decrease as the supported amount of Pd particles increases. It was. Compared with the evaluation results of the exhaust gas purifying catalyst according to Reference Example 4 using Al 2 O 3 as the support, the amount of Pd particles supported when Pd particles are supported on the AZT composite oxide support (second catalyst) is approximately It became clear that when it is 2.5 mass% or less, good CO purification performance is exhibited.
  • the average particle size of Pd particles was measured by a CO pulse adsorption method.
  • the results are shown in FIG.
  • FIG. 10 in the exhaust gas purification catalyst using the AZT composite oxide as the carrier, it is confirmed that the average particle size of the Pd particles tends to increase as the amount of the Pd particles supported increases. It was done. From FIG. 10, it can be read that when the amount of Pd particles supported is approximately 2.5 mass% or less, the average particle diameter of the Pd particles is approximately 5 nm or less. Therefore, it can be seen that when the average particle size of the Pd particles supported on the AZT composite oxide is 5 nm or less, good CO purification performance is exhibited.
  • the supported amounts of Pt particles and / or Pd particles according to Reference Examples 9 and 10 are as shown in Table 1 above.
  • the total three types of exhaust gas purification catalysts (Reference Examples 2, 4, and 10) were subjected to the heat durability treatment, and then the activity evaluation was performed. The results are shown in FIG. As is clear from FIG. 11, in the exhaust gas purifying catalyst obtained by mixing the first catalyst and the second catalyst, the low temperature activity for CO purification and the CO purification against the change in the content of the first catalyst. High temperature activity tends to conflict. Focusing on the CO 80% purification temperature (ie, high temperature activity), the high temperature activity for CO purification remains high (ie, the CO 80% purification temperature is low) when the content of the first catalyst is 50% by mass or more. It is confirmed that Therefore, if the content of the first catalyst is approximately 30% by mass or more and 99% by mass or less, it is expected that the CO purification performance of the catalyst by mixing the first catalyst and the second catalyst is improved.
  • an exhaust gas purifying catalyst according to an embodiment of the present invention was manufactured and its performance was evaluated.
  • Example 1 a noble metal particle-supported powder according to the first catalyst for the lower layer was prepared. That is, for 50 g of Al 2 O 3 powder ( ⁇ -Al 2 O 3 ) as a carrier, an appropriate amount of dinitrodiammine platinum nitrate solution having a Pt content of 1.33 g and an appropriate amount having a Pd content of 0.67 g An aqueous solution of palladium nitrate and an appropriate amount of pure water were mixed. The obtained mixture was stirred for 2 hours, dried at 130 ° C., and then calcined at 500 ° C. for 1 hour to prepare a noble metal particle-supported powder according to the first catalyst for the lower layer.
  • a noble metal particle-supported powder according to the first catalyst for the upper layer was prepared. That is, for 12.5 g of Al 2 O 3 powder ( ⁇ -Al 2 O 3 ) as a carrier, an appropriate amount of dinitrodiammine platinum nitrate solution having a Pt content of 0.58 g and a Pd content of 0.29 g An appropriate amount of palladium nitrate aqueous solution and an appropriate amount of pure water were mixed. The obtained mixture was stirred for 2 hours, dried at 130 ° C., and then calcined at 500 ° C. for 1 hour to prepare a noble metal particle-supported powder according to the first catalyst for the upper layer. Next, a noble metal particle-supported powder according to the second catalyst for the upper layer was prepared in the same manner.
  • AZT composite oxide powder as a carrier is mixed with an appropriate amount of palladium nitrate aqueous solution having a Pd content of 0.13 g and an appropriate amount of pure water, and dried and fired under the same conditions as described above.
  • a noble metal particle-supported powder according to the second catalyst for the upper layer was prepared.
  • an upper layer slurry was prepared using the noble metal particle-supported powder according to the first catalyst and the second catalyst for the upper layer.
  • an upper layer slurry was prepared by mixing an aluminum nitrate aqueous solution with an amount of 17.5 g and an appropriate amount of pure water.
  • the upper layer slurry was wash-coated on the surface of the base material on which the lower layer was formed. After coating, it was dried by ventilation and then baked at 500 ° C. for 1 hour to form an upper layer of an exhaust gas purifying catalyst.
  • the exhaust gas purifying catalyst manufactured by the above series of processes is used as the exhaust gas purifying catalyst according to the first embodiment.
  • Example 2 and 3 and Comparative Examples 1 and 2 Following the manufacturing process of the exhaust gas purifying catalyst according to Example 1, the exhaust gas purifying catalysts according to Examples 2 and 3 and Comparative Examples 1 and 2 were manufactured.
  • the component composition ratio (g / base material-L) of the exhaust gas purifying catalyst and the layer thickness of each layer are as shown in Table 4. At this time, the amount of noble metal supported in each exhaust gas purifying catalyst was set to 3 g / L.
  • Table 5 shows the material composition ratio (% by mass) contained in the whole exhaust gas purifying catalysts according to Examples 1 to 3 and Comparative Examples 1 and 2.
  • exhaust gas purification performance was evaluated using exhaust gas from a 2.2 liter diesel engine.
  • a NEDC (New European Driving Cycle) mode (see FIG. 12) was reproduced using the diesel engine.
  • a regeneration treatment by burning particulate matter (PM) was performed by setting the catalyst bed temperature to 600 ° C. for 5 minutes.
  • the catalyst for exhaust gas purification excellent in the purification performance of carbon monoxide (CO) also under low temperature conditions can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 本発明に係る排ガス浄化用触媒は、基材54と、該基材54上に配置された下層57と、該下層57上に配置された上層58を有する。上記上層58は、第1触媒、及び第2触媒を備え、上記下層57は、第1触媒を備える。上記第1触媒は、担体としてAlを有し、該Al上に担持された貴金属としてPt及びPdを有し、上記第2触媒は、担体として典型的にはAl-ZrO-TiO複合酸化物を有し、該Al-ZrO-TiO複合酸化物上に担持された貴金属としてPdを有する。また、上記上層58は炭化水素吸着材68を有する。

Description

排ガス浄化用触媒
 本発明は、排ガス浄化用触媒に関する。詳しくは、ディーゼルエンジン用に適した排ガス浄化用触媒に関する。
 なお、本国際出願は2011年4月8日に出願された日本国特許出願第2011-86552号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
 エンジンから排出される排ガスには炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)、粒子状物質(パティキュレートマター、PM)などが含まれる。これらの排ガス成分を浄化するため、自動車には排ガス浄化用触媒が、例えばエンジン排気マニホルドの直下に配設されている。
 一般に、エンジン始動時など排ガス温度が未だ低い場合、排ガス浄化用触媒は十分に暖機されていないため触媒の浄化性能は低下する。さらに、低温の排ガス中には燃料の未燃物質であるHCやCOが多く含まれる。このため、排ガス温度が低温である場合において、排ガス浄化用触媒によるHCやCOの浄化が不十分であることが問題であった。HCやCOは、酸化されることにより、HOやCOに変換されて排出される。よって排ガス浄化用触媒において、特に酸化による浄化性能について低温活性を向上させることが求められている。
 HCやCOの浄化性能を向上させるため種々の試みがなされている。その1つに、HC成分を吸着する材料としてゼオライトを含有した排ガス浄化用触媒が知られている。
 特許文献1には炭化水素を吸着または脱着させる炭化水素トラップがコーティングされた第1部分、そして炭化水素及び一酸化炭素を酸化させる酸化触媒がコーティングされた第2部分、を含み、前記第2部分は、前記第1部分で脱着されたHCと酸化反応し、前記酸化反応で発生する酸化熱を利用して前記酸化触媒に吸着した硫黄を脱着させることを特徴とするディーゼル酸化触媒が開示されている。これは吸着及び脱着されたHC成分を利用することにより酸化熱を発生させ、触媒床温度を上昇させることにより触媒活性の向上を図ったものである。
 他にもHC成分を吸着する成分を含有した排ガス浄化用触媒として、特許文献2~7などが開示されている。
日本国特許出願公開第2010-120008号公報 日本国特許出願公開第平11-138006号公報 日本国特許出願公開第2003-290629号公報 日本国特許出願公開第平9-10594号公報 日本国特許出願公開第2003-236339号公報 日本国特許出願公開第2010-29814号公報 日本国特許出願公開第平8-224449号公報
 しかしながら、従来の排ガス浄化用触媒では低温条件下における内燃機関からの排ガス、特にディーゼルエンジンからの排ガスに対するCOの浄化性能は未だ不十分であり、改善の余地がある。
 本発明者らは、CO浄化の阻害要因となる触媒の汚染に着目した。即ち、HCとCOが併存する場合、HCが触媒表面を被覆することにより、触媒の活性が低下する現象(以下、「HC被毒」ともいう。)が生じる場合がある。また、燃料中に硫黄酸化物に代表される硫黄成分が含まれる場合、排ガス中の該硫黄成分が触媒表面を被覆し、触媒の活性を低下させる現象(以下、「硫黄被毒」ともいう。)が生じる場合がある。
 本発明は、かかる排ガス浄化用触媒の事情に鑑みてなされたものであり、排ガス浄化用触媒について上記HC被毒、及び上記硫黄被毒を抑制することにより、低温条件下においても一酸化炭素(CO)の浄化性能に優れた排ガス浄化用触媒を提供することを目的とする。
 本発明者らは、様々な角度から検討を加え、上記目的を実現することのできる本発明を創出するに至った。
 即ち、ここに開示される排ガス浄化用触媒は基材と、該基材上に配置された下層と、該下層上に配置された上層と、を備える。
 上記上層は、第1触媒、及び第2触媒を備える。上記下層は、第1触媒を備える。
 上記第1触媒は、担体としてAlを有し、該Al上に担持された貴金属としてPt及びPdを有する。上記第2触媒は、担体としてAl-ZrO複合酸化物とAl-ZrO-TiO複合酸化物の少なくともいずれかを有し、該Al-ZrO複合酸化物と該Al-ZrO-TiO複合酸化物の少なくともいずれかの上に担持された貴金属としてPdを有する。また、上記上層は炭化水素吸着材を備えていることを特徴とする。
 かかる構成の排ガス浄化用触媒では、排ガスが最初に接触する層である上記上層は炭化水素吸着材を備える。このような排ガス浄化用触媒では、排ガス中のHCが効果的に上層中の炭化水素吸着材に吸着される。よって、続いて排ガスが接触する下層にまで到達するHC量は大幅に減少しており、下層における触媒のHC被毒が抑制される。
 また、かかる構成の排ガス浄化用触媒では、上記上層及び上記下層は第1触媒、即ち、担体としてAlを有し、該Al上に担持された貴金属としてPt及びPdを有する。第1触媒は特に高温領域(例えば180℃以上)において、高いCO浄化性能を示すため、かかる構成の排ガス浄化用触媒は高温条件下でのCO浄化性能に優れる。
 さらに、かかる構成の排ガス浄化用触媒では、上記上層は第2触媒、即ち、担体としてAl-ZrO複合酸化物(以下、「AZ複合酸化物」ともいう。)とAl-ZrO-TiO複合酸化物(以下、「AZT複合酸化物」ともいう。)の少なくともいずれかを有し、該AZ複合酸化物と該AZT複合酸化物の少なくともいずれかの上に担持された貴金属としてPdを有する。第2触媒は特に低温領域(例えば180℃未満)において高いCO浄化性能を示し、かつ低温領域において比較的高い耐硫黄被毒性を示す。このため、かかる構成の排ガス浄化用触媒は低温条件下において、たとえ排ガス中に硫黄成分が比較的高濃度で存在する場合であっても、高いCO浄化性能を発揮する。
 ここに開示される排ガス浄化用触媒の好ましい一態様では、上記第2触媒において、上記Al-ZrO複合酸化物と上記Al-ZrO-TiO複合酸化物の少なくともいずれかの担体を100質量%としたときの、上記Pdの担持率が2.5質量%以下であることを特徴とする。
 上記第2触媒における上記Pdの担持率が2.5質量%以下(例えば0.05質量%以上2.5質量%以下、好ましくは0.5質量%以上1.5質量%以下、より好ましくは0.8質量%以上1.3質量%以下)であると、第2触媒のCO浄化性能に対する低温活性が向上する。このため、かかる構成の排ガス浄化用触媒は低温条件下(例えば180℃未満)におけるCO浄化性能がより優れる。
 ここに開示される排ガス浄化用触媒の他の好ましい一態様では、上記上層において、上記第1触媒と上記第2触媒の合計を100質量%としたとき、上記第1触媒の含有率が30質量%以上99質量%以下であることを特徴とする。
 かかる構成の排ガス浄化用触媒では、高温条件下(例えば180℃以上)及び低温条件下(例えば180℃未満)のいずれの温度領域においても、安定して高い耐硫黄被毒性、及び高いCO浄化性能を示す。
 ここに開示される排ガス浄化用触媒の他の好ましい一態様では、上記下層が、さらに上記第2触媒を備えていることを特徴とする。
 かかる構成の排ガス浄化用触媒によると、触媒自体の耐熱特性が向上し、熱耐久後であっても高いCO浄化性能を示す。また、かかる構成の排ガス浄化用触媒では、耐硫黄被毒性がより向上する。
 ここに開示される排ガス浄化用触媒の他の好ましい一態様では、上記下層において、上記第1触媒と上記第2触媒の合計を100質量%としたとき、上記第1触媒の含有率が30質量%以上99質量%以下であることを特徴とする。
 かかる構成の排ガス浄化用触媒によると、高温条件下及び低温条件下のいずれの温度領域においても、安定して高い耐硫黄被毒性、及び高いCO浄化性能を発揮する。
 ここに開示される排ガス浄化用触媒の他の好ましい一態様では、上記下層が、さらに炭化水素吸着材を備えていることを特徴とする。
 かかる構成の排ガス浄化用触媒では、上層において吸着されずに下層に到達したHCを、下層における上記炭化水素吸着材により捕捉することができるため、下層における触媒のHC被毒をより一層抑制することができる。
 ここに開示される排ガス浄化用触媒の他の好ましい一態様では、上記第2触媒に担持された貴金属の平均粒径が5nm以下であることを特徴とする。
 かかる構成の排ガス浄化用触媒では、低温条件下におけるCO浄化性能が向上する。
 ここに開示される排ガス浄化用触媒の他の好ましい一態様では、上記炭化水素吸着材としてゼオライト粒子を備えていることを特徴とする。
 ゼオライト粒子は吸着物質の高い選択性を有するため、かかる構成の排ガス浄化用触媒によると、効率的に種々のHC成分(例えば、炭素原子が6個以下の低級オレフィン、炭素原子が7個以上の高級炭化水素など)を吸着させることができる。
 ここに開示される排ガス浄化用触媒の他の好ましい一態様では、ディーゼルエンジンの排ガスを浄化するために用いられる排ガス浄化用触媒であることを特徴とする。
 ディーゼルエンジンから排出される排ガスは、ガソリンエンジンから排出される排ガスと比較して、低い温度を有する傾向がある。また、ディーゼルエンジンで用いられる軽油は、炭素数15以上(典型的には15~17程度)であり、これはガソリンエンジンで用いられるガソリン(炭素数4~10程度)よりも比較的大きい高級炭化水素である。このため、未燃焼の軽油成分が触媒に付着することによる影響(HC被毒)は、未燃焼のガソリン成分による影響よりも大きい傾向がある。
 さらに、ディーゼルエンジンを広く用いる地域では、同時に硫黄が比較的高濃度に含有する燃料を用いていることが多い。
 ここに開示される排ガス浄化用触媒は、CO浄化における低温活性に優れ、さらに触媒のHC被毒、及び硫黄被毒を抑制することができるため、ディーゼルエンジンの排ガスを浄化するための排ガス浄化用触媒として特に適している。
図1は一実施形態に係る排ガス浄化装置の概略図である。 図2は一実施形態に係る排ガス浄化装置における制御部の構成を模式的に説明した図である。 図3は一実施形態に係る排ガス浄化用触媒の全体図である。 図4は図3の排ガス浄化用触媒におけるリブ壁部分の構成を拡大して示す図である。 図5は図4における上層部分の構成を模式的に説明した図である。 図6は図4における下層部分の構成を模式的に説明した図である。 図7は参考例に係る排ガス浄化用触媒において硫黄被毒処理前後における、Pd割合とCO浄化に対する低温活性との関係を示した図である(縦軸:CO5%浄化温度(℃)、横軸:Pd割合(質量比))。 図8は参考例に係る排ガス浄化用触媒において硫黄被毒処理前後における、Pd割合とCO浄化に対する高温活性との関係を示した図である(縦軸:CO80%浄化温度(℃)、横軸:Pd割合(質量比))。 図9は参考例に係る排ガス浄化用触媒における、貴金属担持率とCO浄化に対する低温活性との関係を示した図である(縦軸:CO5%浄化温度(℃)、横軸:貴金属担持率(質量%))。 図10は参考例に係る排ガス浄化用触媒における、Pd担持率とPd粒子の平均粒径との関係を示した図である。(縦軸:Pd粒子径(nm)、横軸:Pd担持率(質量%))。 図11は参考例に係る排ガス浄化用触媒における、第1触媒と第2触媒の混合割合と、CO浄化性能との関係を示した図である(縦軸:CO5%浄化温度(℃)(左)、CO80%浄化温度(℃)(右)、横軸:PtPd/アルミナ含有率(質量比))。 図12は実施例に係る排ガス浄化用触媒の排ガス浄化性能を評価するために用いたNEDC(New European Driving Cycle)モードの概略を示す図である(縦軸:回転数(rpm)(左)、温度(℃)(右)、横軸:時間(秒))。 図13は複数の実施例、及び比較例に係る排ガス浄化用触媒における、評価結果を示す図である。縦軸は比較例1に係る熱耐久後のCO浄化率を基準にしたCO浄化の向上割合を示す(縦軸:CO浄化の向上割合(%))。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 ここに開示される排ガス浄化用触媒及び該排ガス浄化用触媒を備える排ガス浄化装置の一実施形態について図面を用いて説明する。ここでは、内燃機関としてディーゼルエンジンを備える場合を例にして詳細に説明するが、本発明の適用範囲をかかるディーゼルエンジンに限定することを意図したものではない。本発明は、例えば、ガソリンエンジン等に適用することができる。
 図1及び図2に示すように、本実施形態に係る排ガス浄化装置100は、大まかに言って、ディーゼルエンジンを主体とするエンジン部1(エンジン部1にはエンジンを駆動するためのアクセルその他の操作系を含む。)と、該エンジン部1に連通する排気系に設けられる排ガス浄化部40と、該排ガス浄化部40と該エンジン部1との間の制御をつかさどるECU(電子制御ユニット)30とにより構成されている。
 エンジン部1は、典型的には複数ある燃焼室2と、各燃焼室2に燃料を噴射する燃料噴射弁3とを備えている。各燃焼室2は、吸気マニホルド4および排気マニホルド5と連通している。吸気マニホルド4は吸気ダクト6を介して、排気ターボチャージャ7のコンプレッサ7aの出口に接続されている。コンプレッサ7aの入口は、吸入空気量検出器8を介してエアクリーナ9に接続されている。吸気ダクト6内にはスロットル弁10が配置されている。吸気ダクト6の周りには、吸気ダクト6内を流れる空気を冷却するための冷却装置11が配置されている。排気マニホルド5は、排気ターボチャージャ7の排気タービン7bの入口に接続されている。排気タービン7bの出口は、排気管12に接続されている。
 排気マニホルド5と吸気マニホルド4とは、排気ガス再循環(以下、EGRと称する。)通路18を介して互いに連結されている。EGR通路18内には、電子制御式の制御弁19が配置されている。また、EGR通路18の周りには、EGR通路18内を流れるEGRガスを冷却するための冷却装置20が配置されている。
 各燃料噴射弁3は、燃料供給管21を介してコモンレール22に接続されている。コモンレール22は、燃料ポンプ23を介して燃料タンク24に接続されている。ここでは燃料ポンプ23は、吐出量可変な電子制御式の燃料ポンプである。ただし、燃料ポンプ23の構成は特に限定される訳ではない。
 排気管12内には、排気ガス中に燃料を供給(噴射)する燃料供給弁15が配置されており、さらに下流側には排ガス浄化部40が配置されている。排ガス浄化部40は、排気ガス中のCOやHCを酸化するための排ガス浄化用触媒50と、排ガス中の粒子状物質(PM)を捕集するパティキュレートフィルタ80を備えている。
 図2に示すように、ECU30は、エンジン部1と排ガス浄化部40との間の制御を行うユニットであり、デジタルコンピュータを含んでいる。ECU30は、双方向性バスによって互いに接続されたROM(リードオンメモリ)、RAM(ランダムアクセスメモリ)、CPU(マイクロプロセッサ)、入力ポートおよび出力ポートを有している。
 図示しないアクセルペダルには、アクセルペダルの踏込み量に比例した出力電圧を発生する負荷センサが接続されている。該負荷センサの出力電圧は、対応するAD変換機を介して入力ポートに入力される。更に入力ポートには、クランクシャフトが所定の角度(例えば15°)回転する毎に出力パルスを発生するクランク角センサが接続される。
 排ガス浄化部40における温度センサ及び差圧センサからの出力信号は、それぞれ対応するAD変換機を介して入力ポートに入力される。一方、出力ポートは、対応する駆動回路を介して燃料噴射弁3、スロットル弁10の駆動用ステップモータ、制御弁19、燃料ポンプ23及び燃料供給弁15に接続されている。このように、燃料噴射弁3、燃料供給弁15等は、ECU30により制御されている。
 なお、上述の制御系自体は本発明を特徴付けるものではなく、従来この種の内燃機関(自動車用エンジン)で採用されるものでよく、これ以上の詳細な説明は省略する。
 次に、本発明を特徴付ける排ガス浄化部40に備えられた排ガス浄化用触媒50について説明する。
 ここで開示される排ガス浄化用触媒を構成する上記基材としては、従来この種の用途に用いられる種々の素材及び形態のものが使用可能である。例えば、高耐熱性を有するコージェライト、炭化ケイ素(SiC)等のセラミックスまたは合金(ステンレス等)から形成されたハニカム構造を備えるハニカム基材などを好適に採用することができる。一例として外形が円筒形状であるハニカム基材であって、その筒軸方向に排ガス通路としての貫通孔(セル)が設けられ、各セルを仕切る隔壁(リブ壁)に排ガスが接触可能となっているものが挙げられる。基材の形状はハニカム形状の他にフォーム形状、ペレット形状などとすることができる。また基材全体の外形については、円筒形に代えて、楕円筒形、多角筒形を採用してもよい。
 図3は一実施形態に係る排ガス浄化用触媒の模式図である。即ち、本実施形態の排ガス浄化用触媒50は、ハニカム基材52と、複数の規則的に配列されたセル56と、該セル56を構成するリブ壁(以下、「基材」ともいう。)54を有する。
 図4は、図3の本実施形態における排ガス浄化用触媒50におけるリブ壁(基材)54の表面部分の構成を拡大して説明した図である。即ち、本実施形態に係る排ガス浄化用触媒50は、基材54、該基材54上に配置された下層57、該下層57上に配置された上層58を有する。上記下層57は、下層担体60と、貴金属としてPt粒子64及びPd粒子66を有している。また上記上層58は、上層担体62と、貴金属としてPt粒子64及びPd粒子66と、炭化水素吸着材68を有している。
 図5は、図4の本実施形態における上層58の構成を拡大して説明した概略図である。上記上層58は、第1触媒70、第2触媒72、及び炭化水素吸着材68を備える。ここで第1触媒70は、担体としてアルミナ(Al)74、及び該担体74に担持されたPt粒子64及びPd粒子66を備える。また、第2触媒72は、担体としてAZ複合酸化物とAZT複合酸化物の少なくともいずれか(典型的にはAZT複合酸化物76)、及び該担体76に担持されたPd粒子66を備える。
 図6は、図4の本実施形態における下層57の構成を拡大して説明した概要図である。上記下層57は、少なくとも第1触媒70を備え、好ましくはさらに第2触媒72を備える。第1触媒70及び第2触媒72を構成する担体及び貴金属については上記上層58の場合と同様である。即ち、第1触媒70は、担体としてアルミナ(Al)74、及び該担体74に担持されたPt粒子64及びPd粒子66を備える。また、第2触媒72は、担体としてAZ複合酸化物とAZT複合酸化物の少なくともいずれか(典型的にはAZT複合酸化物76)、及び該担体76に担持されたPd粒子66を備える。
 ここで開示される排ガス浄化用触媒50を構成する上記第1触媒70、及び第2触媒72における担体としては上記Al74、上記AZ複合酸化物、又はAZT複合酸化物76が好適に用いられる。
 上記AZ複合酸化物、及びAZT複合酸化物76の製法は特に制限されず、例えば共沈法、ゾルゲル法、水熱合成法などにより製造される。典型的な共沈法によるAZT複合酸化物76の調製方法は以下の通りである。即ち、アルミニウム、ジルコニウム、及びチタンの水溶性塩(例えば、硝酸塩)からなる混合水溶液に、必要に応じて界面活性剤を混合した後、アルカリ性物質であるアンモニア水を添加して徐々にpHを高くすることにより共沈物を生成させ、該共沈物を熱処理することにより該複合酸化物を得ることができる。
 ここで開示される排ガス浄化用触媒50には貴金属としてPt粒子64及びPd粒子66が含まれる。また、上記排ガス浄化用触媒50は貴金属として上記Pt粒子64及び上記Pd粒子66の他に、ロジウム(Rh)、ルテニウム(Ru)、オスミウム(Os)、イリジウム(Ir)、及び銀(Ag)等の粒子を備えていてもよい。これらの貴金属は合金化したものを用いてもよい。
 かかる貴金属(典型的にはPt粒子64、及びPd粒子66、特にAZ複合酸化物またはAZT複合酸化物76上に担持されたPd粒子66)は、排ガスとの接触面積を高める観点、及び担体との相互作用の観点から十分に小さい粒径を有することが好ましい。典型的には、貴金属の平均粒径はいずれも1~15nm程度であることが好ましいが、上記排ガス浄化用触媒50のCO浄化性能に対する低温活性向上の観点から、5nm以下であることがより好ましく、4nm以下、3nm以下であることがさらに好ましい。
 ここで開示される排ガス浄化用触媒50を構成する上記第1触媒70は、貴金属としてPt粒子64及びPd粒子66を備える。上記第1触媒70における貴金属を100質量%としたときのPd粒子66の含有割合は質量比で0.2以上0.8以下(好ましくは0.25以上0.6以下、より好ましくは0.3以上0.5以下)であることが望ましい。第1触媒70において貴金属に占めるPd粒子66の含有割合が上記範囲より小さすぎる、または大きすぎる場合、排ガス浄化用触媒のCO浄化性能低下を招く虞がある。
 ここで開示される排ガス浄化用触媒50を構成する上記第2触媒72は、貴金属としてPd粒子66を備える。上記第2触媒72における担体(典型的にはAZT複合酸化物76)を100質量%としたときの、上記Pd粒子66の担持率は2.5質量%以下(例えば0.05質量%以上2.5質量%以下、好ましくは0.5質量%以上1.5質量%以下、より好ましくは0.8質量%以上1.3質量%以下)であることが好ましい。上記第2触媒72におけるPd粒子66の担持率が上記範囲より少なすぎると、貴金属による触媒効果が得られにくい。また、上記第2触媒72におけるPd粒子66の担持率が上記範囲より多すぎると、貴金属の粒成長が進行する虞があり、さらにコスト面でも不利である。
 上記上層58または上記下層57における上記第1触媒70と上記第2触媒72の混合割合について、上記第1触媒70と上記第2触媒72の合計を100質量%としたとき、上記第1触媒70の含有率は30質量%以上99質量%以下(好ましくは35質量%以上70質量%以下、より好ましくは40質量%以上60質量%以下、さらに好ましくは45質量%以上55質量%以下)であることが望ましい。上記第1触媒70の含有率が上記範囲より小さすぎる場合、高温条件下(例えば180℃以上)におけるCO浄化性能が低下する傾向がある。また、上記含有率が上記範囲より大きすぎる場合、低温条件下におけるCO浄化性能の低下が生じる虞がある。
 ここで開示される排ガス浄化用触媒50を構成する上記上層58には、炭化水素吸着材68が含まれる。ここで、本明細書で言う炭化水素吸着材68とは、多孔質構造を有する材料であって、その多孔質構造内に炭化水素を吸着する材料を意味する。
 かかる炭化水素吸着材68としては、ゼオライト、例えば、A型ゼオライト、フェリライト型ゼオライト、ZSM-5型ゼオライト、モルデナイト型ゼオライト、β型ゼオライト、X型ゼオライト、及びY型ゼオライト、並びにそれらの組合せからなる群より選択されるゼオライトを挙げることができる。また、粒子状のものを好適に用いることができる。
 ここで開示される排ガス浄化用触媒50は、上下層を有する積層構造に形成されている。かかる積層構造を製造するためには、基材54表面に少なくとも第1触媒70を含むスラリーをウォッシュコートすることにより下層57を形成し、さらに下層57表面に少なくとも第1触媒70、第2触媒72、及び炭化水素吸着材68、を含むスラリーをウォッシュコートすることにより上層58を形成する。ウォッシュコートにより触媒層を形成するプロセスにおいて、基材54表面、あるいは下層57表面にスラリーを適当に密着させるため、スラリーにはバインダーを含有させることが好ましい。バインダーとしては、例えばアルミナゾル、シリカゾル等を用いることができる。スラリーの粘度は、スラリーがハニカム基材52のセル56内へ容易に流入しうるものとすべきである。
 基材54、または下層57表面にウォッシュコートされたスラリーの焼成条件は基材54または担体の形状及び寸法により左右されるが、典型的には約400~1000℃程度(例えば500~600℃)で約1~4時間程度である。
 ここで開示される排ガス浄化用触媒50を構成する上記上層58は、任意の厚さを有することができるが、好ましくは30μm以上100μm以下、より好ましくは40μm以上であって、70μm以下、又は60μm以下でよい。(ここで厚さは平均厚さをいう。以下同じ。)
 本明細書において平均層厚さは、基材を流入側端面及び流出側端面からそれぞれ35mmの位置で切断し、それぞれの端面側の任意の4つのセルについて、角部分及び辺部分の層厚さを測定し(計16箇所)、測定された値の平均値を算出することにより得ることができる。以下、本明細書における層厚さに関しては上記の測定法により得られたものと規定する。
 上層58の厚さが上記範囲より薄すぎる場合、エンジン始動時等、排ガスが低温の場合であって、排ガス中にHC成分が比較的多量に含有されている場合、HCが上層58を通り抜けて下層57に達し、下層57における触媒に付着して触媒活性を低下させることがある。また、上層58の厚さが上記範囲より厚すぎる場合、浄化すべき一酸化炭素等の排ガス成分が、拡散によっては十分に下層57に達しないことがある。
 ここで開示される排ガス浄化用触媒50では、上記上層58及び上記下層57の合計の厚さは、任意に設定することができるが、好ましくは100μm以上250μm以下、より好ましくは150μm以上250μm以下(上記と同様に平均厚さをいう。以下同じ。)であってよい。
 上記上層58及び上記下層57の合計の厚さが上記範囲より薄すぎる場合、排ガス浄化用触媒50における貴金属の絶対量が不足し、十分な排ガスの浄化が達成できないことがある。また、上記厚さが上記範囲より厚すぎる場合、排ガスが排ガス浄化用触媒50の全体に行き渡らない虞があり、担体に担持された貴金属を効率的に利用することができないことがある。また、排ガス浄化用触媒50のセル56内を排ガスが通過する際の圧力損失の上昇を招く虞がある。
 なお、上記積層構造は上層58として上述したような触媒層があり、下層57として上述したような触媒層があればよく、当該二つの層に加えて他の層(例えば基材54に近接した別の層)を有する3層以上であってもよい。
 以下、本発明に関するいくつかの実施例につき説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。
<担体:Al-ZrO-TiO複合酸化物粉末の製造>
 Al-ZrO-TiO(AZT)複合酸化物を以下のプロセスにより製造した。即ち、硝酸アルミニウムを純水に溶解させ、硝酸アルミニウム水溶液を調製した(水溶液1)。次にオキシ硝酸ジルコニウムと四塩化チタンを純水に溶解させ、混合液を調製した(水溶液2)。上記、水溶液1と水溶液2の二つの溶液を中和するのに必要なアンモニア量の1.2倍のアンモニアを含むアンモニア水溶液を調製した(水溶液3)。まず、水溶液3に水溶液1を撹拌しながら加え、続いて、これに水溶液2を投入し、1時間以上撹拌を行うことにより沈殿物を得た。この沈殿物を150℃で12時間加熱することにより乾燥させた後、600℃で5時間焼成することにより、AZT複合酸化物の粉末を得た。上記粉末の組成比は質量比でAl:ZrO:TiO=60:28:12であった。
<担体:Al粉末の製造>
 上記AZT複合酸化物に係る製造プロセスの中で、原料のオキシ硝酸ジルコニウム及び四塩化チタンを用いる代わりに、硝酸アルミニウムを用いたこと以外は、同様の製造プロセスによりAl粉末を製造した。
<参考例に係る排ガス浄化用触媒の製造>
(参考例1~3)
 上記AZT複合酸化物粉末に、Pt粒子及び/又はPd粒子が担持した排ガス浄化用触媒を製造した。
 具体的には、担体である上記AZT複合酸化物粉末に、適当に濃度を調節したジニトロジアンミン白金硝酸塩溶液、及び/又は適当に濃度を調節した硝酸パラジウム水溶液と、適量の純水を混合し、これを2時間撹拌した後、130℃で乾燥、500℃で1時間焼成することにより、Pt粒子及び/又はPd粒子が担持されたAZT複合酸化物に係る排ガス浄化用触媒を製造した。このとき、担持させたPt粒子及び/又はPd粒子の担持量は、該担体を100質量%としたときに、表1の通りとなるように調節した。
 得られた貴金属粒子担持粉末は、プレス機によりペレット状に成形し、これを参考例1~3に係る排ガス浄化用触媒とした。
Figure JPOXMLDOC01-appb-T000001
(参考例4~6)
 上記Al粉末に、Pt粒子及び/又はPd粒子が担持された排ガス浄化用触媒を製造した。
 具体的には、担体として上記AZT複合酸化物粉末の代わりに、上記Al粉末を用いること以外は、上記参考例1~3に係る製造プロセスと同様に製造した。このとき、担持させたPt粒子及び/又はPd粒子の担持量は、担体を100質量%としたときに、表1の通りとなるように調節した。
 得られた貴金属粒子担持粉末は、プレス機によりペレット状に成形し、これを参考例4~6に係る排ガス浄化用触媒とした。
<参考例に係る排ガス浄化用触媒に対する熱耐久処理>
 上記参考例1~6に係る合計6種類の排ガス浄化用触媒について、熱耐久処理を施した。具体的には、参考例1~6に係る排ガス浄化用触媒を空気中において750℃で5時間加熱した。
<参考例に係る排ガス浄化用触媒に対する硫黄被毒処理>
 上記熱耐久処理を施した後の参考例1~6に係る排ガス浄化用触媒について、硫黄を含むガスを接触させることにより硫黄被毒処理を施した。
 具体的には、上記熱耐久処理後の参考例1~6に係る排ガス浄化用触媒を評価装置に設置し、表2に示すガス組成のガスを、入りガス温度を400℃に設定し流入した。ここでガス流量は15L/minとした。上記硫黄被毒処理は、評価装置を硫黄が通過した量が上記触媒1L当たり5gになるまで行った。
Figure JPOXMLDOC01-appb-T000002
<活性評価>
 参考例1~6に係る排ガス浄化用触媒について、一酸化炭素(CO)に対する活性評価を行った。
 具体的には、上記排ガス浄化用触媒を1g秤量して評価装置に設置した。その後、かかる排ガス浄化用触媒を65℃から昇温速度20℃/minで昇温させながら、表3に示す組成のガスをガス流量15L/minの条件で流入させ、出口における一酸化炭素(CO)の濃度を測定した。このときガス投入時のCO濃度のうち、5mol%が浄化により減少したときの温度(CO5%浄化温度(℃))、及び80mol%が浄化により減少したときの温度(CO80%浄化温度(℃))を算出した。
Figure JPOXMLDOC01-appb-T000003
 上記活性評価の結果を図7、及び図8に示す。図7より明らかなように、熱耐久後の参考例1~6に係る排ガス浄化用触媒を比較すると、全体的に、担体にAZT複合酸化物粉末を用いた排ガス浄化用触媒(参考例1~3)の方が、担体にAl粉末を使用した排ガス浄化用触媒(参考例4~6)よりも、CO浄化に対する低温活性は良好であることが確認された。また、上記熱耐久後の参考例1~3の中でも、Pd割合が1である(即ち、貴金属粒子としてPd粒子のみを担持させた)参考例2に係る排ガス浄化用触媒が最も良好なCO浄化に対する低温活性を示した。
 また、硫黄被毒処理後の参考例2に係る排ガス浄化用触媒は、硫黄被毒処理前の(即ち、熱耐久後の)参考例2に係る排ガス浄化用触媒と比較して、CO浄化に対する低温活性が低下した。しかしながら、硫黄被毒処理後の参考例2に係る排ガス浄化用触媒は、担体にAlを使用した排ガス浄化用触媒(参考例4~6)と比較すると、依然として高い低温活性を有することが判る。
 即ち、AZT複合酸化物担体にPd粒子を担持させた排ガス浄化用触媒(即ち、第2触媒)は、高いCO浄化に対する低温活性を有することが確認された。また該触媒は低温条件下において、比較的高い耐硫黄被毒性を有することが確認された。
 一方、図8より明らかなように、高温領域(例えば180℃以上)においては、熱耐久後の参考例1~6に係る排ガス浄化用触媒を比較すると、CO浄化性能にあまり大きな差は見られなかった。即ち、担体にAl粉末を使用した排ガス浄化用触媒(参考例4~6)は、担体にAZT複合酸化物粉末を用いた排ガス浄化用触媒(参考例1~3)と同等に高いCO浄化性能を示した。
 また、硫黄被毒処理後の参考例1~3に係る排ガス浄化用触媒と、硫黄被毒処理前の(即ち、熱耐久後の)参考例1~3に係る排ガス浄化用触媒を比較すると、硫黄被毒処理後の該触媒は高温域におけるCOの浄化性能が大きく低下することが確認された。即ち、AZT複合酸化物担体にPd粒子、及び又は、Pt粒子を担持させた排ガス浄化用触媒は、高温域(例えば180℃以上)において、硫黄被毒の影響を強く受け、CO浄化性能が低下することが明らかとなった。
 以上の結果より、低温領域と高温領域の両領域にわたり、たとえ硫黄に曝された場合にあっても安定したCO浄化性能を発揮させるためには、AZT複合酸化物担体にPd粒子を担持させた触媒(第2触媒)と、Al担体にPt粒子及びPd粒子を担持させた触媒(第1触媒)と、を適当な混合割合で混合させた触媒が有用であることが理解される。
<貴金属粒子の担持量>
 上記AZT複合酸化物担体にPd粒子を担持させた触媒(第2触媒)について、該Pd粒子の担持量を変化させたときのCO浄化性能を調べた。
 具体的には、担体であるAZT複合酸化物を100質量%としたときのPd粒子の担持率を1.5質量%(即ち、参考例2)、3.0質量%(参考例7)、5.0質量%(参考例8)と設定し、上記参考例1~3に係る製造プロセスと同様に排ガス浄化用触媒を製造した。また、比較のため、担体としてAlを使用し、これにPt粒子とPd粒子を担持させた上記参考例4に係る排ガス浄化用触媒を調製した。
 これら合計4種類の排ガス浄化用触媒(参考例2、4、7、8)について、上記熱耐久処理を施し、その後、上記活性評価を行った。結果を図9に示す。
 図9より明らかなように、担体にAZT複合酸化物を用いた排ガス浄化用触媒において、Pd粒子の担持量が増加するのに従い、低温域におけるCO浄化性能が低下する傾向があることが確認された。担体にAlを用いた参考例4に係る排ガス浄化用触媒の評価結果と比較すると、AZT複合酸化物担体にPd粒子を担持させた場合(第2触媒)におけるPd粒子担持量は概ね2.5質量%以下である場合に、良好なCO浄化性能を示すことが明らかとなった。
 また、上記参考例2、7、8に係る排ガス浄化用触媒について、Pd粒子の平均粒径をCOパルス吸着法により測定した。結果を図10に示す。図10より明らかなように、担体にAZT複合酸化物を用いた排ガス浄化用触媒において、Pd粒子の担持量が増加するのに従い、該Pd粒子の平均粒径は増加する傾向があることが確認された。図10より、Pd粒子の担持量が概ね2.5質量%以下である場合、Pd粒子の平均粒径は概ね5nm以下であることが読み取れる。従って、AZT複合酸化物に担持させるPd粒子の平均粒径は5nm以下であると良好なCO浄化性能を示すことが判る。
<第1触媒と第2触媒の混合割合>
 担体にAlを用いた上記触媒(第1触媒)と、担体にAZT複合酸化物を用いた上記触媒(第2触媒)の適切な混合割合を調べるために、該混合割合を変化させたサンプルを調製し、CO浄化性能を測定した。
 具体的には、AZT複合酸化物にPd粒子を担持させた触媒(上記参考例2;第2触媒)、AlにPt粒子及びPd粒子を担持させた触媒(上記参考例4;第1触媒)、及び参考例4に係る排ガス浄化用触媒(第1触媒)と参考例9に係る排ガス浄化用触媒(第2触媒)を質量比で50%ずつ混合した排ガス浄化用触媒(参考例10)を調製した。参考例9、10に係るPt粒子及び/又はPd粒子の担持量は上記表1に示す通りである。上記合計3種類の排ガス浄化用触媒(参考例2、4、10)について上記熱耐久処理を施し、その後、上記活性評価を行った。結果を図11に示す。
 図11より明らかなように、第1触媒及び第2触媒を混合して得られた排ガス浄化用触媒では、第1触媒の含有率の変化に対して、CO浄化に対する低温活性、及びCO浄化に対する高温活性は、相反する傾向を示す。ここでCO80%浄化温度(即ち高温活性)に着目すると、第1触媒の含有率が50質量%以上の範囲においては、CO浄化に対する高温活性は高い(即ち、CO80%浄化温度が低い)まま維持されていることが確認される。よって、概ね第1触媒の含有率が30質量%以上99質量%以下であれば、第1触媒及び第2触媒の混合による触媒のCO浄化性能は向上することが期待される。
 次に、本発明の一実施形態に係る排ガス浄化用触媒について製造し、その性能評価を行った。
<排ガス浄化用触媒の製造例>
(実施例1)
 まず、下層用の第1触媒に係る貴金属粒子担持粉末を調製した。即ち、担体であるAl粉末(γ-Al)50gに対し、Pt含有量が1.33gである適量のジニトロジアンミン白金硝酸塩溶液と、Pd含有量が0.67gである適量の硝酸パラジウム水溶液と、適量の純水を混合した。得られた混合液を2時間撹拌した後、130℃において乾燥し、その後500℃で1時間焼成することにより、下層用の第1触媒に係る貴金属粒子担持粉末を調製した。
 次に、上記下層用の貴金属粒子担持粉末を用いて、下層用のスラリーを調製した。具体的には、上記下層用の貴金属粒子担持粉末に対し、BEA型ゼオライト(Si/Al比=40)30g、バインダー成分として焼成後のAl量が17.5gとなる硝酸アルミニウム水溶液、及び適量の純水を混合することにより下層用スラリーを調製した。
 続いて、上記下層用スラリーを触媒用基材の表面にウォッシュコートした。ここで触媒用基材としては、コージェライト製のハニカム基材(容量2L)を用いた。コートした後、通風で乾燥させた後、500℃で1時間焼成することにより、排ガス浄化用触媒の下層を形成した。
 上層用の第1触媒に係る貴金属粒子担持粉末を調製した。即ち、担体であるAl粉末(γ-Al)12.5gに対し、Pt含有量が0.58gである適量のジニトロジアンミン白金硝酸塩溶液と、Pd含有量が0.29gである適量の硝酸パラジウム水溶液、及び適量の純水を混合した。得られた混合液を2時間撹拌した後、130℃において乾燥し、その後500℃で1時間焼成することにより、上層用の第1触媒に係る貴金属粒子担持粉末を調製した。
 次に同様の手法により上層用の第2触媒に係る貴金属粒子担持粉末を調製した。即ち担体であるAZT複合酸化物粉末12.5gに対し、Pd含有量が0.13gである適量の硝酸パラジウム水溶液、及び適量の純水を混合し、上記と同様の条件において乾燥、焼成することにより、上層用の第2触媒に係る貴金属粒子担持粉末を調製した。
 続いて、上記上層用の第1触媒及び第2触媒に係る貴金属粒子担持粉末を用いて、上層用のスラリーを調製した。具体的には、上記上層用の貴金属粒子担持粉末(第1触媒と第2触媒の混合物)に対し、BEA型ゼオライト(Si/Al比=40)60g、バインダーとして焼成後のAl量が17.5gとなる硝酸アルミニウム水溶液、及び適量の純水を混合することにより上層用スラリーを調製した。
 上記上層用スラリーを、上記下層が形成されている基材の表面にウォッシュコートした。コート後、通風で乾燥させた後、500℃で1時間焼成することにより、排ガス浄化用触媒の上層を形成した。
 上記の一連のプロセスにより製造された排ガス浄化用触媒を実施例1に係る排ガス浄化用触媒とする。
(実施例2、3、及び比較例1、2)
 上記実施例1に係る排ガス浄化用触媒の製造プロセスに倣って、実施例2、3及び比較例1、2に係る排ガス浄化用触媒を製造した。上記排ガス浄化用触媒の成分構成比(g/基材-L)、及び各層の層厚さは表4に示す通りである。このとき、それぞれの排ガス浄化用触媒全体に占める貴金属担持量は3g/Lに設定した。
Figure JPOXMLDOC01-appb-T000004
 上記実施例1~3、及び比較例1、2に係る排ガス浄化用触媒全体に含まれる材料組成比(質量%)は表5の通りである。
Figure JPOXMLDOC01-appb-T000005
<実施例、及び比較例に係る排ガス浄化用触媒に対する熱耐久処理>
 実施例1~3、及び比較例1、2に係る排ガス浄化用触媒について、電気炉を用いて、空気中において750℃で37時間にわたって加熱することにより、簡易耐久を施した。
<実施例、及び比較例に係る排ガス浄化用触媒に対する硫黄被毒処理>
 上記熱耐久処理を施した排ガス浄化用触媒について、2.2Lディーゼルエンジンベンチにおいて、硫黄成分を350ppm含んだ燃料を用いて硫黄被毒処理を施した。このとき、触媒への入りガス温度は400℃にした。また、硫黄量は排ガス浄化用触媒1個当たり10g通過させた。
<浄化性能評価>
 上記熱耐久処理後、及びその後の硫黄被毒処理後の実施例、及び比較例に係る排ガス浄化用触媒について、2.2リットルのディーゼルエンジンからの排ガスを用いて、排ガス浄化性能を評価した。ここでは、上記ディーゼルエンジンを用いて、NEDC(New European Driving Cycle)モード(図12参照)を再現した。また、前処理として、5分間触媒床温度を600℃にすることにより粒子状物質(PM)の燃焼による再生処理を行った。
 上記浄化性能評価の結果を図13に示す。図13より明らかなように、比較例1及び比較例2に係る排ガス浄化用触媒は、熱耐久処理後、硫黄被毒処理されることにより、大幅にCO浄化性能が低下した。一方、実施例1~3に係る排ガス浄化用触媒については、熱耐久処理後から硫黄被毒処理後にかけてのCO浄化性能の低下は小さくなり、特に、実施例2及び実施例3に係る排ガス浄化用触媒の硫黄被毒処理後のCO浄化性能は良好であった。
 本発明によれば、低温条件下においても一酸化炭素(CO)の浄化性能に優れた排ガス浄化用触媒を提供することができる。
 

Claims (9)

  1.  基材と、該基材上に配置された下層と、該下層上に配置された上層と、を備える排ガス浄化用触媒であって、
     前記上層は、第1触媒、及び第2触媒を備え、
     前記下層は、第1触媒を備え、
     前記第1触媒は、担体としてAlを有し、該Al上に担持された貴金属としてPt及びPdを有しており、
     前記第2触媒は、担体としてAl-ZrO複合酸化物とAl-ZrO-TiO複合酸化物の少なくともいずれかを有し、該Al-ZrO複合酸化物と該Al-ZrO-TiO複合酸化物の少なくともいずれかの上に担持された貴金属としてPdを有しており、
     前記上層が炭化水素吸着材を備えている、排ガス浄化用触媒。
  2.  前記第2触媒において、前記Al-ZrO複合酸化物と前記Al-ZrO-TiO複合酸化物の少なくともいずれかの担体を100質量%としたときの、前記Pdの担持率が2.5質量%以下である、請求項1に記載の排ガス浄化用触媒。
  3.  前記上層において、前記第1触媒と前記第2触媒の合計を100質量%としたとき、前記第1触媒の含有率が30質量%以上99質量%以下である、請求項1または2に記載の排ガス浄化用触媒。
  4.  前記下層が、さらに前記第2触媒を備えている、請求項1~3のいずれか一項に記載の排ガス浄化用触媒。
  5.  前記下層において、前記第1触媒と前記第2触媒の合計を100質量%としたとき、前記第1触媒の含有率が30質量%以上99質量%以下である、請求項4に記載の排ガス浄化用触媒。
  6.  前記下層が、さらに炭化水素吸着材を備えている、請求項1~5のいずれか一項に記載の排ガス浄化用触媒。
  7.  前記第2触媒に担持された貴金属の平均粒径が5nm以下であることを特徴とする、請求項1~6のいずれか一項に記載の排ガス浄化用触媒。
  8.  前記炭化水素吸着材としてゼオライト粒子を備えている、請求項1~7のいずれか一項に記載の排ガス浄化用触媒。
  9.  ディーゼルエンジンの排ガスを浄化するために用いられる、請求項1~8のいずれか一項に記載の排ガス浄化用触媒。
     
     
     
     
     
     
     
     
     
     
     
     
     
PCT/JP2012/059559 2011-04-08 2012-04-06 排ガス浄化用触媒 WO2012137937A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/110,274 US8828900B2 (en) 2011-04-08 2012-04-06 Exhaust gas purification catalyst
KR1020137027816A KR101529416B1 (ko) 2011-04-08 2012-04-06 배기 가스 정화용 촉매
EP12767402.6A EP2695673A4 (en) 2011-04-08 2012-04-06 CATALYST FOR PURIFYING EXHAUST GASES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-086552 2011-04-08
JP2011086552A JP5664918B2 (ja) 2011-04-08 2011-04-08 排ガス浄化用触媒

Publications (1)

Publication Number Publication Date
WO2012137937A1 true WO2012137937A1 (ja) 2012-10-11

Family

ID=46969325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059559 WO2012137937A1 (ja) 2011-04-08 2012-04-06 排ガス浄化用触媒

Country Status (5)

Country Link
US (1) US8828900B2 (ja)
EP (1) EP2695673A4 (ja)
JP (1) JP5664918B2 (ja)
KR (1) KR101529416B1 (ja)
WO (1) WO2012137937A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2518418A (en) * 2013-09-20 2015-03-25 Johnson Matthey Plc Electrically heated catalyst for a compression ignition engine
CN104117381B (zh) * 2014-08-12 2016-09-14 无锡威孚力达催化净化器有限责任公司 含有Al-Si-Ti复合氧化物的柴油车氧化性催化剂
EP3380215A4 (en) * 2015-10-30 2019-05-08 Umicore Ag & Co. Kg COMPOSITIONS FOR PASSIVE NOX ADSORPTION SYSTEMS (PNA) AND METHODS OF MAKING AND USING THE SAME
US10188986B2 (en) 2015-11-06 2019-01-29 Paccar Inc Electrochemical reductant generation while dosing DEF
US9764287B2 (en) 2015-11-06 2017-09-19 Paccar Inc Binary catalyst based selective catalytic reduction filter
US10058819B2 (en) 2015-11-06 2018-08-28 Paccar Inc Thermally integrated compact aftertreatment system
GB2552546A (en) * 2016-07-29 2018-01-31 Johnson Matthey Plc Oxidation catalyst for a compression ignition engine and a method of preparation therefor
US10835866B2 (en) 2017-06-02 2020-11-17 Paccar Inc 4-way hybrid binary catalysts, methods and uses thereof
US10675586B2 (en) 2017-06-02 2020-06-09 Paccar Inc Hybrid binary catalysts, methods and uses thereof
KR102211944B1 (ko) * 2019-04-04 2021-02-03 희성촉매 주식회사 귀금속 박층을 최상층으로 포함하는 다층구조의 배기가스 정화용 촉매 및 이의 제조방법
US11007514B2 (en) 2019-04-05 2021-05-18 Paccar Inc Ammonia facilitated cation loading of zeolite catalysts
US10906031B2 (en) 2019-04-05 2021-02-02 Paccar Inc Intra-crystalline binary catalysts and uses thereof
US10934918B1 (en) 2019-10-14 2021-03-02 Paccar Inc Combined urea hydrolysis and selective catalytic reduction for emissions control
JP2023135093A (ja) * 2022-03-15 2023-09-28 トヨタ自動車株式会社 排ガス浄化用触媒の製造方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127044A (ja) * 1987-11-11 1989-05-19 Toyota Central Res & Dev Lab Inc 排気浄化用触媒
JPH08224449A (ja) 1994-12-13 1996-09-03 Johnson Matthey Plc 大気汚染防止用の合体された触媒と炭化水素トラップ
JPH09926A (ja) * 1995-06-22 1997-01-07 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒
JPH0910594A (ja) 1995-04-28 1997-01-14 Mazda Motor Corp 排気ガス浄化用触媒
JPH11138006A (ja) 1997-11-11 1999-05-25 Nissan Motor Co Ltd 排気ガス浄化用触媒及び浄化方法
JP2000157870A (ja) * 1998-11-27 2000-06-13 Degussa Huels Ag ディ―ゼルエンジンの排ガスの浄化のための触媒
JP2002282688A (ja) * 2001-01-16 2002-10-02 Toyota Central Res & Dev Lab Inc 触媒担体及びその製造方法と触媒及び排ガス浄化方法
JP2003175318A (ja) * 2002-10-24 2003-06-24 Ngk Insulators Ltd 排ガス浄化システム及び排ガス浄化方法
JP2003236339A (ja) 2002-02-18 2003-08-26 Mitsubishi Motors Corp 内燃機関の排気浄化装置
JP2003290629A (ja) 2002-04-02 2003-10-14 Nissan Motor Co Ltd 排ガス浄化システム
JP2008062235A (ja) * 2003-11-11 2008-03-21 Valtion Teknillinen Tutkimuskeskus 窒素酸化物を接触還元する方法とそのための触媒
JP2009119430A (ja) * 2007-11-19 2009-06-04 Toyota Central R&D Labs Inc 低温酸化触媒、その製造方法、および低温酸化触媒を用いた排ガスの浄化方法
JP2010029814A (ja) 2008-07-30 2010-02-12 Mazda Motor Corp 排気ガス浄化用触媒
JP2010120008A (ja) 2008-11-21 2010-06-03 Hyundai Motor Co Ltd ディーゼル酸化触媒及びこれを具備した排気装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042797A (en) * 1997-07-02 2000-03-28 Tosoh Corporation Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
JP3061399B2 (ja) * 1990-06-20 2000-07-10 株式会社日本触媒 ディーゼルエンジン排ガス浄化用触媒および浄化方法
US5303547A (en) * 1992-04-15 1994-04-19 Amoco Corporation Emissions control system and method
KR950704598A (ko) * 1992-11-19 1995-11-20 스티븐 아이. 밀러 엔진 배기 가스 스트림 처리 방법 및 장치(Method and Apparatus for Treating an Engine Exhaust Gas Stream)
EP0716677A1 (de) 1993-09-03 1996-06-19 Fpr Holding Ag Verfahren zum reinigen eines im wesentlichen sauerstofffreien, brennbaren gases
JP3526084B2 (ja) * 1993-12-28 2004-05-10 日本碍子株式会社 排ガス浄化用吸着・触媒体、吸着体、排ガス浄化システム及び排ガス浄化方法
JPH0924274A (ja) * 1995-05-09 1997-01-28 Hitachi Ltd 排ガス浄化触媒及び排ガス浄化システム
US6093378A (en) * 1997-05-07 2000-07-25 Engelhard Corporation Four-way diesel exhaust catalyst and method of use
US6047544A (en) * 1997-08-20 2000-04-11 Nissan Motor Co., Ltd. Engine exhaust gas purification catalyst and exhaust gas purifier
JP4703818B2 (ja) * 2000-06-20 2011-06-15 株式会社アイシーティー 排気ガス浄化用触媒および排気ガス浄化方法
US20050197244A1 (en) * 2004-03-05 2005-09-08 L'vovich Moroz B. Exhaust treatment system and catalyst system
JP2006231280A (ja) * 2005-02-28 2006-09-07 Mitsubishi Heavy Ind Ltd ソリッド型燃焼用酸化触媒
US7576031B2 (en) * 2006-06-09 2009-08-18 Basf Catalysts Llc Pt-Pd diesel oxidation catalyst with CO/HC light-off and HC storage function
JP2009057922A (ja) * 2007-08-31 2009-03-19 Honda Motor Co Ltd 排ガス浄化装置
WO2010077843A2 (en) * 2008-12-29 2010-07-08 Basf Catalysts Llc Oxidation catalyst with low co and hc light-off and systems and methods
US8329607B2 (en) * 2009-01-16 2012-12-11 Basf Corporation Layered diesel oxidation catalyst composites
US8252258B2 (en) * 2009-01-16 2012-08-28 Basf Corporation Diesel oxidation catalyst with layer structure for improved hydrocarbon conversion
US8211392B2 (en) * 2009-01-16 2012-07-03 Basf Corporation Diesel oxidation catalyst composite with layer structure for carbon monoxide and hydrocarbon conversion
JP5651685B2 (ja) * 2009-05-04 2015-01-14 ビーエーエスエフ コーポレーション 希薄燃焼ガソリンエンジンのためのtwcの改善された希薄hc変換
US8246923B2 (en) * 2009-05-18 2012-08-21 Umicore Ag & Co. Kg High Pd content diesel oxidation catalysts with improved hydrothermal durability
RU2559502C2 (ru) * 2009-11-12 2015-08-10 Умикоре Аг Унд Ко. Кг Усовершенствованный каталитический нейтрализатор окислительного типа для снижения токсичности отработавших газов дизельного двигателя
EP2374536A1 (en) 2010-04-08 2011-10-12 Ford Global Technologies, LLC Palladium-containing oxidation catalyst on ternary Al-Ti-Zr-oxide
JP5310767B2 (ja) 2011-03-29 2013-10-09 トヨタ自動車株式会社 排ガス浄化触媒

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127044A (ja) * 1987-11-11 1989-05-19 Toyota Central Res & Dev Lab Inc 排気浄化用触媒
JPH08224449A (ja) 1994-12-13 1996-09-03 Johnson Matthey Plc 大気汚染防止用の合体された触媒と炭化水素トラップ
JPH0910594A (ja) 1995-04-28 1997-01-14 Mazda Motor Corp 排気ガス浄化用触媒
JPH09926A (ja) * 1995-06-22 1997-01-07 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒
JPH11138006A (ja) 1997-11-11 1999-05-25 Nissan Motor Co Ltd 排気ガス浄化用触媒及び浄化方法
JP2000157870A (ja) * 1998-11-27 2000-06-13 Degussa Huels Ag ディ―ゼルエンジンの排ガスの浄化のための触媒
JP2002282688A (ja) * 2001-01-16 2002-10-02 Toyota Central Res & Dev Lab Inc 触媒担体及びその製造方法と触媒及び排ガス浄化方法
JP2003236339A (ja) 2002-02-18 2003-08-26 Mitsubishi Motors Corp 内燃機関の排気浄化装置
JP2003290629A (ja) 2002-04-02 2003-10-14 Nissan Motor Co Ltd 排ガス浄化システム
JP2003175318A (ja) * 2002-10-24 2003-06-24 Ngk Insulators Ltd 排ガス浄化システム及び排ガス浄化方法
JP2008062235A (ja) * 2003-11-11 2008-03-21 Valtion Teknillinen Tutkimuskeskus 窒素酸化物を接触還元する方法とそのための触媒
JP2009119430A (ja) * 2007-11-19 2009-06-04 Toyota Central R&D Labs Inc 低温酸化触媒、その製造方法、および低温酸化触媒を用いた排ガスの浄化方法
JP2010029814A (ja) 2008-07-30 2010-02-12 Mazda Motor Corp 排気ガス浄化用触媒
JP2010120008A (ja) 2008-11-21 2010-06-03 Hyundai Motor Co Ltd ディーゼル酸化触媒及びこれを具備した排気装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2695673A4 *

Also Published As

Publication number Publication date
KR20140002771A (ko) 2014-01-08
EP2695673A1 (en) 2014-02-12
JP5664918B2 (ja) 2015-02-04
US20140057776A1 (en) 2014-02-27
US8828900B2 (en) 2014-09-09
JP2012217934A (ja) 2012-11-12
EP2695673A4 (en) 2014-10-29
KR101529416B1 (ko) 2015-06-16

Similar Documents

Publication Publication Date Title
JP5664918B2 (ja) 排ガス浄化用触媒
KR101573128B1 (ko) 배기 가스 정화용 산화 촉매
RU2504431C2 (ru) УДЕРЖИВАЮЩИЕ NOx МАТЕРИАЛЫ И ЛОВУШКИ, УСТОЙЧИВЫЕ К ТЕРМИЧЕСКОМУ СТАРЕНИЮ
JP5021188B2 (ja) 排ガス浄化用触媒
JP6386449B2 (ja) ガソリンパーティキュレートフィルタの上流側で使用するための始動時触媒
JP5720949B2 (ja) 排ガス浄化用触媒
JP6246192B2 (ja) 三元触媒系
JP5917516B2 (ja) Nh3−形成活性が改良された、ガソリンリーンバーンエンジンのための触媒
KR101521744B1 (ko) 배기가스 정화 촉매
CN113260454A (zh) 层状三元转化(twc)催化剂和制造所述催化剂的方法
WO2019065206A1 (ja) 排ガス浄化用触媒
WO2020195777A1 (ja) 排ガス浄化用触媒
JP2012035206A (ja) 排ガス浄化触媒
EP1468721B1 (en) Exhaust gas purifying catalyst and process for purifying exhaust gas
JP6748590B2 (ja) 排ガス浄化用触媒
CN110997141A (zh) 排气净化用催化剂
JP2012217937A (ja) 排ガス浄化用触媒及び該排ガス浄化用触媒を備える排ガス浄化装置
JP2012217938A (ja) 排ガス浄化用触媒
JP2012217933A (ja) 排ガス浄化用触媒
EP2610452B1 (en) Exhaust purification system of internal combustion engine
JP4648914B2 (ja) 炭化水素吸着剤、排ガス浄化用触媒および排ガス浄化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12767402

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14110274

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137027816

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012767402

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012767402

Country of ref document: EP