WO2019208561A1 - 血液成分の血中濃度測定方法、血中濃度測定装置およびプログラム - Google Patents

血液成分の血中濃度測定方法、血中濃度測定装置およびプログラム Download PDF

Info

Publication number
WO2019208561A1
WO2019208561A1 PCT/JP2019/017204 JP2019017204W WO2019208561A1 WO 2019208561 A1 WO2019208561 A1 WO 2019208561A1 JP 2019017204 W JP2019017204 W JP 2019017204W WO 2019208561 A1 WO2019208561 A1 WO 2019208561A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
light
absorbance
living body
absorption spectrum
Prior art date
Application number
PCT/JP2019/017204
Other languages
English (en)
French (fr)
Inventor
貴春 浅野
克己 薮崎
Original Assignee
興和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 興和株式会社 filed Critical 興和株式会社
Priority to JP2020515479A priority Critical patent/JPWO2019208561A1/ja
Publication of WO2019208561A1 publication Critical patent/WO2019208561A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Definitions

  • the present invention relates to a blood concentration measurement method, a blood concentration measurement device, and a program for blood components.
  • Blood contains various components such as blood cells and water, proteins such as albumin and hemoglobin, neutral fat, cholesterol, and glucose, which reflect the state of human health. Therefore, measurement of blood components is important in evaluating the human health condition, and analysis of blood collected using an injection needle is generally performed.
  • measurement of blood components is important in evaluating the human health condition, and analysis of blood collected using an injection needle is generally performed.
  • due to factors such as pain from needle puncture, complexity from work after blood collection and disposal of the needle, and risk of infection frequent blood analysis is not practical, so blood collection
  • a non-invasive method of measuring blood components that is not accompanied. Therefore, a method for calculating the blood concentration of a blood component by non-invasively acquiring a blood absorption spectrum and analyzing the spectrum shape has been studied.
  • the above-described technique allows the measurement target component to be measured even if the observed absorption spectrum of blood is used as it is. Blood concentration may not be measured accurately.
  • an object of the technology disclosed herein is to provide a technology for accurately measuring the blood concentration of a blood component from light irradiated on a living body such as a human finger.
  • a pulse wave signal is measured based on the light received from the living body by irradiating light of a plurality of wavelengths to the living body, and the light in each wavelength from the pulse wave signal is measured.
  • the absorbance of the blood of the living body is calculated, and the absorption spectrum of the blood is determined by superimposing the absorption spectrum of the predetermined blood component and the absorption spectrum of blood components other than the predetermined blood component.
  • a value that correlates with the absorbance of the predetermined blood component of the absorbance is calculated, and the blood concentration of the predetermined blood component is calculated from the value.
  • the light having a plurality of wavelengths means light having an emission wavelength in a certain wavelength range, for example, near infrared light in a wavelength range of 900 to 1700 nm.
  • light having a plurality of wavelengths may be emitted from a single light source (for example, a halogen lamp), or may be emitted from a plurality of light sources (for example, a light-emitting diode (LED)).
  • a single light source for example, a halogen lamp
  • a plurality of light sources for example, a light-emitting diode (LED)
  • the pulse wave signal may be measured by irradiating the living body with first light and second light having different wavelengths from the first light source and the second light source, respectively. Measuring the first pulse wave signal corresponding to the first light and the second pulse wave signal corresponding to the second light based on the received light, and calculating the absorbance of blood of the living body, The absorbance of the living body blood in the first light and the second light is calculated from the first pulse wave signal and the second pulse wave signal, and the calculation of the value is the first light.
  • a value correlated with the absorbance of the predetermined blood component may be calculated from the absorbance of blood of the living body in the second light.
  • the pulse wave signal may be measured by irradiating the living body with light of a plurality of wavelengths from one light source and receiving the light of the plurality of wavelengths based on the light received from the living body. And calculating the absorbance of the living body's blood by calculating the absorbance of the living body's blood at each wavelength from the pulse wave signal and absorbing the blood of the living body.
  • the calculation of the value is to superimpose the absorption spectrum on the absorption spectrum of the predetermined blood component and the absorption spectrum of blood components other than the predetermined blood component.
  • a value correlated with the absorbance indicated by the absorption spectrum of the predetermined blood component in the superposition may be calculated.
  • calculating the value is determining the coefficient used for the absorption spectrum of the predetermined blood component in the superposition as the value by the least square method,
  • the blood concentration of the predetermined blood component is calculated by using the calibration curve indicating the correlation between the blood concentration of the predetermined blood component and the absorbance as the absorbance as the coefficient, and the blood concentration of the predetermined blood component. It may be converted to.
  • the predetermined blood component may include triglyceride, and the blood component other than the predetermined blood component may include hemoglobin.
  • the blood concentration measurement apparatus for blood components disclosed in the present disclosure includes a measurement unit that irradiates a living body with light of a plurality of wavelengths and measures a pulse wave signal based on the light received from the living body, A first calculation unit for calculating the absorbance of blood of the living body with light of a wavelength; and an absorption spectrum of blood is an overlap of an absorption spectrum of a predetermined blood component and an absorption spectrum of a blood component other than the predetermined blood component A second calculating unit that calculates a value correlated with the absorbance of the predetermined blood component of the blood absorbance of the living body, and a blood concentration of the predetermined blood component is calculated from the value. 3 calculation units.
  • FIG. It is a figure which shows an example of the measurement result by the blood concentration measuring apparatus in Example 1.
  • FIG. It is a graph which shows the correlation with the blood TG value based on the measurement result of FIG. 8, and noninvasive blood absorbance. It is a graph which shows the blood TG value and TG estimated value based on the measurement result of FIG. It is another graph which shows the blood TG value and TG estimated value based on the measurement result of FIG. It is a graph which shows the noninvasive blood spectrum based on the measurement result of FIG. It is a graph which shows an example of the TG spectrum and Hb spectrum in Example 2. It is a figure which shows an example of the measurement result by the blood concentration measuring apparatus in Example 2.
  • FIG. It is a graph which shows the correlation with the blood TG value based on the measurement result of FIG. 8, and noninvasive blood absorbance. It is a graph which shows the blood TG value and TG estimated value based on the measurement result of FIG. It is another graph which shows the blood TG value and TG estimated value
  • the calculation target of the blood absorption spectrum in the present embodiment may be a site where blood pulsation occurs, and is preferably a finger, a toe, a palm, a sole, an earlobe, a lip, and the like.
  • the index finger is preferred.
  • the intensity of light transmitted through a human finger varies periodically due to blood pulsation inside the finger.
  • blood absorbance at a plurality of wavelengths that is, blood absorption spectra
  • a pulse wave signal that is a temporal change in light transmitted through a human finger.
  • triglyceride (TG) in blood causes blood turbidity when its concentration increases, and thus increases the absorbance of blood. Therefore, in the present embodiment, the blood concentration measurement method for blood components that calculates the blood TG value indicating the blood concentration of TG using the blood absorbance (blood absorbance) when the living body is measured noninvasively as an index. I will provide a.
  • a spectrum for TG and a spectrum for components other than TG are acquired in advance, and the transmitted light is observed when the living body is irradiated with light.
  • the blood absorption spectrum indicated by the observed transmitted light is regarded as a superposition of each, and the blood TG value is calculated using the spectrum for TG, thereby improving the measurement accuracy of the blood concentration of TG. ing.
  • FIG. 1 shows an example of a schematic configuration of a blood concentration measuring apparatus 1 as an example of a computer in the present embodiment.
  • the blood concentration measuring apparatus 1 irradiates a part of the body (such as a finger) of a subject including blood whose absorption spectrum is to be calculated with near infrared light, and calculates the absorption spectrum of blood based on the transmitted light spectrum. To do.
  • the blood concentration measurement apparatus 1 includes a control unit 10, a storage unit 20, an irradiation unit 30, a light receiving unit 40, and a display unit 50.
  • the control unit 10 includes a central processing unit (CPU) and controls the operation of each unit in the blood concentration measuring apparatus 1.
  • the storage unit 20 stores a program for executing various processes in the blood concentration measurement apparatus 1 described below.
  • the storage unit 20 stores data obtained when various processes in the blood concentration measuring apparatus 1 are executed.
  • the control unit 10 executes various processes in the blood concentration measuring apparatus 1 by developing and executing a program stored in the storage unit 20 in a Random Access Memory (RAM; not shown) in the apparatus. .
  • the irradiation unit 30 irradiates a part of a body (such as a finger) of a subject including blood, which is a target for calculating a blood absorption spectrum, with near infrared light.
  • the transmitted light that has passed through the body of the subject is received by the light receiving unit 40.
  • near infrared light is irradiated to the subject's finger by the irradiation unit 30, the irradiated light is transmitted through the finger, and the transmitted light is received by the light receiving unit 40.
  • the spectroscope of the light receiving unit 40 measures the spectral spectrum of the transmitted light of the human finger over time.
  • a multi-channel Fourier transform type spectrometer is used as the spectrometer of the light receiving unit 40, and measurement is performed for 10 seconds (200 times at 50 msec intervals) by the spectrometer.
  • the multi-channel Fourier transform spectrometer separated the incident light with a Savart plate, and acquired the interference fringes (interferogram) resulting from interfering the separated lights using a Fourier lens with a line sensor.
  • a spectrum is obtained by Fourier transforming the interferogram.
  • the measurable wavelength range of the multichannel Fourier transform spectrometer covers the entire near infrared region (900 to 2500 nm). Measure the transmitted light spectrum of the specimen using a multichannel Fourier transform spectrometer, and obtain the absorption spectrum of the specimen against the blank by comparing the so-called blank transmitted light spectrum acquired in advance with the measured transmitted light spectrum. Can do.
  • control unit 10 includes a measurement unit 11, an absorption spectrum calculation unit 12, an absorbance calculation unit 13, and a blood concentration calculation unit 14 as a part of the function of the control unit 10.
  • the measuring unit 11 measures a pulse wave signal based on the transmitted light received by the light receiving unit 40.
  • the absorption spectrum calculation unit 12 calculates the absorption spectrum of the subject's blood from the pulse wave signal. Specifically, the absorption spectrum calculation unit 12 removes noise from the pulse wave signal measured by the measurement unit 11 and calculates the absorption spectrum of the blood of the subject.
  • the absorbance calculation unit 13 absorbs TG in the superposition when the calculated absorption spectrum is a superposition of an absorption spectrum of TG, which is an example of a predetermined blood component, and an absorption spectrum of blood components other than TG.
  • the absorbance indicated by the spectrum is calculated.
  • hemoglobin is mentioned as an example of blood components other than TG, ie, blood components other than a predetermined blood component.
  • the blood concentration calculation unit 14 calculates the blood concentration of TG from the calculated absorbance.
  • the calculation result of the blood concentration of TG by the blood concentration calculation unit 14 is displayed on the display unit 50 as the measured blood TG value.
  • FIG. 2 schematically shows an example of the blood concentration measuring apparatus 1 in the present embodiment.
  • the blood concentration measuring device 1 is provided with an opening 60 for the subject to insert the finger 100.
  • An irradiation unit 30 and a light receiving unit 40 are provided at the back of the opening 60.
  • FIG. 3 schematically shows a state when the subject inserts the finger 100 into the opening 60 in the blood concentration measurement apparatus 1 of FIG.
  • the irradiation unit 30 and the light receiving unit 40 are arranged so as to sandwich the subject's finger 100 inserted through the opening 60.
  • the irradiation unit 30 has a halogen lamp 31.
  • the wavelength of light irradiated by the halogen lamp 31 is near infrared light in the wavelength range of 900 to 1700 nm.
  • the type, number, and irradiation wavelength of the light source provided in the irradiation unit 30 are not limited to this.
  • the light source may be, for example, a light-emitting diode (LED).
  • the light receiving unit 40 includes a photodetector 41. Thereby, the near infrared light irradiated to the finger
  • the absorption spectrum of the subject's blood is calculated by the process described below based on the near-infrared light received by the light receiving unit 40, and the blood TG value is measured.
  • the measured blood TG value is displayed on the display unit 50.
  • FIG. 4 shows an example of a flowchart of processing executed by the control unit 10.
  • the control unit 10 starts the process of the flowchart shown in FIG. 4 according to the operation of the user of the blood concentration measuring device 1, for example.
  • control unit 10 controls the irradiation unit 30 to irradiate the subject's finger with near infrared light.
  • the irradiated near-infrared light passes through the subject's finger and enters the light receiving unit 40 as transmitted light.
  • the control unit 10 measures the pulse wave signal using the transmitted light received by the light receiving unit 40 by the measuring unit 11.
  • FIG. 5 is an example of a graph showing changes over time of the pulse wave signal obtained in the present embodiment, with the axes of wavelength, light quantity, and time being set.
  • a pulse wave signal that is a change with time in the amount of transmitted light at each wavelength is obtained by measurement in OP102.
  • the control unit 10 extracts changes caused by pulsation from the spectrum of transmitted light observed by performing various noise processes.
  • FIG. 6 schematically shows an example of processing for removing low-frequency drift fluctuations and high-frequency noise from the spectral spectrum of transmitted light in OP103.
  • the horizontal axis of each graph represents time (seconds), and the vertical axis represents the amount of transmitted light (wavelength 1200 nm).
  • the control unit 10 performs a process of subtracting a sixth-order polynomial by fitting to remove low-frequency drift, and multi-variate the pulse wave signal of each wavelength to remove high-frequency noise. Principal component analysis is performed as time series data, and processing for reconstructing data using the first principal component is executed.
  • the control unit 10 obtains a pulse wave signal from which noise has been removed as illustrated in FIG. 6 by performing these noise removal processes.
  • the control unit 10 advances the process to OP104.
  • the control unit 10 calculates the absorption spectrum of blood based on the pulse wave signal from which the noise obtained in OP103 is removed by the absorption spectrum calculation unit 12.
  • the time average value of the amount of transmitted light at the wavelength ⁇ of the transmitted light is P ave and the standard deviation corresponding to the amplitude of the pulse wave signal from which noise is removed is P sd
  • Blood absorbance (blood absorption spectrum) A Blood ( ⁇ ) is calculated by the following equation (1).
  • the absorbance of blood is calculated from the transmitted light amount (P ave ⁇ P sd ) after the blood volume has increased with reference to the transmitted light amount (P ave + P sd ) before the blood volume on the optical path increases due to pulsation. .
  • the control unit 10 calculates the absorbance indicated by the absorption spectrum of TG by the absorbance calculation unit 13 in OP105, and calculates the absorbance calculated by the blood concentration calculation unit 14 using the calibration curve.
  • the blood TG value of TG is calculated by converting into the blood concentration, and the calculated blood TG value is used as the measurement value. Details of specific processing will be described in each embodiment described later. Further, the control unit 10 displays the measured blood TG value on the display unit 50 in OP106, and ends the processing of this flowchart.
  • FIG. 7 shows an example of a blood absorption spectrum calculated by the above processing.
  • FIG. 7 also shows an absorption spectrum measured when the blood is sealed in a quartz cell having an optical path length of 0.1 mm.
  • SNV Standard Normal
  • the horizontal axis of the graph of FIG. 7 indicates the wavelength (nm), and the vertical axis indicates the absorbance normalized by SNV.
  • both absorption spectra show similar shapes in which the absorbance is large at the short wavelength (near 1000 nm) side and the absorbance is small near the wavelength 1250 to 1300 nm. That is, it can be said that this indicates that the absorption spectrum can be suitably measured by the blood absorption spectrum measurement process of the present embodiment.
  • Example 1 First, Example 1 according to the present embodiment will be described.
  • the blood TG value is calculated using the measurement of the absorption spectrum of blood.
  • the concentration of TG in blood increases, the turbidity of blood also increases.
  • the absorbance on the short wavelength side around 1000 nm wavelength
  • the absorbance on the short wavelength side around 1000 nm wavelength
  • an absorption spectrum obtained by performing base correction so that the absorbance at a wavelength of 1200 nm becomes zero with respect to the absorption spectrum of blood measured noninvasively hereinafter referred to as “noninvasive blood spectrum”.
  • non-invasive blood absorbance At a wavelength of 1000 nm (hereinafter referred to as “non-invasive blood absorbance”) is used as an index of the blood TG value to be calculated.
  • the blood absorption measured by using a regression line prepared in advance for the correlation between the blood TG value obtained by blood sampling measurement described later and the noninvasive blood absorbance as a calibration curve.
  • the non-invasive blood absorbance in the spectrum is converted into the blood TG value.
  • the data of the calibration curve is stored in advance in the storage unit 20, for example.
  • control unit 10 performs measurement of the pulse wave signal a plurality of times in the processing of OP102 to OP104, and calculates the average value of the values indicated by the blood absorption spectrum calculated from each pulse wave signal as follows. Used as blood absorption spectrum.
  • the absorbance calculation unit 13 and the blood concentration calculation unit 14 will be described by using the control unit 10 as a representative.
  • control unit 10 of the blood concentration measuring apparatus 1 calculates the noninvasive blood absorbance from the blood absorption spectrum calculated in OP104. Furthermore, the control unit 10 converts the calculated noninvasive blood absorbance into a blood TG value using a calibration curve stored in the storage unit 20, and the blood TG value obtained by the conversion is measured. And
  • FIG. 8 shows an example of the blood TG value measured by the above processing.
  • the above-mentioned blood concentration is measured five times a day (9:30, 11:30, 13:30, 15:30, 17:00) using the blood concentration measuring device 1.
  • a TG value measurement process is executed.
  • the blood TG value is measured by blood sampling (hereinafter referred to as blood sampling measurement) for the same subject.
  • the blood concentration measurement apparatus 1 performs measurement by irradiating light on the left index finger of the subject.
  • a lancet is inserted into the index finger or middle finger of the right hand to cause bleeding, and a blood TG value is measured using a simple blood analyzer cobas b101 (Roche Diagnostics).
  • each value of “ID_measurement number” is a combination of the identification number of each subject and each measurement time of the above five measurements.
  • “ID02_5” corresponds to the case where the subject whose identification number is “ID02” performs the measurement at the fifth time, that is, 17:00.
  • Each value of “blood TG value” in the figure is a blood TG value measured by the blood sampling measurement.
  • Each value of “noninvasive blood absorbance” in the figure is a value of noninvasive blood absorbance calculated in OP105.
  • TG estimated value” in the figure is a blood TG value calculated in OP105.
  • Each value of “error” in the figure is a value obtained by subtracting the value of “blood TG value” from the value of “TG estimated value”, and indicates the difference between the values.
  • FIG. 9 is a graph showing the correlation between “blood TG value” and “non-invasive blood absorbance” in FIG.
  • the horizontal axis of the graph of FIG. 9 indicates the blood TG value (mg / dL) by blood sampling measurement, and the vertical axis indicates the value of noninvasive blood absorbance.
  • the correlation coefficient between “blood TG value” and “non-invasive blood absorbance” in FIG. 9 is 0.499.
  • FIG. 10 is a graph showing “blood TG value” and “TG estimated value” for each “ID_measurement number” in FIG.
  • FIG. 11 is a graph showing the correlation between the “blood TG value” and the “TG estimated value” in FIG.
  • the horizontal axis of the graph of FIG. 10 indicates each “ID_measurement number”, and the vertical axis indicates the estimated TG value (mg / dL).
  • the horizontal axis of the graph of FIG. 11 indicates the blood TG value (mg / dL) by blood sampling measurement, and the vertical axis indicates the estimated TG value (mg / dL).
  • the mean square error is obtained as an index indicating the accuracy of the blood TG value calculated in OP105 using the following equation (2), it is “68 mg / dL”.
  • i is a value when “ID_measurement number” in FIG. 8 is counted in order from the top.
  • the values of i corresponding to ID01_1 to ID01_5 are 1 to 5, respectively, and the values of i corresponding to ID02_1 to ID02_5 are 6 to 10, respectively.
  • N is the number of measurements.
  • PredTG i is a value of “TG estimated value” in the i-th measurement
  • blood TG i is a value of “blood TG value” in the i-th measurement.
  • the calculated non-invasive blood absorbance can be used as a useful index in the calculation of the blood TG value, which can be expected to improve the measurement accuracy of the blood TG value.
  • FIG. 12 is a graph showing a non-invasive blood spectrum in each measurement time of FIG.
  • the horizontal axis represents wavelength (nm) and the vertical axis represents absorbance.
  • Each non-invasive blood spectrum in FIG. 12 is considered to be a superposition of the absorption spectrum of TG and the absorption spectrum of components other than TG such as hemoglobin. Therefore, in the present embodiment, the blood concentration measuring apparatus 1 acquires in advance the measurement data of the absorption spectrum of TG and the measurement data of the absorption spectrum other than TG before executing the processing of OP101 to OP106 described above. The acquired data is stored in the storage unit 20, for example. In this embodiment, based on the fact that the non-invasive blood spectrum calculated in OP104 is a superposition of the absorption spectrum of TG and the absorption spectrum other than TG, the blood is calculated from the absorption spectrum of TG included in the non-invasive blood spectrum. A medium TG value is calculated. Specific processing will be described below.
  • an absorption spectrum is obtained by enclosing a diluted solution of an artificial fat emulsion (for example, intralipo) mainly containing TG in a quartz cell. Get the measurement results.
  • an absorption spectrum of a component other than TG a result of measuring an absorption spectrum by enclosing an aqueous solution of a purified reagent of hemoglobin, which is a main component of blood, in a quartz cell To get.
  • the blood concentration measurement apparatus 1 acquires in advance an absorption spectrum of TG or an absorption spectrum of components other than TG
  • various blood absorption spectra are measured, and ALS (Alternating Least Squares) or MCR (Multiple Each absorption spectrum is separated into two or more spectra using an algorithm such as Curve (Resolution), and the separated spectrum is acquired as an absorption spectrum of TG or an absorption spectrum of components other than TG.
  • ALS Alternating Least Squares
  • MCR Multiple Each absorption spectrum is separated into two or more spectra using an algorithm such as Curve (Resolution), and the separated spectrum is acquired as an absorption spectrum of TG or an absorption spectrum of components other than TG.
  • the calculated non-invasive blood spectrum is separated into two, one is a TG absorption spectrum (hereinafter referred to as “TG spectrum”), and the other is a hemoglobin as a component other than TG.
  • Absorption spectrum hereinafter referred to as “Hb spectrum”.
  • the blood concentration measuring apparatus 1 acquires TG spectrum data and Hb spectrum data in advance and stores them in the storage unit 20, for example.
  • the blood concentration measuring apparatus 1 also stores data of a calibration curve used for calculation of the blood TG value, for example, in the storage unit 20. Details of the calibration curve will be described later.
  • control unit 10 of the blood concentration measurement apparatus 1 uses the non-invasive blood spectrum data calculated in OP104, and the TG spectrum and Hb spectrum data stored in the storage unit 20 as follows.
  • the coefficients ⁇ i and ⁇ i that satisfy the equation (3) as much as possible are determined by the method of least squares.
  • i is the same as i in the first embodiment.
  • X i represents a non-invasive blood spectrum obtained in the i-th measurement.
  • a and b represent the TG spectrum and Hb spectrum which were acquired beforehand, respectively.
  • control unit 10 calculates the blood TG value by converting the determined coefficient ⁇ i as absorbance using the calibration curve stored in the storage unit 20.
  • control unit 10 uses the multivariate analysis software Pirouette IV 4.5 (manufactured by Infometrix) for the 20 non-invasive blood spectra shown in FIG. 12 (consisting of 44 absorbances of wavelengths 900 to 1350 nm).
  • Pirouette IV 4.5 manufactured by Infometrix
  • each non-invasive blood spectrum is expressed by the above equation (3) as a superposition of two spectra.
  • non-invasive blood spectra x i obtained by the i-th measurement as a linear combination of the two constant vectors a and b, the control unit 10, such as equality in equation (3) is possible established a And b, ⁇ i and ⁇ i are determined.
  • FIG. 13 is a graph showing an example of two spectra a and b obtained by MCR.
  • FIG. 14 shows the values of ⁇ i and ⁇ i determined in each measurement time for the measurement shown in FIG.
  • ID_measurement number “blood TG value”, “TG estimated value”, and “error” are the same as those in FIG.
  • ⁇ (non-invasive TG absorbance)” and “ ⁇ ” are values of ⁇ i and ⁇ i determined in each measurement time, respectively.
  • the horizontal axis represents wavelength (nm), and the vertical axis represents absorbance.
  • the spectra have generally similar shapes in which the absorbance is large on the short wavelength side and small on the long wavelength side.
  • the shape of the spectrum a is a shape that monotonously decreases from a wavelength of 900 nm to 1200 nm
  • the shape of the spectrum b is a shape that rapidly decreases from a wavelength of 1000 nm to 1100 nm.
  • FIG. 15 shows an example of a graph of TG spectrum and Hb spectrum obtained by the measurement.
  • the normalization by SNV is performed for each spectrum in the wavelength range of 900 to 1350 nm.
  • the horizontal axis of the graph of FIG. 15 indicates the wavelength (nm), and the vertical axis indicates the absorbance normalized by SNV.
  • the absorbance in any spectrum is large on the short wavelength side and small on the long wavelength side, and shows generally similar shapes.
  • the TG spectrum has a shape that monotonously decreases as it goes to the longer wavelength side
  • the Hb spectrum differs in that it has a shape that rapidly decreases in the wavelength range of 1100 nm or more.
  • the spectrum a in FIG. 13 is a spectrum reflecting the TG spectrum
  • the spectrum b is a spectrum reflecting the Hb spectrum. Therefore, in the present embodiment, ⁇ i that is a coefficient of the TG spectrum a in Equation (3) is used for calculating the blood TG value as the absorbance of TG in the non-invasive blood spectrum.
  • FIG. 16 shows a graph in which the value of “ ⁇ (non-invasive TG absorbance)” is plotted against the value of “blood TG value” in FIG.
  • the horizontal axis of the graph of FIG. 16 indicates the blood TG value by blood sampling measurement, and the vertical axis indicates the noninvasive TG absorbance.
  • the value of “ ⁇ (non-invasive TG absorbance)” tends to increase as the value of “blood TG value” increases.
  • the correlation coefficient between “blood TG value” and “ ⁇ (non-invasive TG absorbance)” in FIG. 16 is 0.550.
  • the correlation is better than the correlation coefficient (0.499) between the “blood TG value” and the “noninvasive blood absorbance” in the case of Example 1 using the noninvasive blood absorbance.
  • the process of calculating the blood TG value using the value of ⁇ i determined by the above process is compared with the process of calculating the blood TG value using the noninvasive blood absorbance of Example 1. It turns out that it becomes a more useful parameter
  • FIG. 17 is a graph showing the blood TG value in each measurement time of FIG. 14 and the estimated TG value calculated in this example.
  • FIG. 18 is a graph showing the result of plotting the estimated TG value against the blood TG value.
  • the horizontal axis of the graph of FIG. 17 represents each “ID_measurement number”, and the vertical axis represents the estimated TG value (mg / dL).
  • the horizontal axis of the graph of FIG. 18 indicates the blood TG value (mg / dL) by blood sampling measurement, and the vertical axis indicates the estimated TG value (mg / dL).
  • Example 1 when the mean square error is obtained as an index indicating the accuracy of the blood TG value calculated in OP105 using Equation (2), it is “59 mg / dL”. This also indicates that the measurement accuracy of the blood TG value is more improved in the process according to the present embodiment than in the case of the first embodiment using the non-invasive blood absorbance (the mean square error is “68 mg / dL”). I can expect that.
  • the blood concentration of triglyceride is measured by a blood concentration measuring device
  • the blood component whose blood concentration is measured by the blood concentration measuring apparatus of the present embodiment is not limited to triglyceride.
  • the blood concentration measuring apparatus of the present embodiment can also be applied to the measurement of blood concentrations of hemoglobin, glucose, cholesterol and the like.
  • the coefficient ⁇ i used for the absorption spectrum of triglyceride is used as the absorbance indicated by the absorption spectrum of triglyceride.
  • an absorption spectrum of triglyceride is obtained, and then the noninvasive blood absorbance is calculated from the absorption spectrum of triglyceride as the absorbance indicated by the absorption spectrum of triglyceride, and the calculated noninvasive blood absorbance is calculated. From this, the blood concentration of triglyceride may be calculated.
  • the light irradiated on the living body is monochromatic light having at least two or more wavelengths selected from the wavelength range of 400 to 2500 nm that transmits the living body.
  • the measurement may be performed by irradiating light in the entire wavelength range of 400 to 2500 nm or a part of the wavelength range, and spectroscopically measuring the received light into a plurality of wavelengths.
  • the wavelength range of light with which the living body is irradiated is more preferably 900 to 1700 nm, still more preferably 900 to 1300 nm.
  • the spectroscope preferably performs spectroscopic measurement of received light at intervals of 10 to 50 nm.
  • the multi-wavelength time-series data of light measured in the present embodiment may be any of transmitted light intensity, reflected light intensity, scattered light intensity, or absorbance at the measurement site. That is, in the above description, it is assumed that the light receiving unit 40 receives transmitted light from a living body, but the light received by the light receiving unit 40 is not limited to transmitted light. By changing the number and position of the light receiving units 40, light transmitted from the living body, reflected light, scattered light, or a plurality of types of light are received, and the above-described absorption spectrum measurement processing is applied to the received light. can do.
  • the pulse wave signal used for measuring the absorption spectrum is preferably an absorbance pulse wave signal, and more preferably a transmitted wave intensity and absorbance pulse wave signal.
  • a centering process using a time average value is preferable. As a result, the center of fluctuations in light intensity and absorbance can be obtained.
  • an existing signal processing method may be used in combination in order to remove noise unnecessary for calculation from the pulse wave signal of received light.
  • frequency filter processing that extracts only specific frequency components, and by fitting a polynomial to time-series data and making a difference, moderate low frequency drift is removed
  • smoothing processing using a moving average or a Savitzky-Golay filter, or a combination thereof can be performed.
  • the spectrometer used for measuring the absorption spectrum may be the multichannel Fourier transform spectrometer used in the present embodiment, for example, a single channel Fourier transform spectrometer, It may be a multichannel dispersive spectrometer or a single channel dispersive spectrometer.
  • the blood concentration measuring apparatus 1 measures a pulse wave signal from received light data.
  • the blood concentration measuring apparatus 1 according to this modification includes an irradiation unit 30A and a light receiving unit 40A instead of the irradiation unit 30 and the light receiving unit 40 of the blood concentration measuring apparatus 1 according to the embodiment shown in FIG.
  • the blood concentration measuring apparatus 1 according to the present modification has the same configuration as the blood concentration measuring apparatus 1 according to the embodiment shown in FIGS. 1 to 3 except for the irradiation unit 30A and the light receiving unit 40A.
  • FIG. 19 schematically shows a state when the subject inserts the finger 100 into the opening 60 (see FIG. 2) in the blood concentration measurement apparatus 1 according to the present modification.
  • the irradiation unit 30 ⁇ / b> A and the light receiving unit 40 ⁇ / b> A are arranged on the ventral side of the subject's finger 100 inserted from the opening 60.
  • the irradiation unit 30A irradiates light on the ventral side of the finger 100, and the light that has passed through the blood is received by the light receiving unit 40A disposed on the ventral side of the finger.
  • a reflected light system for receiving light is adopted.
  • FIG. 20 is a plan view showing the arrangement relationship between the irradiation unit 30A and the light receiving unit 40A in the blood concentration measurement apparatus 1.
  • FIG. The irradiation unit 30 ⁇ / b> A includes a first LED 32 (an example of a “first light source”) and a second LED 33 (an example of a “second light source”).
  • the first LED 32 emits light having a peak wavelength at a wavelength of 1050 nm (an example of “first light”).
  • the second LED 33 emits light having a peak wavelength at a wavelength of 1300 nm (an example of “second light”).
  • the blood TG value is measured using the blood absorbance at a wavelength of 1050 nm and the blood absorbance at a wavelength of 1300 nm.
  • the light receiving unit 40A includes a PD 42 (an example of a “light receiving element”).
  • the PD 42 receives light that has been applied to the finger 100 from the irradiation unit 30 ⁇ / b> A and transmitted through the blood.
  • the PD 42 receives the light and outputs a voltage signal as received light data.
  • the blood concentration measuring apparatus 1 has an AD (Analog Digital) converter (not shown), and outputs an output signal as light reception data from the PD 42 to the control unit 10 after AD conversion.
  • the control unit 10 stores the received light data in the storage unit 20.
  • the control unit 10 of the blood concentration measuring apparatus 1 irradiates the subject's finger with light of a plurality of wavelengths by the irradiation unit 30A, and receives the light transmitted through the blood with the PD 42 to obtain received light data.
  • the blood concentration measuring apparatus 1 irradiates light having different wavelengths alternately multiple times (for example, 200 times) with the first LED 32 and the second LED 33 over 20 seconds, and receives light transmitted through the blood of the subject with the PD 42. Then, the received light data for 20 seconds (200 cycles) is acquired.
  • the control unit 10 determines the first pulse wave signal corresponding to the first light, which is a temporal change in light intensity due to light irradiation from the first LED 32 that has passed through the blood, based on the light reception data acquired in OP101. And a second pulse wave signal corresponding to the second light, which is a temporal change in light intensity due to light irradiation from the second LED 33 that has passed through the blood. Since the next processing in OP103 is the same as described above, the description thereof is omitted.
  • each absorbance of the blood of the subject in the first light and the second light is calculated from the first pulse wave signal and the second pulse wave signal from which noise has been removed in OP103.
  • Each absorbance is calculated using the above formula (1).
  • the control unit 10 calculates a blood TG value.
  • a method for calculating the blood TG value in this modification will be described.
  • the absorption spectrum of blood is a superposition of the absorption spectrum of TG and the absorption spectrum of hemoglobin.
  • the absorbance of blood in light of a predetermined wavelength can be expressed by a linear combination of the absorbance of light in the predetermined wavelength of TG and the absorbance of light of the hemoglobin in the predetermined wavelength.
  • TG spectrum data and Hb spectrum data are stored in the storage unit 20 in advance, and using these data, the following The coefficients ⁇ and ⁇ that establish the equations (4) and (5) are determined.
  • X 1050 represents the absorbance of blood with respect to light with a wavelength of 1050 nm irradiated by the first LED 32
  • a 1050 represents the absorbance at a wavelength of 1050 nm in a TG spectrum acquired in advance
  • B 1050 represents Hb acquired in advance.
  • the absorbance at a wavelength of 1050 nm in the spectrum is shown.
  • X 1300 represents the absorbance of blood with respect to light having a wavelength of 1300 nm irradiated by the second LED 33
  • a 1300 represents the absorbance at a wavelength of 1300 nm in the TG spectrum acquired in advance
  • B 1300 has been represented in advance.
  • the absorbance at a wavelength of 1300 nm in the acquired Hb spectrum is shown.
  • the coefficient ⁇ is a value that correlates with the absorbance of TG out of the absorbance of blood, like ⁇ i in Example 2 above. Therefore, a value obtained by subtracting ⁇ ⁇ A 1050 in the equation (4) and ⁇ ⁇ A 1300 in the equation (5) is also a value correlated with the absorbance of TG.
  • the control unit 10 regards the difference value as non-invasive TG absorbance, and converts it into a blood concentration of TG using a calibration curve. For example, a regression line created for the correlation between the blood TG value and the non-invasive TG absorbance is employed as the calibration curve, as in FIG. According to the blood concentration measuring apparatus 1 according to this modification, the measurement accuracy of the blood TG value can be improved as in the second embodiment.
  • the reflected light system is employ
  • a transmitted light system may be employ
  • the irradiation unit 30A is placed on the back side (nail side) of the finger 100 so that the irradiation unit 30A and the light receiving unit 40A sandwich the subject's finger 100 inserted through the opening 60.
  • the light receiving unit 40 ⁇ / b> A may receive light that has been disposed and has passed through the finger 100.
  • the irradiation unit 30A may irradiate light in order of wavelengths with low biological permeability in the finger 100.
  • the biological permeability is higher as the light absorption rate in the living body is lower, and is lower as the light absorption rate in the living body is higher.
  • near-infrared light at a wavelength of 900 nm to 1500 nm has a low absorptance in a living body and a high living body permeability.
  • the biological permeability of a human finger is 1300 nm and 1050 nm in order of increasing wavelength.
  • 30 A of irradiation parts may irradiate light in order of a wavelength with low biological permeability, ie, 2nd LED33, 1st LED32 order, by being controlled by control part 10.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

ヒトの指などの生体に照射された光から血液成分の血中濃度を精度よく測定する技術を提供する。血液成分の血中濃度測定方法は、複数波長の光を生体に照射して生体から受光した光に基づいて脈波信号を測定し、脈波信号から各波長の光における生体の血液の吸光度を算出し、血液の吸収スペクトルを所定の血液成分の吸収スペクトルと所定の血液成分以外の血液成分の吸収スペクトルとの重ね合わせであるとしたときの、生体の血液の吸光度のうちの所定の血液成分の吸光度に相関する値を算出し、値から所定の血液成分の血中濃度を算出する。

Description

血液成分の血中濃度測定方法、血中濃度測定装置およびプログラム
 本発明は、血液成分の血中濃度測定方法、血中濃度測定装置およびプログラムに関する。
 血液は、血球や水の他、アルブミンやヘモグロビンなどのタンパク質、中性脂肪、コレステロール、グルコースといった種々の成分を含み、これらはヒトの健康状態を反映している。そのため、ヒトの健康状態を評価する上で血液成分の測定は重要であり、注射針を用いて採血した血液の分析は一般に行われている。ただし、注射針の穿刺による痛み、採血から測定および注射針の廃棄などに伴う作業の煩雑さ、感染の恐れといった要因のため、血液分析を頻繁に行うことは現実的ではないことから、採血を伴わない非侵襲的な血液成分の測定方法が求められている。そこで、血液の吸収スペクトルを非侵襲的に取得し、そのスペクトル形状を解析することで血液成分の血中濃度を算出する方法が検討されている。
 血液の吸収スペクトルを非侵襲的に測定および算出する方法としては、光を生体に照射し、生体から受光した光の強度が血液の脈動によって周期的に変化することを利用し、異なる時刻での光強度(例えば最大値と最小値)を差分して求めた光強度の変化幅から血液の吸光度を算出するということを各波長の光について行うことで、各波長における血液の吸光度、すなわち、血液の吸収スペクトルを算出する方法がある(特許文献1、2)。また、生体に連続光を照射したときの光の散乱係数を基に、生体の血液中の生体脂質濃度を測定する方法がある(特許文献3)。
特許第3345481号公報 国際公開第2003/079900号 国際公開第2014/087825号
 しかしながら、血液の吸収スペクトルは、測定対象成分の濃度の他に、濃度が未知な夾雑成分の影響を受けるため、上記の技術では、観測された血液の吸収スペクトルをそのまま用いても測定対象成分の血中濃度を精度よく測定できない可能性がある。
 上記の実情に鑑み、本件開示の技術は、ヒトの指などの生体に照射された光から血液成分の血中濃度を精度よく測定する技術を提供することを目的とする。
 本件開示の血液成分の血中濃度測定方法は、複数波長の光を生体に照射して前記生体から受光した光に基づいて脈波信号を測定し、前記脈波信号から各波長の光における前記生体の血液の吸光度を算出し、血液の吸収スペクトルを所定の血液成分の吸収スペクトルと前記所定の血液成分以外の血液成分の吸収スペクトルとの重ね合わせであるとしたときの、前記生体の血液の吸光度のうちの前記所定の血液成分の吸光度に相関する値を算出し、前記値から前記所定の血液成分の血中濃度を算出する。これにより、精度の高い血液成分の血中濃度の測定が実現できる。ここで、複数波長の光とは、ある波長域に発光波長を有する光のことであり、例えば、900~1700nmの波長域の近赤外光のことである。なお、複数波長の光は、1つの光源(例えば、ハロゲンランプ)から照射されてもよいし、複数の光源(例えば、Light-Emitting Diode(LED))から照射されてもよい。
 また、上記の血中濃度測定方法において、前記脈波信号を測定することは、第1光源および第2光源から波長の異なる第1光および第2光を前記生体にそれぞれ照射して前記生体から受光した光に基づいて前記第1光に対応する第1脈波信号および前記第2光に対応する第2脈波信号を測定することであり、前記生体の血液の吸光度を算出することは、前記第1脈波信号および前記第2脈波信号から、前記第1光および前記第2光における前記生体の血液の吸光度を算出することであり、前記値を算出することは、前記第1光および前記第2光における前記生体の血液の吸光度から、前記所定の血液成分の吸光度に相関する値を算出することであってもよい。
 また、上記の血中濃度測定方法において、前記脈波信号を測定することは、一つの光源から複数波長の光を前記生体に照射して前記生体から受光した光に基づいて前記複数波長の光に対応する脈波信号を測定することであり、前記生体の血液の吸光度を算出することは、前記脈波信号から各波長における前記生体の血液の吸光度を算出して、前記生体の血液の吸収スペクトルを算出することであり、前記値を算出することは、前記吸収スペクトルを、前記所定の血液成分の吸収スペクトルと前記所定の血液成分以外の血液成分の吸収スペクトルとの重ね合わせであるとしたときの、前記重ね合わせにおける前記所定の血液成分の吸収スペクトルが示す吸光度に相関する値を算出することであってもよい。
 また、上記の血中濃度測定方法において、前記値を算出することは、前記重ね合わせにおける前記所定の血液成分の吸収スペクトルに用いられる係数を前記値として最小二乗法により決定することであり、前記所定の血液成分の血中濃度を算出することは、前記係数を吸光度として、前記所定の血液成分の血中濃度と吸光度との相関を示す検量線を用いて前記所定の血液成分の血中濃度に換算することであってもよい。
 また、上記の血中濃度測定方法において、前記所定の血液成分はトリグリセライドを含み、前記所定の血液成分以外の血液成分はヘモグロビンを含んでいてもよい。
 また、本件開示は血液成分の血中濃度測定装置またはプログラムの側面からも捉えることができる。例えば、本件開示の血液成分の血中濃度測定装置は、複数波長の光を生体に照射して前記生体から受光した光に基づいて脈波信号を測定する測定部と、前記脈波信号から各波長の光における前記生体の血液の吸光度を算出する第1算出部と、血液の吸収スペクトルを所定の血液成分の吸収スペクトルと前記所定の血液成分以外の血液成分の吸収スペクトルとの重ね合わせであるとしたときの、前記生体の血液の吸光度のうちの前記所定の血液成分の吸光度に相関する値を算出する第2算出部と、前記値から前記所定の血液成分の血中濃度を算出する第3算出部とを備えていてもよい。
 本件開示の技術によれば、ヒトの指などの生体に照射された光から血液成分の血中濃度を精度よく測定する技術を提供することができる。
一実施形態における血中濃度測定装置の構成の一例を示す図である。 一実施形態における血中濃度測定装置を模式的に示す図である。 一実施形態における血中濃度測定装置の一部を模式的に示す図である。 一実施形態における血中濃度測定装置によって実行される処理のフローチャートの一例を示す図である。 一実施形態における血中濃度測定装置によって測定される脈波信号の一例を示すグラフである。 一実施形態における血中濃度測定装置によるノイズ除去処理の概略を示す図である。 一実施形態における血中濃度測定装置によって測定される吸収スペクトルの一例を示すグラフである。 実施例1における血中濃度測定装置による測定結果の一例を示す図である。 図8の測定結果に基づく血中TG値と非侵襲血液吸光度との相関を示すグラフである。 図8の測定結果に基づく血中TG値とTG推定値を示すグラフである。 図8の測定結果に基づく血中TG値とTG推定値を示す別のグラフである。 図8の測定結果に基づく非侵襲血液スペクトルを示すグラフである。 実施例2におけるTGスペクトルとHbスペクトルの一例を示すグラフである。 実施例2における血中濃度測定装置による測定結果の一例を示す図である。 TGの水溶液とHbの水溶液を測定した場合の吸収スペクトルの一例を示すグラフである。 図14の測定結果に基づく血中TG値と非侵襲TG吸光度との相関を示すグラフである。 図14の測定結果に基づく血中TG値とTG推定値を示すグラフである。 図14の測定結果に基づく血中TG値とTG推定値を示す別のグラフである。 一実施形態の変形例における血中濃度測定装置を模式的に示す図である。 一実施形態の変形例における血中濃度測定装置の一部を模式的に示す図である。
 以下に、図面を参照して本発明の実施形態について説明する。なお、本実施形態における血液の吸収スペクトルの算出対象は、血液の脈動が生じる部位であればよく、手の指、足の指、手のひら、足の裏、耳たぶ、唇などが好ましく、手の指、特に人差し指が好ましい。
 例えばヒトの指を透過した光の強度は、指の内部の血液の脈動によって周期的に変動する。本実施形態では、ヒトの指の透過光の経時変化である脈波信号を利用して、複数の波長における血液の吸光度、すなわち、血液の吸収スペクトルを非侵襲的に算出する。一方、血液中のトリグリセライド(Triglyceride:TG)は、その濃度が上昇すると血液の濁りを引き起こすため、血液の吸光度を増加させる。したがって、本実施形態は、生体を非侵襲的に測定したときの血液の吸光度(血液吸光度)を指標として、TGの血中濃度を示す血中TG値を算出する血液成分の血中濃度測定方法を提供する。特に本実施形態は、血液吸光度から血中TG値を算出する際に、TG用のスペクトルとTG以外の成分用のスペクトルをあらかじめ取得しておき、生体に光を照射したときの透過光を観測し、観測した透過光が示す血液吸収スペクトルを各々の重ね合わせとみなして、TG用のスペクトルを用いて血中TG値を算出することで、TGの血中濃度の測定精度の向上を実現している。
 まず、本実施形態における血液の吸収スペクトルを非侵襲的に測定する方法について説明する。図1に、本実施形態におけるコンピュータの一例としての血中濃度測定装置1の概略構成の一例を示す。血中濃度測定装置1では、吸収スペクトルの算出対象である血液を含む被験者の身体の一部(指など)に近赤外光を照射し、その透過光スペクトルを基に血液の吸収スペクトルを算出する。図1に示すように、血中濃度測定装置1は、制御部10、記憶部20、照射部30、受光部40、表示部50を有する。
 制御部10は、Central Processing Unit(CPU)を含み、血中濃度測定装置1内の各部の動作を制御する。記憶部20には、以下に説明する血中濃度測定装置1における種々の処理を実行するためのプログラムが格納されている。また、記憶部20は、血中濃度測定装置1における種々の処理を実行した際に得られるデータを記憶する。制御部10は、記憶部20に格納されているプログラムを装置内のRandom Access Memory(RAM;図示せず)に展開して実行することで、血中濃度測定装置1における種々の処理を実行する。照射部30は、血液の吸収スペクトルの算出対象である血液を含む被験者の身体の一部(指など)に近赤外光を照射する。被験者の身体を透過した透過光は、受光部40によって受光される。本実施形態では、照射部30によって被験者の指に近赤外光が照射され、照射された光は指を透過し、その透過光は受光部40によって受光される。そして、受光部40の分光器によって、ヒトの指の透過光の分光スペクトルが経時的に測定される。
 本実施形態では、一例として、受光部40の分光器としてマルチチャンネルフーリエ変換型分光器を用いて、分光器によって10秒間(50msec間隔で200回)の測定を行う。マルチチャンネルフーリエ変換型分光器は、入射した光をサバール板によって分離し、フーリエレンズを用いて分離した光を互いに干渉させた結果生じる干渉縞(インターフェログラム)をラインセンサで取得し、取得したインターフェログラムをフーリエ変換することで分光スペクトルを得る。マルチチャンネルフーリエ変換分光器の測定可能な波長域は、近赤外全域(900~2500nm)をカバーしている。マルチチャンネルフーリエ変換分光器を使用して検体の透過光スペクトルを測定し、あらかじめ取得したいわゆるブランクの透過光スペクトルと測定した透過光スペクトルとを比較することで、検体のブランクに対する吸収スペクトルを得ることができる。
 また、制御部10は、制御部10の機能の一部としての測定部11、吸収スペクトル算出部12、吸光度算出部13、血中濃度算出部14を有する。測定部11は、受光部40によって受光された透過光に基づく脈波信号を測定する。吸収スペクトル算出部12は、脈波信号から被験者の血液の吸収スペクトルを算出する。具体的には吸収スペクトル算出部12は、測定部11によって測定された脈波信号に対してノイズを除去して被験者の血液の吸収スペクトルを算出する。吸光度算出部13は、算出された吸収スペクトルを、所定の血液成分の一例であるTGの吸収スペクトルとTG以外の血液成分の吸収スペクトルとの重ね合わせとしたときの、当該重ね合わせにおけるTGの吸収スペクトルが示す吸光度を算出する。なお、TG以外の血液成分、すなわち所定の血液成分以外の血液成分の一例としてヘモグロビンが挙げられる。血中濃度算出部14は、算出された吸光度からTGの血中濃度を算出する。血中濃度算出部14によるTGの血中濃度の算出結果は、測定された血中TG値として表示部50に表示される。
 図2に、本実施形態における血中濃度測定装置1の一例を模式的に示す。血中濃度測定装置1には、被験者が指100を挿入するための開口部60が設けられている。開口部60の奥には照射部30と受光部40が設けられている。図3に、図2の血中濃度測定装置1において、被験者が指100を開口部60に挿入したときの状態を模式的に示す。照射部30と受光部40は、開口部60から挿入された被験者の指100を挟むように配置されている。
 照射部30は、ハロゲンランプ31を有する。一例として、ハロゲンランプ31によって照射される光の波長は、900~1700nmの波長域の近赤外光である。ただし、照射部30に設けられる光源の種類、個数および照射波長はこれに限られない。光源は、例えば、Light-Emitting Diode(LED)であってもよい。また、受光部40は、光検出器41を有する。これにより、照射部30から指100に照射された近赤外光は指100を透過して受光部40に受光される。血中濃度測定装置1では、受光部40によって受光された近赤外光に基づいて以下に説明する処理によって被験者の血液の吸収スペクトルが算出され、血中TG値が測定される。測定された血中TG値は表示部50に表示される。
 図4に、制御部10によって実行される処理のフローチャートの一例を示す。制御部10は、例えば血中濃度測定装置1の使用者の操作に従って図4に示すフローチャートの処理を開始する。
 OP101において、制御部10は、照射部30を制御して被験者の指に近赤外光を照射する。照射された近赤外光は被験者の指を透過し、透過光として受光部40に入射する。次いで、処理はOP102に進められる。OP102において、制御部10は、測定部11により、受光部40によって受光された透過光を用いて上記の脈波信号の測定を行う。
 次に、OP103において、制御部10は、OP102で測定した脈波信号からノイズを除去する。図5は、本実施形態で得られる脈波信号の経時変化を、波長、光量、時間の各軸を設定して示したグラフの一例である。図5に示すように、OP102における測定によって各波長における透過光量の経時変化である脈波信号が得られる。脈波信号には、血液の脈動に起因する変動の他に、測定対象のヒトの呼吸や指の動きによる低周波のドリフト変動や、血中濃度測定装置1内のセンサのノイズに起因する高周波ノイズが含まれる。そこで、制御部10は、各種ノイズ処理を行って観測された透過光の分光スペクトルから脈動に起因する変化を取り出す。
 図6に、OP103における、透過光の分光スペクトルから低周波のドリフト変動と高周波ノイズを除去する処理の一例を概略的に示す。図中、各グラフの横軸は時間(秒)、縦軸は透過光量(波長1200nm)を示す。図6に例示するように、制御部10は、低周波ドリフトの除去には、6次多項式をフィッティングにより差分する処理を実行し、高周波ノイズの除去には、各波長の脈波信号を多変量時系列データとして主成分分析を行って、第1主成分を用いてデータを再構築する処理を実行する。制御部10は、これらのノイズの除去処理を行うことで、図6に例示するように、ノイズが除去された脈波信号を得る。次に、制御部10は、処理をOP104に進める。
 OP104において、制御部10は、吸収スペクトル算出部12により、OP103において得られたノイズが除去された脈波信号を基に、血液の吸収スペクトルを算出する。本実施形態においては、観測された透過光の波長λにおける透過光量の時間平均値をPaveとし、ノイズが除去された脈波信号の振幅に相当する標準偏差をPsdとすると、波長λにおける血液吸光度(血液吸収スペクトル)ABlood(λ)は、次の式(1)により算出される。
Figure JPOXMLDOC01-appb-M000001
 すなわち、脈動によって光路上の血液量が増加する前の透過光量(Pave+Psd)を基準として血液量が増加した後の透過光量(Pave-Psd)から血液の吸光度を算出している。
 制御部10は、血液の吸収スペクトルを算出すると、OP105において、吸光度算出部13によりTGの吸収スペクトルが示す吸光度を算出し、血中濃度算出部14により、算出した吸光度を、検量線を用いて血中濃度に換算することでTGの血中TG値を算出し、算出した血中TG値を測定値とする。具体的な処理の詳細については、後述の各実施例において説明する。さらに、制御部10は、OP106において、測定した血中TG値を表示部50に表示し、本フローチャートの処理を終了する。
 ここで、図7に、上記の処理によって算出される血液の吸収スペクトルの一例を示す。図7には、当該血液を光路長0.1mmの石英セルに封入した場合に測定される吸収スペクトルも示す。なお、いずれの吸収スペクトルについても、波長1000~1350nmの範囲で標準正規変量(Standard Normal Variate:SNV)による規格化を行っている。図7のグラフの横軸は波長(nm)、縦軸はSNVによる規格化を行った吸光度を示す。図7からわかるように、双方の吸収スペクトルはともに、短波長(1000nm付近)側で吸光度が大きく、波長1250~1300nm付近で吸光度が小さくなるという互いに類似する形状を示している。すなわち、このことは、上記の本実施形態の血液の吸収スペクトルの測定処理によって、吸収スペクトルを好適に測定できることを示しているといえる。
 次に、上記の血中TG値の測定処理に関する実施例を2例説明する。なお、以下の実施例において上記と同様の構成要素および処理については同一の符号を用いて説明する。
(実施例1)
 まず、本実施形態に係る実施例1について説明する。実施例1では、上記の血液の吸収スペクトルの測定を用いて血中TG値を算出する。上記の通り、血液中のTGの濃度が増加すると、血液の濁度も増加する。また、一般に、血液の濁度が増加すると、血液の吸収スペクトルにおける短波長(波長1000nm付近)側の吸光度が増加する。そこで、本実施例では、非侵襲的に測定された血液の吸収スペクトルに対して波長1200nmの吸光度がゼロとなるようにベース補正を行って得られる吸収スペクトル(以下「非侵襲血液スペクトル」と称する)における波長1000nmの吸光度(以下「非侵襲血液吸光度」と称する)を、算出する血中TG値の指標として用いる。また、本実施例では、一例として後述の採血測定よって得られる血中TG値と非侵襲血液吸光度との相関関係についてあらかじめ作成された回帰直線を検量線として用いることで、測定された血液の吸収スペクトルにおける非侵襲血液吸光度が血中TG値に換算される。検量線のデータは、例えば記憶部20にあらかじめ記憶される。
 本実施例では、制御部10は、OP102~OP104の処理において、脈波信号の測定を複数回行い、それぞれの脈波信号から算出される血液の吸収スペクトルが示す値の平均値を以下の処理における血液の吸収スペクトルとして用いる。なお、以下では、吸光度算出部13、血中濃度算出部14を制御部10に代表させて説明する。
 本実施例のOP105においては、血中濃度測定装置1の制御部10は、OP104において算出された血液の吸収スペクトルから非侵襲血液吸光度を算出する。さらに、制御部10は、算出した非侵襲血液吸光度を記憶部20に記憶された検量線を用いて血中TG値に換算し、換算により得られる血中TG値を測定された血中TG値とする。
 図8に、上記の処理によって測定された血中TG値の一例を示す。ここでは、4人の被験者に対して、1日5回(9:30、11:30、13:30、15:30、17:00)、血中濃度測定装置1を用いて上記の血中TG値の測定処理を実行する。さらに、同じ被験者に対して、採血による血中TG値の測定(以下、採血測定)を行う。一例として、血中濃度測定装置1において、被験者の左手人差し指に光を照射して測定を行う。一方、採血測定は、右手の人差し指または中指にランセットを穿刺して出血させ、簡易血液分析装置cobas b101(ロシュ・ダイアグノスティックス社製)を用いて血中TG値を測定する。
 図8において、「ID_測定番号」の各値は、各被験者の識別番号と上記の5回の測定の各測定回との組み合わせである。例えば「ID02_5」は、識別番号が「ID02」である被験者が第5回目、すなわち17:00に測定を行った場合に対応する。また、図中「血中TG値」の各値は、上記の採血測定によって測定される血中TG値である。また、図中「非侵襲血液吸光度」の各値は、OP105において算出される非侵襲血液吸光度の値である。また、図中「TG推定値」は、OP105において算出される血中TG値である。図中「誤差」の各値は、「TG推定値」の値から「血中TG値」の値を減算した値であり、各値の差を示す。
 図9は、図8の「血中TG値」と「非侵襲血液吸光度」の相関を示すグラフである。図9のグラフの横軸は採血測定による血中TG値(mg/dL)、縦軸は非侵襲血液吸光度の値を示す。図9からわかるように、「血中TG値」が大きくなるほど「非侵襲血液吸光度」が大きくなる傾向が認められる。なお、図9における「血中TG値」と「非侵襲血液吸光度」の相関係数は、0.499である。
 また、図10は、図8における各「ID_測定番号」に対する「血中TG値」と「TG推定値」を示すグラフである。また、図11は、図8の「血中TG値」と「TG推定値」の相関を示すグラフである。図10のグラフの横軸は各「ID_測定番号」、縦軸はTG推定値(mg/dL)を示す。図11のグラフの横軸は採血測定による血中TG値(mg/dL)、縦軸はTG推定値(mg/dL)を示す。さらに、以下の式(2)を用いて、OP105において算出される血中TG値の正確さを示す指標として平均二乗誤差を求めると、「68mg/dL」となる。
Figure JPOXMLDOC01-appb-M000002
 なお、iは、図8の「ID_測定番号」を上から順に数えた場合の値である。例えば、ID01_1~ID01_5に対応するiの値は、それぞれ1~5であり、ID02_1~ID02_5に対応するiの値は、それぞれ6~10である。Nは、測定数であり、図8の場合はNは20である。また、predTGは、i番目の測定における「TG推定値」の値であり、bloodTGは、i番目の測定における「血中TG値」の値である。
 上記説明より、血中濃度測定装置1において、算出される非侵襲血液吸光度を血中TG値の算出における有用な指標として用いることができ、これにより血中TG値の測定精度の向上が期待できる。
(実施例2)
 次に、本実施形態に係る実施例2について説明する。本実施例では、図8の各測定回における、非侵襲血液スペクトルに着目する。図12は、図8の各測定回における非侵襲血液スペクトルを示すグラフである。図12のグラフの横軸は波長(nm)、縦軸は吸光度を示す。
 図12の各非侵襲血液スペクトルは、TGの吸収スペクトルと、ヘモグロビンなどのTG以外の成分の吸収スペクトルの重ね合わせと考えられる。そこで、本実施例では、血中濃度測定装置1は、上記のOP101~OP106の処理を実行する前に、TGの吸収スペクトルの測定データとTG以外の吸収スペクトルの測定データをあらかじめ取得する。取得したデータは、例えば記憶部20に記憶される。本実施例では、OP104において算出される非侵襲血液スペクトルがTGの吸収スペクトルとTG以外の吸収スペクトルとの重ね合わせであることを踏まえて、当該非侵襲血液スペクトルに含まれるTGの吸収スペクトルから血中TG値を算出する。以下にその具体的な処理について説明する。
 まず、血中濃度測定装置1がTGの吸収スペクトルをあらかじめ取得する方法の一例として、TGを主成分とした人工脂肪乳剤(例えば、イントラリポス)の希釈液を石英セルに封入して吸収スペクトルを測定した結果を取得する。また、血中濃度測定装置1がTG以外の成分の吸収スペクトルをあらかじめ取得する方法の一例として、血液の主成分であるヘモグロビンの精製試薬の水溶液を石英セルに封入して吸収スペクトルを測定した結果を取得する。また、血中濃度測定装置1がTGの吸収スペクトルあるいはTG以外の成分の吸収スペクトルをあらかじめ取得する方法の一例として、種々の血液の吸収スペクトルを測定し、ALS(Alternating Least Squares)やMCR(Multiple Curve Resolution)などのアルゴリズムを用いて各吸収スペクトルを2つ以上のスペクトルに分離し、分離したスペクトルをTGの吸収スペクトルあるいはTG以外の成分の吸収スペクトルとして取得する。
 ここでは、一例としてMCRを用いて、算出された非侵襲血液スペクトルを2つに分離し、一方をTGの吸収スペクトル(以下「TGスペクトル」と称する)とし、もう一方をTG以外の成分としてヘモグロビンの吸収スペクトル(以下「Hbスペクトル」と称する)とする。そして、血中濃度測定装置1は、TGスペクトルのデータとHbスペクトルのデータをあらかじめ取得して例えば記憶部20に記憶する。また、血中濃度測定装置1は、血中TG値の算出に用いられる検量線のデータも例えば記憶部20に記憶する。なお、検量線の詳細については後述する。
 次に、本実施例におけるOP105の処理について説明する。本実施例では、血中濃度測定装置1の制御部10は、OP104において算出される非侵襲血液スペクトルのデータと、記憶部20に記憶されているTGスペクトルとHbスペクトルのデータを用いて、以下の式(3)の等式ができるだけ成立する係数α、βを最小二乗法で決定する。
Figure JPOXMLDOC01-appb-M000003
 ここで、iは実施例1におけるiと同じである。また、xは、i番目の測定で得られる非侵襲血液スペクトルを表す。また、a、bは、あらかじめ取得したTGスペクトルとHbスペクトルをそれぞれ表す。
 そして、制御部10は、決定した係数αを吸光度として記憶部20に記憶された検量線を用いて換算することで血中TG値を算出する。
 次に、図8に示す例において、本実施例で血中TG値を算出する処理について説明する。本実施例では、制御部10は、図12に示す20個の非侵襲血液スペクトル(波長900~1350nmの44個の吸光度からなる)に対して、多変量解析ソフトウェアPirouette 4.5(Infometrix社製)を用いてMCRアルゴリズムを適用し、各非侵襲血液スペクトルを2つのスペクトルの重ね合わせとして上記の式(3)で表現する。
 すなわち、i番目の測定で得られる非侵襲血液スペクトルxは、2つの定ベクトルaおよびbの線形結合であるとして、制御部10は、式(3)の等式ができるだけ成立するようなaおよびb、αおよびβを決定する。
 図13は、MCRによって得られる2つのスペクトルaおよびbの一例を示すグラフである。また、図14に、図8に示す測定について、各測定回において決定されるαおよびβの値を示す。なお、図中「ID_測定番号」、「血中TG値」、「TG推定値」、「誤差」は、図8と同様である。また、「α(非侵襲TG吸光度)」、「β」は、それぞれ各測定回において決定されるαおよびβの値である。図13のグラフの横軸は波長(nm)、縦軸は吸光度を示す。
 図13に示すように、いずれのスペクトルも、吸光度が、短波長側で大きく長波長側で小さい概して類似した形状を示す。ただし、スペクトルaの形状は、波長900nmから1200nmにかけて単調減少する形状であるのに対し、スペクトルbの形状は、波長1000nmから1100nmにかけて急激に減少する形状である点で異なる。
 ここで、いずれのスペクトルがTGの吸収スペクトルをより反映したものであるかを判断するため、TGを主成分とする人工脂肪乳剤イントラリポスの水希釈液(TG=400mg/dL)およびウシ血液由来ヘモグロビン水溶液(ヘモグロビン=16g/dL)を光路長0.1mmの石英セルに封入し、溶媒である水をブランクとしてフーリエ変換赤外分光光度計(FTIR)で吸収スペクトルを測定する。図15に、当該測定によって得られるTGスペクトルとHbスペクトルのグラフの一例を示す。なお、図15では、いずれのスペクトルも波長900~1350nmの範囲でSNVによる規格化を行う。図15のグラフの横軸は波長(nm)、縦軸はSNVによる規格化を行った吸光度を示す。
 図15に示すように、いずれのスペクトルにおける吸光度も、短波長側で大きく、長波長側で小さくなり、概ね互いに類似する形状を示す。ただし、TGスペクトルは長波長側となるに従って単調減少する形状であるのに対し、Hbスペクトルは、波長1100nm以上の範囲で急激に減少する形状である点で異なる。このことから、図13におけるスペクトルaはTGスペクトルを反映したスペクトルであり、スペクトルbはHbスペクトルを反映したスペクトルであるといえる。そこで、本実施形態では、式(3)においてTGスペクトルaの係数であるαを非侵襲血液スペクトルにおけるTGの吸光度として血中TG値の算出に用いる。
 図16に、図14における「血中TG値」の値に対して「α(非侵襲TG吸光度)」の値をプロットしたグラフを示す。図16のグラフの横軸は採血測定による血中TG値、縦軸は非侵襲TG吸光度を示す。図16からわかるように、「血中TG値」の値が大きいほど「α(非侵襲TG吸光度)」の値が大きくなる傾向が認められる。なお、図16における「血中TG値」と「α(非侵襲TG吸光度)」との相関係数は、0.550である。したがって、非侵襲血液吸光度を用いる実施例1の場合における「血中TG値」と「非侵襲血液吸光度」の相関係数(0.499)よりも良好な相関を示すといえる。このことから、上記の処理によって決定されるαの値を用いて血中TG値を算出する処理は、実施例1の非侵襲血液吸光度を用いて血中TG値を算出する処理に比べて、血中TG値のより有用な指標となることがわかる。そこで、本実施例では、図16に示す血中TG値と非侵襲TG吸光度の相関関係について作成した回帰直線を検量線として採用する。
 図17は、図14の各測定回における血中TG値と本実施例において算出されるTG推定値とを示すグラフである。また、図18は、血中TG値に対してTG推定値をプロットした結果を示すグラフである。図17のグラフの横軸は各「ID_測定番号」、縦軸はTG推定値(mg/dL)を示す。図18のグラフの横軸は採血測定による血中TG値(mg/dL)、縦軸はTG推定値(mg/dL)を示す。実施例1と同様に、式(2)を用いて、OP105において算出される血中TG値の正確さを示す指標として平均二乗誤差を求めると、「59mg/dL」である。このことからも、非侵襲血液吸光度を用いる実施例1の場合(平均二乗誤差は「68mg/dL」)に比べて、本実施例による処理の方が血中TG値の測定精度がより向上することが期待できる。
 以上が本実施形態に関する説明であるが、上記の血中濃度測定装置1の構成、吸収スペクトルの測定処理、血中TG値の測定処理などは、上記の実施形態に限定されるものではなく、本発明の技術的思想と同一性を失わない範囲内において種々の変更が可能である。
 例えば、上述した本実施形態では、血中濃度測定装置によりトリグリセライドの血中濃度を測定する場合を例に挙げて説明した。しかしながら、本実施形態の血中濃度測定装置により血中濃度を測定される血液成分は、トリグリセライドに限定されるものではない。本実施形態の血中濃度測定装置は、ヘモグロビン、グルコース、コレステロール等の血中濃度の測定にも適用可能である。
 また、上述した本実施形態では、トリグリセライドの血中濃度を算出する際、トリグリセライドの吸収スペクトルが示す吸光度として、トリグリセライドの吸収スペクトルに用いられる係数αが用いられた。しかしながら、本実施形態とは異なり、例えば、トリグリセライドの吸収スペクトルを求め、その後、トリグリセライドの吸収スペクトルが示す吸光度として、トリグリセライドの吸収スペクトルから上記の非侵襲血液吸光度を算出し、算出した非侵襲血液吸光度からトリグリセライドの血中濃度を算出してもよい。
 また、本実施形態では、生体に照射される光は、生体を透過する波長域400~2500nmから選ばれる少なくとも2つ以上の波長の単色光である。なお、波長域400~2500nmの全範囲または一部の範囲の光を照射し、受光した光を複数波長に分光して測定してもよい。生体に照射する光の波長域は、より好ましくは900~1700nm、さらに好ましくは900~1300nmである。このような波長域を選択することで、生体における血液の脈動をより正確に反映した脈波信号を測定することで、主成分分析において当該脈波信号を基準とした再構築によりノイズをより効果的に除去することができる。また、分光器では、受光した光を10~50nm間隔で分光測定するのが好ましい。
 本実施形態で測定する光の多波長時系列データは、測定部位の透過光強度、反射光強度、散乱光強度、または吸光度のいずれであってもよい。すなわち、上記の説明では、受光部40は生体の透過光を受光することを想定しているが、受光部40で受光する光は透過光に限られない。受光部40の数や位置を変更することで、生体からの透過光、反射光、散乱光、あるいはこれら複数種類の光を受光し、受光した光に対して上記の吸収スペクトルの測定処理を適用することができる。また、吸収スペクトルの測定に用いる脈波信号は、吸光度の脈波信号を用いるのが好ましく、より好ましくは透過光強度と吸光度の脈波信号を用いる。また、多波長時系列データを主成分分析する際の各波長の光信号の前処理方法としては、時間平均値による中心化処理が好ましい。これにより、光強度や吸光度の変動の中心が求まる。
 また、本実施形態において、血液の吸収スペクトルを算出するにあたり、受光する光の脈波信号から算出に不要なノイズを除去するために、既存の信号処理方法を併用してもよい。例えば、本実施形態に基づく主成分分析を行う前あるいは行った後に、特定の周波数成分のみを取り出す周波数フィルタ処理、時系列データに多項式をフィッティングして差分することで緩やかな低周波ドリフトを除去する処理、移動平均やSavitzky-Golayフィルタを用いた平滑化処理、あるいはこれらの組み合わせを行うことができる。
 また、吸収スペクトルを測定するために用いる分光器は、本実施形態で用いたマルチチャンネルフーリエ変換型分光器であってもよいし、例えば、シングルチャンネルフーリエ変換型分光器であってもよいし、マルチチャンネル分散型分光器であってもよいし、シングルチャンネル分散型分光器であってもよい。
(変形例)
 次に、本実施形態の変形例について説明する。本変形例に係る血中濃度測定装置1は、被験者が指100にLight-Emitting Diode(LED)によって近赤外光を照射して、指100の血液を透過した近赤外光をPhotodiode(PD)で受光して受光データを取得する。血中濃度測定装置1は、受光データから脈波信号を測定する。本変形例に係る血中濃度測定装置1は、図1に示す上記実施形態に係る血中濃度測定装置1の照射部30および受光部40に代えて照射部30Aおよび受光部40Aを備える。なお、本変形例に係る血中濃度測定装置1は、照射部30Aおよび受光部40A以外は、図1~図3に示す上記実施形態に係る血中濃度測定装置1と同様の構成を備える。
 図19に、本変形例に係る血中濃度測定装置1において、被験者が指100を開口部60(図2参照)に挿入したときの状態を模式的に示す。照射部30Aと受光部40Aは、開口部60から挿入された被験者の指100の腹側に配置されている。本変形例に係る血中濃度測定装置1には、照射部30Aが指100の腹側に光を照射し、血液を透過した当該光を当該指の腹側に配置されている受光部40Aで受光する反射光方式が採用されている。
 図20は、血中濃度測定装置1において照射部30Aおよび受光部40Aの配置関係を示す平面図である。照射部30Aは、第1LED32(「第1光源」の一例)と、第2LED33(「第2光源」の一例)と、を有する。第1LED32は、波長1050nmにピーク波長を有する光(「第1光」の一例)を照射する。第2LED33は、波長1300nmにピーク波長を有する光(「第2光」の一例)を照射する。血中TG値の濃度が上昇して血液の濁度が大きくなると、波長1050nm付近の近赤外光における吸光度が大きくなる。そこで、本変形例では、波長1050nmにおける血液の吸光度と、波長1300nmにおける血液の吸光度とを用いて血中TG値を測定する。
 受光部40Aは、PD42(「受光素子」の一例)を有する。PD42は、照射部30Aから指100に照射されて血液を透過した光を受光する。PD42は光を受光することによって受光データとしての電圧信号を出力する。また、血中濃度測定装置1は、AD(Analog Digital)変換器(不図示)を有しており、PD42からの受光データとしての出力信号をAD変換した後、制御部10に出力する。制御部10は、受光データを記憶部20に記憶する。
 次に、本変形例に係る血中濃度測定装置1における血中TG値の測定方法について、図4を参照しつつ説明する。
 まず、OP101において、血中濃度測定装置1の制御部10は、照射部30Aにより複数波長の光を被験者の指に照射して、血液を透過した光をPD42で受光して受光データを取得する。血中濃度測定装置1は、例えば、20秒間に亘り第1LED32と第2LED33とで波長の異なる光を交互に複数回(例えば、200回)照射し、被験者の血液を透過した光をPD42で受光して、20秒分(200サイクル分)の受光データを取得する。
 次のOP102では、制御部10は、OP101で取得した受光データに基づいて、血液を透過した第1LED32からの光照射による光強度の経時変化であって第1光に対応する第1脈波信号と、血液を透過した第2LED33からの光照射による光強度の経時変化であって第2光に対応する第2脈波信号と、を測定する。次のOP103での処理は上記と同様であるのでその説明は省略する。
 次のOP104では、OP103でノイズを除去した第1脈波信号および第2脈波信号から、第1光および第2光における被験者の血液の各吸光度を算出する。各吸光度は上記式(1)を用いて算出される。
 次のOP105では、制御部10は、血中TG値を算出する。ここで、本変形例における血中TG値の算出方法について説明する。上記実施例2で説明した通り、血液の吸収スペクトルは、TGの吸収スペクトルと、ヘモグロビンの吸収スペクトルとの重ね合わせであるとする。このため、所定波長の光における血液の吸光度は、TGの当該所定波長の光における吸光度とヘモグロビンの当該所定波長の光での吸光度との線形結合で表すことができる。本変形例に係る血中濃度測定装置1は、上記実施例2と同様に、TGスペクトルのデータとHbスペクトルのデータがあらかじめ記憶部20に記憶されており、これらのデータを用いて、以下の式(4)、(5)の等式が成立する係数α、βを決定する。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 式(4)において、X1050は、第1LED32により照射した波長1050nmの光に対する血液の吸光度を表し、A1050はあらかじめ取得したTGスペクトルにおける波長1050nmでの吸光度を表し、B1050はあらかじめ取得したHbスペクトルにおける波長1050nmでの吸光度を表している。同様に、式(5)において、X1300は、第2LED33により照射した波長1300nmの光に対する血液の吸光度を表し、A1300はあらかじめ取得したTGスペクトルにおける波長1300nmでの吸光度を表し、B1300はあらかじめ取得したHbスペクトルにおける波長1300nmでの吸光度を表している。
 ここで、係数αは、上記実施例2におけるαと同様に、血液の吸光度のうちのTGの吸光度に相関する値である。このため、式(4)におけるα×A1050と式(5)におけるα×A1300とを差分した値もTGの吸光度に相関する値である。本変形例において、制御部10は、この差分した値を非侵襲TG吸光度とみなして、検量線を用いてTGの血中濃度に換算する。検量線は、例えば、図16と同様に、血中TG値と非侵襲TG吸光度の相関関係について作成した回帰直線を採用する。本変形例による血中濃度測定装置1によれば、上記実施例2と同様に血中TG値の測定精度を向上することができる。
 なお、本変形例に係る血中濃度測定装置1には、反射光方式が採用されているが、透過光方式が採用されてもよい。透過光方式の血中濃度測定装置1は、照射部30Aと受光部40Aが開口部60から挿入された被験者の指100を挟むように例えば照射部30Aが指100の背側(爪側)に配置されており、指100を通過した光を受光部40Aが受光する構成であってもよい。
 また、本変形例では、照射部30Aは、指100における生体透過性の低い波長順に光を照射してもよい。ここで、生体透過性は、生体内での光の吸収率が低いほど高く、生体内での光の吸収率が高いほど低い。一般的に、波長900nm~1500nmにおける近赤外光は、生体内での吸収率が小さく、生体透過性が高い。上記波長の近赤外光において、ヒトの指における生体透過性は、低い順に、波長1300nm、波長1050nmである。照射部30Aは、制御部10によって制御されることによって、生体透過性の低い波長順、すなわち、第2LED33、第1LED32の順で光を照射してもよい。
 また、本変形例では、発光波長の異なる2つのLEDを使用した例を示したが、測定対象の血液成分を変更したり、増加させたりすることで、必要なLEDの個数や、LEDの発光波長の種類は適宜変更される。
1  血中濃度測定装置
10  制御部
11  測定部
12  吸収スペクトル算出部
13  吸光度算出部
14  血中濃度算出部
20  記憶部
30  照射部
40  受光部
50  表示部
 

Claims (15)

  1.  複数波長の光を生体に照射して前記生体から受光した光に基づいて脈波信号を測定し、
     前記脈波信号から各波長の光における前記生体の血液の吸光度を算出し、
     血液の吸収スペクトルを所定の血液成分の吸収スペクトルと前記所定の血液成分以外の血液成分の吸収スペクトルとの重ね合わせであるとしたときの、前記生体の血液の吸光度のうちの前記所定の血液成分の吸光度に相関する値を算出し、
     前記値から前記所定の血液成分の血中濃度を算出する
    ことを特徴とする血液成分の血中濃度測定方法。
  2.  前記脈波信号を測定することは、第1光源および第2光源から波長の異なる第1光および第2光を前記生体にそれぞれ照射して前記生体から受光した光に基づいて前記第1光に対応する第1脈波信号および前記第2光に対応する第2脈波信号を測定することであり、
     前記生体の血液の吸光度を算出することは、前記第1脈波信号および前記第2脈波信号から、前記第1光および前記第2光における前記生体の血液の吸光度を算出することであり、
     前記値を算出することは、前記第1光および前記第2光における前記生体の血液の吸光度から、前記所定の血液成分の吸光度に相関する値を算出することである、ことを特徴とする請求項1に記載の血液成分の血中濃度測定方法。
  3.  前記脈波信号を測定することは、一つの光源から複数波長の光を前記生体に照射して前記生体から受光した光に基づいて前記複数波長の光に対応する脈波信号を測定することであり、
     前記生体の血液の吸光度を算出することは、前記脈波信号から各波長における前記生体の血液の吸光度を算出して、前記生体の血液の吸収スペクトルを算出することであり、
     前記値を算出することは、前記吸収スペクトルを、前記所定の血液成分の吸収スペクトルと前記所定の血液成分以外の血液成分の吸収スペクトルとの重ね合わせであるとしたときの、前記重ね合わせにおける前記所定の血液成分の吸収スペクトルが示す吸光度に相関する値を算出することである、ことを特徴とする請求項1に記載の血液成分の血中濃度測定方法。
  4.  前記値を算出することは、前記重ね合わせにおける前記所定の血液成分の吸収スペクトルに用いられる係数を前記値として最小二乗法により決定することであり、
     前記所定の血液成分の血中濃度を算出することは、前記係数を吸光度として、前記所定の血液成分の血中濃度と吸光度との相関を示す検量線を用いて前記所定の血液成分の血中濃度に換算することである、ことを特徴とする請求項3に記載の血液成分の血中濃度測定方法。
  5.  前記所定の血液成分はトリグリセライドを含み、前記所定の血液成分以外の血液成分はヘモグロビンを含む、ことを特徴とする請求項1から4のいずれか一項に記載の血液成分の血中濃度測定方法。
  6.  複数波長の光を生体に照射して前記生体から受光した光に基づいて脈波信号を測定する測定部と、
     前記脈波信号から各波長の光における前記生体の血液の吸光度を算出する第1算出部と、
     血液の吸収スペクトルを所定の血液成分の吸収スペクトルと前記所定の血液成分以外の血液成分の吸収スペクトルとの重ね合わせであるとしたときの、前記生体の血液の吸光度のうちの前記所定の血液成分の吸光度に相関する値を算出する第2算出部と、
     前記値から前記所定の血液成分の血中濃度を算出する第3算出部とを備えることを特徴とする血液成分の血中濃度測定装置。
  7.  前記測定部は、第1光源および第2光源から波長の異なる第1光および第2光を前記生体にそれぞれ照射して前記生体から受光した光に基づいて、前記第1光に対応する第1脈波信号および前記第2光に対応する第2脈波信号を測定し、
     前記第1算出部は、前記第1脈波信号および前記第2脈波信号から、前記第1光および前記第2光の各波長における前記生体の血液の吸光度を算出し、
     前記第2算出部は、前記第1光および前記第2光における前記生体の血液の吸光度から、前記所定の血液成分の吸光度に相関する値を算出する、ことを特徴とする請求項6に記載の血液成分の血中濃度測定装置。
  8.  前記測定部は、一つの光源から複数波長の光を前記生体に照射して前記生体から受光した光に基づいて、前記複数波長の光に対応する脈波信号を測定し、
     前記第1算出部は、前記脈波信号から各波長における前記生体の血液の吸光度を算出して、前記各波長における前記生体の血液の吸収スペクトルを算出し、
     前記第2算出部は、前記吸収スペクトルを、前記所定の血液成分の吸収スペクトルと前記所定の血液成分以外の血液成分の吸収スペクトルとの重ね合わせであるとしたときの、前記重ね合わせにおける前記所定の血液成分の吸収スペクトルが示す吸光度に相関する値を算出する、ことを特徴とする請求項6に記載の血液成分の血中濃度測定装置。
  9.  前記第2算出部は、前記重ね合わせにおける前記所定の血液成分の吸収スペクトルに用いられる係数を前記値として最小二乗法により決定し、
     前記第3算出部は、前記係数を吸光度として、前記所定の血液成分の血中濃度と吸光度との相関を示す検量線を用いて前記所定の血液成分の血中濃度に換算する、ことを特徴とする請求項8に記載の血液成分の血中濃度測定装置。
  10.  前記所定の血液成分はトリグリセライドを含み、前記所定の血液成分以外の血液成分はヘモグロビンを含む、ことを特徴とする請求項6から9のいずれか一項に記載の血液成分の血中濃度測定装置。
  11.  コンピュータに、
     複数波長の光を生体に照射して前記生体から受光した光に基づいて脈波信号を測定させ、
     前記脈波信号から各波長の光における前記生体の血液の吸光度を算出させ、
     血液の吸収スペクトルを所定の血液成分の吸収スペクトルと前記所定の血液成分以外の血液成分の吸収スペクトルとの重ね合わせであるとしたときの、前記生体の血液の吸光度のうちの前記所定の血液成分の吸光度に相関する値を算出させ、
     前記値から前記所定の血液成分の血中濃度を算出させる
    ためのプログラム。
  12.  前記コンピュータに前記脈波信号を測定させることは、第1光源および第2光源から波長の異なる第1光および第2光を前記生体にそれぞれ照射して前記生体から受光した光に基づいて前記第1光に対応する第1脈波信号および前記第2光に対応する第2脈波信号を測定させることであり、
     前記コンピュータに前記生体の血液の吸光度を算出させることは、前記第1脈波信号および前記第2脈波信号から、前記第1光および前記第2光における前記生体の血液の吸光度を算出させることであり、
     前記コンピュータに前記値を算出させることは、前記第1光および前記第2光における前記生体の血液の吸光度から、前記所定の血液成分の吸光度に相関する値を算出させることである、ことを特徴とする請求項11に記載のプログラム。
  13.  前記コンピュータに前記脈波信号を測定させることは、一つの光源から複数波長の光を前記生体に照射して前記生体から受光した光に基づいて前記複数波長の光に対応する脈波信号を測定させることであり、
     前記コンピュータに前記生体の吸光度を算出させることは、前記脈波信号から各波長における前記生体の血液の吸光度を算出させて、前記各波長における前記生体の血液の吸収スペクトルを算出させることであり、
     前記コンピュータに前記値を算出させることは、前記吸収スペクトルを、前記所定の血液成分の吸収スペクトルと前記所定の血液成分以外の血液成分の吸収スペクトルとの重ね合わせであるとしたときの、前記重ね合わせにおける前記所定の血液成分の吸収スペクトルが示す吸光度に相関する値を算出させることである、ことを特徴とする請求項11に記載のプログラム。
  14.  前記コンピュータに前記値を算出させることは、前記重ね合わせにおける前記所定の血液成分の吸収スペクトルに用いられる係数を前記値として最小二乗法により決定させることであり、
     前記コンピュータに前記所定の血液成分の血中濃度を算出させることは、前記係数を吸光度として、前記所定の血液成分の血中濃度と吸光度との相関を示す検量線を用いて前記所定の血液成分の血中濃度に換算させることである、ことを特徴とする請求項13に記載のプログラム。
  15.  前記所定の血液成分はトリグリセライドを含み、前記所定の血液成分以外の血液成分はヘモグロビンを含む、ことを特徴とする請求項11から14のいずれか一項に記載のプログラム。
PCT/JP2019/017204 2018-04-24 2019-04-23 血液成分の血中濃度測定方法、血中濃度測定装置およびプログラム WO2019208561A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020515479A JPWO2019208561A1 (ja) 2018-04-24 2019-04-23 血液成分の血中濃度測定方法、血中濃度測定装置およびプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018083334 2018-04-24
JP2018-083334 2018-04-24

Publications (1)

Publication Number Publication Date
WO2019208561A1 true WO2019208561A1 (ja) 2019-10-31

Family

ID=68295409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017204 WO2019208561A1 (ja) 2018-04-24 2019-04-23 血液成分の血中濃度測定方法、血中濃度測定装置およびプログラム

Country Status (2)

Country Link
JP (1) JPWO2019208561A1 (ja)
WO (1) WO2019208561A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111012308A (zh) * 2019-12-02 2020-04-17 清华大学 体表动态多光谱吸收特征参数的测量方法、装置及系统
JPWO2023145810A1 (ja) * 2022-01-28 2023-08-03

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11506652A (ja) * 1995-06-07 1999-06-15 マシモ コーポレイション アクティブ・パルス血液成分監視システム
JPH11183377A (ja) * 1997-12-17 1999-07-09 Matsushita Electric Ind Co Ltd 光学式成分計
WO2017109440A1 (fr) * 2015-12-23 2017-06-29 Bioserenity Dispositif et procédé pour la mesure de la concentration d'un composé présent dans le sang

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11506652A (ja) * 1995-06-07 1999-06-15 マシモ コーポレイション アクティブ・パルス血液成分監視システム
JPH11183377A (ja) * 1997-12-17 1999-07-09 Matsushita Electric Ind Co Ltd 光学式成分計
WO2017109440A1 (fr) * 2015-12-23 2017-06-29 Bioserenity Dispositif et procédé pour la mesure de la concentration d'un composé présent dans le sang

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111012308A (zh) * 2019-12-02 2020-04-17 清华大学 体表动态多光谱吸收特征参数的测量方法、装置及系统
CN111012308B (zh) * 2019-12-02 2021-06-01 清华大学 体表动态多光谱吸收特征参数的测量方法、装置及系统
JPWO2023145810A1 (ja) * 2022-01-28 2023-08-03
JP7500117B2 (ja) 2022-01-28 2024-06-17 アトナープ株式会社 体液に含まれる成分の濃度を測定するシステムおよび方法

Also Published As

Publication number Publication date
JPWO2019208561A1 (ja) 2021-05-27

Similar Documents

Publication Publication Date Title
US6675029B2 (en) Apparatus and method for quantification of tissue hydration using diffuse reflectance spectroscopy
US5360004A (en) Non-invasive determination of analyte concentration using non-continuous radiation
US7010336B2 (en) Measurement site dependent data preprocessing method for robust calibration and prediction
CA2605467C (en) Systems and methods for correcting optical reflectance measurements
US6442408B1 (en) Method for quantification of stratum corneum hydration using diffuse reflectance spectroscopy
JP3875798B2 (ja) 血中成分濃度の無血測定装置の作動方法及び無血測定装置
JP5982364B2 (ja) 測定媒体の成分または特性、特に生理的血液値を特定およびモニタするための装置ならびに方法
US11147482B2 (en) Method and system for non-invasive blood glucose measurement using signal change of the non-glucose components induced by the presence of glucose
US8406839B2 (en) Method and apparatus for determining blood analytes
US6741875B1 (en) Method for determination of analytes using near infrared, adjacent visible spectrum and an array of longer near infrared wavelengths
JP2006126219A (ja) 非侵襲性赤外分光法における多重スペクトル分析のための方法および装置
JP2002236097A (ja) 非侵襲性近赤外分光法における多重スペクトル分析のための方法および装置
KR100464324B1 (ko) 목적물의 성분농도 측정방법 및 장치
JP4472794B2 (ja) グルコース濃度の定量装置
US20060211926A1 (en) Non-invasive Raman measurement apparatus with broadband spectral correction
WO2019208561A1 (ja) 血液成分の血中濃度測定方法、血中濃度測定装置およびプログラム
JP4329360B2 (ja) グルコース濃度の定量装置
WO2018194056A1 (ja) 血液の吸収スペクトルを算出する情報処理方法、情報処理装置およびプログラム
US20090198113A1 (en) Dedicated spectral illumination spectroscopy
EP0623307A1 (en) Non-invasive determination of constituent concentration using non-continuous radiation
JP2019198547A (ja) 血液成分測定方法、血液成分測定装置、および血液成分測定プログラム
KR100883153B1 (ko) 혈당치의 비침습 측정 장치
Soyemi et al. Measuring tissue oxygenation
WO1996013204A1 (en) Determination of analyte concentration using non-continuous radiation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793118

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515479

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793118

Country of ref document: EP

Kind code of ref document: A1