WO2012137609A1 - 燃料電池用電解質膜・電極構造体及びその製造方法 - Google Patents

燃料電池用電解質膜・電極構造体及びその製造方法 Download PDF

Info

Publication number
WO2012137609A1
WO2012137609A1 PCT/JP2012/057507 JP2012057507W WO2012137609A1 WO 2012137609 A1 WO2012137609 A1 WO 2012137609A1 JP 2012057507 W JP2012057507 W JP 2012057507W WO 2012137609 A1 WO2012137609 A1 WO 2012137609A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrolyte membrane
resin
frame member
electrode assembly
Prior art date
Application number
PCT/JP2012/057507
Other languages
English (en)
French (fr)
Inventor
杉下昌史
小此木泰介
木村義人
田中之人
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201280016093.6A priority Critical patent/CN103443981B/zh
Priority to DE112012001547T priority patent/DE112012001547T5/de
Priority to US14/008,193 priority patent/US20140017590A1/en
Priority to JP2013508809A priority patent/JP5681792B2/ja
Publication of WO2012137609A1 publication Critical patent/WO2012137609A1/ja
Priority to US15/857,807 priority patent/US10658683B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • a first electrode and a second electrode each having an electrode catalyst layer and a gas diffusion layer are provided on both sides of a solid polymer electrolyte membrane, and the first electrode has an outer dimension larger than that of the second electrode.
  • the present invention relates to a membrane / electrode assembly for a fuel cell set to be small and a method of manufacturing the same.
  • a polymer electrolyte fuel cell employs a solid polymer electrolyte membrane composed of a polymer ion exchange membrane.
  • This fuel cell has an electrolyte membrane / electrode structure in which an anode electrode and a cathode electrode consisting of a catalyst layer (electrode catalyst layer) and a gas diffusion layer (porous carbon) are disposed on both sides of a solid polymer electrolyte membrane.
  • the body (MEA) is held by a separator (bipolar plate).
  • the fuel cells are stacked by a predetermined number to constitute a fuel cell stack, and are used, for example, as a vehicle fuel cell stack.
  • one gas diffusion layer is set to have a smaller plane dimension (surface area) than the solid polymer electrolyte membrane, and the other gas diffusion layer is the same as the solid polymer electrolyte membrane.
  • a so-called step-type MEA may be configured to be set to the planar dimension of
  • the electrolyte membrane 1 and the electrolyte membrane 1 are disposed on one side.
  • the cathode catalyst layer 2 a, the anode catalyst layer 2 b disposed on the other side of the electrolyte membrane 1, and gas diffusion layers 3 a and 3 b disposed on both sides of the electrolyte membrane 1 are provided.
  • the gas diffusion layer 3 b on the anode side is configured to be equivalent to the area of the electrolyte membrane 1 and larger than the area of the gas diffusion layer 3 a on the cathode side.
  • a gasket structure 4 is disposed in an edge region of the electrolyte membrane-electrode assembly (MEA), and an outer peripheral portion of the electrolyte membrane 1 on the gas diffusion layer 3 a side and the gasket structure 4 are adhesive layers 5. It is joined through.
  • the MEA and the gasket structure 4 are only fixed to the outer peripheral edge portion of the electrolyte membrane 1 exposed to the outside from the gas diffusion layer 3 a via the adhesive layer 5. For this reason, the bonding strength between the MEA and the gasket structure 4 is low, and a desired strength can not be obtained.
  • the present invention solves this kind of problem, and around the periphery of the solid polymer electrolyte membrane to firmly and easily bond the resin frame member, and well suppress the deformation of the resin frame member. It is an object of the present invention to provide a fuel cell electrolyte membrane electrode assembly and a method of manufacturing the same.
  • a first electrode and a second electrode each having an electrode catalyst layer and a gas diffusion layer are provided on both sides of a solid polymer electrolyte membrane, and the first electrode has an outer dimension larger than that of the second electrode.
  • the present invention relates to an electrolyte membrane / electrode assembly for a fuel cell, which is set to be small, and a method of manufacturing the same.
  • a resin frame member is provided around the periphery of the solid polymer electrolyte membrane, and the resin frame member and at least the outer peripheral edge of the first electrode or the second electrode It has the impregnation part which joins integrally any one of an outer-periphery part.
  • this manufacturing method comprises the steps of forming the first electrode and the second electrode on both sides of the solid polymer electrolyte membrane, the step of forming the resin frame member, the outer peripheral edge portion of the first electrode, and The inner peripheral edge portion of the resin frame member is impregnated only with the outer peripheral edge portion of the first electrode by overlapping the inner peripheral edge portion of the resin frame member and heating each other's polymerization site, and And a step of joining the resin frame member around the periphery of the solid polymer electrolyte membrane.
  • the resin frame member is formed by overlapping the outer peripheral edge portion of the gas diffusion layer constituting the first electrode and the inner peripheral edge portion of the resin frame member and heating the polymerization site of each other.
  • a step of impregnating and bonding the inner peripheral edge portion only to the outer peripheral edge portion of the first electrode, a step of forming an electrode catalyst layer on both sides of the solid polymer electrolyte membrane, and a step of forming the electrode catalyst layer on both sides of the solid polymer electrolyte membrane And integrating the gas diffusion layer constituting the first electrode to which the resin frame member is joined and the gas diffusion layer constituting the second electrode.
  • the resin frame member is formed by superposing the outer peripheral edge portion of the gas diffusion layer constituting the first electrode and the inner peripheral edge portion of the resin frame member and heating the polymerization site of each other.
  • the present invention has the impregnating portion for integrally joining the resin frame member and at least one of the outer peripheral edge portion of the first electrode or the outer peripheral edge portion of the second electrode. For this reason, the bonding strength between the resin frame member and at least the first electrode or the second electrode can be improved better than bonding by adhesion, and the occurrence of peeling or the like can be suppressed as much as possible.
  • the resin frame member is joined only to the first electrode. Therefore, the heat shrinking portion of the resin frame member is reduced, and it is possible to suppress the occurrence of warpage or the like in the resin frame member.
  • the resin frame member can be firmly and easily joined around the outer periphery of the solid polymer electrolyte membrane, and the deformation of the resin frame member is favorably suppressed.
  • resin is impregnated in the outer peripheral end of each of the gas diffusion layers constituting the first electrode and the second electrode and the resin frame member, and the resin impregnated portion is integrally provided. There is. For this reason, the bonding strength between the first electrode and the second electrode and the resin frame member can be improved better than the bonding by adhesion, and the occurrence of peeling and the like can be suppressed as much as possible.
  • resin is impregnated into the outer peripheral end of the gas diffusion layer constituting the second electrode and the resin frame member so that the resin impregnated portion is integrally provided. Therefore, the heat shrinking portion of the resin frame member is reduced, and it is possible to suppress the occurrence of warpage or the like in the resin frame member. And since a resin impregnation part is provided only in a 2nd electrode with a big size, while resin containing a glass filler is applied as a resin member, resin with a high melting temperature is applicable.
  • FIG. 1 is an exploded perspective view showing main components of a polymer electrolyte fuel cell in which an electrolyte membrane-electrode assembly according to an embodiment of the present invention is incorporated.
  • FIG. 2 is a cross-sectional view of the fuel cell taken along line II-II in FIG. It is front explanatory drawing of the cathode side electrode side of the said membrane electrode assembly.
  • level difference MEA level difference
  • step difference MEA It is explanatory drawing of the joining process of the said level
  • a polymer electrolyte fuel cell 12 in which the membrane electrode assembly 10 according to the first embodiment of the present invention is incorporated includes the electrolyte membrane electrode assembly 10 according to the first embodiment.
  • the sheet is held by the separator 14 and the second separator 16.
  • the first separator 14 and the second separator 16 are made of, for example, a steel plate, a stainless steel plate, an aluminum plate, a plated steel plate, or a metal plate whose surface is treated for corrosion prevention, or a carbon member. .
  • the electrolyte membrane / electrode assembly 10 has, for example, a solid polymer electrolyte membrane 18 in which a thin film of perfluorosulfonic acid is impregnated with water, and an anode side sandwiching the solid polymer electrolyte membrane 18.
  • An electrode (second electrode) 20 and a cathode electrode (first electrode) 22 are provided.
  • the solid polymer electrolyte membrane 18 HC (hydrocarbon) -based electrolyte is used in addition to fluorine-based electrolyte.
  • the cathode 22 has a planar dimension smaller than that of the solid polymer electrolyte membrane 18 and the anode 20.
  • the anode 20 and the cathode 22 may have the same planar size, and the cathode 22 may have a larger planar size than the anode 20.
  • the anode 20 is disposed on one surface 18 a of the solid polymer electrolyte membrane 18.
  • the cathode 22 is disposed on the other surface 18 b of the solid polymer electrolyte membrane 18 and exposes the outer periphery of the solid polymer electrolyte membrane 18 in a frame shape.
  • the anode 20 includes an electrode catalyst layer 20a joined to the surface 18a of the solid polymer electrolyte membrane 18, and a gas diffusion layer 20c laminated on the electrode catalyst layer 20a via an intermediate layer (underlayer) 20b.
  • the cathode 22 includes an electrode catalyst layer 22a joined to the surface 18b of the solid polymer electrolyte membrane 18, and a gas diffusion layer 22c laminated on the electrode catalyst layer 22a via an intermediate layer (underlayer) 22b. Set up.
  • the electrode catalyst layers 20a and 22a form catalyst particles in which platinum particles are supported on carbon black, and a polymer electrolyte is used as an ion conductive binder, and the catalyst particles are uniformly mixed in a solution of the polymer electrolyte.
  • the catalyst paste thus produced is formed by printing, coating or transferring on both sides of the solid polymer electrolyte membrane 18.
  • the intermediate layers 20b and 22b are applied to the gas diffusion layers 20c and 22c after making carbon black and FEP (tetrafluoroethylene-hexafluoropropylene copolymer) particles and carbon nanotubes into a paste.
  • the gas diffusion layers 20c, 22c are made of carbon paper or the like, and the plane of the gas diffusion layer 20c is set larger than the plane of the gas diffusion layer 22c.
  • the membrane electrode assembly 10 includes a resin frame member 24 which goes around the periphery of the solid polymer electrolyte membrane 18 and is bonded only to the cathode 22.
  • the resin frame member 24 is made of, for example, PPS (polyphenylene sulfide), PPA (polyphthalamide) or the like, and as described later, it is impregnated by impregnating the inner peripheral portion only to the outer peripheral portion of the cathode electrode 22 It has a section 26.
  • one end edge of the fuel cell 12 in the direction of arrow B communicates with each other in the direction of arrow A, which is the stacking direction, and contains an oxidant gas such as oxygen
  • the fuel gas inlet communication hole 34a for supplying the fuel gas and the cooling medium outlet communication hole for discharging the cooling medium are communicated with each other in the arrow A direction.
  • 32b and an oxidant gas outlet communication hole 30b for discharging an oxidant gas are provided in the direction of arrow C.
  • An oxidant gas flow passage 36 communicating with the oxidant gas inlet communication hole 30a and the oxidant gas outlet communication hole 30b is provided on the surface 16a of the second separator 16 facing the membrane electrode assembly 10.
  • a fuel gas passage 38 communicating with the fuel gas inlet communication hole 34 a and the fuel gas outlet communication hole 34 b is formed on the surface 14 a of the first separator 14 facing the membrane electrode assembly 10. Between the surface 14 b of the first separator 14 and the surface 16 b of the second separator 16, a cooling medium flow passage 40 communicating with the cooling medium inlet communication hole 32 a and the cooling medium outlet communication hole 32 b is formed.
  • the first seal member 42 is integrated with the surfaces 14 a and 14 b of the first separator 14 around the outer peripheral end of the first separator 14.
  • the second seal member 44 is integrated with the surfaces 16 a and 16 b of the separator 16 around the outer peripheral end of the second separator 16.
  • the first seal member 42 is disposed between the first separator 14 and the second separator 16 with a first convex seal 42 a that contacts the resin frame member 24 of the membrane electrode assembly 10. And a second convex seal 42b interposed therebetween.
  • the second seal member 44 constitutes a flat seal.
  • a convex seal (not shown) may be provided on the second seal member 44.
  • the first and second seal members 42 and 44 may be, for example, EPDM, NBR, fluororubber, silicone rubber, fluorosilicone rubber, butyl rubber, natural rubber, sealing materials such as styrene rubber, chloroprene or acrylic rubber, cushioning materials, Alternatively, a packing material is used.
  • the first separator 14 communicates the fuel gas inlet passage 34a with the fuel gas passage 38 and the fuel gas passage 38 with the fuel gas outlet passage 34b.
  • the discharge hole 48 is formed.
  • the step MEA 50 is manufactured. Specifically, the electrode catalyst layers 20a and 22a are applied to both surfaces 18a and 18b of the solid polymer electrolyte membrane 18, while the gas diffusion layers 20c and 22c are a mixture of a water repellent and carbon particles. Intermediate layers 20b and 22b are applied.
  • the gas diffusion layer 20 c is disposed on the surface 18 a side of the solid polymer electrolyte membrane 18, that is, with the intermediate layer 20 b facing the electrode catalyst layer 20 a, and the surface 18 b of the solid polymer electrolyte membrane 18. That is, the gas diffusion layer 22c is disposed with the intermediate layer 22b facing the electrode catalyst layer 22a.
  • the step MEA 50 is manufactured by laminating these integrally and performing hot pressing.
  • the resin frame member 24 is molded by an injection molding machine (not shown).
  • the resin frame member 24 has the same width dimension H1 as the dimension H1 in the thickness direction of the step MEA 50, and the thickness H2 the same as the thickness H2 of the cathode side electrode 22 of the step MEA 50 at the inner peripheral edge.
  • An inner circumferential protrusion 24a is integrally provided.
  • the projection length L of the inner circumferential projection 24 a is set to the sum of the distance from the tip of the solid polymer electrolyte membrane 18 of the step MEA 50 to the tip of the cathode 22 and the length of the impregnated portion 26.
  • the step MEA 50 is placed on the base 52 with the anode 20 facing downward.
  • the resin frame member 24 superposes the tip of the inner peripheral protrusion 24 a on the outer peripheral edge of the cathode 22 of the step MEA 50, and the glass plate 54 is disposed on the resin frame member 24.
  • a load F is applied to the base 52 side through the glass plate 54 to the resin frame member 24 and the glass plate 54 is transmitted from the laser device 56 to make the outer peripheral edge portion of the cathode side electrode 22 and the resin
  • the laser beam Lb is irradiated to the polymerization site with the inner peripheral edge portion of the frame member 24.
  • the inner peripheral protruding portion 24 a which is the inner peripheral edge portion is intensively heated and melted, and is impregnated in the gas diffusion layer 22 c which constitutes the cathode side electrode 22.
  • the resin frame member 24 is joined to the cathode side electrode 22 by the impregnating portion 26 in which the inner peripheral edge portion is impregnated only to the outer peripheral edge portion of the cathode side electrode 22.
  • the electrode structure 10 is manufactured.
  • the inner peripheral edge portion of the resin frame member 24 is impregnated only in the outer peripheral edge portion of the cathode side electrode 22. And is bonded to the cathode 22.
  • the bonding strength between the resin frame member 24 and the cathode 22 can be improved better than the bonding by adhesion, and the occurrence of peeling and the like can be suppressed as much as possible.
  • the resin frame member 24 is joined only to the cathode electrode 22. Therefore, the heat shrinking portion of the resin frame member 24 is reduced, and the occurrence of warpage or the like in the resin frame member 24 can be suppressed.
  • the heat treatment is concentrated on only the polymerization site by laser heating using the laser device 56. Therefore, the resin frame member 24 is only heated locally, the dissolution time is shortened, the cost is reduced, and the deformation is reduced as much as possible.
  • infrared welding, impulse welding, or the like may be employed.
  • an oxidant gas such as an oxygen-containing gas is supplied to the oxidant gas inlet manifold 30a, and a fuel gas such as a hydrogen-containing gas is supplied to the fuel gas inlet manifold 34a. Further, a cooling medium such as pure water, ethylene glycol, or oil is supplied to the cooling medium inlet communication hole 32a.
  • the oxidant gas is introduced from the oxidant gas inlet communication hole 30a into the oxidant gas flow path 36 of the second separator 16 and moves in the direction of arrow B to move to the cathode 22 of the membrane electrode assembly 10.
  • the fuel gas is introduced from the fuel gas inlet communication hole 34 a through the supply hole 46 into the fuel gas flow path 38 of the first separator 14. The fuel gas moves along the fuel gas flow path 38 in the direction of arrow B, and is supplied to the anode 20 of the membrane electrode assembly 10.
  • the oxidant gas supplied to the cathode 22 and the fuel gas supplied to the anode 20 are consumed by the electrochemical reaction in the electrode catalyst layer. Power is generated.
  • the oxidant gas supplied to the cathode 22 and consumed is discharged in the direction of arrow A along the oxidant gas outlet passage 30b.
  • the fuel gas supplied to the anode 20 and consumed is discharged in the direction of arrow A along the fuel gas outlet passage 34 b through the discharge hole 48.
  • the cooling medium supplied to the cooling medium inlet communication hole 32 a is introduced into the cooling medium channel 40 between the first separator 14 and the second separator 16, and then flows in the arrow B direction.
  • the cooling medium is discharged from the cooling medium outlet communication hole 32 b after cooling the membrane electrode assembly 10.
  • FIG. 7 is process explanatory drawing of the manufacturing method of the membrane electrode structure 10 which concerns on the 2nd Embodiment of this invention.
  • the intermediate layer 20b is applied to the gas diffusion layer 20c on the anode side (S1), and the intermediate layer 22b is applied to the gas diffusion layer 22c on the cathode side (S2).
  • the gas diffusion layer 22c is bonded to a resin frame member 24 which has been formed by injection molding in advance (S3).
  • the bonding process between the gas diffusion layer 22c and the resin frame member 24 is substantially the same as that of the first embodiment, and for example, the gas diffusion layer 22c is disposed on the base 52 shown in FIG. To be done. Therefore, the resin frame member 24 and the gas diffusion layer 22 c of the cathode 22 are integrated by the impregnation portion 26.
  • the electrode catalyst layers 20a and 22a are applied to both surfaces 18a and 18b of the solid polymer electrolyte membrane 18 (S4). Furthermore, the gas diffusion layer 20c on the anode side and the gas diffusion layer 22c on the cathode side to which the resin frame member 24 is joined are disposed on both sides 18a and 18b of the solid polymer electrolyte membrane 18, respectively.
  • the membrane electrode assembly 10 is manufactured by being integrated by the treatment (S5).
  • FIG. 8 is a process diagram of the method of manufacturing the membrane electrode assembly 10 according to the third embodiment of the present invention.
  • the electrode catalyst layer 20a is applied to the intermediate layer 20b of the gas diffusion layer 20c (S12) .
  • the resin frame member 24 is joined to the gas diffusion layer 22c (S14). This bonding process is similar to that of the first and second embodiments described above.
  • the electrode catalyst layer 22a on the cathode side is applied to the surface 18b of the solid polymer electrolyte membrane 18 (S15).
  • the gas diffusion layer 20c on the anode side and the gas diffusion layer 22c on the cathode side to which the resin frame member 24 is bonded are disposed on both sides 18a and 18b of the solid polymer electrolyte membrane 18, respectively.
  • the electrolyte membrane electrode assembly 10 is manufactured by being integrated by performing processing (S16).
  • FIG. 9 is a cross-sectional view of a solid polymer electrolyte fuel cell 62 in which an electrolyte membrane and electrode assembly 60 according to a fourth embodiment of the present invention is incorporated.
  • the same components as those of the polymer electrolyte fuel cell 12 in which the membrane electrode assembly 10 according to the first embodiment is incorporated are designated by the same reference numerals, and the detailed description thereof is omitted. . Further, in the fifth and subsequent embodiments described below, the detailed description thereof is also omitted.
  • the anode 20 includes an electrode catalyst layer 20a bonded to the surface 18a of the solid polymer electrolyte membrane 18 and a gas diffusion layer 20c stacked on the electrode catalyst layer 20a.
  • the cathode 22 includes an electrode catalyst layer 22 a joined to the surface 18 b of the solid polymer electrolyte membrane 18 and a gas diffusion layer 22 c stacked on the electrode catalyst layer 22 a.
  • the electrode catalyst layer 20a and the gas diffusion layer 20c may be provided via an intermediate layer (underlayer), and the electrode catalyst layer 22a and the gas diffusion layer 22c are similarly intermediate It may be provided via a layer (underlayer).
  • the resin frame member 24 and the gas diffusion layer 22c constituting the cathode side electrode 22 are integrated by the first resin impregnated portion 26a, while the gas diffusion layer constituting the resin frame member 24 and the anode side electrode 20 20c is integrated by the second resin impregnation portion 26b.
  • the first resin impregnated portion 26a is formed over the entire circumference of the gas diffusion layer 22c that constitutes the cathode electrode 22.
  • the width dimension L1 of the long side (side extending in the arrow B direction) of the first resin impregnated portion 26a is the width dimension L2 of the short side (side extending in the arrow C direction) of the first resin impregnated portion 26a. It is set to be wider (L1> L2).
  • the second resin impregnated portion 26 b is formed over the entire periphery of the gas diffusion layer 20 c that constitutes the anode 20.
  • the width dimension L3 of the long side (the side extending in the arrow B direction) of the second resin impregnated portion 26b is the width dimension L4 of the short side (the side extending in the arrow C direction) of the second resin impregnated portion 26b. It is set to be wider (L3> L4).
  • the second resin-impregnated portion 26b terminates at a position spaced a distance H outward from the first inner peripheral portion 24c on the cathode side electrode 22 side of the resin frame member 24. That is, the second resin impregnated portion 26 b is not provided at a position overlapping the cathode side electrode 22 in the stacking direction.
  • a step MEA 64 constituting the membrane electrode assembly 60 is manufactured. Specifically, electrode catalyst layers 20a and 22a are applied to both surfaces 18a and 18b of the solid polymer electrolyte membrane 18, respectively. Then, the gas diffusion layer 20c is disposed on the surface 18a side of the solid polymer electrolyte membrane 18, ie, the electrode catalyst layer 20a, and on the surface 18b of the solid polymer electrolyte membrane 18, ie, the electrode catalyst layer 22a. Gas diffusion layer 22c is disposed.
  • a step MEA 64 is manufactured by laminating these integrally and performing hot pressing.
  • the resin frame member 24 is formed in advance by an injection molding machine (not shown), and the resin frame member 24 and the step MEA 64 are aligned.
  • the resin frame member 24 has a first inner peripheral portion 24c and a second inner peripheral portion 24d, and while the end of the cathode side electrode 22 is disposed on the first inner peripheral portion 24c, The end of the anode 20 is disposed on the inner circumferential portion 24 d.
  • the first resin member 26aa for forming the first resin impregnated portion 26a is prepared on the cathode side electrode 22 side, and the second resin impregnated portion 26b is formed on the anode side electrode 20 side.
  • the second resin member 26bb is prepared.
  • the first resin member 26aa and the second resin member 26bb have a frame shape (frame shape), and are made of, for example, the same material as the resin frame member 24.
  • the first resin member 26aa and the second resin member 26bb may be configured using a resin material that does not contain a filler. .
  • the step MEA 64 and the resin frame member 24 can be joined using the strong resin frame member 24.
  • the first resin member 26aa and the second resin member 26bb are disposed on the step MEA 64 and the resin frame member 24 and a load is applied, the first resin member 26aa and the second resin member 26bb. Is heated.
  • a heating method laser welding, infrared welding, impulse welding or the like is adopted.
  • first resin member 26aa and the second resin member 26bb are heated and melted.
  • the first resin member 26 aa is impregnated across the gas diffusion layer 22 c constituting the cathode electrode 22 and the resin frame member 24, while the second resin member 26 bb is a gas diffusion layer 20 c constituting the anode electrode 20. And, it is impregnated across the resin frame member 24.
  • the first resin impregnated portion 26 a is formed across the gas diffusion layer 22 c and the resin frame member 24 that constitute the cathode electrode 22, and the gas that constitutes the anode electrode 20.
  • a second resin impregnated portion 26 b is formed across the diffusion layer 20 c and the resin frame member 24 to manufacture the electrolyte membrane / electrode assembly 60.
  • the resin is impregnated in the outer peripheral end of each of the gas diffusion layers 22c and 20c constituting the cathode electrode 22 and the anode electrode 20 and the resin frame member 24, respectively.
  • the 1 resin impregnation part 26a and the 2nd resin impregnation part 26b are provided integrally.
  • the bonding strength between the cathode 22 and the anode 20 and the resin frame member 24 can be improved better than the bonding by adhesion, and the occurrence of peeling and the like can be suppressed as much as possible.
  • the width dimension L1 of the long side of the first resin impregnated part 26a is set wider than the width dimension L2 of the short side of the first resin impregnated part 26a (L1> L2) (see FIG. 10) .
  • the width dimension L3 of the long side of the second resin impregnated portion 26b is set wider than the width dimension L4 of the short side of the second resin impregnated portion 26b (L3> L4) (see FIG. 11). . Accordingly, the bonding strength between the cathode electrode 22 and the anode electrode 20 and the resin frame member 24 is further improved.
  • the second resin-impregnated portion 26b terminates at a position spaced a distance H outward from the first inner peripheral portion 24c on the cathode side electrode 22 side of the resin frame member 24. ing. In the range of the distance H, since the electrode catalyst layer 22 a of the cathode electrode 22 is not present facing the anode electrode 20, no abnormal reaction occurs.
  • the gas diffusion layer 22c of the cathode electrode 22 and the resin frame member 24 are integrated by the first resin impregnation portion 27a.
  • the gas diffusion layer 20c of the anode 20 and the resin frame member 24 are integrated by the second resin impregnation portion 27b.
  • the second resin-impregnated portion 27b is inward of the end of the first resin-impregnated portion 27a by a distance Ha.
  • the electrode catalyst layer 22 a of the cathode 22 is present in the range of the distance Ha where the second resin impregnated portion 27 b is provided.
  • hydrogen is insufficient in the range of the distance Ha on the anode side electrode 20 side, and an abnormal reaction is easily generated on the cathode side electrode 22 side.
  • FIG. 14 is a cross sectional view showing main parts of an electrolyte membrane and electrode assembly 70 according to a fifth embodiment of the present invention.
  • the membrane electrode assembly 70 includes a resin frame member 72 joined to the cathode 22 and the anode 20.
  • a first resin projection 74a and a second resin are respectively integrated with the resin frame member 72, the gas diffusion layer 22c of the cathode 22 and the gas diffusion layer 20c of the anode 20.
  • the protrusion 74 b is integrally provided.
  • the first resin protrusion 74a is formed into a frame shape (frame shape) around the first inner peripheral portion 24c, and the second resin protrusion 74b is formed into a frame shape around the second inner peripheral portion 24d. (Frame shape) is formed.
  • the first resin projection 74a has an end face opposite to the first inner circumferential portion 24c as an inclined surface 74as inclined toward the resin frame member 72 in the direction of separating from the resin frame member 72. Is preferred.
  • the second resin projection 74b inclines the end surface opposite to the second inner circumferential portion 24d toward the resin frame member 72 in the direction of separating from the resin frame member 72. It is preferable to construct as
  • the first resin projection 74a and the second resin projection 74b are heated and melted by a heating device (not shown), and are impregnated with the gas diffusion layers 22c and 20c by applying a load. For this reason, the 1st resin impregnation part 26a and the 2nd resin impregnation part 26b are formed. Therefore, in the fifth embodiment, the same effect as the fourth embodiment can be obtained.
  • FIG. 15 is a cross sectional view showing main parts of an electrolyte membrane and electrode assembly 80 according to a sixth embodiment of the present invention.
  • the membrane electrode assembly 80 includes a resin frame member 82 joined to the cathode 22 and the anode 20.
  • a first resin member 84a and a second resin member for integrating the resin frame member 82, the gas diffusion layer 22c of the cathode electrode 22, and the gas diffusion layer 20c of the anode electrode 20, respectively.
  • the resin member 84 b is integrally provided in advance by insert molding.
  • the first resin member 84a and the second resin member 84b are heated and melted by a heating device (not shown), and are impregnated with the gas diffusion layers 22c and 20c, respectively, by applying a load. For this reason, the 1st resin impregnation part 26a and the 2nd resin impregnation part 26b are formed. Therefore, in the sixth embodiment, the same effect as the fourth and fifth embodiments can be obtained.
  • FIG. 16 is a cross sectional view showing the main part of an electrolyte membrane and electrode assembly 90 according to a seventh embodiment of the present invention.
  • the membrane electrode assembly 90 includes a resin frame member 92 joined to the cathode 22 and the anode 20.
  • the resin frame member 92 includes a first resin projection 94 a and a first resin protrusion 94 a for integrating the resin frame member 92 and the gas diffusion layer 22 c of the cathode 22 and the gas diffusion layer 20 c of the anode 20 respectively.
  • the resin protrusion 94b is integrally provided.
  • the first resin protrusion 94a is formed into a frame shape (frame shape) around the first inner peripheral portion 24c
  • the second resin protrusion 94b is formed into a frame shape around the second inner peripheral portion 24d. (Frame shape) is formed.
  • the first resin projection 94 a and the second resin projection 94 b have a rectangular cross section. Substantially, in the membrane electrode assembly 70 according to the fifth embodiment, the first resin protrusions 74 a and the second resin protrusions 74 b are configured so as not to provide the inclined surfaces 74 as and 74 bs.
  • the first resin projection 94a and the second resin projection 94b are heated and melted by a heating device (not shown), and a load is applied to each of the gas diffusion layer 22c. , 20c. For this reason, the 1st resin impregnation part 26a and the 2nd resin impregnation part 26b are formed.
  • the same effects as those of the fourth to sixth embodiments can be obtained, and in particular, the manufacturing operation of the first resin projection 94 a and the second resin projection 94 b is simplified. .
  • FIG. 17 is a cross-sectional view of a solid polymer electrolyte fuel cell 102 in which an electrolyte membrane and electrode assembly 100 according to an eighth embodiment of the present invention is incorporated.
  • the resin impregnation member 104 integrates the resin frame member 24 and the gas diffusion layer 20 c that constitutes the anode 20. That is, the resin frame member 24 is joined only to the anode 20 which is larger in size than the cathode 22.
  • the step MEA 106 constituting the electrolyte membrane electrode assembly 100 is fabricated.
  • the resin member 104 a for forming the resin impregnated portion 104 is prepared in a state where the resin frame member 24 and the step MEA 106 are arranged to each other.
  • the resin member 104a has a frame shape (frame shape), and uses a resin material in which a glass filler is mixed and strengthened.
  • the resin member 104a is heated in a state where the resin member 104a is disposed on the stepped MEA 106 and the resin frame member 24 and a load is applied. Therefore, the resin member 104a is heated and melted, and the resin-impregnated portion 104 is formed across the gas diffusion layer 20c and the resin frame member 24 constituting the anode 20, and the membrane electrode assembly 100 is manufactured. .
  • the glass filler when the resin member 104a is heated and melted, the glass filler does not enter the gas diffusion layer 20c, and therefore, does not directly contact the solid polymer electrolyte membrane 18.
  • the resin member 104a when the resin member 104a is melted at a high temperature, the gas diffusion layer 20c, the electrode catalyst layer 20a, and in some cases, the intermediate layer 20b intervene between the solid polymer electrolyte membrane 18 and the resin member 104a. ing. Therefore, the influence of heat on the solid polymer electrolyte membrane 18 is reduced.
  • the resin member 104a As a result, as the resin member 104a, a resin in which glass fillers are mixed is applied, and a resin having a high melting temperature can be applied, and the effect of improving the selectivity of the applied resin can be obtained.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 電解質膜・電極構造体(10)は、固体高分子電解質膜(18)と、前記固体高分子電解質膜(18)を挟持するアノード側電極(20)及びカソード側電極(22)とを備える。カソード側電極(22)は、アノード側電極(20)よりも小さな平面寸法を有する。電解質膜・電極構造体(10)は、固体高分子電解質膜(18)の外周を周回して樹脂製枠部材(24)が設けられるとともに、前記樹脂製枠部材(24)は、内周縁部をカソード側電極(22)の外周縁部にのみ含浸させて前記カソード側電極(22)に接合される。

Description

燃料電池用電解質膜・電極構造体及びその製造方法
 本発明は、それぞれ電極触媒層とガス拡散層とを有する第1電極及び第2電極が、固体高分子電解質膜の両側に設けられ、前記第1電極は、前記第2電極よりも外形寸法が小さく設定される燃料電池用電解質膜・電極構造体及びその製造方法に関する。
 一般的に、固体高分子型燃料電池は、高分子イオン交換膜からなる固体高分子電解質膜を採用している。この燃料電池は、固体高分子電解質膜の両側に、それぞれ触媒層(電極触媒層)とガス拡散層(多孔質カーボン)とからなるアノード側電極及びカソード側電極を配設した電解質膜・電極構造体(MEA)を、セパレータ(バイポーラ板)によって挟持している。この燃料電池は、所定の数だけ積層して燃料電池スタックを構成するとともに、例えば、車載用燃料電池スタックとして使用されている。
 この種の電解質膜・電極構造体では、一方のガス拡散層が固体高分子電解質膜よりも小さな平面寸法(表面積)に設定されるとともに、他方のガス拡散層が前記固体高分子電解質膜と同一の平面寸法に設定される、所謂、段差型MEAを構成する場合がある。
 通常、燃料電池スタックでは、多数の電解質膜・電極構造体が積層されており、コストを抑制するために、前記電解質膜・電極構造体を安価に構成することが要請されている。このため、特に高価な固体高分子電解質膜の使用量を削減するとともに、構成の簡素化を図るため、種々の提案がなされている。
 例えば、特開2007-66766号公報(以下、従来技術という)に開示されている電解質膜-電極接合体では、図19に示すように、電解質膜1と前記電解質膜1の一方の側に配置されたカソード触媒層2aと、前記電解質膜1の他方の側に配置されたアノード触媒層2bと、前記電解質膜1の両側に配置されるガス拡散層3a、3bとを備えている。
 アノード側のガス拡散層3bは、電解質膜1の面積と同等で、且つ、カソード側のガス拡散層3aの面積よりも大きく構成されている。この電解質膜・電極接合体(MEA)のエッジ領域には、ガスケット構造体4が配置されており、ガス拡散層3a側の電解質膜1の外周部と前記ガスケット構造体4とは、接着層5を介して接合されている。
 しかしながら、上記の従来技術では、MEAとガスケット構造体4とが、ガス拡散層3aから外部に露呈する電解質膜1の外周縁部に接着層5を介して固定されているだけである。このため、MEAとガスケット構造体4との接合強度が低く、所望の強度を得ることができない。
 本発明は、この種の問題を解決するものであり、固体高分子電解質膜の外周を周回して樹脂製枠部材を強固且つ容易に接合するとともに、前記樹脂製枠部材の変形を良好に抑制することが可能な燃料電池用電解質膜・電極構造体及びその製造方法を提供することを目的とする。
 本発明は、それぞれ電極触媒層とガス拡散層とを有する第1電極及び第2電極が、固体高分子電解質膜の両側に設けられ、前記第1電極は、前記第2電極よりも外形寸法が小さく設定される燃料電池用電解質膜・電極構造体及びその製造方法に関するものである。
 この電解質膜・電極構造体では、固体高分子電解質膜の外周を周回して樹脂製枠部材が設けられるとともに、前記樹脂製枠部材と、少なくとも第1電極の外周縁部又は前記第2電極の外周縁部のいずれか一方とを一体に接合させる含浸部を有している。
 さらにまた、この製造方法は、固体高分子電解質膜の両側に、第1電極及び第2電極を形成する工程と、樹脂製枠部材を作成する工程と、前記第1電極の外周縁部と前記樹脂製枠部材の内周縁部とを重ね合わせるとともに、互いの重合部位を加熱することにより、該樹脂製枠部材の内周縁部を前記第1電極の外周縁部にのみ含浸させ、且つ、前記固体高分子電解質膜の外周を周回して前記樹脂製枠部材を接合させる工程とを有している。
また、この製造方法は、第1電極を構成するガス拡散層の外周縁部と樹脂製枠部材の内周縁部とを重ね合わせるとともに、互いの重合部位を加熱することにより、前記樹脂製枠部材の内周縁部を前記第1電極の外周縁部にのみ含浸させて接合させる工程と、固体高分子電解質膜の両側に、電極触媒層を形成する工程と、前記固体高分子電解質膜の両側に、前記樹脂製枠部材が接合された前記第1電極を構成する前記ガス拡散層と第2電極を構成するガス拡散層とを一体化させる工程とを有している。
さらに、この製造方法は、第1電極を構成するガス拡散層の外周縁部と樹脂製枠部材の内周縁部とを重ね合わせるとともに、互いの重合部位を加熱することにより、前記樹脂製枠部材の内周縁部を前記第1電極の外周縁部にのみ含浸させて接合させる工程と、第2電極を構成するガス拡散層に電極触媒層を形成するとともに、固体高分子電解質膜の一方の側に、前記第1電極を構成する電極触媒層を形成する工程と、前記固体高分子電解質膜の両側に、前記樹脂製枠部材が接合された前記第1電極と前記第2電極とを一体化させる工程とを有している。
 本発明によれば、樹脂製枠部材と、少なくとも第1電極の外周縁部又は第2電極の外周縁部のいずれか一方とを一体に接合させる含浸部を有している。このため、樹脂製枠部材と少なくとも第1電極又は第2電極との接合強度は、接着による接合に比べて良好に向上し、剥がれ等の発生を可及的に抑制することができる。
 また、本発明の製造方法によれば、樹脂製枠部材は、第1電極にのみ接合されている。従って、樹脂製枠部材は、熱収縮する部分が縮小され、前記樹脂製枠部材に反り等が発生することを抑制することが可能になる。これにより、固体高分子電解質膜の外周を周回して樹脂製枠部材を強固且つ容易に接合することができるとともに、前記樹脂製枠部材の変形が良好に抑制される。
また、本発明によれば、第1電極及び第2電極を構成する各ガス拡散層の外周端部と樹脂製枠部材とには、それぞれ樹脂が含浸されて樹脂含浸部が一体に設けられている。このため、第1電極及び第2電極と樹脂製枠部材との接合強度は、接着による接合に比べて良好に向上し、剥がれ等の発生を可及的に抑制することができる。
さらにまた、本発明によれば、第2電極を構成するガス拡散層の外周端部と樹脂製枠部材とには、樹脂が含浸されて樹脂含浸部が一体に設けられている。従って、樹脂製枠部材は、熱収縮する部分が縮小され、前記樹脂製枠部材に反り等が発生することを抑制することが可能になる。しかも、寸法の大きな第2電極のみに樹脂含浸部が設けられるため、樹脂部材として、ガラスフィラー入りの樹脂が適用されるとともに、溶融温度の高い樹脂を適用することができる。
本発明の実施形態に係る電解質膜・電極構造体が組み込まれる固体高分子型燃料電池の要部分解斜視説明図である。 前記燃料電池の、図1中、II-II線断面説明図である。 前記電解質膜・電極構造体のカソード側電極側の正面説明図である。 本発明の第1の実施形態に係る製造方法において、段差MEAの一部断面説明図である。 樹脂製枠部材の説明図である。 前記段差MEAと前記樹脂製枠部材との接合処理の説明図である。 本発明の第2の実施形態に係る製造方法の工程説明図である。 本発明の第3の実施形態に係る製造方法の工程説明図である。 本発明の第4の実施形態に係る電解質膜・電極構造体が組み込まれる固体高分子型燃料電池の断面説明図である。 前記電解質膜・電極構造体のカソード側電極側の正面説明図である。 前記電解質膜・電極構造体のアノード側電極側の正面説明図である。 前記電解質膜・電極構造体を製造する方法の説明図である。 前記電解質膜・電極構造体の比較例の説明図である。 本発明の第5の実施形態に係る電解質膜・電極構造体の要部断面説明図である。 本発明の第6の実施形態に係る電解質膜・電極構造体の要部断面説明図である。 本発明の第7の実施形態に係る電解質膜・電極構造体の要部断面説明図である。 本発明の第8の実施形態に係る電解質膜・電極構造体が組み込まれる固体高分子型燃料電池の断面説明図である。 前記電解質膜・電極構造体を製造する方法の説明図である。 特開2007-66766号公報に開示された電解質膜-電極接合体の説明図である。
 図1及び図2に示すように、本発明の第1の実施形態に係る電解質膜・電極構造体10が組み込まれる固体高分子型燃料電池12は、前記電解質膜・電極構造体10を第1セパレータ14及び第2セパレータ16で挟持する。第1セパレータ14及び第2セパレータ16は、例えば、鋼板、ステンレス鋼板、アルミニウム板、めっき処理鋼板、あるいはその金属表面に防食用の表面処理を施した金属板や、カーボン部材等で構成されている。
 図2に示すように、電解質膜・電極構造体10は、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜18と、前記固体高分子電解質膜18を挟持するアノード側電極(第2電極)20及びカソード側電極(第1電極)22とを備える。固体高分子電解質膜18は、フッ素系電解質の他、HC(炭化水素)系電解質が使用される。
 カソード側電極22は、固体高分子電解質膜18及びアノード側電極20よりも小さな平面寸法を有する。なお、アノード側電極20とカソード側電極22とは、同一の平面寸法であってもよく、また、前記カソード側電極22が前記アノード側電極20よりも大きな平面寸法を有していてもよい。
 アノード側電極20は、固体高分子電解質膜18の一方の面18aに配置される。カソード側電極22は、固体高分子電解質膜18の他方の面18bに配置されるとともに、前記固体高分子電解質膜18の外周を額縁状に露呈させる。
 アノード側電極20は、固体高分子電解質膜18の面18aに接合される電極触媒層20aと、前記電極触媒層20aに中間層(下地層)20bを介して積層されるガス拡散層20cとを設ける。カソード側電極22は、固体高分子電解質膜18の面18bに接合される電極触媒層22aと、前記電極触媒層22aに中間層(下地層)22bを介して積層されるガス拡散層22cとを設ける。
 電極触媒層20a、22aは、カーボンブラックに白金粒子を担持した触媒粒子を形成し、イオン導伝性バインダーとして高分子電解質を使用し、この高分子電解質の溶液中に前記触媒粒子を均一に混合して作製された触媒ペーストを、固体高分子電解質膜18の両面に印刷、塗布又は転写することによって構成される。
 中間層20b、22bは、カーボンブラック及びFEP(四フッ化エチレン-六フッ化プロピレン共重合体)粒子とカーボンナノチューブをペースト状にした後、ガス拡散層20c、22cに塗布される。ガス拡散層20c、22cは、カーボンペーパ等からなるとともに、前記ガス拡散層20cの平面は、前記ガス拡散層22cの平面よりも大きく設定される。
 図2及び図3に示すように、電解質膜・電極構造体10は、固体高分子電解質膜18の外周を周回するとともに、カソード側電極22にのみ接合される樹脂製枠部材24を備える。樹脂製枠部材24は、例えば、PPS(ポリフェニレンサルファイド)やPPA(ポリフタルアミド)等で構成されるとともに、後述するように、内周縁部をカソード側電極22の外周縁部にのみ含浸させる含浸部26を有する。
 図1に示すように、燃料電池12の矢印B方向(図1中、水平方向)の一端縁部には、積層方向である矢印A方向に互いに連通して、酸化剤ガス、例えば、酸素含有ガスを供給するための酸化剤ガス入口連通孔30a、冷却媒体を供給するための冷却媒体入口連通孔32a、及び燃料ガス、例えば、水素含有ガスを排出するための燃料ガス出口連通孔34bが、矢印C方向(鉛直方向)に配列して設けられる。
 燃料電池12の矢印B方向の他端縁部には、矢印A方向に互いに連通して、燃料ガスを供給するための燃料ガス入口連通孔34a、冷却媒体を排出するための冷却媒体出口連通孔32b、及び酸化剤ガスを排出するための酸化剤ガス出口連通孔30bが、矢印C方向に配列して設けられる。
 第2セパレータ16の電解質膜・電極構造体10に向かう面16aには、酸化剤ガス入口連通孔30aと酸化剤ガス出口連通孔30bとに連通する酸化剤ガス流路36が設けられる。
 第1セパレータ14の電解質膜・電極構造体10に向かう面14aには、燃料ガス入口連通孔34aと燃料ガス出口連通孔34bとに連通する燃料ガス流路38が形成される。第1セパレータ14の面14bと第2セパレータ16の面16bとの間には、冷却媒体入口連通孔32aと冷却媒体出口連通孔32bとに連通する冷却媒体流路40が形成される。
 図1及び図2に示すように、第1セパレータ14の面14a、14bには、この第1セパレータ14の外周端部を周回して、第1シール部材42が一体化されるとともに、第2セパレータ16の面16a、16bには、この第2セパレータ16の外周端部を周回して、第2シール部材44が一体化される。
 図2に示すように、第1シール部材42は、電解質膜・電極構造体10の樹脂製枠部材24に当接する第1凸状シール42aと、第1セパレータ14と第2セパレータ16との間に介装される第2凸状シール42bとを有する。第2シール部材44は、平面シールを構成する。なお、第2凸状シール42bに代えて、第2シール部材44に凸状シール(図示せず)を設けてもよい。
 第1及び第2シール部材42、44には、例えば、EPDM、NBR、フッ素ゴム、シリコーンゴム、フロロシリコーンゴム、ブチルゴム、天然ゴム、スチレンゴム、クロロプレーン又はアクリルゴム等のシール材、クッション材、あるいはパッキン材が用いられる。
 図1に示すように、第1セパレータ14には、燃料ガス入口連通孔34aを燃料ガス流路38に連通する供給孔部46と、前記燃料ガス流路38を燃料ガス出口連通孔34bに連通する排出孔部48とが形成される。
 この燃料電池12において、本発明の第1の実施形態に係る電解質膜・電極構造体10の製造方法について、以下に説明する。
 先ず、図4に示すように、段差MEA50が作製される。具体的には、固体高分子電解質膜18の両方の面18a、18bには、電極触媒層20a、22aが塗布される一方、ガス拡散層20c、22cには、撥水剤とカーボン粒子の混合物からなる中間層20b、22bが塗布される。
 そして、固体高分子電解質膜18の面18a側に、すなわち、電極触媒層20aに、中間層20bを対向させてガス拡散層20cが配置されるとともに、前記固体高分子電解質膜18の面18bに、すなわち、電極触媒層22aに、中間層22bを対向させてガス拡散層22cが配置される。これらが一体に積層されてホットプレス処理されることにより、段差MEA50が作製される。
 図5に示すように、樹脂製枠部材24が射出成形機(図示せず)により成形される。樹脂製枠部材24は、段差MEA50の厚さ方向の寸法H1と同一の幅寸法H1を有するとともに、内周縁部には、前記段差MEA50のカソード側電極22の厚さH2と同一の厚さH2を有する内周突出部24aが一体に設けられる。内周突出部24aの突出長さLは、段差MEA50の固体高分子電解質膜18の先端部からカソード側電極22の先端部までの距離と含浸部26の長さとの和に設定される。
 次に、図6に示すように、基台52上には、段差MEA50がアノード側電極20を下方にして載置される。樹脂製枠部材24は、内周突出部24aの先端を段差MEA50のカソード側電極22の外周縁部に重ね合わせるとともに、前記樹脂製枠部材24上にガラス板54が配置される。樹脂製枠部材24には、ガラス板54を介して基台52側に荷重Fが付与されるとともに、レーザ装置56から前記ガラス板54を透過してカソード側電極22の外周縁部と樹脂製枠部材24の内周縁部との重合部位にレーザ光Lbが照射される。
 このため、樹脂製枠部材24は、内周縁部である内周突出部24aが集中的に加熱溶融され、カソード側電極22を構成するガス拡散層22cに含浸される。これにより、図2に示すように、樹脂製枠部材24は、内周縁部をカソード側電極22の外周縁部にのみ含浸させた含浸部26により前記カソード側電極22に接合され、電解質膜・電極構造体10が製造される。
 この場合、第1の実施形態では、段差MEA50と樹脂製枠部材24とが個別に作成された後、この樹脂製枠部材24の内周縁部をカソード側電極22の外周縁部にのみ含浸させて、前記カソード側電極22に接合している。このため、樹脂製枠部材24とカソード側電極22との接合強度は、接着による接合に比べて良好に向上し、剥れ等の発生を可及的に抑制することができる。
 しかも、樹脂製枠部材24は、カソード側電極22にのみ接合されている。従って、樹脂製枠部材24は、熱収縮する部分が縮小され、前記樹脂製枠部材24に反り等が発生することを抑制することが可能になる。
 特に、レーザ装置56を用いて、レーザ加熱により重合部位にのみ加熱処理が集中して行われている。従って、樹脂製枠部材24は、局所的に加熱されるだけであり、溶解時間も短縮化され、コスト削減を図るとともに、変形が可及的に軽減される。なお、レーザ装置56によるレーザ溶着に代えて、赤外線溶着やインパルス溶着等を採用してもよい。
 この燃料電池12の動作について、以下に説明する。
 先ず、図1に示すように、酸化剤ガス入口連通孔30aに酸素含有ガス等の酸化剤ガスが供給されるとともに、燃料ガス入口連通孔34aに水素含有ガス等の燃料ガスが供給される。さらに、冷却媒体入口連通孔32aに純水やエチレングリコール、オイル等の冷却媒体が供給される。
 このため、酸化剤ガスは、酸化剤ガス入口連通孔30aから第2セパレータ16の酸化剤ガス流路36に導入され、矢印B方向に移動して電解質膜・電極構造体10のカソード側電極22に供給される。一方、燃料ガスは、燃料ガス入口連通孔34aから供給孔部46を通って第1セパレータ14の燃料ガス流路38に導入される。燃料ガスは、燃料ガス流路38に沿って矢印B方向に移動し、電解質膜・電極構造体10のアノード側電極20に供給される。
 従って、各電解質膜・電極構造体10では、カソード側電極22に供給される酸化剤ガスと、アノード側電極20に供給される燃料ガスとが、電極触媒層内で電気化学反応により消費されて発電が行われる。
 次いで、カソード側電極22に供給されて消費された酸化剤ガスは、酸化剤ガス出口連通孔30bに沿って矢印A方向に排出される。同様に、アノード側電極20に供給されて消費された燃料ガスは、排出孔部48を通り燃料ガス出口連通孔34bに沿って矢印A方向に排出される。
 また、冷却媒体入口連通孔32aに供給された冷却媒体は、第1セパレータ14と第2セパレータ16との間の冷却媒体流路40に導入された後、矢印B方向に流通する。この冷却媒体は、電解質膜・電極構造体10を冷却した後、冷却媒体出口連通孔32bから排出される。
 図7は、本発明の第2の実施形態に係る電解質膜・電極構造体10の製造方法の工程説明図である。
 この第2の実施形態では、アノード側のガス拡散層20cに中間層20bが塗布されるとともに(S1)、カソード側のガス拡散層22cに中間層22bが塗布される(S2)。ガス拡散層22cには、予め射出成形により成形された樹脂製枠部材24に接合される(S3)。ガス拡散層22cと樹脂製枠部材24との接合処理は、第1の実施形態と略同様であり、例えば、図6に示す基台52上に、前記ガス拡散層22cが配置されることにより行われる。従って、樹脂製枠部材24とカソード側電極22のガス拡散層22cとは、含浸部26により一体化される。
 一方、固体高分子電解質膜18の両方の面18a、18bには、電極触媒層20a、22aが塗布される(S4)。さらに、固体高分子電解質膜18の両方の面18a、18b側に、それぞれアノード側のガス拡散層20cと樹脂製枠部材24が接合されたカソード側のガス拡散層22cとが配置され、ホットプレス処理により一体化されて電解質膜・電極構造体10が製造される(S5)。
 このように、第2の実施形態では、上記の第1の実施形態と同様の効果が得られる。
 図8は、本発明の第3の実施形態に係る電解質膜・電極構造体10の製造方法の工程説明図である。
 この第3の実施形態では、アノード側のガス拡散層20cに中間層20bが塗布された後(S11)、前記ガス拡散層20cの前記中間層20bに電極触媒層20aが塗布される(S12)。一方、カソード側のガス拡散層22cには、中間層22bが塗布された後(S13)、前記ガス拡散層22cに樹脂製枠部材24が接合される(S14)。この接合処理は、上記の第1及び第2の実施形態と同様である。
 また、固体高分子電解質膜18の面18bには、カソード側の電極触媒層22aが塗布される(S15)。次いで、固体高分子電解質膜18の両方の面18a、18b側に、それぞれアノード側のガス拡散層20cと樹脂製枠部材24が接合されたカソード側のガス拡散層22cとが配置され、ホットプレス処理を施すことにより一体化されて電解質膜・電極構造体10が製造される(S16)。
 従って、第3の実施形態では、上記の第1及び第2の実施形態と同様の効果が得られる。
図9は、本発明の第4の実施形態に係る電解質膜・電極構造体60が組み込まれる固体高分子型燃料電池62の断面説明図である。なお、第1の実施形態に係る電解質膜・電極構造体10が組み込まれる固体高分子型燃料電池12と同一の構成要素には、同一の参照符号を付して、その詳細な説明は省略する。また、以下に説明する第5以降の実施形態においても同様に、その詳細な説明は省略する。
電解質膜・電極構造体60では、アノード側電極20は、固体高分子電解質膜18の面18aに接合される電極触媒層20aと、前記電極触媒層20aに積層されるガス拡散層20cとを設ける。カソード側電極22は、固体高分子電解質膜18の面18bに接合される電極触媒層22aと、前記電極触媒層22aに積層されるガス拡散層22cとを設ける。なお、図示しないが、電極触媒層20aとガス拡散層20cとは、中間層(下地層)を介して設けられていてもよく、電極触媒層22aとガス拡散層22cとは、同様に、中間層(下地層)を介して設けられていてもよい。
樹脂製枠部材24とカソード側電極22を構成するガス拡散層22cとは、第1樹脂含浸部26aにより一体化される一方、前記樹脂製枠部材24とアノード側電極20を構成するガス拡散層20cとは、第2樹脂含浸部26bにより一体化される。
 図10に示すように、第1樹脂含浸部26aは、カソード側電極22を構成するガス拡散層22cの全周にわたって形成される。第1樹脂含浸部26aの長辺(矢印B方向に延在する辺)側の幅寸法L1は、前記第1樹脂含浸部26aの短尺(矢印C方向に延在する辺)側の幅寸法L2よりも幅広(L1>L2)に設定される。
 図11に示すように、第2樹脂含浸部26bは、アノード側電極20を構成するガス拡散層20cの全周にわたって形成される。第2樹脂含浸部26bの長辺(矢印B方向に延在する辺)側の幅寸法L3は、前記第2樹脂含浸部26bの短尺(矢印C方向に延在する辺)側の幅寸法L4よりも幅広(L3>L4)に設定される。
 図9に示すように、第2樹脂含浸部26bは、樹脂製枠部材24のカソード側電極22側の第1内周部24cよりも外方に距離Hだけ離間した位置で終端する。すなわち、第2樹脂含浸部26bは、積層方向にカソード側電極22と重なり合う位置に設けられていない。
 次いで、電解質膜・電極構造体60を製造する方法について、以下に説明する。
 先ず、図12に示すように、電解質膜・電極構造体60を構成する段差MEA64が作製される。具体的には、固体高分子電解質膜18の両方の面18a、18bには、電極触媒層20a、22aが塗布される。そして、固体高分子電解質膜18の面18a側に、すなわち、電極触媒層20aにガス拡散層20cが配置されるとともに、前記固体高分子電解質膜18の面18bに、すなわち、電極触媒層22aにガス拡散層22cが配置される。これらが一体に積層されてホットプレス処理されることにより、段差MEA64が作製される。
 一方、樹脂製枠部材24は、射出成形機(図示せず)により予め成形され、前記樹脂製枠部材24と段差MEA64とが位置合わせされる。樹脂製枠部材24は、第1内周部24cと第2内周部24dとを有しており、前記第1内周部24cにカソード側電極22の端部が配置される一方、前記第2内周部24dにアノード側電極20の端部が配置される。
 そこで、カソード側電極22側には、第1樹脂含浸部26aを形成するための第1樹脂部材26aaが用意されるとともに、アノード側電極20側には、第2樹脂含浸部26bを形成するための第2樹脂部材26bbが用意される。第1樹脂部材26aa及び第2樹脂部材26bbは、枠形状(額縁形状)を有しており、例えば、樹脂製枠部材24と同一の材料で構成される。
 なお、樹脂製枠部材24は、フィラーを混入させて強化した樹脂材料を使用する一方、第1樹脂部材26aa及び第2樹脂部材26bbは、フィラーが混入しない樹脂材料を用いて構成してもよい。これにより、強固な樹脂製枠部材24を用いて段差MEA64と前記樹脂製枠部材24とを結合することができる。
 次いで、段差MEA64と樹脂製枠部材24とには、第1樹脂部材26aa及び第2樹脂部材26bbが配置されて荷重が付与された状態で、前記第1樹脂部材26aa及び前記第2樹脂部材26bbが加熱される。加熱方式としては、レーザ溶着、赤外線溶着やインパルス溶着等が採用される。
 従って、第1樹脂部材26aa及び第2樹脂部材26bbは、加熱溶融される。第1樹脂部材26aaは、カソード側電極22を構成するガス拡散層22c及び樹脂製枠部材24に跨って含浸される一方、第2樹脂部材26bbは、アノード側電極20を構成するガス拡散層20c及び前記樹脂製枠部材24に跨って含浸される。
 これにより、図9に示すように、カソード側電極22を構成するガス拡散層22c及び樹脂製枠部材24に跨って第1樹脂含浸部26aが形成されるとともに、アノード側電極20を構成するガス拡散層20c及び前記樹脂製枠部材24に跨って第2樹脂含浸部26bが形成され、電解質膜・電極構造体60が製造される。
 この場合、第4の実施形態では、カソード側電極22及びアノード側電極20を構成する各ガス拡散層22c、20cの外周端部と樹脂製枠部材24とには、それぞれ樹脂が含浸されて第1樹脂含浸部26a及び第2樹脂含浸部26bが一体に設けられている。
 このため、カソード側電極22及びアノード側電極20と樹脂製枠部材24との接合強度は、接着による接合に比べて良好に向上し、剥がれ等の発生を可及的に抑制することができる。
 さらに、第1樹脂含浸部26aの長辺側の幅寸法L1は、前記第1樹脂含浸部26aの短尺側の幅寸法L2よりも幅広(L1>L2)に設定されている(図10参照)。しかも、第2樹脂含浸部26bの長辺側の幅寸法L3は、前記第2樹脂含浸部26bの短尺側の幅寸法L4よりも幅広(L3>L4)に設定されている(図11参照)。従って、カソード側電極22及びアノード側電極20と樹脂製枠部材24との接合強度は、一層向上する。
 さらにまた、図9に示すように、第2樹脂含浸部26bは、樹脂製枠部材24のカソード側電極22側の第1内周部24cよりも外方に距離Hだけ離間した位置で終端している。この距離Hの範囲では、アノード側電極20に対向してカソード側電極22の電極触媒層22aが存在しないため、異常反応が惹起することがない。
 例えば、図13に示す比較例では、カソード側電極22のガス拡散層22cと樹脂製枠部材24とが、第1樹脂含浸部27aにより一体化される。一方、アノード側電極20のガス拡散層20cと樹脂製枠部材24とが、第2樹脂含浸部27bにより一体化される。そして、第2樹脂含浸部27bは、第1樹脂含浸部27aの端部より内方に距離Haだけ入り込んでいる。
 この比較例では、第2樹脂含浸部27bが設けられている距離Haの範囲に、カソード側電極22の電極触媒層22aが存在している。これにより、アノード側電極20側は、距離Haの範囲で水素不足となり、カソード側電極22側では、異常反応が発生し易い。
 具体的には、HO→1/2O+2H+2e、C+2HO→CO+4H+4e、Pt→PT2++2eの反応により、担持カーボンの腐食Ptの溶解が発生し、性能が低下してしまう。
 図14は、本発明の第5の実施形態に係る電解質膜・電極構造体70の要部断面説明図である。
 電解質膜・電極構造体70は、カソード側電極22及びアノード側電極20に接合される樹脂製枠部材72を備える。樹脂製枠部材72には、前記樹脂製枠部材72とカソード側電極22のガス拡散層22c及びアノード側電極20のガス拡散層20cとをそれぞれ一体化させる第1樹脂突起部74a及び第2樹脂突起部74bが一体に設けられる。
 第1樹脂突起部74aは、第1内周部24cを周回して枠形状(額縁形状)に形成されるとともに、第2樹脂突起部74bは、第2内周部24dを周回して枠形状(額縁形状)に形成される。第1樹脂突起部74aは、第1内周部24c側とは反対の端面を、樹脂製枠部材72から離間する方向に向かって前記樹脂製枠部材72側に傾斜させる傾斜面74asとして構成することが好ましい。
同様に、第2樹脂突起部74bは、第2内周部24d側とは反対の端面を、樹脂製枠部材72から離間する方向に向かって前記樹脂製枠部材72側に傾斜させる傾斜面74bsとして構成することが好ましい。
 第1樹脂突起部74a及び第2樹脂突起部74bは、加熱装置(図示せず)により加熱溶融されるとともに、荷重が付与されることにより、それぞれガス拡散層22c、20cに含浸される。このため、第1樹脂含浸部26a及び第2樹脂含浸部26bが形成される。従って、第5の実施形態では、上記の第4の実施形態と同様の効果が得られる。
 図15は、本発明の第6の実施形態に係る電解質膜・電極構造体80の要部断面説明図である。
 電解質膜・電極構造体80は、カソード側電極22及びアノード側電極20に接合される樹脂製枠部材82を備える。樹脂製枠部材82には、前記樹脂製枠部材82とカソード側電極22のガス拡散層22c及びアノード側電極20のガス拡散層20cとをそれぞれ一体化させるための第1樹脂部材84a及び第2樹脂部材84bが、予めインサート成形により一体に設けられる。
 第1樹脂部材84a及び第2樹脂部材84bは、加熱装置(図示せず)により加熱溶融されるとともに、荷重が付与されることにより、それぞれガス拡散層22c、20cに含浸される。このため、第1樹脂含浸部26a及び第2樹脂含浸部26bが形成される。従って、第6の実施形態では、上記の第4及び第5の実施形態と同様の効果が得られる。
 図16は、本発明の第7の実施形態に係る電解質膜・電極構造体90の要部断面説明図である。
 電解質膜・電極構造体90は、カソード側電極22及びアノード側電極20に接合される樹脂製枠部材92を備える。樹脂製枠部材92には、前記樹脂製枠部材92とカソード側電極22のガス拡散層22c及びアノード側電極20のガス拡散層20cとをそれぞれ一体化させるための第1樹脂突起部94a及び第2樹脂突起部94bが一体に設けられる。
 第1樹脂突起部94aは、第1内周部24cを周回して枠形状(額縁形状)に形成されるとともに、第2樹脂突起部94bは、第2内周部24dを周回して枠形状(額縁形状)に形成される。
 第1樹脂突起部94a及び第2樹脂突起部94bは、断面長方形状を有している。実質的には、第5の実施形態に係る電解質膜・電極構造体70において、第1樹脂突起部74a及び第2樹脂突起部74bに傾斜面74as、74bsを設けない形状に構成される。
 この第7の実施形態では、第1樹脂突起部94a及び第2樹脂突起部94bは、加熱装置(図示せず)により加熱溶融されるとともに、荷重が付与されることにより、それぞれガス拡散層22c、20cに含浸される。このため、第1樹脂含浸部26a及び第2樹脂含浸部26bが形成される。
 これにより、第7の実施形態では、上記の第4~第6の実施形態と同様の効果が得られるとともに、特に第1樹脂突起部94a及び第2樹脂突起部94bの製造作業が簡素化する。
 図17は、本発明の第8の実施形態に係る電解質膜・電極構造体100が組み込まれる固体高分子型燃料電池102の断面説明図である。
電解質膜・電極構造体100では、樹脂製枠部材24とアノード側電極20を構成するガス拡散層20cとが、樹脂含浸部104により一体化される。すなわち、樹脂製枠部材24は、カソード側電極22よりも寸法の大きなアノード側電極20のみに接合される。
電解質膜・電極構造体100を製造する際には、図18に示すように、前記電解質膜・電極構造体100を構成する段差MEA106が作製される。樹脂製枠部材24と段差MEA106とが互いに配置された状態で、樹脂含浸部104を形成するための樹脂部材104aが用意される。樹脂部材104aは、枠形状(額縁形状)を有しており、ガラスフィラーを混入させて強化した樹脂材料を使用する。
 次いで、段差MEA106と樹脂製枠部材24とには、樹脂部材104aが配置されて荷重が付与された状態で、前記樹脂部材104aが加熱される。このため、樹脂部材104aが加熱溶融され、アノード側電極20を構成するガス拡散層20c及び樹脂製枠部材24に跨って樹脂含浸部104が形成され、電解質膜・電極構造体100が製造される。
 この場合、第8の実施形態では、樹脂部材104aが加熱溶融される際、ガラスフィラーがガス拡散層20c内に進入しないため、固体高分子電解質膜18に直接接触することがない。
 しかも、樹脂部材104aは、高温で溶融する際、固体高分子電解質膜18と前記樹脂部材104aとの間には、ガス拡散層20c及び電極触媒層20a、さらに場合によっては中間層20bが介在している。従って、固体高分子電解質膜18に対する熱の影響が削減される。
 これにより、樹脂部材104aとしては、ガラスフィラーが混在した樹脂を適用するとともに、溶融温度の高い樹脂を適用することが可能になり、適用樹脂の選択性が向上するという効果が得られる。

Claims (13)

  1.  それぞれ電極触媒層(22a、20a)とガス拡散層(22c、20c)とを有する第1電極(22)及び第2電極(20)が、固体高分子電解質膜(18)の両側に設けられ、前記第1電極(22)は、前記第2電極(20)よりも外形寸法が小さく設定される燃料電池用電解質膜・電極構造体であって、
     前記固体高分子電解質膜(18)の外周を周回して樹脂製枠部材(24)が設けられるとともに、
     前記樹脂製枠部材(24)と、少なくとも前記第1電極(22)の外周縁部又は前記第2電極(20)の外周縁部のいずれか一方とを一体に接合させる含浸部(26)を有することを特徴とする燃料電池用電解質膜・電極構造体。
  2.  請求項1記載の燃料電池用電解質膜・電極構造体において、前記含浸部(26)は、前記樹脂製枠部材(24)の内周縁部を前記第1電極(22)の外周縁部に含浸させて該第1電極(22)に接合されることを特徴とする燃料電池用電解質膜・電極構造体。
  3.  請求項2記載の燃料電池用電解質膜・電極構造体において、前記樹脂製枠部材(24)は、厚さ方向の寸法が外周端部の厚さ方向の寸法よりも小さく設定される内周突出部(24a)を有するとともに、
     前記内周突出部(24a)は、前記第1電極(22)の外周縁部に含浸される前記内周縁部を有することを特徴とする燃料電池用電解質膜・電極構造体。
  4.  請求項1記載の燃料電池用電解質膜・電極構造体において、 前記第1電極(22)を構成する前記ガス拡散層(22c)の外周端部及び前記第2電極(20)を構成する前記ガス拡散層(20c)の外周端部には、樹脂が含浸されることにより、前記電解質膜・電極構造体(60)と前記樹脂製枠部材(24)とを一体に接合する前記含浸部である樹脂含浸部(26a、26b)が設けられることを特徴とする燃料電池用電解質膜・電極構造体。
  5.  請求項4記載の燃料電池用電解質膜・電極構造体において、前記樹脂含浸部(26a、26b)は、各ガス拡散層(22c、20c)の各外周端部の全周にわたって設けられることを特徴とする燃料電池用電解質膜・電極構造体。
  6.  請求項4記載の燃料電池用電解質膜・電極構造体において、前記樹脂含浸部(26a、26b)は、前記第1電極(22)を構成する前記ガス拡散層(22c)の全周にわたって配置される枠形状の第1樹脂部材(26aa)と、
     前記第2電極(20)を構成する前記ガス拡散層(20c)の全周にわたって配置される枠形状の第2樹脂部材(26bb)と、
     を有することを特徴とする燃料電池用電解質膜・電極構造体。
  7.  請求項4記載の燃料電池用電解質膜・電極構造体において、前記樹脂含浸部(26a、26b)は、前記樹脂製枠部材(72)に一体に設けられ、第1電極(22)を構成する前記ガス拡散層(22c)の全周にわたって配置される枠形状の第1樹脂突起部(74a)と、
     前記樹脂製枠部材(72)に一体に設けられ、前記第2電極(20)を構成する前記ガス拡散層(20c)の全周にわたって配置される枠形状の第2樹脂突起部(74b)と、
     を有することを特徴とする燃料電池用電解質膜・電極構造体。
  8.  請求項1記載の燃料電池用電解質膜・電極構造体において、前記第2電極(20)を構成する前記ガス拡散層(20c)の外周端部には、樹脂が含浸されることにより、前記電解質膜・電極構造体(100)と前記樹脂製枠部材(24)とを一体に接合する前記含浸部である樹脂含浸部(104)が設けられることを特徴とする燃料電池用電解質膜・電極構造体。
  9.  請求項8記載の燃料電池用電解質膜・電極構造体において、前記樹脂含浸部(104)は、前記ガス拡散層(20c)の外周端部の全周にわたって設けられることを特徴とする燃料電池用電解質膜・電極構造体。
  10.  請求項8記載の燃料電池用電解質膜・電極構造体において、前記樹脂含浸部(104)は、前記第2電極(20)を構成する前記ガス拡散層(20c)の全周にわたって配置される枠形状の樹脂部材(104a)を有することを特徴とする燃料電池用電解質膜・電極構造体。
  11.  それぞれ電極触媒層(22a、20a)とガス拡散層(22c、20c)とを有する第1電極(22)及び第2電極(20)が、固体高分子電解質膜(18)の両側に設けられ、前記第1電極(22)は、前記第2電極(20)よりも外形寸法が小さく設定される燃料電池用電解質膜・電極構造体の製造方法であって、
     前記固体高分子電解質膜(18)の両側に、前記第1電極(22)及び前記第2電極(20)を形成する工程と、
     樹脂製枠部材(24)を作成する工程と、
     前記第1電極(22)の外周縁部と前記樹脂製枠部材(24)の内周縁部とを重ね合わせるとともに、互いの重合部位を加熱することにより、該樹脂製枠部材(24)の内周縁部を前記第1電極(22)の外周縁部に含浸させ、且つ、前記固体高分子電解質膜(18)の外周を周回して前記樹脂製枠部材(24)を接合させる工程と、
     を有することを特徴とする燃料電池用電解質膜・電極構造体の製造方法。
  12.  それぞれ電極触媒層(22a、20a)とガス拡散層(22c、20c)とを有する第1電極(22)及び第2電極(20)が、固体高分子電解質膜(18)の両側に設けられ、前記第1電極(22)は、前記第2電極(20)よりも外形寸法が小さく設定される燃料電池用電解質膜・電極構造体の製造方法であって、
     前記第1電極(22)を構成する前記ガス拡散層(22c)の外周縁部と樹脂製枠部材(24)の内周縁部とを重ね合わせるとともに、互いの重合部位を加熱することにより、該樹脂製枠部材(24)の内周縁部を前記第1電極(22)の外周縁部に含浸させて接合させる工程と、
     前記固体高分子電解質膜(18)の両側に、前記電極触媒層(22a、20a)を形成する工程と、
     前記固体高分子電解質膜(18)の両側に、前記樹脂製枠部材(24)が接合された前記第1電極(22)を構成する前記ガス拡散層(22c)と前記第2電極(20)を構成する前記ガス拡散層(20c)とを一体化させる工程と、
     を有することを特徴とする燃料電池用電解質膜・電極構造体の製造方法。
  13.  それぞれ電極触媒層(22a、20a)とガス拡散層(22c、20c)とを有する第1電極(22)及び第2電極(20)が、固体高分子電解質膜(18)の両側に設けられ、前記第1電極(22)は、前記第2電極(20)よりも外形寸法が小さく設定される燃料電池用電解質膜・電極構造体の製造方法であって、
     前記第1電極(22)を構成する前記ガス拡散層(22c)の外周縁部と樹脂製枠部材(24)の内周縁部とを重ね合わせるとともに、互いの重合部位を加熱することにより、該樹脂製枠部材(24)の内周縁部を前記第1電極(22)の外周縁部に含浸させて接合させる工程と、
     前記第2電極(20)を構成する前記ガス拡散層(20c)に前記電極触媒層(20a)を形成するとともに、前記固体高分子電解質膜(18)の一方の側に、前記第1電極(22)を構成する前記電極触媒層(22a)を形成する工程と、
     前記固体高分子電解質膜(18)の両側に、前記樹脂製枠部材(24)が接合された前記第1電極(22)と前記第2電極(20)とを一体化させる工程と、
     を有することを特徴とする燃料電池用電解質膜・電極構造体の製造方法。
PCT/JP2012/057507 2011-04-01 2012-03-23 燃料電池用電解質膜・電極構造体及びその製造方法 WO2012137609A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280016093.6A CN103443981B (zh) 2011-04-01 2012-03-23 燃料电池用电解质膜、电极构造体及其制造方法
DE112012001547T DE112012001547T5 (de) 2011-04-01 2012-03-23 Elektrolytmembranelektrodenanordnung für Brennstoffzellen und Verfahren zum Herstellen derselben
US14/008,193 US20140017590A1 (en) 2011-04-01 2012-03-23 Electrolyte membrane-electrode assembly for fuel cells, and method for producing same
JP2013508809A JP5681792B2 (ja) 2011-04-01 2012-03-23 燃料電池用電解質膜・電極構造体及びその製造方法
US15/857,807 US10658683B2 (en) 2011-04-01 2017-12-29 Method for producing electrolyte membrane electrode assembly for fuel cells

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-082175 2011-04-01
JP2011082175 2011-04-01
JP2011-134851 2011-06-17
JP2011134851 2011-06-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/008,193 A-371-Of-International US20140017590A1 (en) 2011-04-01 2012-03-23 Electrolyte membrane-electrode assembly for fuel cells, and method for producing same
US15/857,807 Division US10658683B2 (en) 2011-04-01 2017-12-29 Method for producing electrolyte membrane electrode assembly for fuel cells

Publications (1)

Publication Number Publication Date
WO2012137609A1 true WO2012137609A1 (ja) 2012-10-11

Family

ID=46969012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057507 WO2012137609A1 (ja) 2011-04-01 2012-03-23 燃料電池用電解質膜・電極構造体及びその製造方法

Country Status (5)

Country Link
US (2) US20140017590A1 (ja)
JP (1) JP5681792B2 (ja)
CN (1) CN103443981B (ja)
DE (1) DE112012001547T5 (ja)
WO (1) WO2012137609A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014229366A (ja) * 2013-05-20 2014-12-08 本田技研工業株式会社 燃料電池
JP2015090793A (ja) * 2013-11-06 2015-05-11 本田技研工業株式会社 燃料電池用樹脂枠付き電解質膜・電極構造体
JP2016012444A (ja) * 2014-06-27 2016-01-21 本田技研工業株式会社 燃料電池及びその製造方法
JP2016024851A (ja) * 2014-07-16 2016-02-08 本田技研工業株式会社 燃料電池用樹脂枠付き電解質膜・電極構造体
JP2016100152A (ja) * 2014-11-20 2016-05-30 本田技研工業株式会社 燃料電池用樹脂枠付き電解質膜・電極構造体
JP2017084462A (ja) * 2015-10-22 2017-05-18 本田技研工業株式会社 燃料電池用樹脂枠付き電解質膜・電極構造体
JP2018085334A (ja) * 2016-11-17 2018-05-31 本田技研工業株式会社 燃料電池及びその運転方法
US10637077B2 (en) 2018-03-02 2020-04-28 Honda Motor Co., Ltd. Frame equipped membrane electrode assembly and fuel cell
US10665873B2 (en) 2015-10-21 2020-05-26 Honda Motor Co., Ltd. Resin frame equipped membrane electrode assembly for fuel cell and method of producing the same
US10727504B2 (en) 2016-11-17 2020-07-28 Honda Motor Co., Ltd. Method of operating fuel cell
US11018366B2 (en) 2019-01-18 2021-05-25 Honda Motor Co., Ltd. Method of producing frame equipped membrane electrode assembly, the frame equipped membrane electrode and fuel cell
JP2021114383A (ja) * 2020-01-17 2021-08-05 トヨタ自動車株式会社 燃料電池セルおよび燃料電池セルの製造方法
US11121384B2 (en) 2019-07-30 2021-09-14 Honda Motor Co., Ltd. Frame equipped membrane electrode assembly and fuel cell
US11196058B2 (en) 2019-07-30 2021-12-07 Honda Motor Co., Ltd. Frame equipped membrane electrode assembly, method of producing the frame equipped membrane electrode assembly, and fuel cell
US11374240B2 (en) 2019-09-30 2022-06-28 Toyota Jidosha Kabushiki Kaisha Fuel-cell unit cell
US11600831B2 (en) 2019-09-30 2023-03-07 Toyota Jidosha Kabushiki Kaisha Fuel-cell unit cell

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6128353B2 (ja) * 2013-08-08 2017-05-17 日産自動車株式会社 フレーム付き膜電極接合体、燃料電池用単セル及び燃料電池スタック
DE102014205035A1 (de) * 2014-03-18 2015-09-24 Volkswagen Ag Verfahren zum Herstellen einer Membran-Elektroden-Einheit, Membran-Elektroden-Einheit, Brennstoffzelle und Kraftfahrzeug mit Brennstoffzelle
GB2542803B (en) * 2015-09-30 2022-01-12 Intelligent Energy Ltd Fuel cell sub-assembly
DE102016224611B4 (de) * 2016-12-09 2021-07-08 Audi Ag Brennstoffzellenaufbau und Verfahren zu dessen Herstellung
KR20200072197A (ko) 2018-12-12 2020-06-22 현대자동차주식회사 연료전지용 탄성체 셀 프레임 및 그 제조방법과 이를 이용한 단위 셀
DE102019203249A1 (de) * 2019-03-11 2020-09-17 Audi Ag Brennstoffzellenaufbau, Brennstoffzellensystem und Brennstoffzellenfahrzeug
KR20210015384A (ko) * 2019-08-02 2021-02-10 현대자동차주식회사 연료전지용 탄성체 셀 프레임 및 그 제조방법과 이를 이용한 단위 셀
JP7115451B2 (ja) 2019-09-30 2022-08-09 トヨタ自動車株式会社 燃料電池単位セル

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085594A (ja) * 2003-09-09 2005-03-31 Fuji Electric Holdings Co Ltd 固体高分子電解質型燃料電池及びその製造方法
JP2006210060A (ja) * 2005-01-26 2006-08-10 Honda Motor Co Ltd 燃料電池
JP2006210234A (ja) * 2005-01-31 2006-08-10 Uchiyama Mfg Corp 燃料電池用構成部材
JP2009026528A (ja) * 2007-07-18 2009-02-05 Toshiba Corp 固体高分子電解質型燃料電池および燃料電池用膜・電極接合体ならびに燃料電池用ガス拡散基板製造方法
JP2010123491A (ja) * 2008-11-21 2010-06-03 Nissan Motor Co Ltd 膜電極接合体の製造装置
JP2010186627A (ja) * 2009-02-12 2010-08-26 Toyota Motor Corp 燃料電池
JP2010192392A (ja) * 2009-02-20 2010-09-02 Sumitomo Chemical Co Ltd 燃料電池用多孔膜複合体、燃料電池用電解質膜−電極−多孔膜複合体、及びこれらの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060166075A1 (en) 2002-09-30 2006-07-27 Toray Industries , Inc., A Corporation Of Japan, Flame-resistant acrylic fiber nonwoven fabric, carbon fiber nonwoven fabric, and method for production thereof
US20060127738A1 (en) 2004-12-13 2006-06-15 Bhaskar Sompalli Design, method and process for unitized mea
JP5194346B2 (ja) 2005-08-31 2013-05-08 日産自動車株式会社 電解質膜−電極接合体
JP2007109576A (ja) 2005-10-14 2007-04-26 Japan Gore Tex Inc 膜電極接合体および固体高分子形燃料電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085594A (ja) * 2003-09-09 2005-03-31 Fuji Electric Holdings Co Ltd 固体高分子電解質型燃料電池及びその製造方法
JP2006210060A (ja) * 2005-01-26 2006-08-10 Honda Motor Co Ltd 燃料電池
JP2006210234A (ja) * 2005-01-31 2006-08-10 Uchiyama Mfg Corp 燃料電池用構成部材
JP2009026528A (ja) * 2007-07-18 2009-02-05 Toshiba Corp 固体高分子電解質型燃料電池および燃料電池用膜・電極接合体ならびに燃料電池用ガス拡散基板製造方法
JP2010123491A (ja) * 2008-11-21 2010-06-03 Nissan Motor Co Ltd 膜電極接合体の製造装置
JP2010186627A (ja) * 2009-02-12 2010-08-26 Toyota Motor Corp 燃料電池
JP2010192392A (ja) * 2009-02-20 2010-09-02 Sumitomo Chemical Co Ltd 燃料電池用多孔膜複合体、燃料電池用電解質膜−電極−多孔膜複合体、及びこれらの製造方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014229366A (ja) * 2013-05-20 2014-12-08 本田技研工業株式会社 燃料電池
JP2015090793A (ja) * 2013-11-06 2015-05-11 本田技研工業株式会社 燃料電池用樹脂枠付き電解質膜・電極構造体
JP2016012444A (ja) * 2014-06-27 2016-01-21 本田技研工業株式会社 燃料電池及びその製造方法
JP2016024851A (ja) * 2014-07-16 2016-02-08 本田技研工業株式会社 燃料電池用樹脂枠付き電解質膜・電極構造体
JP2016100152A (ja) * 2014-11-20 2016-05-30 本田技研工業株式会社 燃料電池用樹脂枠付き電解質膜・電極構造体
US10665873B2 (en) 2015-10-21 2020-05-26 Honda Motor Co., Ltd. Resin frame equipped membrane electrode assembly for fuel cell and method of producing the same
US11094947B2 (en) 2015-10-21 2021-08-17 Honda Motor Co., Ltd. Resin frame equipped membrane electrode assembly for fuel cell and method of producing the same
JP2017084462A (ja) * 2015-10-22 2017-05-18 本田技研工業株式会社 燃料電池用樹脂枠付き電解質膜・電極構造体
JP2018085334A (ja) * 2016-11-17 2018-05-31 本田技研工業株式会社 燃料電池及びその運転方法
US10727504B2 (en) 2016-11-17 2020-07-28 Honda Motor Co., Ltd. Method of operating fuel cell
US10637077B2 (en) 2018-03-02 2020-04-28 Honda Motor Co., Ltd. Frame equipped membrane electrode assembly and fuel cell
US11018366B2 (en) 2019-01-18 2021-05-25 Honda Motor Co., Ltd. Method of producing frame equipped membrane electrode assembly, the frame equipped membrane electrode and fuel cell
US11121384B2 (en) 2019-07-30 2021-09-14 Honda Motor Co., Ltd. Frame equipped membrane electrode assembly and fuel cell
US11196058B2 (en) 2019-07-30 2021-12-07 Honda Motor Co., Ltd. Frame equipped membrane electrode assembly, method of producing the frame equipped membrane electrode assembly, and fuel cell
US11374240B2 (en) 2019-09-30 2022-06-28 Toyota Jidosha Kabushiki Kaisha Fuel-cell unit cell
US11600831B2 (en) 2019-09-30 2023-03-07 Toyota Jidosha Kabushiki Kaisha Fuel-cell unit cell
JP2021114383A (ja) * 2020-01-17 2021-08-05 トヨタ自動車株式会社 燃料電池セルおよび燃料電池セルの製造方法
JP7226350B2 (ja) 2020-01-17 2023-02-21 トヨタ自動車株式会社 燃料電池セルおよび燃料電池セルの製造方法

Also Published As

Publication number Publication date
JP5681792B2 (ja) 2015-03-11
CN103443981B (zh) 2016-08-17
CN103443981A (zh) 2013-12-11
US20140017590A1 (en) 2014-01-16
US10658683B2 (en) 2020-05-19
JPWO2012137609A1 (ja) 2014-07-28
US20180145359A1 (en) 2018-05-24
DE112012001547T5 (de) 2013-12-24

Similar Documents

Publication Publication Date Title
WO2012137609A1 (ja) 燃料電池用電解質膜・電極構造体及びその製造方法
JP5824522B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
JP6104050B2 (ja) 燃料電池用電解質膜・電極構造体
JP5615875B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
JP5638508B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法
JP5855540B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
JP5683433B2 (ja) 燃料電池スタック
JP5855442B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法
JP6375522B2 (ja) 燃料電池モジュールの製造方法
JP2008123883A (ja) 燃料電池、燃料電池の製造方法、および、単セルアッセンブリ
JP2008171613A (ja) 燃料電池
US11171341B2 (en) Fuel cell and method of manufacturing fuel cell
JP2013258096A (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法
JP6144650B2 (ja) 燃料電池の製造方法
JP2013157093A (ja) 燃料電池
JP2017033639A (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
JP2008123885A (ja) 燃料電池、燃料電池の製造方法、および、アッセンブリ
US11018363B2 (en) Fuel cell including frame member
JP5604404B2 (ja) 燃料電池
JP2019192326A (ja) 燃料電池の製造方法
JP2015050138A (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
JP2014165040A (ja) 高分子電解質型燃料電池用の電極―膜―枠接合体の構造およびその製造方法、並びに高分子電解質型燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013508809

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14008193

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120015479

Country of ref document: DE

Ref document number: 112012001547

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12768160

Country of ref document: EP

Kind code of ref document: A1