WO2012132768A1 - 血液成分測定装置 - Google Patents

血液成分測定装置 Download PDF

Info

Publication number
WO2012132768A1
WO2012132768A1 PCT/JP2012/055520 JP2012055520W WO2012132768A1 WO 2012132768 A1 WO2012132768 A1 WO 2012132768A1 JP 2012055520 W JP2012055520 W JP 2012055520W WO 2012132768 A1 WO2012132768 A1 WO 2012132768A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
blood component
wavelength
measurement
blood
Prior art date
Application number
PCT/JP2012/055520
Other languages
English (en)
French (fr)
Inventor
滝浪雅夫
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2013507311A priority Critical patent/JP5990508B2/ja
Priority to CN201280011816.3A priority patent/CN103429154B/zh
Publication of WO2012132768A1 publication Critical patent/WO2012132768A1/ja
Priority to US14/035,072 priority patent/US20140024904A1/en
Priority to HK14102939.4A priority patent/HK1189784A1/xx

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1491Heated applicators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • A61B5/489Blood vessels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes

Definitions

  • the present invention relates to a blood component measuring apparatus that optically measures blood components noninvasively using a finger or the like as a measurement site.
  • glucose contained in blood absorbs a part of near-infrared light and is close to a part of a patient's body (for example, a finger).
  • the blood glucose level is calculated by receiving near-infrared light transmitted through the body by irradiating with infrared light and measuring the transmittance or absorbance (for example, JP-T-2001-513351). See the official gazette).
  • the blood glucose concentration is calculated based on the amount of glucose that periodically changes using the pulsation of blood vessels.
  • the present invention has been made in consideration of such problems, and an object of the present invention is to provide a blood component measuring apparatus capable of improving measurement accuracy by selecting and measuring a portion having more blood components.
  • the present invention provides a blood component measuring apparatus for measuring a blood component of a living body portion by irradiating the living body portion with light, and an irradiation light source capable of emitting at least near-infrared light. And a light receiving unit having a sensitivity capable of receiving light that can be emitted by the irradiation light source, a holding mechanism for holding and fixing the living body part, and a calculation unit that calculates the concentration of blood components in the living body part,
  • the computing means is a ratio of the transmitted light intensity S1 of the first wavelength that is relatively easily absorbed by the blood pigment and the transmitted light intensity S2 of the second wavelength that is relatively difficult to be absorbed by the blood pigment in the living body part.
  • the blood component concentration is calculated for a location where (S1 / S2) is the smallest.
  • the location where the ratio (S1 / S2) between the transmitted light intensity S1 of the first wavelength that is relatively easily absorbed by the hemoglobin and the transmitted light intensity S2 of the second wavelength that is relatively difficult to be absorbed by the hemoglobin is the smallest is: It can be considered as a site with a lot of blood components, that is, a site with blood vessels. Therefore, according to the configuration of the present invention, the blood component concentration is calculated for a portion having a large blood component, so that the measurement accuracy of the blood component can be improved.
  • the light receiving unit is a light receiving element array in which the light receiving elements are arranged in a matrix
  • the calculation unit is configured to transmit light intensity of the first wavelength among the light receiving elements constituting the light receiving element array.
  • the concentration of the blood component may be calculated for the one having the smallest ratio (S1 / S2) between S1 and the transmitted light intensity S2 of the second wavelength.
  • the light receiving element array can simultaneously receive the transmitted light at a plurality of locations of the living body part, so that the one with the minimum ratio (S1 / S2) can be reliably extracted with a simple device configuration. Can do.
  • the blood component measurement apparatus further includes a scanner mechanism that reflects light from the irradiation light source and scans the living body part on an optical path between the irradiation light source and the holding mechanism, and the light receiving unit. Is configured to receive the transmitted light of the first wavelength and the transmitted light of the second wavelength at a plurality of locations of the living body part by scanning light with a scanner mechanism, and the computing means is configured to receive the first wavelength. Ratio of the transmitted light intensity S1 of the first wavelength and the transmitted light intensity S2 of the second wavelength (S1 / S2) among the living body parts irradiated with the light of the second wavelength and the light of the second wavelength (S1 / S2) The concentration of the blood component may be calculated for a location where is the smallest.
  • the ratio (S1 / S2) is minimum even if the light receiving unit is configured by a single light receiving element. Things can be easily extracted.
  • the calculation means includes: a first extraction unit that extracts, as the first measurement site, a location where the ratio (S1 / S2) is minimum in the biological site; and the transmitted light intensity S2 of the second wavelength in the biological site.
  • a second extraction unit that extracts, as a second measurement part, a part where the ratio (S1 / S2) is maximum among parts that are substantially equal to the first part, and a first that generates a transmission spectrum of the first measurement part.
  • the second transmission spectrum generation unit that generates the transmission spectrum of the second measurement site, the transmission spectrum of the first measurement site, and the transmission spectrum of the second measurement site, the first measurement
  • a differential transmission spectrum calculation unit that calculates a differential transmission spectrum between a site and the second measurement site, and a concentration calculation unit that calculates the concentration of the blood component based on the differential transmission spectrum Then good.
  • the influence of biological tissue components other than blood can be corrected and the S / N ratio can be improved. That is, by eliminating the influence of biological tissue components other than blood by correction, more blood information can be acquired, so that the measurement accuracy of blood components can be further improved.
  • the blood component measurement device may include a heating mechanism for heating the living body part. Since the blood flow of the living body part can be increased by heating the living body part by the heating mechanism, it becomes easy to extract a part having a large blood component, and the measurement accuracy can be further improved.
  • the blood component measuring apparatus it is possible to improve the measurement accuracy by selecting and measuring a part having more blood components.
  • FIG. 1st Embodiment of this invention It is a figure which shows schematic structure of the blood component measuring device which concerns on 1st Embodiment of this invention. It is a block diagram which shows the structure of the calculating means in the blood component measuring apparatus shown in FIG. It is a figure which shows the relationship between palm temperature and a blood flow rate. It is a flowchart which shows operation
  • FIG. 1 It is a block diagram which shows the structure of the calculating means in the blood component measuring apparatus shown in FIG. It is a flowchart which shows operation
  • FIG. 1 is a diagram showing a schematic configuration of a blood component measurement apparatus 10A according to the first embodiment of the present invention.
  • This blood component measuring apparatus 10A includes an irradiation light source 12, a light receiving unit 14, a holding mechanism 16, a heating mechanism 18, and a calculation means 20, and emits light emitted from the irradiation light source 12 to a living body part 11 of a living body. It is a medical device for measuring the blood component in the living body part 11 by transmitting the light, the transmitted light received by the light receiving unit 14, and calculating / analyzing the signal obtained by the light receiving unit 14 by the calculation means 20.
  • the living body part 11 may be a part of a human body, for example, a human finger 11a, a palm, an earlobe, or the like.
  • the blood component measurement apparatus 10A shown in FIG. 1 is configured to use a human finger 11a as a living body part 11 and irradiate a part of the finger 11a with light to measure the glucose concentration in blood at the irradiated part. .
  • the irradiation light source 12 can emit light in the visible to near-infrared range.
  • a multi-wavelength LED array in which a plurality of LEDs that emit light having different wavelengths can be arranged in a matrix.
  • a configuration in which a light source that emits continuous light (for example, a halogen lamp) and a spectroscope (monochromator) that can extract an arbitrary wavelength component may be combined.
  • the irradiation light source 12 is a transmission spectrum of light having a wavelength that is easily absorbed by hemoglobin (hemoglobin) (first wavelength), light having a wavelength that is difficult to be absorbed by blood pigment (second wavelength), and light transmitted through the living body part 11.
  • first wavelength hemoglobin
  • second wavelength light having a wavelength that is difficult to be absorbed by blood pigment
  • Can emit light in a wide wavelength range for example, a range of about 700 nm to about 2200 nm).
  • the wavelengths that are easily absorbed by hemoglobin are around 760 nm and 940 nm in percutaneous transmission.
  • the wavelength that is difficult to be absorbed by the hemoglobin is a wavelength that is difficult to be absorbed by living tissues other than blood among wavelengths that are not easily absorbed by the hemoglobin, and is, for example, 1000 nm to 1300 nm. 1000 nm to 1300 nm is relatively less absorbed by biological components and is said to be a “biological window”. Although the absorption peak of glucose is not clear, strong observation is possible at around 1600 nm.
  • the light receiving unit 14 can detect light in the visible to near infrared range, and in this embodiment, the light receiving unit 14 includes a light receiving element array in which a plurality of light receiving elements are arranged in a matrix.
  • a light receiving element array is an InGaAs photodiode array.
  • the holding mechanism 16 is configured to hold and fix the living body part 11.
  • the holding mechanism 16 includes two holding members 22 and 23 having holding holes 22 a and 23 a into which a human finger 11 a can be inserted.
  • the holding members 22 and 23 are preferably made of an elastic member that is elastically deformed to fit the shape of the finger 11a when the human finger 11a is inserted. Examples of such elastic members include elastomer sponges.
  • the heating mechanism 18 has a function of heating (heating) the living body part 11 in order to increase blood flow in the living body part 11.
  • the heating mechanism 18 is configured as an infrared light source 18a (for example, an infrared LED), and infrared light is applied to a portion exposed between the two holding members 22 and 23 in the finger 11a that is the living body part 11. And the irradiated part is heated.
  • the heating mechanism 18 for example, a configuration in which a heat source is directly contacted with the living body part 11 to heat, a configuration in which the living body part 11 is heated by reducing the pressure, and the living body part 11 is subjected to friction (massage ) And heating.
  • the computing means 20 is provided as a function of the control unit 26.
  • the control unit 26, together with the storage unit 28, constitutes a computer configured to calculate the blood component (glucose) concentration in the living body part 11, and receives a signal corresponding to the light emission state of the irradiation light source 12 and the light receiving unit 14. The received light signal corresponding to the transmitted light intensity is input.
  • the blood component measuring apparatus 10A is provided with a display unit 30. Under the control action of the control unit 26, the display unit 30 displays information such as a measurement result (blood glucose level).
  • the calculation means 20 calculates the blood component of a part of the living body part 11 where the ratio (S1 / S2) between the transmitted light intensity S1 of the first wavelength and the transmitted light intensity S2 of the second wavelength is minimum. It is configured to calculate the concentration.
  • the computing unit 20 includes a transmitted light intensity calculation unit 32, a measurement site extraction unit 34, a transmission spectrum generation unit 36, and a concentration calculation unit 38.
  • the transmitted light intensity calculator 32 calculates the transmitted light intensity S1 of the first wavelength and the transmitted light intensity of the second wavelength based on the light reception signal from the light receiver 14.
  • the measurement part extraction unit 34 extracts a part having the smallest ratio (S1 / S2) as a measurement part.
  • the transmission spectrum generation unit 36 generates a transmission spectrum SP1 of the extracted measurement site.
  • the concentration calculation unit 38 calculates the concentration of the blood component based on the generated transmission spectrum SP1.
  • the storage unit 28 stores a program for executing each process by the transmitted light intensity calculation unit 32, the measurement site extraction unit 34, the transmission spectrum generation unit 36, and the concentration calculation unit 38, and in the control unit 26 according to the program.
  • the CPU executes a predetermined calculation process, and calculates the glucose concentration by multivariate analysis or the like based on the transmitted light intensity or the like corresponding to the light reception signal acquired by the light receiving unit 14.
  • the blood component measurement apparatus 10A is basically configured as described above, and the operation and effect will be described below.
  • the finger 11a of the person who measures the glucose concentration is placed on the holding mechanism 16 of the blood component measuring apparatus 10A. Insert and hold in place. After the finger 11a is held by the holding mechanism 16, a measurement switch is started by pressing a start switch provided on a main body (not shown) of the blood component measuring apparatus 10A.
  • FIG. 3 is a diagram showing the relationship between palm temperature and blood flow.
  • the blood flow increases as the temperature of the palm increases. Therefore, by heating the finger 11a by the heating mechanism 18, the blood flow rate in the finger 11a can be increased.
  • the blood component measurement apparatus 10A causes the irradiation light source 12 to emit light having the first wavelength that is relatively easily absorbed by the blood pigment in parallel with or after the heating of the finger 11a by the heating mechanism 18.
  • the light transmitted through the finger 11 a is received by the light receiving unit 14.
  • the light receiving unit 14 outputs a light reception signal.
  • the transmitted light intensity calculator 32 calculates (measures) the transmitted light intensity S1 of the first wavelength based on the light reception signal from the light receiver 14 (step S1).
  • the blood component measuring apparatus 10A irradiates the light having the first wavelength from the irradiation light source 12 and receives the light reception signal from the light receiving unit 14 by the arithmetic unit 20, or the light source having the first wavelength.
  • the light of the second wavelength that is relatively difficult to be absorbed by the blood pigment is emitted from the irradiation light source 12, and the light transmitted through the finger 11a is received by the light receiving unit.
  • the light receiving unit 14 outputs a light reception signal.
  • the transmitted light intensity calculation unit 32 calculates (measures) the transmitted light intensity S2 based on the light reception signal from the light receiving unit 14 (step S2).
  • the measurement site extraction unit 34 extracts a location where the ratio (S1 / S2) between the transmitted light intensity S1 of the first wavelength and the transmitted light intensity S2 of the second wavelength is the minimum as the measurement site (step) S3).
  • the light receiving unit 14 since the light receiving unit 14 is configured by a light receiving element array, the light receiving unit 14 receives light transmitted through a certain range of the living body part 11. Therefore, specifically, a light receiving element corresponding to a portion having the smallest ratio (S1 / S2) is extracted (specified) from the light receiving elements constituting the light receiving element array of the light receiving unit 14.
  • the living body has a portion (blood vessel 40) where a lot of blood components exist and other tissue components.
  • the light of the first wavelength is easily absorbed by hemoglobin (hemoglobin), but the second wavelength is hardly absorbed by the hemoglobin.
  • the portion where the ratio (S1 / S2) between the transmitted light intensity S1 of the first wavelength and the transmitted light intensity S2 of the second wavelength is the smallest is a portion having a large blood component, that is, a portion where the blood vessel 40 is present.
  • a part having the minimum ratio (S1 / S2) is extracted as a measurement part.
  • the measurement part extracted in this way is a part where the blood vessel 40 exists, and is, for example, a position P1 shown in FIG.
  • the blood component measuring apparatus 10A irradiates the finger 11a with light in the near infrared region by the irradiation light source 12, and receives the transmitted light by the light receiving unit 14. Then, based on the received light signal, the transmission spectrum generation unit 36 generates a transmission spectrum SP1 for the measurement site extracted by the measurement site extraction unit 34 (step S4). Next, the concentration calculator 38 calculates the glucose concentration by multivariate analysis or the like based on the transmission spectrum SP1 generated by the transmission spectrum generator 36 (step S5). The display unit 30 displays the glucose concentration thus calculated as a blood glucose level.
  • the transmitted light intensity S1 of the first wavelength that is relatively easily absorbed by the hemoglobin and the second that is relatively difficult to be absorbed by the hemoglobin Since the concentration of the blood component is calculated at a location where the ratio (S1 / S2) of the wavelength to the transmitted light intensity S2 is minimum, that is, a location where the blood component is high (position P1 in FIG. 5), Can be improved.
  • the light receiving element array can simultaneously receive transmitted light at a plurality of locations of the living body part 11 (finger 11a), so that the ratio (S1 / S2) is minimized with a simple apparatus configuration. It can be extracted reliably.
  • the living body part 11 is heated by the heating mechanism 18, the blood flow of the living body part 11 is increased, and it becomes easy to extract a part with a lot of blood components. Therefore, the measurement accuracy of blood components can be further improved.
  • FIG. 6 a blood component measurement apparatus 10B according to the second embodiment will be described.
  • elements having the same or similar functions and effects as those of the blood component measurement device 10A in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be made. Omitted.
  • the blood component measurement apparatus 10B includes an irradiation light source 12, a scanner mechanism 44, a light receiving unit 45, a holding mechanism 16, a heating mechanism 18, and a calculation means 20.
  • the holding mechanism 16 and the calculation means 20 are configured in the same manner as the holding mechanism 16 and the calculation means 20 in the first embodiment.
  • the irradiation light source 12 has the same configuration as the irradiation light source 12 shown in FIG. 1, but is disposed at a position away from the position facing the finger 11 a held by the holding mechanism 16.
  • a scanner mechanism 44 that reflects the light from the irradiation light source 12 and scans the living body part 11 is provided on the light emitting surface side of the irradiation light source 12. That is, the scanner mechanism 44 is disposed on the optical path between the irradiation light source 12 and the holding mechanism 16.
  • the scanner mechanism 44 includes a reflection unit 46 that reflects light from the irradiation light source 12 and a drive unit 48 that swings and drives the reflection unit 46.
  • the drive unit 48 causes the reflection unit to operate under the action of the control unit 26 (not shown). By rotating (swinging) 46, the light from the irradiation light source 12 is reflected, and the light is scanned two-dimensionally along the living body part 11.
  • the light receiving unit 45 can detect light in the range from the visible to the near infrared region, and in this embodiment, is constituted by a single light receiving element.
  • a single light receiving element is an InGaAs photodiode.
  • the light receiving unit 45 receives the transmitted light of the first wavelength and the transmitted light of the second wavelength at a plurality of locations of the living body part 11 in synchronization with the light scanning by the scanner mechanism 44.
  • a condensing lens 50 is disposed between the light receiving unit 45 and the holding mechanism 16. By the condensing lens 50, the light transmitted through the living body part 11 is condensed toward the light receiving unit 45.
  • the calculating means 20 is the ratio of the transmitted light intensity S1 of the first wavelength and the transmitted light intensity S2 of the second wavelength in the living body part 11 irradiated with the light of the first wavelength and the light of the second wavelength.
  • the blood component concentration is calculated at a location where (S1 / S2) is minimum. Similar to the calculation unit 20 shown in FIG. 2, the calculation unit 20 includes a transmitted light intensity calculation unit 32, a measurement site extraction unit 34, a transmission spectrum generation unit 36, and a concentration calculation unit 38.
  • the finger 11a of the person who measures the glucose concentration is inserted into the holding mechanism 16 of the blood component measuring apparatus 10B and held at a predetermined position.
  • a measurement switch is started by pressing a start switch provided on a main body (not shown) of the blood component measurement apparatus 10B.
  • infrared light is irradiated to the finger 11a from the infrared light source which is the heating mechanism 18, and the living body part 11 is heated.
  • the blood component measurement apparatus 10B causes the irradiation light source 12 to emit light having the first wavelength that is relatively easily absorbed by the blood pigment in parallel with or after the heating of the finger 11a by the heating mechanism 18.
  • the light transmitted through the finger 11 a is received by the light receiving unit 45.
  • the transmitted light intensity calculation unit 32 calculates (measures) the transmitted light intensity S ⁇ b> 1 of the first wavelength based on the light reception signal from the light receiving unit 45.
  • the blood component measurement apparatus 10B irradiates the light having the first wavelength from the irradiation light source and receives the light reception signal from the light receiving unit 14 by the computing unit 20, or the light having the first wavelength from the irradiation light source.
  • the transmitted light intensity calculation unit 32 calculates (measures) the transmitted light intensity S ⁇ b> 2 based on the light reception signal from the light receiving unit 45.
  • the light from the irradiation light source 12 is reflected and scanned by the scanner mechanism 44, and the light receiving unit 45 is formed of a single light receiving element. Therefore, by associating the scanning position of the scanner mechanism 44 with the light reception signal from the light receiving unit 45, the transmitted light intensity at each of the plurality of locations of the living body part 11 can be calculated.
  • the measurement site extraction unit 34 transmits the transmitted light intensity S1 of the first wavelength and the transmitted light of the second wavelength among the biological sites 11 irradiated with the light of the first wavelength and the light of the second wavelength.
  • a part having a minimum ratio (S1 / S2) to the intensity S2 (a part indicated by P1 in FIG. 5) is extracted as a measurement part.
  • the blood component measurement device 10B irradiates the finger 11a with light in the near infrared region by the irradiation light source 12, and receives the transmitted light by the light receiving unit 45.
  • the operation position of the scanner mechanism 44 is controlled so that the light from the irradiation light source 12 is irradiated to the extracted measurement site, and the light transmitted through the measurement site is collected by the condenser lens 50.
  • Light is received by the light receiving unit 45.
  • the transmission spectrum generation unit 36 Based on the received light signal, the transmission spectrum generation unit 36 generates a transmission spectrum SP1 for the measurement site extracted by the measurement site extraction unit 34.
  • the concentration calculator 38 calculates the glucose concentration by multivariate analysis or the like based on the transmission spectrum SP1 generated by the transmission spectrum generator 36.
  • the display unit 30 displays the glucose concentration thus calculated as a blood glucose level.
  • the transmitted light intensity S1 of the first wavelength that is relatively easily absorbed by the hemoglobin and the second that is relatively difficult to be absorbed by the hemoglobin Since the concentration of the blood component is calculated at a location where the ratio (S1 / S2) of the wavelength to the transmitted light intensity S2 is minimum, that is, at a location where there are many blood components, the blood component measurement accuracy can be improved.
  • the ratio (S1 / S2) even if the light receiving unit 45 is configured by a single element. can be easily extracted.
  • FIG. 7 is a diagram showing a schematic configuration of a blood component measurement apparatus 10C according to the third embodiment of the present invention.
  • This blood component measuring apparatus 10C includes an irradiation light source 12, a light receiving unit 14, a holding mechanism 16, a heating mechanism 18, and a calculation means 52, and emits light emitted from the irradiation light source 12 to the living body part 11 of the living body. It is a medical device for measuring the blood component in the living body part 11 by transmitting the light and receiving the transmitted light by the light receiving unit 14 and calculating / analyzing the signal obtained by the light receiving unit 14 by the calculating means 52.
  • the blood component measurement apparatus 10C according to the present embodiment is different from the blood component measurement apparatus 10A according to the first embodiment in the configuration of the calculation means 52.
  • the calculation unit 52 includes a transmitted light intensity calculation unit 32, a first extraction unit 56, a second extraction unit 58, a first transmission spectrum generation unit 60, A transmission spectrum generation unit 62, a differential transmission spectrum calculation unit 64, and a concentration calculation unit 38 are included.
  • the transmitted light intensity calculation unit 32 calculates the transmitted light intensity S1 of the first wavelength and the transmitted light intensity S2 of the second wavelength.
  • the 1st extraction part 56 extracts the location where the said ratio (S1 / S2) is the minimum among the biological body parts 11 as a measurement site
  • the second extraction unit 58 extracts a part where the transmitted light intensity S2 of the second wavelength is substantially equal to the first measurement part and the ratio (S1 / S2) is maximum as the second measurement part. .
  • the first transmission spectrum generation unit 60 generates a transmission spectrum SP1 of the first measurement site.
  • the second transmission spectrum generation unit 62 generates a transmission spectrum SP2 of the second measurement site.
  • the concentration calculation unit 38 calculates the concentration of the blood component based on the differential transmission spectrum dSP.
  • the storage unit 28 in the calculation unit 52 includes a transmitted light intensity calculation unit 32, a first extraction unit 56, a second extraction unit 58, a first transmission spectrum generation unit 60, a second transmission spectrum generation unit 62, and a differential transmission spectrum calculation.
  • a program for executing each process by the unit 64 is stored, and according to the program, the CPU of the control unit 54 executes a predetermined calculation process, and based on the transmitted light intensity and the like acquired by the light receiving unit 14, multivariate analysis
  • the glucose concentration is calculated by, for example.
  • the irradiation light source 12 and the heating mechanism 18 are controlled by the control unit 54.
  • the calculation means 52 is a part of the function of the control unit 54.
  • the finger 11a of the person who measures the glucose concentration is inserted into the holding mechanism 16 of the blood component measuring device 10C and held at a predetermined position.
  • a measurement switch is started by pressing a start switch provided on a main body (not shown) of the blood component measuring apparatus 10C.
  • infrared light is irradiated to the finger 11a from the infrared light source which is the heating mechanism 18, and the living body part 11 is heated.
  • the blood component measuring apparatus 10C causes the irradiation light source 12 to emit light having a first wavelength that is relatively easily absorbed by the blood pigment in parallel with or after the heating of the finger 11a by the heating mechanism 18.
  • the light transmitted through the finger 11 a is received by the light receiving unit 14.
  • the light receiving unit 14 outputs a light reception signal.
  • the transmitted light intensity calculation unit 32 calculates (measures) the transmitted light intensity S1 based on the light reception signal from the light receiving unit 14 (step S11). Further, the blood component measuring apparatus 10C irradiates the light having the first wavelength from the irradiation light source 12 and receives the light reception signal from the light receiving unit 14 by the calculation means 52, or the light having the first wavelength is irradiated.
  • the transmitted light intensity calculation unit 32 calculates (measures) the transmitted light intensity S2 based on the light reception signal from the light receiving unit 14 (step S12).
  • the first extraction unit 56 selects a portion of the living body portion 11 where the ratio (S1 / S2) between the transmitted light intensity S1 of the first wavelength and the transmitted light intensity S2 of the second wavelength is the smallest.
  • One measurement site is extracted (step S13).
  • the extracted first measurement site is a location where the blood vessel 40 exists, and is, for example, a position P1 shown in FIG.
  • the light receiving unit 14 since the light receiving unit 14 is configured by a light receiving element array, the light receiving unit 14 receives light transmitted through a certain range of the living body part 11. Therefore, specifically, a light receiving element corresponding to a portion having the smallest ratio (S1 / S2) is extracted (specified) from the light receiving elements constituting the light receiving element array of the light receiving unit 14.
  • the second extraction unit 58 extracts a part of the living body part 11 where the ratio (S1 / S2) is the maximum among parts where the transmitted light intensity S2 of the second wavelength is substantially equal to the first measurement part ( Step S13).
  • the ratio (S1) among the places where the transmitted light intensity S2 of the second wavelength is substantially equal to the first measurement site.
  • the light receiving element corresponding to the location where / S2) is maximum is extracted (specified).
  • the side end portion P3 of the finger 11a has a considerably shorter living body penetration distance of the transmitted light than that of the place where the blood vessel 70 exists. Therefore, even if the influence of the biological tissue component at the side end portion P3 is eliminated, the measurement error cannot be effectively reduced. Moreover, even if the influence of the location where the bone 41 exists is excluded, the measurement error cannot be effectively reduced.
  • a portion having the maximum ratio (S1 / S2) is extracted as a second measurement portion from portions where the transmitted light intensity S2 of the second wavelength is substantially equal to the first measurement portion, and the second measurement is performed. Eliminate the effects of tissue components at the site.
  • the second measurement site extracted in this way is, for example, a position P2 in the vicinity of the blood vessel 40 shown in FIG. Since the second measurement site has substantially the same transmission distance of the transmitted light as the first measurement site, the measurement error can be effectively reduced by eliminating the influence of the biological tissue component of this portion.
  • the blood component measuring apparatus 10C irradiates the finger 11a with light in the near infrared region by the irradiation light source 12, and the light receiving unit 14 receives the transmitted light. Then, based on the received light signal, the first transmission spectrum generation unit 60 generates the transmission spectrum SP1 of the light transmitted through the first measurement site, and the second transmission spectrum generation unit 62 transmits the light through the second measurement site. A transmission spectrum SP2 is generated (step S14).
  • the concentration calculation unit 38 calculates the concentration of blood component (glucose) by multivariate analysis or the like based on the calculated differential transmission spectrum dSP (step S16).
  • the display unit 30 displays the glucose concentration thus calculated as a blood glucose level.
  • the transmitted light intensity S1 having the first wavelength that is relatively easily absorbed by the hemoglobin, and the second that is relatively difficult to be absorbed by the hemoglobin Since the concentration of the blood component is calculated at a location where the ratio (S1 / S2) of the wavelength to the transmitted light intensity S2 is minimum, that is, at a location where there are many blood components, the blood component measurement accuracy can be improved.
  • the influence of biological tissue components other than blood can be corrected and the S / N ratio can be improved. It can. That is, by eliminating the influence of biological tissue components other than blood by correction, more blood information can be acquired, so that the measurement accuracy of blood components can be further improved.
  • a blood component measurement device 10D according to the fourth embodiment will be described with reference to FIG. Note that in the blood component measurement device 10D according to the fourth embodiment, elements having the same or similar functions and effects as those of the blood component measurement device 10C in the third embodiment are denoted by the same reference numerals, and detailed description thereof will be made. Omitted.
  • the blood component measurement apparatus 10D includes an irradiation light source 12, a scanner mechanism 44, a light receiving unit 45, a holding mechanism 16, a heating mechanism 18, and a calculation means 52.
  • the irradiation light source 12, the holding mechanism 16, and the heating mechanism 18 are configured similarly to the irradiation light source 12 and the holding mechanism 16 in the first embodiment.
  • the scanner mechanism 44 is configured in the same manner as the scanner mechanism 44 in the second embodiment.
  • the calculation means 52 is a transmitted light intensity calculation unit 32, a first extraction unit 56, a second extraction unit 58, and a first transmission spectrum generation unit. 60, a second transmission spectrum generation unit 62, a differential transmission spectrum calculation unit 64, and a concentration calculation unit 38.
  • the finger 11a of the person who measures the glucose concentration is inserted into the holding mechanism 16 of the blood component measuring device 10D and held at a predetermined position.
  • a measurement switch is started by pressing a start switch provided on a main body (not shown) of the blood component measurement device 10D.
  • infrared light is irradiated to the finger 11a from the infrared light source which is the heating mechanism 18, and the living body part 11 is heated.
  • the blood component measurement apparatus 10 ⁇ / b> D emits, from the irradiation light source 12, light having the first wavelength that is relatively easily absorbed by the blood pigment in parallel with or after the heating of the finger 11 a by the heating mechanism 18.
  • the light transmitted through the finger 11 a is received by the light receiving unit 45.
  • the transmitted light intensity calculation unit 32 calculates (measures) the transmitted light intensity S ⁇ b> 1 of the first wavelength based on the light reception signal from the light receiving unit 45.
  • the blood component measurement apparatus 10D irradiates the light having the first wavelength from the irradiation light source and receives the light reception signal from the light receiving unit 45 by the calculation unit 52, or alternatively, the light source 12 emits the light having the first wavelength.
  • the transmitted light intensity calculation unit 32 calculates (measures) the transmitted light intensity S ⁇ b> 2 based on the light reception signal from the light receiving unit 45.
  • the first extraction unit 56 transmits the transmitted light intensity S1 of the first wavelength and the transmitted light of the second wavelength among the living body parts 11 irradiated with the light of the first wavelength and the light of the second wavelength.
  • a part having a minimum ratio (S1 / S2) to the intensity S2 is extracted as the first measurement part.
  • the second extraction unit 58 uses the ratio of the living body part 11 irradiated with the light having the first wavelength and the light having the second wavelength in the part where the transmitted light intensity S2 of the second wavelength is substantially equal to that of the first measurement part.
  • a part having the largest (S1 / S2) is extracted as the second measurement part.
  • the blood component measurement device 10D irradiates the finger 11a with light in the near infrared region by the irradiation light source 12 so as to generate transmission spectra SP1 and SP2 of light transmitted through the first measurement site and the second measurement site, respectively.
  • the transmitted light is received by the light receiving unit 45.
  • the operation position of the scanner mechanism 44 is controlled so that the light from the irradiation light source 12 is irradiated to the first measurement site, and the light transmitted through the first measurement site is received by the light receiving unit 45.
  • the first transmission spectrum generation unit 60 Based on the received light signal, the first transmission spectrum generation unit 60 generates a transmission spectrum SP1 for the first measurement site.
  • the operation position of the scanner mechanism 44 is controlled so that the light from the irradiation light source 12 is irradiated to the second measurement site, and the light transmitted through the second measurement site is received by the light receiving unit 45. Then, based on the received light signal, the second transmission spectrum generation unit 62 generates a transmission spectrum SP2 for the second measurement site.
  • the concentration calculation unit 38 calculates the concentration of the blood component (glucose) by multivariate analysis or the like based on the calculated differential transmission spectrum dSP.
  • the display unit 30 displays the glucose concentration thus calculated as a blood glucose level.
  • the transmitted light having the first wavelength that is relatively easily absorbed by the blood pigment As described above, according to the blood component measuring apparatus 10D, similarly to the blood component measuring apparatuses 10A to 10C according to the first to third embodiments, the transmitted light having the first wavelength that is relatively easily absorbed by the blood pigment. Since the concentration of the blood component is calculated for a portion where the ratio (S1 / S2) between the intensity S1 and the transmitted light intensity S2 of the second wavelength that is relatively difficult to be absorbed by the hemoglobin is small, that is, a portion having a large amount of blood components. The measurement accuracy of blood components can be improved.
  • the light from the irradiation light source 12 is scanned toward the living body part 11 by the scanner mechanism 44, so that the light receiving unit 45 is configured by a single element.
  • the scanner mechanism 44 it is possible to easily extract the one having the smallest ratio (S1 / S2).
  • the influence of the biological tissue components other than blood is corrected by measuring and analyzing the differential transmission spectrum dSP between the first measurement site and the second measurement site. , S / N ratio can be improved. That is, by eliminating the influence of biological tissue components other than blood by correction, more blood information can be acquired, so that the measurement accuracy of blood components can be further improved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Vascular Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)

Abstract

 血液成分測定装置(10A)は、少なくとも近赤外域の光を出射可能な照射光源(12)と、照射光源(12)で出射可能な光を受光可能な感度を持つ受光部(14)と、生体部位(11)を保持・固定する保持機構(16)と、生体部位(11)における血液成分の濃度を算出する演算手段(20)とを備える。演算手段(20)は、生体部位(11)のうち、血色素に相対的に吸収されやすい第1の波長の透過光強度S1と、血色素に相対的に吸収されにくい第2の波長の透過光強度S2との比(S1/S2)が最小の箇所について、血液成分の濃度を算出する。

Description

血液成分測定装置
 本発明は、手指等を測定部位として無侵襲に光学的に血液成分を測定する血液成分測定装置に関する。
 糖尿病患者は、日常的に血糖値の変動を自分自身で測定することが推奨されており、例えば、従来から患者自身が手指等を穿刺して血液を採取し、測定装置を用いて血糖値を測定することが行われていた。しかしながら、上述した測定方法は、患者に対して多大な負担を強いることとなるため、近年、近赤外光を患者に照射して血液中に含まれる血液成分を測定可能な非侵襲技術を用いた血液成分測定装置が開発されている。
 この血液成分測定装置を用いた測定方法では、例えば、血液中に含まれるグルコースが近赤外光の一部を吸収することを利用し、患者の身体の一部(例えば、手指等)に近赤外光を照射して前記身体を透過した近赤外光を受光し、その透過率又は吸光度を測定することにより血糖値(グルコース濃度)を算出している(例えば、特表2001-513351号公報参照)。
 血糖値を測定する際、測定された透過率又は吸光度が、血液中のグルコース濃度か体組織に含まれたグルコース濃度であるかを判断することが困難である。これに対処するため、特許第3903340号公報では、血管の拍動を利用して周期的に変化するグルコース量に基づいて血液のグルコース濃度を算出している。
 血液成分の測定を精度良く行うためには、より血液成分の多い部位を選択して測定することが重要である。したがって、これまでよりもより血液成分の多い部位を選択して測定することで、測定精度を向上させることが望ましい。
 本発明はこのような課題を考慮してなされたものであり、より血液成分の多い部位を選択して測定することで、測定精度を向上させることができる血液成分測定装置を提供することを目的とする。
 上記の目的を達成するため、本発明は、生体部位に光を照射して、前記生体部位の血液成分を測定する血液成分測定装置であって、少なくとも近赤外域の光を出射可能な照射光源と、前記照射光源で出射可能な光を受光可能な感度を持つ受光部と、前記生体部位を保持・固定する保持機構と、前記生体部位における血液成分の濃度を算出する演算手段とを備え、前記演算手段は、前記生体部位のうち、血色素に相対的に吸収されやすい第1の波長の透過光強度S1と、血色素に相対的に吸収されにくい第2の波長の透過光強度S2との比(S1/S2)が最小の箇所について、前記血液成分の濃度を算出することを特徴とする。
 血色素に相対的に吸収されやすい第1の波長の透過光強度S1と、血色素に相対的に吸収されにくい第2の波長の透過光強度S2との比(S1/S2)が最小の箇所は、血液成分の多い箇所、つまり血管がある部位と考えることができる。したがって、本発明の構成によれば、血液成分の多い箇所について血液成分の濃度を算出するので、血液成分の測定精度を向上させることができる。
 この場合、前記受光部は、受光素子がマトリックス状に配置された受光素子アレイであり、前記演算手段は、前記受光素子アレイを構成する前記受光素子のうち、前記第1の波長の透過光強度S1と、前記第2の波長の透過光強度S2との比(S1/S2)が最小のものについて、前記血液成分の濃度を算出してもよい。このような構成によれば、受光素子アレイにより、生体部位の複数箇所について同時に透過光を受光できるので、簡便な装置構成で、前記比(S1/S2)が最小のものを確実に抽出することができる。
 また、上記血液成分測定装置において、前記照射光源と前記保持機構との間の光路上に、前記照射光源からの光を反射して前記生体部位に対して走査するスキャナ機構を備え、前記受光部は、スキャナ機構による光の走査により、前記生体部位の複数箇所について、前記第1の波長の透過光と前記第2の波長の透過光をそれぞれ受光し、前記演算手段は、前記第1の波長の光と前記第2の波長の光が照射された前記生体部位のうち、前記第1の波長の透過光強度S1と、前記第2の波長の透過光強度S2との比(S1/S2)が最小の箇所について、前記血液成分の濃度を算出してもよい。このような構成によれば、スキャナ機構により照射光源からの光を生体部位に向けて走査するので、受光部を単一の受光素子で構成しても、前記比(S1/S2)が最小のものを容易に抽出することができる。
 前記演算手段は、前記生体部位において、前記比(S1/S2)が最小の箇所を第1測定部位として抽出する第1抽出部と、前記生体部位において、前記第2の波長の透過光強度S2が前記第1部位とほぼ等しい部位のうち前記比(S1/S2)が最大となる箇所を第2測定部位として抽出する第2抽出部と、前記第1測定部位の透過スペクトルを生成する第1透過スペクトル生成部と、前記第2測定部位の透過スペクトルを生成する第2透過スペクトル生成部と、前記第1測定部位の透過スペクトルと、前記第2測定部位の透過スペクトルとから、前記第1測定部位と前記第2測定部位との差分透過スペクトルを演算する差分透過スペクトル算出部と、前記差分透過スペクトルに基づいて、前記血液成分の濃度を算出する濃度算出部とを有するとよい。
 このように、第1測定部位と第2測定部位の差分透過スペクトルを計測及び分析することで、血液以外の生体組織成分の影響を補正し、S/N比を向上させることができる。すなわち、血液以外の生体組織成分の影響を補正によって排除することで、血液の情報をより多く取得することができるため、血液成分の測定精度をより向上させることができる。
 また、上記血液成分測定装置は、前記生体部位を加温する加温機構を備えるとよい。加温機構により生体部位を加温することで、生体部位の血流を増加させることができるので、血液成分の多い箇所を抽出しやすくなり、測定精度を一層向上させることができる。
 本発明に係る血液成分測定装置によれば、より血液成分の多い部位を選択して測定することで、測定精度を向上させることができる。
本発明の第1実施形態に係る血液成分測定装置の概略構成を示す図である。 図1に示した血液成分測定装置における演算手段の構成を示すブロック図である。 手のひら温度と血流量との関係を示す図である。 図1に示した血液成分測定装置の動作を示すフローチャートである。 手指における血管の位置を概念的に示す図である。 本発明の第2実施形態に係る血液成分測定装置の概略構成を示す図である。 本発明の第3実施形態に係る血液成分測定装置の概略構成を示す図である。 図7に示した血液成分測定装置における演算手段の構成を示すブロック図である。 図7に示した血液成分測定装置の動作を示すフローチャートである。 本発明の第4実施形態に係る血液成分測定装置の概略構成を示す図である。
 以下、本発明に係る血液成分測定装置について好適な実施の形態を挙げ、添付の図面を参照しながら説明する。
[第1実施形態]
 図1は、本発明の第1実施形態に係る血液成分測定装置10Aの概略構成を示す図である。この血液成分測定装置10Aは、照射光源12と、受光部14と、保持機構16と、加温機構18と、演算手段20とを備え、照射光源12から出射した光を生体の生体部位11に透過させ、透過光を受光部14で受光し、受光部14で得られた信号を演算手段20で演算・解析して、生体部位11における血液成分を測定するための医療機器である。
 生体部位11は、人体の一部、例えば、ヒトの手指11a、手のひら、耳たぶ等を例示できる。図1にした血液成分測定装置10Aは、ヒトの手指11aを生体部位11として、この手指11aの一部に光を照射し、照射部位における血液中のグルコース濃度を測定するように構成されている。
 照射光源12としては、可視から近赤外の範囲で光を出射可能であり、例えば、互いに異なる波長の光を出射する複数のLEDをマトリックス状に配置した多波長LEDアレイを採用し得る。また、照射光源12の他の構成としては、連続光を出射する光源(例えば、ハロゲンランプ)と、任意の波長成分を取り出すことができる分光器(モノクロメータ)とを組み合わせた構成でもよい。
 照射光源12は、血色素(ヘモグロビン)に吸収されやすい波長の光(第1の波長)と、血色素に吸収されにくい波長の光(第2の波長)と、生体部位11を透過した光の透過スペクトルを取得するための広範な波長域(例えば、700nm程度~2200nm程度の範囲)の光を出射することができる。
 血色素に吸収されやすい波長は、経皮透過では、760nm、940nm付近である。血色素に吸収されにくい波長は、血色素に吸収されやすい波長以外の波長のうち、血液以外の生体組織にも吸収されにくい波長であり、例えば、1000nm~1300nmである。1000nm~1300nmは、生体成分による吸収が比較的少なく、「生体の窓」と言われている。グルコースは、吸収ピークが明確でないが、1600nm付近で強い観察が可能である。
 受光部14は、可視から近赤外域の範囲で光を検出可能であり、本実施形態では、複数の受光素子がマトリックス状に配置された受光素子アレイにより構成されている。このような受光素子アレイとしては、例えば、InGaAsフォトダイオードアレイが挙げられる。
 保持機構16は、生体部位11を保持・固定し得るように構成されており、図示した構成では、ヒトの手指11aを挿入可能な保持孔部22a、23aを有する2つの保持部材22、23からなる。保持部材22、23は、例えば、ヒトの手指11aを挿入した際に弾性変形して手指11aの形状にフィットするような弾性部材により構成されるのが好ましい。そのような弾性部材としては、例えば、エラストマースポンジ等が挙げられる。このように保持部材22、23が構成されることで、手指11aを安定して保持・固定することができる。
 加温機構18は、生体部位11の血流を増加させるべく、生体部位11を加温(加熱)する機能を有する。図示した構成例では、加温機構18は、赤外線光源18a(例えば、赤外線LED)として構成され、生体部位11である手指11aのうち、2つの保持部材22、23の間に露出した部分に赤外線を照射し、当該照射部分を加熱する。なお、加温機構18の他の構成例としては、例えば、熱源を生体部位11に直接接触させて加温する構成、生体部位11を減圧して加温する構成、生体部位11を摩擦(マッサージ)して加温する構成等が挙げられる。
 演算手段20は、制御部26の機能として設けられている。制御部26は、記憶部28とともに、生体部位11における血液成分(グルコース)の濃度を算出するよう構成されたコンピュータを構成し、照射光源12の発光状態に対応する信号と、受光部14で受光した透過光強度に対応した受光信号が入力されるようになっている。血液成分測定装置10Aには、表示部30が設けられており、制御部26の制御作用下に、表示部30は計測結果(血糖値)等の情報を表示するようになっている。
 演算手段20は、生体部位11のうち、上記第1の波長の透過光強度S1と、上記第2の波長の透過光強度S2との比(S1/S2)が最小の箇所について、血液成分の濃度を算出するように構成されている。図2に示すように、演算手段20は、透過光強度算出部32と、測定部位抽出部34と、透過スペクトル生成部36と、濃度算出部38とを有する。
 透過光強度算出部32は、受光部14からの受光信号に基づき、第1の波長の透過光強度S1と第2の波長の透過光強度を算出する。測定部位抽出部34は、前記比(S1/S2)が最小の箇所を測定部位として抽出する。透過スペクトル生成部36は、抽出された測定部位の透過スペクトルSP1を生成する。濃度算出部38は、生成された透過スペクトルSP1に基づいて、血液成分の濃度を算出する。
 記憶部28には、透過光強度算出部32、測定部位抽出部34、透過スペクトル生成部36、濃度算出部38による各処理を実行するためのプログラムが格納され、当該プログラムに従って、制御部26におけるCPUが所定の演算処理を実行し、受光部14により取得した受光信号に対応した透過光強度等に基づいて、多変量解析等によってグルコース濃度を算出する。
 本実施形態に係る血液成分測定装置10Aは、基本的には以上のように構成されるものであり、以下、その作用及び効果について説明する。
 上述した血液成分測定装置10Aによりグルコース濃度(血糖値)を測定するには、図1に示すように、まず、血液成分測定装置10Aの保持機構16に、グルコース濃度を測定する人の手指11aを挿入して所定位置に保持させる。手指11aを保持機構16に保持させたら、血液成分測定装置10Aの図示しない本体部に設けられたスタートスイッチを押して、測定処理を開始する。
 血液成分測定装置10Aにおいて、測定処理が開始されると、加温機構18である赤外線光源から手指11aに対して赤外線が照射される。ここで、図3は、手のひら温度と血流量との関係を示す図である。図3から了解されるように、手のひらの温度が高くなるほど、血流量が増す。したがって、加温機構18により手指11aを加温することによって、手指11aにおける血流量を増大させることができる。
 以下、血液成分測定装置10Aの動作について、図4のフローチャートを参照しながら説明する。
 血液成分測定装置10Aは、加温機構18による手指11aの加温と並行して、あるいは、加温した後に、血色素に相対的に吸収されやすい第1の波長の光を照射光源12から出射させ、手指11aを透過した光を受光部14にて受光する。受光部14は、受光信号を出力する。透過光強度算出部32は、受光部14からの受光信号に基づき、第1の波長の透過光強度S1を算出(測定)する(ステップS1)。また、血液成分測定装置10Aは、第1の波長の光を照射光源12から照射して受光部14からの受光信号を演算手段20で受信した後、あるいは、第1の波長の光を照射光源12から照射する前に、血色素に相対的に吸収されにくい第2の波長の光を照射光源12から出射させ、手指11aを透過した光を受光部14にて受光する。受光部14は、受光信号を出力する。透過光強度算出部32は、受光部14からの受光信号に基づき、透過光強度S2を算出(測定)する(ステップS2)。
 次に、測定部位抽出部34は、第1の波長の透過光強度S1と、第2の波長の透過光強度S2との比(S1/S2)が最小の箇所を測定部位として抽出する(ステップS3)。本実施形態の場合、受光部14は、受光素子アレイにより構成されるため、生体部位11の一定範囲を透過した光を受光する。したがって、具体的には、受光部14の受光素子アレイを構成する受光素子のうち、比(S1/S2)が最小の箇所に対応する受光素子を抽出(特定)する。
 図5に示すように、生体には、血液成分が多く存在する部分(血管40)と、それ以外の組織成分とがある。第1の波長の光は、血色素(ヘモグロビン)に吸収されやすいが、第2の波長は、血色素に吸収されにくい。このため、第1の波長の透過光強度S1と、第2の波長の透過光強度S2との比(S1/S2)が最小の箇所は、血液成分の多い箇所、つまり血管40がある部位と考えることができる。そこで、本発明では、血液成分の測定精度を向上させるべく、前記比(S1/S2)が最小の箇所を測定部位として抽出する。このように抽出された測定部位は、血管40が存在する箇所であり、例えば、図5に示す位置P1である。
 次に、血液成分測定装置10Aは、照射光源12により近赤外域の光を手指11aに照射し、その透過光を受光部14で受光する。すると、その受光信号に基づいて、透過スペクトル生成部36は、測定部位抽出部34にて抽出された測定部位についての透過スペクトルSP1を生成する(ステップS4)。次に、濃度算出部38は、透過スペクトル生成部36にて生成された透過スペクトルSP1に基づいて、多変量解析等によってグルコース濃度を算出する(ステップS5)。表示部30は、このように算出されたグルコース濃度を血糖値として表示する。
 以上説明したように、本実施形態に係る血液成分測定装置10Aによれば、血色素に相対的に吸収されやすい第1の波長の透過光強度S1と、血色素に相対的に吸収されにくい第2の波長の透過光強度S2との比(S1/S2)が最小の箇所、すなわち、血液成分の多い箇所(図5中の位置P1)について血液成分の濃度を算出するので、血液成分の測定精度を向上させることができる。
 また、本実施形態の場合、受光素子アレイにより、生体部位11(手指11a)の複数箇所について同時に透過光を受光できるので、簡便な装置構成で、前記比(S1/S2)が最小のものを確実に抽出することができる。
 さらに、本実施形態の場合、加温機構18により生体部位11を加温するので、生体部位11の血流を増加させ、血液成分の多い箇所を抽出しやすくなる。よって、血液成分の測定精度を一層向上させることができる。
[第2実施形態]
 次に、図6を参照し、第2実施形態に係る血液成分測定装置10Bについて説明する。なお、第2実施形態に係る血液成分測定装置10Bにおいて、第1実施形態に血液成分測定装置10Aと同一又は同様な機能及び効果を奏する要素には同一の参照符号を付し、詳細な説明を省略する。
 本実施形態に係る血液成分測定装置10Bは、照射光源12と、スキャナ機構44と、受光部45と、保持機構16と、加温機構18と、演算手段20とを備える。保持機構16及び演算手段20は、第1実施形態における保持機構16及び演算手段20と同様に構成されている。
 照射光源12は、図1に示した照射光源12と同様の構成であるが、保持機構16により保持される手指11aに対向する位置から外れた位置に配置されている。照射光源12の発光面側には、照射光源12からの光を反射して生体部位11に対して走査するスキャナ機構44が設けられている。すなわち、スキャナ機構44は、照射光源12と保持機構16との間の光路上に配置されている。
 スキャナ機構44は、照射光源12からの光を反射する反射部46と、反射部46を揺動駆動する駆動部48とを備え、図示しない制御部26の作用下に、駆動部48により反射部46を回転(揺動)させることで、照射光源12からの光を反射して、生体部位11に沿って光を2次元的に走査するように構成されている。
 受光部45は、可視から近赤外域の範囲で光を検出可能であり、本実施形態では、単一の受光素子から構成されている。このような受光素子としては、例えば、InGaAsフォトダイオードが挙げられる。受光部45は、スキャナ機構44による光の走査に同期して、生体部位11の複数箇所について、第1の波長の透過光と第2の波長の透過光をそれぞれ受光する。
 受光部45と保持機構16との間には、集光レンズ50が配置されている。この集光レンズ50により、生体部位11を透過した光は、受光部45に向かって集光される。
 演算手段20は、第1の波長の光と第2の波長の光を照射した生体部位11のうち、第1の波長の透過光強度S1と、第2の波長の透過光強度S2との比(S1/S2)が最小の箇所について、血液成分の濃度を算出するように構成されている。演算手段20は、図2に示した演算手段20と同様に、透過光強度算出部32と、測定部位抽出部34と、透過スペクトル生成部36と、濃度算出部38とを有する。
 上述した血液成分測定装置10Bによりグルコース濃度(血糖値)を測定するには、まず、血液成分測定装置10Bの保持機構16に、グルコース濃度を測定する人の手指11aを挿入して所定位置に保持させる。手指11aを保持機構16に保持させたら、血液成分測定装置10Bの図示しない本体部に設けられたスタートスイッチを押して、測定処理を開始する。すると、加温機構18である赤外線光源から手指11aに対して赤外線が照射され、生体部位11が加温される。
 血液成分測定装置10Bは、加温機構18による手指11aの加温と並行して、あるいは、加温した後に、血色素に相対的に吸収されやすい第1の波長の光を照射光源12から出射させ、手指11aを透過した光を受光部45にて受光する。透過光強度算出部32は、受光部45からの受光信号に基づき、第1の波長の透過光強度S1を算出(測定)する。また、血液成分測定装置10Bは、第1の波長の光を照射光源から照射して受光部14からの受光信号を演算手段20で受信した後、あるいは、第1の波長の光を照射光源から照射する前に、血色素に相対的に吸収されにくい第2の波長の光を照射光源12から出射させ、手指11aを透過した光を受光部45にて受光する。この受光信号は演算手段20に送られる。すると、透過光強度算出部32は、受光部45からの受光信号に基づき、透過光強度S2を算出(測定)する。
 この場合、本実施形態では、照射光源12からの光をスキャナ機構44により反射して走査するように構成されるとともに、受光部45が単一の受光素子により構成されている。したがって、スキャナ機構44の走査位置と、受光部45からの受光信号とを対応付けることで、生体部位11の複数箇所の各々についての透過光強度を算出することができる。
 次に、測定部位抽出部34は、第1の波長の光と第2の波長の光を照射した生体部位11のうち、第1の波長の透過光強度S1と、第2の波長の透過光強度S2との比(S1/S2)が最小の箇所(図5中、P1で示す箇所)を測定部位として抽出する。
 次に、血液成分測定装置10Bは、照射光源12により近赤外域の光を手指11aに照射し、その透過光を受光部45で受光する。このとき、照射光源12からの光を、抽出された測定部位に照射するように、スキャナ機構44の動作位置が制御され、測定部位を透過した光は、集光レンズ50にて集光され、受光部45にて受光される。すると、その受光信号に基づいて、透過スペクトル生成部36は、測定部位抽出部34にて抽出された測定部位についての透過スペクトルSP1を生成する。
 次に、濃度算出部38は、透過スペクトル生成部36にて生成された透過スペクトルSP1に基づいて、多変量解析等によってグルコース濃度を算出する。表示部30は、このように算出されたグルコース濃度を血糖値として表示する。
 以上説明したように、本実施形態に係る血液成分測定装置10Bによれば、血色素に相対的に吸収されやすい第1の波長の透過光強度S1と、血色素に相対的に吸収されにくい第2の波長の透過光強度S2との比(S1/S2)が最小の箇所、すなわち、血液成分の多い箇所について血液成分の濃度を算出するので、血液成分の測定精度を向上させることができる。
 また、本実施形態の場合、スキャナ機構44により照射光源12からの光を生体部位11に向けて走査するので、受光部45を単一の素子で構成しても、前記比(S1/S2)が最小のものを容易に抽出することができる。
 なお、第2実施形態において、第1実施形態と共通する各構成部分については、第1実施形態における当該共通の各構成部分がもたらす作用及び効果と同一又は同様の作用及び効果が得られることは勿論である。
[第3実施形態]
 図7は、本発明の第3実施形態に係る血液成分測定装置10Cの概略構成を示す図である。この血液成分測定装置10Cは、照射光源12と、受光部14と、保持機構16と、加温機構18と、演算手段52とを備え、照射光源12から出射した光を生体の生体部位11に透過させ、透過光を受光部14で受光し、受光部14で得られた信号を演算手段52で演算・解析して、生体部位11における血液成分を測定するための医療機器である。
 本実施形態に係る血液成分測定装置10Cは、演算手段52の構成において、第1実施形態に係る血液成分測定装置10Aと異なる。具体的には、演算手段52は、図8に示すように、透過光強度算出部32と、第1抽出部56と、第2抽出部58と、第1透過スペクトル生成部60と、第2透過スペクトル生成部62と、差分透過スペクトル算出部64と、濃度算出部38とを有する。
 透過光強度算出部32は、第1の波長の透過光強度S1と、第2の波長の透過光強度S2を算出する。第1抽出部56は、生体部位11のうち、前記比(S1/S2)が最小の箇所を測定部位(以下、第1測定部位という)として抽出する。第2抽出部58は、第2の波長の透過光強度S2が前記第1測定部位とほぼ等しい部位であって、前記比(S1/S2)が最大となる箇所を第2測定部位として抽出する。第1透過スペクトル生成部60は、第1測定部位の透過スペクトルSP1を生成する。第2透過スペクトル生成部62は、第2測定部位の透過スペクトルSP2を生成する。差分透過スペクトル算出部64は、前記第1測定部位と前記第2測定部位との差分透過スペクトルdSP(=PS1-PS2)を算出する。濃度算出部38は、差分透過スペクトルdSPに基づいて、前記血液成分の濃度を算出する。
 演算手段52における前記記憶部28には、透過光強度算出部32、第1抽出部56、第2抽出部58、第1透過スペクトル生成部60、第2透過スペクトル生成部62、差分透過スペクトル算出部64による各処理を実行するためのプログラムが格納され、当該プログラムに従って、制御部54のCPUが所定の演算処理を実行し、受光部14により取得した透過光強度等に基づいて、多変量解析等によってグルコース濃度を算出する。
 照射光源12及び加温機構18は、制御部54によって制御される。演算手段52は、制御部54の機能の一部である。
 上述した血液成分測定装置10Cによりグルコース濃度(血糖値)を測定するには、まず、血液成分測定装置10Cの保持機構16に、グルコース濃度を測定する人の手指11aを挿入して所定位置に保持させる。手指11aを保持機構16に保持させたら、血液成分測定装置10Cの図示しない本体部に設けられたスタートスイッチを押して、測定処理を開始する。すると、加温機構18である赤外線光源から手指11aに対して赤外線が照射され、生体部位11が加温される。
 以下、血液成分測定装置10Cの動作について、図9のフローチャートを参照しながら説明する。
 血液成分測定装置10Cは、加温機構18による手指11aの加温と並行して、あるいは、加温した後に、血色素に相対的に吸収されやすい第1の波長の光を照射光源12から出射させ、手指11aを透過した光を受光部14にて受光する。受光部14は、受光信号を出力する。透過光強度算出部32は、受光部14からの受光信号に基づき、透過光強度S1を算出(測定)する(ステップS11)。また、血液成分測定装置10Cは、第1の波長の光を照射光源12から照射して受光部14からの受光信号を演算手段52で受信した後、あるいは、第1の波長の光を照射光源から照射する前に、血色素に相対的に吸収されにくい第2の波長の光を照射光源12から出射させ、手指11aを透過した光を受光部14にて受光する。受光部14は、受光信号を出力する。すると、透過光強度算出部32は、受光部14からの受光信号に基づき、透過光強度S2を算出(測定)する(ステップS12)。
 次に、第1抽出部56により、生体部位11のうち、第1の波長の透過光強度S1と、第2の波長の透過光強度S2との比(S1/S2)が最小の箇所を第1測定部位として抽出する(ステップS13)。抽出された第1測定部位は、血管40が存在する箇所であり、例えば、図5に示す位置P1である。本実施形態の場合、受光部14は、受光素子アレイにより構成されるため、生体部位11の一定範囲を透過した光を受光する。したがって、具体的には、受光部14の受光素子アレイを構成する受光素子のうち前記比(S1/S2)が最小の箇所に対応する受光素子を抽出(特定)する。
 また、第2抽出部58により、生体部位11において、第2の波長の透過光強度S2が前記第1測定部位とほぼ等しい部位のうち前記比(S1/S2)が最大の箇所を抽出する(ステップS13)。本実施形態の場合、具体的には、受光部14の受光素子アレイを構成する受光素子において、第2の波長の透過光強度S2が前記第1測定部位とほぼ等しい箇所のうち前記比(S1/S2)が最大の箇所に対応する受光素子を抽出(特定)する。
 ところで、血管40を透過した光であっても、必ず血液以外の生体組織成分を透過しているため、血液以外の生体組織成分の影響により測定誤差の低下を招く。したがって、血液以外の生体組織成分の影響を除去することが、測定誤差の低減の観点からは好ましい。しかし、単に、血管40を避けた部分の生体組織成分の影響を排除するだけでは、必ずしも測定誤差を低減できるとは限らない。
 例えば、図5において、光の透過経路上に血管40が存在しない箇所のうち、手指11aの側端部P3は、透過光の生体透過距離が血管70が存在する箇所のそれと比べて相当に短いため、側端部P3における生体組織成分の影響を排除しても、測定誤差を有効に低減することができない。また、骨41が存在する箇所の影響を排除しても、測定誤差を有効に低減することができない。
 そこで、本実施形態では、第2の波長の透過光強度S2が第1測定部位とほぼ等しい箇所のうち前記比(S1/S2)が最大の箇所を第2測定部位として抽出し、第2測定部位における生体組織成分の影響を排除する。このように抽出された第2測定部位は、例えば、図5に示す血管40近傍の位置P2である。この第2測定部位は、透過光の生体通過距離が第1測定部位とほぼ同じであるため、この部分の生体組織成分の影響を排除することにより、測定誤差を有効に低減できる。
 次に、血液成分測定装置10Cは、照射光源12により近赤外域の光を手指11aに照射し、その透過光を受光部14で受光する。すると、その受光信号に基づいて、第1透過スペクトル生成部60が第1測定部位を透過した光の透過スペクトルSP1を生成するとともに、第2透過スペクトル生成部62が第2測定部位を透過した光の透過スペクトルSP2を生成する(ステップS14)。
 次に、差分透過スペクトル算出部64は、第1測定部位の透過スペクトルSP1と第2測定部位の透過スペクトルSP2との差分透過スペクトルdSP(=SP1-SP2)を演算する(ステップS15)。次に、濃度算出部38は、算出された差分透過スペクトルdSPに基づいて、多変量解析等によって血液成分(グルコース)の濃度を算出する(ステップS16)。表示部30は、このように算出されたグルコース濃度を血糖値として表示する。
 以上説明したように、本実施形態に係る血液成分測定装置10Cによれば、血色素に相対的に吸収されやすい第1の波長の透過光強度S1と、血色素に相対的に吸収されにくい第2の波長の透過光強度S2との比(S1/S2)が最小の箇所、すなわち、血液成分の多い箇所について血液成分の濃度を算出するので、血液成分の測定精度を向上させることができる。
 また本実施形態の場合、第1測定部位と第2測定部位の差分透過スペクトルdSPを計測及び分析することで、血液以外の生体組織成分の影響を補正し、S/N比を向上させることができる。すなわち、血液以外の生体組織成分の影響を補正によって排除することで、血液の情報をより多く取得することができるため、血液成分の測定精度をより向上させることができる。
 なお、第3実施形態において、第1実施形態と共通する各構成部分については、第1実施形態における当該共通の各構成部分がもたらす作用及び効果と同一又は同様の作用及び効果が得られることは勿論である。
[第4実施形態]
 次に、図10を参照し、第4実施形態に係る血液成分測定装置10Dについて説明する。なお、第4実施形態に係る血液成分測定装置10Dにおいて、第3実施形態に血液成分測定装置10Cと同一又は同様な機能及び効果を奏する要素には同一の参照符号を付し、詳細な説明を省略する。
 本実施形態に係る血液成分測定装置10Dは、照射光源12と、スキャナ機構44と、受光部45と、保持機構16と、加温機構18と、演算手段52とを備える。照射光源12、保持機構16及び加温機構18は、第1実施形態における照射光源12及び保持機構16と同様に構成されている。スキャナ機構44は、第2実施形態におけるスキャナ機構44と同様に構成されている。演算手段52は、第3実施形態における演算手段52(図8参照)と同様に、透過光強度算出部32と、第1抽出部56と、第2抽出部58と、第1透過スペクトル生成部60と、第2透過スペクトル生成部62と、差分透過スペクトル算出部64と、濃度算出部38とを有する。
 上述した血液成分測定装置10Dによりグルコース濃度(血糖値)を測定するには、まず、血液成分測定装置10Dの保持機構16に、グルコース濃度を測定する人の手指11aを挿入して所定位置に保持させる。手指11aを保持機構16に保持させたら、血液成分測定装置10Dの図示しない本体部に設けられたスタートスイッチを押して、測定処理を開始する。すると、加温機構18である赤外線光源から手指11aに対して赤外線が照射され、生体部位11が加温される。
 血液成分測定装置10Dは、加温機構18による手指11aの加温と並行して、あるいは、加温した後に、血色素に相対的に吸収されやすい第1の波長の光を照射光源12から出射させ、手指11aを透過した光を受光部45にて受光する。透過光強度算出部32は、受光部45からの受光信号に基づき、第1の波長の透過光強度S1を算出(測定)する。また、血液成分測定装置10Dは、第1の波長の光を照射光源から照射して受光部45からの受光信号を演算手段52で受信した後、あるいは、第1の波長の光を照射光源12から照射する前に、血色素に相対的に吸収されにくい第2の波長の光を照射光源12から出射させ、手指11aを透過した光を受光部45にて受光する。受光部45はこの受光信号を出力する。透過光強度算出部32は、受光部45からの受光信号に基づき、透過光強度S2を算出(測定)する。
 次に、第1抽出部56は、第1の波長の光と第2の波長の光を照射した生体部位11のうち、第1の波長の透過光強度S1と、第2の波長の透過光強度S2との比(S1/S2)が最小の箇所を第1測定部位として抽出する。第2抽出部58は、第1の波長の光と第2の波長の光を照射した生体部位11において、第2の波長の透過光強度S2が第1測定部位とほぼ等しい箇所のうち前記比(S1/S2)が最大の箇所を第2測定部位として抽出する。
 次に、血液成分測定装置10Dは、第1測定部位及び第2測定部位のそれぞれを透過した光の透過スペクトルSP1、SP2を生成すべく、照射光源12により近赤外域の光を手指11aに照射し、その透過光を受光部45で受光する。このとき、まず、照射光源12からの光を第1測定部位に照射するように、スキャナ機構44の動作位置が制御され、第1測定部位を透過した光は、受光部45にて受光される。すると、その受光信号に基づいて、第1透過スペクトル生成部60は、第1測定部位についての透過スペクトルSP1を生成する。
 次に、照射光源12からの光を第2測定部位に照射するように、スキャナ機構44の動作位置が制御され、第2測定部位を透過した光は、受光部45にて受光される。すると、その受光信号に基づいて、第2透過スペクトル生成部62は、第2測定部位についての透過スペクトルSP2を生成する。
 なお、透過スペクトルSP1、SP2の取得に際し、上記動作順序と異なり、第1測定部位に近赤外光を照射してその透過光から第1測定部位の透過スペクトルSP1を生成する処理の前に、第2測定部位に近赤外光を照射してその透過光から第2測定部位の透過スペクトルSP2を生成する処理を行ってもよい。
 次に、差分透過スペクトル算出部64は、第1測定部位の透過スペクトルSP1と第2測定部位の透過スペクトルSP2との差分透過スペクトルdSP(=SP1-SP2)を演算する。次に、濃度算出部38は、算出された差分透過スペクトルdSPに基づいて、多変量解析等によって血液成分(グルコース)の濃度を算出する。表示部30は、このように算出されたグルコース濃度を血糖値として表示する。
 以上説明したように、血液成分測定装置10Dによれば、第1~第3実施形態に係る血液成分測定装置10A~10Cと同様に、血色素に相対的に吸収されやすい第1の波長の透過光強度S1と、血色素に相対的に吸収されにくい第2の波長の透過光強度S2との比(S1/S2)が最小の箇所、すなわち、血液成分の多い箇所について血液成分の濃度を算出するので、血液成分の測定精度を向上させることができる。
 また、第2実施形態に係る血液成分測定装置10Bと同様に、スキャナ機構44により照射光源12からの光を生体部位11に向けて走査するので、受光部45を単一の素子で構成しても、前記比(S1/S2)が最小のものを容易に抽出することができる。
 また、第3実施形態に係る血液成分測定装置10Cと同様に、第1測定部位と第2測定部位の差分透過スペクトルdSPを計測及び分析することで、血液以外の生体組織成分の影響を補正し、S/N比を向上させることができる。すなわち、血液以外の生体組織成分の影響を補正によって排除することで、血液の情報をより多く取得することができるため、血液成分の測定精度をより向上させることができる。
 上記において、本発明について好適な実施の形態を挙げて説明したが、本発明は前記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改変が可能なことは言うまでもない。

Claims (5)

  1.  生体部位(11)に光を照射して、前記生体部位(11)の血液成分を測定する血液成分測定装置(10A、10B、10C、10D)であって、
     少なくとも近赤外域の光を出射可能な照射光源(12)と、
     前記照射光源(12)で出射可能な光を受光可能な感度を持つ受光部(14、45)と、
     前記生体部位(11)を保持・固定する保持機構(16)と、
     前記生体部位(11)における血液成分の濃度を算出する演算手段(20、52)とを備え、
     前記演算手段(20、52)は、前記生体部位(11)のうち、血色素に相対的に吸収されやすい第1の波長の透過光強度S1と、血色素に相対的に吸収されにくい第2の波長の透過光強度S2との比(S1/S2)が最小の箇所について、前記血液成分の濃度を算出する、
     ことを特徴とする血液成分測定装置(10A、10B、10C、10D)。
  2.  請求項1記載の血液成分測定装置(10A、10C)において、
     前記受光部(14)は、受光素子がマトリックス状に配置された受光素子アレイであり、
     前記演算手段(20、52)は、前記受光素子アレイを構成する前記受光素子のうち、前記第1の波長の透過光強度S1と、前記第2の波長の透過光強度S2との比(S1/S2)が最小のものについて、前記血液成分の濃度を算出する、
     ことを特徴とする血液成分測定装置(10A、10C)。
  3.  請求項1記載の血液成分測定装置(10B、10D)において、
     前記照射光源(12)と前記保持機構(16)との間の光路上に、前記照射光源(12)からの光を反射して前記生体部位(11)に対して走査するスキャナ機構(44)を備え、
     前記受光部(45)は、前記スキャナ機構(44)による光の走査により、前記生体部位(11)の複数箇所について、前記第1の波長の透過光と前記第2の波長の透過光をそれぞれ受光し、
     前記演算手段(20、52)は、前記第1の波長の光と前記第2の波長の光が照射された前記生体部位(11)のうち、前記第1の波長の透過光強度S1と、前記第2の波長の透過光強度S2との比が最小の箇所について、前記血液成分の濃度を算出する、
     ことを特徴とする血液成分測定装置(10B、10D)。
  4.  請求項1記載の血液成分測定装置(10C、10D)において、
     前記演算手段(52)は、
     前記生体部位(11)において、前記比(S1/S2)が最小の箇所を第1測定部位として抽出する第1抽出部(56)と、
     前記生体部位(11)において、前記第2の波長の透過光強度S2が前記第1測定部位とほぼ等しい部位のうち前記比(S1/S2)が最大となる箇所を第2測定部位として抽出する第2抽出部(58)と、
     前記第1測定部位の透過スペクトルを生成する第1透過スペクトル生成部(60)と、
     前記第2測定部位の透過スペクトルを生成する第2透過スペクトル生成部(62)と、
     前記第1測定部位の透過スペクトルと、前記第2測定部位の透過スペクトルとから、前記第1測定部位と前記第2測定部位との差分透過スペクトルを演算する差分透過スペクトル算出部(64)と、
     前記差分透過スペクトルに基づいて、前記血液成分の濃度を算出する濃度算出部(38)とを有する、
     ことを特徴とする血液成分測定装置(10C、10D)。
  5.  請求項1記載の血液成分測定装置(10A、10B、10C、10D)において、
     前記生体部位(11)を加温する加温機構を備える、
     ことを特徴とする血液成分測定装置(10A、10B、10C、10D)。
PCT/JP2012/055520 2011-03-31 2012-03-05 血液成分測定装置 WO2012132768A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013507311A JP5990508B2 (ja) 2011-03-31 2012-03-05 血液成分測定装置
CN201280011816.3A CN103429154B (zh) 2011-03-31 2012-03-05 血液成分测定装置
US14/035,072 US20140024904A1 (en) 2011-03-31 2013-09-24 Blood component measuring device
HK14102939.4A HK1189784A1 (en) 2011-03-31 2014-03-25 Blood component measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-078079 2011-03-31
JP2011078079 2011-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/035,072 Continuation US20140024904A1 (en) 2011-03-31 2013-09-24 Blood component measuring device

Publications (1)

Publication Number Publication Date
WO2012132768A1 true WO2012132768A1 (ja) 2012-10-04

Family

ID=46930515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055520 WO2012132768A1 (ja) 2011-03-31 2012-03-05 血液成分測定装置

Country Status (5)

Country Link
US (1) US20140024904A1 (ja)
JP (1) JP5990508B2 (ja)
CN (1) CN103429154B (ja)
HK (1) HK1189784A1 (ja)
WO (1) WO2012132768A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176802A1 (ja) * 2021-02-19 2022-08-25 日本ゼオン株式会社 生体情報測定装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6428052B2 (ja) * 2014-08-26 2018-11-28 セイコーエプソン株式会社 生体情報取得装置及び電子機器
US10206581B2 (en) 2014-10-29 2019-02-19 Zoll Medical Corporation Transesophageal or transtracheal cardiac monitoring by optical spectroscopy
CN104490403B (zh) * 2014-12-06 2016-08-17 深圳市贝沃德克生物技术研究院有限公司 基于光谱技术的无创血糖测量系统及其测量方法
US10716499B1 (en) 2015-03-24 2020-07-21 Zoll Medical Corporation Physiological monitoring by optical spectroscopy
US11432748B2 (en) * 2016-06-28 2022-09-06 Roxanne Abul-Haj Common depth noninvasive glucose concentration determination analyzer apparatus and method of use thereof
CN205958453U (zh) * 2016-08-19 2017-02-15 深圳市前海康启源科技有限公司 葡萄糖浓度检测装置
JP7155109B2 (ja) * 2017-03-23 2022-10-18 テルモ株式会社 成分測定装置及び成分測定装置セット
EP3613345A4 (en) * 2017-04-18 2021-01-06 Kowa Company Ltd. INFORMATION PROCESSING METHODS FOR CALCULATING THE ABSORPTION SPECTRUM OF BLOOD, INFORMATION PROCESSING DEVICE AND PROGRAM
TWI633618B (zh) * 2017-08-02 2018-08-21 李美燕 積體化微型夾持器、其製造方法以及使用其之積體化微型夾持器陣列及轉移系統
CN107969905B (zh) * 2017-12-22 2020-05-05 浙江浩鑫家庭用品有限公司 一种智能炖锅
CN107981706B (zh) * 2017-12-22 2020-06-26 福州盛世凌云环保科技有限公司 一种炖锅
CN108041972B (zh) * 2017-12-22 2020-06-26 福州盛世凌云环保科技有限公司 一种有助于血脂保健的炖锅
JP7296640B2 (ja) * 2018-06-15 2023-06-23 ジーニアルライト株式会社 体液分析装置
CN110584678B (zh) * 2019-09-06 2024-05-10 广东宝莱特医用科技股份有限公司 一种血容量变化率的测量方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323A (ja) * 1997-04-15 1999-01-06 Toa Medical Electronics Co Ltd 非侵襲血液分析装置
JP2009153621A (ja) * 2007-12-25 2009-07-16 Olympus Corp 生体観察装置および内視鏡装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2177721C2 (ru) * 1995-12-27 2002-01-10 Сисмекс Корпорэйшн Атравматичный анализатор крови
US5974338A (en) * 1997-04-15 1999-10-26 Toa Medical Electronics Co., Ltd. Non-invasive blood analyzer
US6675031B1 (en) * 1999-04-14 2004-01-06 Mallinckrodt Inc. Method and circuit for indicating quality and accuracy of physiological measurements
US6975891B2 (en) * 2001-12-21 2005-12-13 Nir Diagnostics Inc. Raman spectroscopic system with integrating cavity
US8175666B2 (en) * 2002-04-26 2012-05-08 Grove Instruments, Inc. Three diode optical bridge system
JP4612043B2 (ja) * 2005-03-16 2011-01-12 パナソニック株式会社 画像投影装置
WO2006126152A1 (en) * 2005-05-24 2006-11-30 Koninklijke Philips Electronics N.V. Glucose sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323A (ja) * 1997-04-15 1999-01-06 Toa Medical Electronics Co Ltd 非侵襲血液分析装置
JP2009153621A (ja) * 2007-12-25 2009-07-16 Olympus Corp 生体観察装置および内視鏡装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176802A1 (ja) * 2021-02-19 2022-08-25 日本ゼオン株式会社 生体情報測定装置

Also Published As

Publication number Publication date
CN103429154B (zh) 2015-10-21
CN103429154A (zh) 2013-12-04
JPWO2012132768A1 (ja) 2014-07-28
US20140024904A1 (en) 2014-01-23
HK1189784A1 (en) 2014-06-20
JP5990508B2 (ja) 2016-09-14

Similar Documents

Publication Publication Date Title
JP5990508B2 (ja) 血液成分測定装置
US9149216B2 (en) Photoplethysmography device and method
JP3875798B2 (ja) 血中成分濃度の無血測定装置の作動方法及び無血測定装置
US9915608B2 (en) Optical sensor for determining the concentration of an analyte
US20220031201A1 (en) Method and system for non-invasive blood glucose measurement using signal change of the non-glucose components induced by the presence of glucose
US20110082355A1 (en) Photoplethysmography device and method
US11304634B2 (en) Non-invasive blood glucose sensor
US20190343432A1 (en) Non-invasive hemoglobin and white blood cell sensors
JP2008203234A (ja) 血液成分濃度の分析方法及びその分析装置
WO2006092050A1 (en) Method and apparatus for determining blood analytes
KR100464324B1 (ko) 목적물의 성분농도 측정방법 및 장치
KR20180010945A (ko) 주파수 도메인 기반의 다파장 생체신호 분석 장치 및 그 방법
WO2021040878A1 (en) Non-invasive glucose monitoring by raman spectroscopy
JP4553954B2 (ja) 血中成分濃度測定装置及び血中成分濃度測定方法
AU2020204273A1 (en) Method for measuring blood oxygen saturation
KR20150050523A (ko) 파이버리스 트랜스플렉턴스 프로브를 이용하는 분석물 농도의 비침습적 측정
Pande et al. Non-invasive blood glucose measurement
KR101571135B1 (ko) 광 센서를 이용한 망막 혈관 내 건강 지표 측정 장치 및 건강 지표 산출을 위한 혈관 반사광 처리 방법
WO2019208561A1 (ja) 血液成分の血中濃度測定方法、血中濃度測定装置およびプログラム
KR100300960B1 (ko) 혈중성분 농도의 무혈측정 방법 및 장치
Pande et al. Non-invasive optical blood glucose measurement
Bachir Diffuse transmittance visible spectroscopy using smartphone flashlight for photoplethysmography and vital signs measurements
JP2005028005A (ja) グルコース濃度測定装置
JP2022013565A (ja) 血中の特定物質濃度の測定方法、およびそれを用いた測定装置
Joshi et al. Smart Glucometer for Personalized Health Management of Diabetes Care

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507311

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763429

Country of ref document: EP

Kind code of ref document: A1