WO2012132757A1 - スケルトンナノ粒子及びその製造方法 - Google Patents

スケルトンナノ粒子及びその製造方法 Download PDF

Info

Publication number
WO2012132757A1
WO2012132757A1 PCT/JP2012/055330 JP2012055330W WO2012132757A1 WO 2012132757 A1 WO2012132757 A1 WO 2012132757A1 JP 2012055330 W JP2012055330 W JP 2012055330W WO 2012132757 A1 WO2012132757 A1 WO 2012132757A1
Authority
WO
WIPO (PCT)
Prior art keywords
skeleton
silica
calcium carbonate
particles
organic acid
Prior art date
Application number
PCT/JP2012/055330
Other languages
English (en)
French (fr)
Inventor
正督 藤
藤本 恭一
千加 高井
Original Assignee
国立大学法人名古屋工業大学
グランデックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋工業大学, グランデックス株式会社 filed Critical 国立大学法人名古屋工業大学
Priority to US14/007,490 priority Critical patent/US9493361B2/en
Priority to JP2013507304A priority patent/JP5669152B2/ja
Publication of WO2012132757A1 publication Critical patent/WO2012132757A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/181Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process
    • C01B33/182Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process by reduction of a siliceous material, e.g. with a carbonaceous reducing agent and subsequent oxidation of the silicon monoxide formed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • the present invention relates to a skeleton nanoparticle composed of a silica shell having an outer diameter in the range of 30 nm to 300 nm and a method for producing the skeleton nanoparticle, and more particularly to a skeleton nanoparticle usable for various purposes and a method for producing the skeleton nanoparticle. .
  • nanotechnology research As part of nanotechnology research, applied research on particles having a particle size of several hundred nanometers or less has been actively conducted.
  • nano-sized hollow particles using silica or the like have been desired in order to cope with the trend of ultrafine technology represented by nanotechnology.
  • hollow particles are hollow, they can be used, for example, as sustained-release pharmaceuticals or sustained-release cosmetics containing active ingredients, or for protection of substances that decompose or deteriorate due to contact with the external environment, drugs Research is being conducted to utilize it as a carrier for delivery systems, and various applications are expected.
  • the hollow nanoparticle is a hollow nanoparticle composed of a dense silica shell, and has a primary particle diameter of 30 to 300 nm by transmission electron microscopy, and a particle diameter by static light scattering. In the pore distribution measured by mercury intrusion method, pores of 2 nm to 20 nm are not detected.
  • the silica shell is formed on the entire surface of calcium carbonate.
  • the particles formed by coating and dissolving the calcium carbonate are considered to have a shape surrounded by the surface of the silica shell by transferring the shape of the calcium carbonate. For this reason, for example, when calcium carbonate is in a cubic form, as shown in FIG. 11, the obtained hollow particles are presumed that the entire surface of the cubic form is formed of silica shells.
  • this silica nanoparticle having a cubic shape although the inside is a cavity (hollow), the entire surface of the cubic shape is formed of a silica shell, and the cavity is surrounded by the silica shell. It is not easy to introduce an active ingredient or the like into the hollow portion) or to release the encapsulated component.
  • the entire surface of the hollow particles is formed of a dense silica shell, the passage resistance of a fluid or the like is high, and it is not suitable for use as a catalyst carrier using a hollow structure, for example. For this reason, there is a limit to the expansion of the application range, and in order to expand the application field, it is desired to establish production of hollow particles of another form.
  • the present invention has been made to solve such problems, and can further expand the application field of nanoparticles composed of silica shells, and provide a skeleton nanoparticle that can be used for many purposes and a method for producing the same. Is an issue.
  • the skeleton nanoparticle according to the invention of claim 1 is a nanoparticle having an outer diameter in a range of 30 nm to 300 nm and comprising a silica shell, and the silica shell is formed in a cubic frame shape formed entirely by six faces.
  • the inside of the cubic frame is hollow and has holes between the quadrilateral silica frames on each side of the cubic frame.
  • the “skeleton nanoparticle” means that the inside of the cubic frame forming the cubic frame shape of the silica shell is hollow.
  • the “cubic frame shape” includes not only a cube shape but also a shape similar to a cube composed of six substantially quadrilateral shapes. That is, the cubic frame shape formed entirely by hexahedron does not necessarily mean a cubic frame formed by regular hexahedrons, but means a cubic frame shape, and other than a hexahedron silhouette line. The place is not a problem.
  • the term “having an outer diameter in the range of 30 nm to 300 nm” means that in the present specification and claims, the primary particle diameter measured by microscopy is in the range of 30 nm to 300 nm.
  • the microscopic method referred to here is a method of actually observing particles using a scanning electron microscope (SEM) or a transmission electron microscope (TEM) to determine the size of each part of the particles.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the said numerical value is not what the said value came out as a critical value and a boundary value, but the numerical value is taken as a rough value.
  • the proportion of each hole is in the range of 3% to 94% with respect to the surface area of each surface of the cubic frame, more preferably 10%. It is in the range of ⁇ 87%.
  • the silica frame has a width in the range of 5 nm to 115 nm, more preferably in the range of 10 nm to 100 nm.
  • the skeleton nanoparticle according to the invention of claim 4 has an organic acid coating in a dry powder state formed by coating the surface of a calcium carbonate particle in a dry powder state in a cubic form with an organic acid.
  • the calcium carbonate particles are dispersed in an organic solvent that dissolves a part of the organic acid in the organic acid-coated calcium carbonate particles, and further mixed with silicon alkoxide and a base catalyst, and a silica shell is formed along the edges of the calcium carbonate particles. It is formed into silica-forming particles, and then the calcium carbonate inside the silica-forming particles is dissolved by acid treatment.
  • the “cubic shape” is not limited to a cube, but refers to a shape similar to a cube surrounded by six faces having a substantially quadrilateral shape.
  • the “organic acid” is not particularly limited as long as it can coat calcium carbonate particles in a dry powder state, and examples thereof include alkaline soaps such as rosin acid and fatty acids.
  • the “organic solvent” may be any organic solvent that can dissolve a part of the organic acid in the organic acid-coated calcium carbonate particles and is soluble in silicon alkoxide and water.
  • any substance that can precipitate silica by hydrolysis thereof may be used.
  • tetraethoxysilane (TEOS), trimethoxysilane, tetramethoxysilane, triethoxysilane, tripropoxysilane. Tetrapropoxysilane, tributoxysilane, or the like can be used.
  • base catalyst include ammonia and amines.
  • the skeleton nanoparticle according to the invention of claim 5 is the structure of claim 4, wherein the organic acid is rosin acid.
  • the skeleton nanoparticle according to the invention of claim 6 is the skeleton nanoparticle according to claim 4 or claim 5, wherein the organic solvent is at least one selected from alcohols, ketones and ethers.
  • Alcohol-based includes ethanol, propanol, butanol, etc.
  • ketone-based includes methyl ethyl ketone
  • ether-based includes dioxane and the like.
  • the skeleton nanoparticle according to the invention of claim 7 is the structure of claims 4 to 6, further comprising a silicone oil, preferably a modified silico oil, more preferably a monoamine (NH 2 ) modified silicone oil in the medium. Are mixed.
  • the skeleton nanoparticle according to the invention of claim 8 is obtained by subjecting the structure of claims 4 to 7 to ultrasonic treatment in the process of forming a silica shell on the surface of the calcium carbonate particle.
  • the method for producing skeleton nanoparticles according to the invention of claim 9 comprises a cubic frame-shaped silica shell having an outer diameter in the range of 30 nm to 300 nm, and the inside of the cubic frame is hollow, and each surface of the cubic frame
  • a method for producing nanoparticles having pores between quadrilateral silica frames in An organic acid-coated calcium carbonate forming step in which the surface of calcium carbonate particles in a cubic form having a predetermined outer diameter and dried powder is coated with an organic acid to form organic acid-coated calcium carbonate particles, and the organic acid The organic acid-coated calcium carbonate particles are dispersed in an organic solvent that dissolves a part of the organic acid in the coated calcium carbonate particles, and silicon alkoxide and a base catalyst are mixed to form a silica shell along the edges of the calcium carbonate particles.
  • the method for producing skeleton nanoparticles according to the invention of claim 10 is characterized in that, in the structure of claim 9, the proportion of each hole is in the range of 3% to 94% with respect to the surface area of each surface of the cubic frame. And more preferably within the range of 10% to 87%.
  • the method for producing skeleton nanoparticles according to the invention of claim 11 is the method of claim 9 or 10, wherein the silica frame has a width of 5 nm to 115 nm, more preferably 10 nm to 100 nm. It is within the range.
  • the method for producing skeleton nanoparticles according to the invention of claim 12 is the structure of claims 9 to 11, wherein the organic acid is rosin acid.
  • the method for producing skeleton nanoparticles according to the invention of claim 13 is the structure of claims 9 to 12, wherein the organic solvent is at least one selected from alcohols, ketones and ethers. .
  • the method for producing skeleton nanoparticles according to the invention of claim 14 is the structure of claims 9 to 13, wherein in the silica formation step, further in the medium, silicone oil, preferably modified silico oil, more preferably Monoamine (NH 2 ) modified silicone oil is mixed.
  • silicone oil preferably modified silico oil, more preferably Monoamine (NH 2 ) modified silicone oil is mixed.
  • the method for producing a skeleton nanoparticle according to the invention of claim 15 is the structure of claims 9 to 14, wherein ultrasonic treatment is performed in the silica forming step.
  • the silica shell has a cubic frame shape, the inside of the cubic frame is hollow, and a hole is formed between quadrilateral silica frames on each surface of the cubic frame. Therefore, it is possible to easily insert a substance such as an active ingredient into the cavity inside from the hole, and it is also possible to easily release the contained substance.
  • the outer diameter is extremely small within the range of 30 nm to 300 nm. For this reason, for example, it can be easily used as a delivery system, and its application range can be expanded.
  • by having a hollow cubic frame-like structure inside and having holes between the silica frames it is easy for liquids, gases, etc. to pass through and has low resistance to passage.
  • the fluid or the like can be selectively passed through the holes, it can be used as a filter or an electrolyte solution holder.
  • light can be transmitted (light transmissive), and part of the light incident through the hole can be refracted and scattered by the silica frame (light diffusibility). It is also possible to increase the luminous efficiency by applying.
  • irregularities can be formed when the skeleton nanoparticles are applied on the substrate.
  • the skeleton nanoparticles have a cubic frame-like structure, so that Since all the contact becomes only the silica frame part of the skeleton nanoparticles and the contact area can be reduced, application as a super water-repellent film / super hydrophilic film is also possible.
  • nanoparticles composed of silica shells can be further expanded, and the skeleton nanoparticles can be used for various purposes.
  • the proportion of each hole is in the range of 3% to 94% with respect to the surface area of each surface of the cubic frame, various sizes are available. Substances such as active ingredients can be inserted and released more easily. In addition, it is easy to come into contact with external substances, or liquids, gases, and the like are easy to pass through. Therefore, in addition to the effect of Claim 1, it is easy to use for various uses.
  • the present invention can be applied to applications requiring high strength of the silica shell and high transparency.
  • the skeleton nanoparticles according to the invention of claim 4 are obtained by coating the organic acid-coated calcium carbonate particles in a dry powder state obtained by coating the surfaces of the calcium carbonate particles in a cubic shape with an organic acid. Disperse a part of the organic acid in the calcium particles in an organic solvent to be dissolved, further mix silicon alkoxide and a base catalyst to form a silica shell along the edge of the calcium carbonate particles to form silica-forming particles, and then The calcium carbonate in the silica-forming particles is dissolved by acid treatment.
  • the organic acid-coated calcium carbonate particles in a dry powder state are dispersed in an organic solvent, the organic acid at the edge portion of the cubic organic acid-coated calcium carbonate particles is dissolved (a part of the organic acid is dissolved). Furthermore, when the silicon alkoxide and the base catalyst are mixed, the SiO 2 molecules generated by the hydrolysis and polycondensation of the silicon alkoxide are along the edges of the cubic-shaped calcium carbonate particles that are exposed by the dissolution of the organic acid. A silica shell is formed and becomes silica-forming particles. Finally, the acid treatment dissolves the calcium carbonate inside the silica-forming particles, resulting in skeleton nanoparticles having an outer diameter in the range of 30 nm to 300 nm.
  • Such skeleton nanoparticles are formed by forming a silica shell along the edges of the cubic calcium carbonate particles. Therefore, the silica shell forms a cubic frame, and has a quadrilateral shape on each side of the cubic frame. There will be holes between the silica frames. Further, since the calcium carbonate is dissolved after the silica shell is formed, the inside of the cubic frame becomes a cavity.
  • the skeleton nanoparticle according to the present invention since the organic acid-coated calcium carbonate particles in the dry powder state obtained by coating the surfaces of the calcium carbonate particles in the dry powder state with the organic acid, that is, Since the surface of the calcium carbonate particles as the core particles is coated with an organic acid, the calcium carbonate particles as the core particles are prevented from absorbing water and aggregating with each other in the process of coating the silica shell. For this reason, the skeleton nanoparticle obtained by dissolving the calcium carbonate inside the silica-forming particles in a state where aggregation is prevented has little aggregation and high dispersibility.
  • the cost can be reduced and the production efficiency can be improved, and the dispersibility can be reduced with less aggregation to the secondary particles.
  • the organic acid is rosin acid
  • the organic solvent is at least one selected from alcohols, ketones, and ethers, it surely dissolves part of the organic acid, Low solubility in organic acids and weak interaction (affinity / reactivity) with calcium carbonate particles and silicon alkoxides. Therefore, only the edge of calcium carbonate exposed by dissolution of organic acids is silicon. Silica shells formed by alkoxide hydrolysis are easily adsorbed. Alcohol-based, ketone-based, and ether-based solvents are easily available and relatively inexpensive. Therefore, in addition to the effect of the fourth or fifth aspect, the reaction efficiency can be increased and the production efficiency can be improved. In addition, cost reduction can be achieved.
  • the silicone oil is further mixed in the medium, the surface of the silica-forming particle is protected by the silicone oil, and the silica shell is applied to the surface of the calcium carbonate particle. Adhesion is stabilized. Therefore, in addition to the effect described in any one of claims 4 to 6, the reaction efficiency can be further increased and the production efficiency can be improved.
  • the silica-forming particles are protected, in the silica shell-forming reaction solution, the silica-forming particles are prevented from aggregating with each other, and the nanoparticles composed of silica shells obtained by dissolving calcium carbonate are used. Since the surface is protected by silicone oil, aggregation is prevented.
  • the aggregation to the secondary particles is further reduced and the dispersibility is higher.
  • it is an amino-modified silicone oil, and since the amino-modified silicone oil has high reactivity with the surface of the silica-forming particles, the skeleton nanoparticles formed by mixing the amino-modified silicone oil have a high recovery rate, In addition, the particle size distribution is low.
  • the organic acid-coated calcium carbonate particles are easily dispersed to prevent mutual aggregation, Even in the silica-forming particles in which the silica shell is formed in a state where such particles are dispersed, mutual aggregation is prevented. Therefore, in addition to the effect described in any one of claims 4 to 7, the agglomeration into the secondary particles is less and the dispersibility is higher. In addition, since the silica shell is easily attached to the calcium carbonate surface by the ultrasonic wave, the reaction efficiency can be further increased and the production efficiency can be improved.
  • the surface of the calcium carbonate particles in a dry powder state in a cubic form is coated with an organic acid to form a dry powder state.
  • the organic acid-coated calcium carbonate particles are then dispersed, and in the silica formation step, the organic acid-coated calcium carbonate particles are dispersed in an organic solvent that dissolves a part of the organic acid in the organic acid-coated calcium carbonate particles.
  • An alkoxide and a base catalyst are mixed to form silica shells along the edges of the calcium carbonate particles to form silica-forming particles.
  • the calcium carbonate inside the silica-forming particles is dissolved by acid treatment.
  • the organic acid-coated calcium carbonate particles in the dry powder state prepared in the organic acid-coated calcium carbonate forming step are dispersed in an organic solvent, the organic acid at the edge portion in the cubic organic acid-coated calcium carbonate particles is dissolved. (A part of the organic acid is dissolved)
  • the silicon alkoxide and the base catalyst are mixed, the SiO 2 molecules produced by the hydrolysis and polycondensation of the silicon alkoxide are expressed by the dissolution of the organic acid.
  • a silica shell is formed along the edges of the calcium carbonate particles in the form to form silica-forming particles.
  • the silica-forming particles are then converted into skeleton nanoparticles having an outer diameter in the range of 30 nm to 300 nm by dissolving the internal calcium carbonate by acid treatment in the calcium carbonate dissolution step.
  • the silica shell is formed along the edges of the cubic calcium carbonate particles, and the calcium carbonate is dissolved after the silica shell is formed. Therefore, a skeleton nanoparticle having a cubic frame-like silica shell, in which the inside of the cubic frame is hollow and having holes between quadrilateral silica frames on each surface of the cubic frame, is obtained.
  • the skeleton nanoparticles obtained in this way can easily insert a substance such as an active ingredient into the cavity inside from the hole, and can easily release the encapsulated substance.
  • the outer diameter is extremely small within the range of 30 nm to 300 nm. For this reason, for example, it can be easily used as a delivery system, and its application range can be expanded.
  • by having a hollow cubic frame-like structure inside and having holes between the silica frames it is easy for liquids, gases, etc. to pass through and has low resistance to passage. Since contact with a substance is also possible, it can be used for use as a catalyst carrier.
  • the fluid or the like can be selectively passed through the holes, it can be used as a filter or an electrolyte solution holder.
  • light can be transmitted (light transmissive), and part of the light incident through the hole can be refracted and scattered by the silica frame (light diffusibility). It is also possible to increase the luminous efficiency by applying.
  • irregularities can be formed when the skeleton nanoparticles are applied on the substrate.
  • the skeleton nanoparticles have a cubic frame-like structure, so that Since all the contact becomes only the silica frame part of the skeleton nanoparticles and the contact area can be reduced, application as a super water-repellent film / super hydrophilic film is also possible.
  • nanoparticles composed of silica shells can be further expanded, and the skeleton nanoparticles can be used for various purposes.
  • the dry powdered organic acid-coated calcium carbonate particles obtained by coating the surface of the dry powdered calcium carbonate particles with an organic acid are used, Since the surface of the calcium carbonate particles as the core particles is coated with an organic acid, the calcium carbonate particles as the core particles are prevented from absorbing water and aggregating with each other in the process of coating the silica shell. . For this reason, the skeleton nanoparticle obtained by dissolving the calcium carbonate inside the silica-forming particles in a state where aggregation is prevented also has low aggregation and high dispersibility.
  • the proportion of each hole of the skeleton nanoparticle is within a range of 3% to 94% with respect to the surface area of each surface of the cubic frame. Therefore, it becomes a skeleton nanoparticle that can more easily insert and release substances such as active ingredients of various sizes.
  • the skeleton nanoparticles easily come into contact with external substances, or liquids, gases, and the like easily pass through. Therefore, in addition to the effect of Claim 9, it becomes the skeleton nanoparticle which is easy to use for various uses.
  • the width of the silica frame is in the range of 5 nm to 115 nm, it is not easily broken by the external environment, and the transparency is high.
  • the organic acid is rosin acid
  • the calcium carbonate particles in the dry powder state are surely covered to prevent aggregation of the core particles. be able to. Therefore, in addition to the effects described in any one of claims 9 to 11, skeleton nanoparticles with high agglomeration and low dispersibility can be obtained with certainty.
  • the organic solvent is at least one selected from alcohols, ketones, and ethers, it is possible to reliably dissolve a part of the organic acid.
  • the solubility in organic acids is low, and the interaction (affinity) with calcium carbonate particles and silicon alkoxides is weak. Therefore, only the edge portion of calcium carbonate exposed by the dissolution of organic acids is silicon.
  • Silica shells formed by alkoxide hydrolysis are easily adsorbed.
  • Alcohol-based, ketone-based, and ether-based solvents are easily available and relatively inexpensive. Therefore, in addition to the effect described in any one of claims 9 to 12, the reaction efficiency can be increased and the production efficiency can be improved. In addition, cost reduction can be achieved.
  • the silicone oil is further mixed in the medium, the surface of the silica-forming particles is protected by the silicone oil, and the surface of the calcium carbonate particles in the silica shell is protected.
  • the adhesion of is stabilized. Therefore, in addition to the effect described in any one of claims 9 to 13, the reaction efficiency can be further increased and the production efficiency can be improved.
  • the silica-forming particles are prevented from agglomerating with each other, and the nanoparticles composed of the silica shell obtained by dissolving the calcium carbonate particles Since the surface is protected by silicone oil, aggregation is prevented. For this reason, skeleton nanoparticles can be obtained even though the aggregation to the secondary particles is further reduced and the dispersibility is higher. More preferably, it is an amino-modified silicone oil, and the amino-modified silicone oil has high reactivity with the surface of the silica-forming particles. Therefore, by mixing the amino-modified silicone oil, the recovery rate is high and the particle size distribution is low. Skeleton nanoparticles can be obtained.
  • the organic acid-coated calcium carbonate particles are easily dispersed, and the aggregation of each other is further prevented. Even in the silica-forming particles in which the silica shell is formed in a state where the particles are dispersed, mutual aggregation is further prevented. Therefore, in addition to the effects described in any one of claims 9 to 14, skeleton nanoparticles with less aggregation to secondary particles and higher dispersibility can be obtained. In addition, since the silica shell is easily attached to the calcium carbonate surface by the ultrasonic wave, the reaction efficiency can be further increased and the production efficiency can be improved.
  • FIG. 1 is a flowchart showing a method for producing skeleton nanoparticles according to an embodiment of the present invention.
  • FIG. 2 (a) is a schematic diagram showing a manufacturing process of the skeleton nanoparticle according to the embodiment of the present invention
  • FIG. 2 (b) is a quadrilateral silica frame of the skeleton nanoparticle according to the embodiment of the present invention.
  • It is a schematic diagram which shows a part
  • FIG. 3 (a) is a scanning electron microscope (SEM) photograph (SEI: scanning secondary electron image) of the skeleton nanoparticle according to the embodiment of the present invention
  • FIG. 3 (b) is an embodiment of the present invention.
  • It is a transmission electron microscope (TEM) photograph of the skeleton nanoparticle concerning this.
  • SEM scanning electron microscope
  • SEI scanning secondary electron image
  • FIG. 4 shows scanning electron microscope (SEM) photographs (SEI: scanning secondary electron images) of the skeleton nanoparticles according to Examples 1 to 7 of the present invention in comparison with Comparative Example 1 and Comparative Example 2.
  • FIG. 5 is an explanatory diagram for explaining application of the skeleton nanoparticle to the delivery system according to the embodiment of the present invention.
  • Fig.6 (a) is a schematic diagram which shows an example which used the skeleton nanoparticle which concerns on embodiment of this invention for LED, (b) is the enlarged view.
  • FIG. 7 is an explanatory diagram for explaining application of the skeleton nanoparticle according to the embodiment of the present invention to a catalyst carrier.
  • FIG. 8 is a schematic diagram showing an example in which the skeleton nanoparticle according to the embodiment of the present invention is used for a filter
  • (a) is a schematic diagram showing an example of use for a purification filter
  • (b) is a use for a mask.
  • FIG. 9 is an explanatory diagram for explaining the application of the skeleton nanoparticles according to the embodiment of the present invention to an electrolyte holding body.
  • FIG. 10 is an explanatory diagram for explaining the application of the skeleton nanoparticles according to the embodiment of the present invention to a superhydrophobic film / superhydrophilic film.
  • FIG. 9 is an explanatory diagram for explaining the application of the skeleton nanoparticles according to the embodiment of the present invention to an electrolyte holding body.
  • FIG. 10 is an explanatory diagram for explaining the application of the skeleton nanoparticles according to the embodiment of the present invention to a superhydrophobic film / superhydrophilic film.
  • FIG. 11 is a schematic view for explaining silica nano hollow particles in which the entire surface of a conventional cubic shape is formed of silica shells.
  • FIG. 12 (a) is a scanning electron microscope (SEM) photograph (SEI: scanning secondary electron image) of the product of Comparative Example 3 with a reaction time of 15 minutes in the silica formation step
  • FIG. 12 (b) is silica formation. It is a scanning electron microscope (SEM) photograph (SEI: a scanning secondary electron image and STEM: a scanning transmission image) of the product of the comparative example 4 which made reaction time in a process 30 minutes.
  • FIG. 12 (a) is a scanning electron microscope (SEM) photograph (SEI: a scanning secondary electron image and STEM: a scanning transmission image) of the product of the comparative example 4 which made reaction time in a process 30 minutes.
  • SEM scanning electron microscope
  • FIG. 13 (c) is a scanning electron microscope (SEM) photograph (SEI: scanning secondary electron image and STEM: scanning transmission image) of the product of Example 8 with a reaction time of 60 minutes in the silica formation step
  • FIG. 13 (d) is a scanning electron microscope (SEM) photograph (SEI: scanning secondary electron image) of the product of Example 9 with a reaction time of 90 minutes in the silica formation step
  • FIG. 14 (e) is a scanning electron microscope (SEM) photograph (SEI: scanning secondary electron image and STEM: scanning transmission image) of the product of Example 10 with a reaction time of 120 minutes in the silica formation step
  • FIG. 14 (f) is a scanning electron microscope (SEM) photograph (SEI: scanning secondary electron image) of the product of Example 11 in which the reaction time in the silica formation step is 240 minutes.
  • FIG. 15 (a) is a scanning electron microscope (SEM) photograph (SEI: scanning secondary electron image) of the product of Example 12 using ethanol as the organic solvent
  • FIG. 15 (b) is 1-propanol as the organic solvent.
  • Is a scanning electron microscope (SEM) photograph SEI: scanning secondary electron image and STEM: scanning transmission image
  • FIG. 16 (c) is a scanning electron microscope (SEM) photograph (SEI: scanning secondary electron image and STEM: scanning transmission image) of the product of Example 14 using 2-propanol as the organic solvent
  • FIG. 17A is a scanning electron microscope (SEM) photograph (SEI: scanning secondary electron image and STEM: scanning transmission image) of the product of Comparative Example 5 using methanol as the organic solvent
  • FIG. 17B are scanning electron microscope (SEM) photographs (SEI: scanning secondary electron images) of the product of Comparative Example 6 using 1-octanol as the organic solvent.
  • SEM scanning electron microscope
  • FIG. 18 (a) is a scanning electron microscope (SEM) photograph (SEI: scanning secondary electron image and STEM: scanning transmission image) of the product of Example 16 using methyl ethyl ketone as the organic solvent
  • FIG. 18 (b) These are scanning electron microscope (SEM) photographs (SEI: scanning secondary electron images) of the product of Comparative Example 7 using acetone as the organic solvent.
  • FIG. 19 is a scanning electron microscope (SEM) photograph (SEI: scanning secondary electron image and STEM: scanning transmission image) of the product of Example 17 using dioxane as an organic solvent.
  • FIG. 20 is a scanning electron microscope (SEM) photograph (SEI: scanning secondary electron image) of the product of Comparative Example 9 using diethylene glycol as the organic solvent.
  • FIG. 21 is an explanatory diagram for explaining the particle morphology of the skeleton nanoparticles produced using different organic solvents.
  • a skeleton nanoparticle and a manufacturing method thereof will be described with reference to FIGS.
  • a dry powder state (a solid fine powder state in a dry state)
  • calcium carbonate (CaCO 3 ) particles 2 are coated with an organic acid 3 to form organic acid-coated calcium carbonate particles 4 in a dry powder state (step S1).
  • the calcium carbonate particles 2 in a dry powder state have a cubic shape
  • the organic acid-coated calcium carbonate particles 4 obtained by coating the calcium carbonate particles 2 with the organic acid 3 are also shown in FIG. In addition, it has a cubic shape.
  • calcium carbonate particles 2 in a dry powder state for the calcium carbonate particles 2 in a dry powder state, commercially available calcium carbonate particles can be purchased and used, for example, particle calcium carbonate of Hayashi Kasei Co., Ltd., synthetic calcium carbonate of Shiroishi Kogyo Co., Ltd., etc. be able to. Further, for example, it is possible to produce calcium carbonate particles 2 in a dry powder state by a method of growing and dehydrating calcium carbonate crystals in an aqueous system, and using this. The calcium carbonate crystals produced by this method are calcite and hexagonal, but by controlling the synthesis conditions, they grow into a cubic shape, that is, a “cubic shape”. be able to.
  • the method for growing crystals in an aqueous system is not particularly limited, and a method of introducing carbon dioxide into a calcium hydroxide slurry to precipitate calcium carbonate, or an aqueous solution of a soluble calcium salt such as calcium chloride.
  • a method of precipitating calcium carbonate by adding a soluble carbonate such as sodium carbonate can be applied.
  • it is desirable that the precipitation rate of calcium carbonate is increased at a relatively low temperature.
  • the liquid temperature when introducing the carbon dioxide gas is 30 ° C. or less, and the rate at which the carbon dioxide gas is introduced is 1.0 L / 100 g of calcium hydroxide. It is preferable to set it to min or more.
  • the size of the calcium carbonate particles 2 in the dry powder state is preferably such that the outer diameter measured by microscopy is in the range of 8 nm to 200 nm. As a result, the outer diameter of the finally obtained skeleton nanoparticle 1 measured by the microscopy can be in the range of 30 nm to 300 nm.
  • the organic acid 3 may be any organic acid as long as it can prevent aggregation of the calcium carbonate particles 2 in the process of forming a silica shell by coating the calcium carbonate particles 2 in a dry powder state.
  • Alkaline soap such as is used.
  • the organic acid-coated calcium carbonate particles 4 in a dry powder state are, for example, mixed with commercially available calcium carbonate particles 2 in a dry powder state or added with a carbonic acid source (blown) into a calcium hydroxide suspension. Thereafter, it can be produced (formed) by adding an organic acid 3 or the like.
  • the organic acid-coated calcium carbonate particles 4 are dispersed in ethanol 5 as an organic solvent capable of dissolving a part of the organic acid 3 in the organic acid-coated calcium carbonate particles 4 (step S2a).
  • Part of the organic acid 3 in the organic acid-coated calcium carbonate particles 4 is dissolved, and further, silicon alkoxide 6, ammonia (NH 4 OH) water 8 as a base catalyst, water 7, and modified silicone oil 9 as silicone oil (Step S2b), silica (SiO 2 ) shells 1a are formed on the calcium carbonate particles 2 by the sol-gel method to form silica-forming particles 10 (step S2).
  • the silica shell 1a is formed by the sol-gel method while sufficiently dispersing the organic acid-coated calcium carbonate particles 4 (including those in which a part of the organic acid 3 is dissolved), ultrasonic waves are used.
  • the reaction was carried out while applying (frequency: 20 KHZ to 40 KHZ).
  • the organic acid at the edge portion in the organic acid-coated calcium carbonate particles 4 having a cubic shape is formed. 3 is dissolved (a part of the organic acid is dissolved), and further, SiO 2 molecules generated by hydrolysis of the silicon alkoxide 6 are mixed by mixing the silicon alkoxide 6, the ammonia water 8 as the base catalyst, and the water 7.
  • the condensed silica shell 1 a is formed at the edge portion of the calcium carbonate particles 2 exposed by the dissolution of the organic acid 3 to become silica-forming particles 10.
  • the modified silicone oil 9 since the modified silicone oil 9 is mixed, the surface of the silica-forming particles 10 is protected by the modified silicone oil 9.
  • ethanol 5 is used as the organic solvent.
  • the organic solvent a part of the organic acid 3 in the organic acid-coated calcium carbonate particles 4 can be dissolved. And what is necessary is just to melt
  • FIG. More preferably, the organic solvent has a solubility of 10% to 60% with respect to the organic acid 3 in the organic acid-coated calcium carbonate particles 4.
  • TEOS tetraethoxysilane
  • ethyl silicate product name “high purity ethyl silicate”: tetraethoxysilane (TEOS)
  • TEOS tetraethoxysilane
  • KBE-04 alkoxysilane
  • ammonia water 8 is used as the base catalyst.
  • ammonia is the most suitable base catalyst.
  • silicon is reliably and efficiently used. It is possible to cause the calcium carbonate particles 2 to form a silica shell 1a by reacting the alkoxide 6 and water 7 to precipitate silica in which SiO 2 molecules are polycondensed.
  • modified silicone oil 9 modified silicone oil into which hydrophilic organic groups such as polyether groups, ethoxy groups, and carboxyl groups are introduced, and lipophilic organic groups such as monoamine groups, amino groups, and alkyl groups are introduced.
  • Modified silicone oil or the like is used as the modified silicone oil 9, it is preferable to use a monoamine-modified silicone oil that is easily available and has high reactivity for protecting the surface of the silica-forming particles 10.
  • the lipophilic skeleton nanoparticle 1 becomes an organic solvent, Dispersion in a solvent-based paint becomes easy.
  • a modified silicone oil into which a hydrophilic organic group such as a polyether group, an ethoxy group, or a carboxyl group is introduced, the hydrophilic skeleton nanoparticle 1 is obtained, and water and water-based paint can be easily dispersed.
  • an ultrasonic horn is directly put into the solution (UH-600S frequency 20KHZ / SMTE, SONFIER 4020-800 frequency 40KHZ / BRANSON), or the solution is circulated.
  • a type UH-600SR frequency 20KHZ / SMTE Co., Ltd.
  • a bath type ultrasonic cleaner type
  • step S3a the silica-forming particles 10 thus formed are washed (step S3a) and then dispersed in water (step S3b).
  • step S3c hydrochloric acid 11 is added as an acid treatment
  • step S4c drying
  • step S4b drying
  • the skeleton nanoparticle 1 is manufactured.
  • the hydrogen ion concentration index of the dispersion system by acid treatment is pH 5 or less.
  • the skeleton nanoparticle 1 produced in this way has the silica shell 1a formed along the edge of the cubic-shaped calcium carbonate particle 2 as described above.
  • the silica shell 1a has a cubic frame shape, and has a hole 1b between the substantially quadrilateral silica frames on each surface of the cubic frame. Since the calcium carbonate 2 is dissolved after the silica shell 1a is formed, the inside of the cubic frame is hollow.
  • a photograph of the skeleton nanoparticle 1 by a scanning electron microscope is shown in FIG.
  • the skeleton nanoparticle 1 has an outer diameter R (see FIG. 2 (b)) in the range of 30 nm to 300 nm as measured by microscopy (here, SEM observation), and has holes 1b on each surface.
  • R outer diameter
  • A opening diameter
  • the ratio (opening ratio) of each hole 1b to the surface area of each surface of the cubic frame is in the range of 3% to 94%.
  • the width W of the substantially quadrilateral silica frame FIG.
  • the ratio of each hole 1b to the surface area of each face of the cubic frame (opening ratio) when the opening diameter A of the skeleton nanoparticle 1 is in the range of 10 nm to 280 nm. ) Is in the range of 10% to 87%, and the width W of the silica frame is preferably in the range of 5 nm to 100 nm.
  • the “ratio occupied by the holes (1b) (opening ratio)” is calculated by the following equation.
  • the silica shell 1a is formed along the edges of the calcium carbonate particles 2, and in the first embodiment, the outer diameter (core diameter) of the calcium carbonate particles 2 as the core particles is 8 nm to 200 nm. Therefore, the thickness t of the silica frame (see FIG. 2 (b)) is in the range of 1 nm to 10 nm, and is at most in the range of 10 nm to 30 nm. (TEM observation). As a precaution, a photograph of the skeleton nanoparticle 1 by a scanning electron microscope (TEM: measured by JEOL JEM 2000 FX / JEOL Ltd.) is shown in FIG.
  • TEM scanning electron microscope
  • Example 1 to Example 7 were conducted and manufacturing tests were conducted. For comparison, a production test using each formulation of Comparative Example 1 and Comparative Example 2 was also performed. Table 1 shows the contents of each of Examples 1 to 7, Comparative Example 1, and Comparative Example 2.
  • organic acid-coated calcium carbonate particles 4 are rosin acid-coated calcium carbonate particles (product name “Homocal D (primary particle diameter: 80 nm)”) manufactured by Shiroishi Kogyo Co., Ltd.
  • Ethoxysilane (TEOS) product name “KBE-04”
  • ammonia water 8 were used as a base catalyst. All blending ratios are expressed in parts by weight. Moreover, about the thing manufactured according to the flowchart of FIG. 1 by each of these mixing
  • the ratio of tetraethoxysilane (TEOS) / rosin acid-coated calcium carbonate is within the range of 1.2 to 0.6. It can be seen that the shell is in the form of a cubic frame. Further, from Example 7, even when the mixing ratio of tetraethoxysilane (TEOS) / rosin acid-coated calcium carbonate is 0.4, when the amount of aqueous ammonia 8 as a base catalyst is large, the silica shell has a cubic frame. Shaped particle form.
  • the mixing ratio of tetraethoxysilane (TEOS) / rosin-coated calcium carbonate is within the range of 0.4 to 1.2. More preferably, it is in the range of 0.6 to 1.2.
  • the outer diameter R (of the skeleton nanoparticle 1 is changed by changing the compounding amount of the organic acid-coated calcium carbonate particle 4, the silicon alkoxide 6, and the base catalyst. It is possible to control the particle form such as the particle diameter), the width W of the silica frame, and the size (opening diameter A) of the hole 1b surrounded by the silica frame. Of course, it is possible to control the particle form by adjusting the particle diameter or the like of the calcium carbonate particles 2 as core particles.
  • the skeleton nanoparticle 1 is obtained by coating the surface of the calcium carbonate particle 2 in a cubic form with a predetermined outer diameter with the organic acid 3 in a cubic form.
  • the organic acid-coated calcium carbonate particles 4 in a dry powder state are dispersed in ethanol 5 as an organic solvent capable of dissolving a part of the organic acid 3 in the organic acid-coated calcium carbonate particles 4, and further, silicon alkoxide 6 and a base catalyst Ammonia water 8 and water 7 are mixed to form silica shells 1a along the edges of the calcium carbonate particles 2 to form silica-forming particles 10, and then the calcium carbonate 2 inside the silica-forming particles 10 is treated with acid. It is made to melt
  • the method for producing the skeleton nanoparticle 1 is a method in which the surface of the calcium carbonate particle 2 in a cubic form having a predetermined outer diameter is coated with the organic acid 3 in an organic form.
  • the calcium particles 4 are dispersed, and further, silicon alkoxide 6 and ammonia water 8 and water 7 as a base catalyst are mixed to form a silica shell 1 a along the edge of the calcium carbonate particles 2 to form silica-forming particles 10.
  • the organic powder-coated calcium carbonate particles 4 in the dry powder state obtained by coating the surfaces of the calcium carbonate particles 2 in the dry powder state with the organic acid 3 are used. Since the surface of the calcium carbonate particle 2 is coated with the organic acid 3, the calcium carbonate particle 2 is exposed and absorbs moisture in the process of forming the silica shell 1a on the calcium carbonate particle 2. Aggregation of the calcium carbonate particles 2 due to this is prevented. For this reason, the skeleton nanoparticle 1 obtained by dissolving the calcium carbonate 2 inside the silica-forming particles 10 in a state where aggregation is prevented has little aggregation and high dispersibility.
  • the ultrasonic treatment was performed in the process of forming the silica-forming particles 10 as described above, the organic acid-coated calcium carbonate particles 4 (part of the organic acid 3 dissolved) Are easily dispersed, and agglomeration of each other is prevented.
  • the silica shell 1a is formed in a state where such particles are dispersed, the silica-forming particles 10 are also prevented from aggregating with each other. For this reason, aggregation of the skeleton nanoparticles 1 obtained by dissolving the calcium carbonate 2 inside the silica-forming particles 10 in a state where aggregation is prevented is also prevented.
  • the modified silicone oil 9 is mixed in the medium, and the surface of the silica shell 1a is protected by the modified silicone oil 9, the modified silicone oil 9 also prevents the silica-forming particles 10 from aggregating with each other.
  • the skeleton nanoparticle 1 according to the present embodiment has much less dispersibility and a higher dispersibility.
  • the organic acid-coated calcium carbonate in the dry powder state in which the surface of the calcium carbonate particle 2 in the dry powder state is coated with the organic acid 3 as described above Since the particles 4 are used and the raw material hardly changes in quality, the quality control of the raw material does not cost. Therefore, the cost can be reduced. Further, since the raw material hardly changes, it is possible to improve production efficiency and mass productivity.
  • the silica shell 1a is easily attached to the surface of the calcium carbonate particles 2 by ultrasonic treatment. Furthermore, the surface of the silica shell 1a is protected by the modified silicone oil 9, and the adhesion of the silica shell 1a to the calcium carbonate particles 2 is stabilized. Therefore, according to the skeleton nanoparticle 1 and the manufacturing method thereof according to the present embodiment, the reaction efficiency can be increased and the production efficiency can be improved.
  • the skeleton nanoparticle 1 according to the present embodiment is a nanoparticle having an outer diameter R in the range of 30 nm to 300 nm and composed of the silica shell 1a, and the silica shell 1a has a cubic frame shape.
  • the inside of the cubic frame is hollow and has holes 1b between the substantially quadrilateral silica frames on each surface of the cubic frame. Therefore, according to the skeleton nanoparticle 1 according to the present embodiment, it is easy to insert a substance such as an active ingredient into the cavity inside the nanoparticle from the hole 1b, and it is also easy to release the encapsulated substance. is there.
  • the application to the delivery system using the cubic frame-like structure of the skeleton nanoparticle 1 is mentioned first. That is, according to the skeleton nanoparticle 1, since the silica shell 1a has a cubic frame shape and the holes 1b exist between the silica frames as described above, the active component (from the holes 1b between the frames to the internal cavity (for example, it is easy to insert substances such as unstable components that deteriorate due to external stimuli such as catalysts, drugs, vitamins, and proteins, components that adversely affect the surroundings as they are, and components that need to be protected from the external environment) . Moreover, the inserted substance such as an active ingredient can be encapsulated by a silica frame.
  • the encapsulated substance such as an active ingredient is easily released from the hole 1b.
  • a substance such as an active ingredient is inserted into a cavity inside the skeleton nanoparticle 1 to encapsulate (enclose / protect / store), and the inclusion is transported to a target cell or target tissue. Used as a delivery system for releasing (sustained release).
  • the ratio of each hole 1b to the surface area of each surface of the cubic frame is in the range of 3% to 94%.
  • the inclusion of the substance inserted into the frame is made difficult to release. Is possible.
  • it can also be recovered by magnetic force by coating with magnetic particles as a surface modification of the silica shell 1a.
  • the delivery system using skeleton nanoparticles 1 can be used in the medical field, cosmetic field, food field, and the like.
  • the outer diameter R of the skeleton nanoparticle 1 is 30 nm to 300 nm
  • the drug (active ingredient) or the like is encapsulated in the cavity inside the skeleton nanoparticle 1 as a drug delivery system
  • such drug can pass through the vascular endothelial cell gap in the vicinity of the affected part such as a tumor, arteriosclerosis, and rheumatism spreading to about 200 nm. Therefore, it becomes effective as a therapeutic agent.
  • skeleton nanoparticles 1 having an outer diameter of 100 nm to several hundreds of nm is preferable in order to exert the effect of the drug contained in the body and encapsulated.
  • a drug delivery system using skeleton nanoparticles 1 containing a pudding used for the treatment of prostate cancer and a myoset used for the treatment of metastatic breast cancer It has been confirmed that it is effective.
  • the use of skeleton nanoparticles 1 as a drug delivery system for hepatitis C specific drugs and diabetes specific drugs (insulin) improves the sustained release and improves the patient's QOL.
  • the use of the skeleton nanoparticle 1 improves the stability and improves the targeting to the lesion site.
  • it is also effective as a pinpoint delivery system for efficiently introducing a gene or other physiologically active substance into a target cell or tissue and a DNA delivery system for introducing a gene with fullerene. is there.
  • a ceramide molecule that is a moisturizing component of skin existing between keratinocytes in the skin is encapsulated in a cavity inside the skeleton nanoparticle 1 and passed between keratinocytes of 50 nm to 70 nm. be able to. For this reason, it is effective as a moisturizing cosmetic.
  • retinol (vitamin A) that is easily destroyed by air, light, and heat can be encapsulated inside the skeleton nanoparticle 1 (cavity) and delivered to the basal layer of the epidermis. It is also effective as a cosmetic.
  • food additives such as fragrances and vitamins are encapsulated in skeleton nanoparticles 1 and added to foods, so that food additives and vitamins (such as antioxidant effects) due to contact with the external environment such as air The alteration of is suppressed.
  • a use form in which a bathing agent, an adhesive, a fertilizer, and the like are included and protected from the external environment, and released only at the time of use is possible.
  • the skeleton nanoparticle 1 has a hollow cubic frame structure inside and has the holes 1b between the silica frames. Therefore, the skeleton nanoparticles 1 can transmit light through the holes 1b and have light transparency and transparency.
  • the outer diameter R is in the range of 30 nm to 300 nm, and the ratio of each hole 1b to the surface area of each surface of the cubic frame is in the range of 3% to 94%.
  • the silica frame width W is also in the range of 3 nm to 115 nm, the light transmittance and transparency are high. Furthermore, since part of the light incident through the hole 1b can be refracted and scattered by the silica frame, it has light diffusibility.
  • the conventional LED light is point light emission (spot irradiation light)
  • LED chips must be arranged without gaps in a straight tube type or a bulb type, and there is a problem that the price and power consumption are high. It was. Therefore, as shown in FIG. 6, by applying the skeleton nanoparticle 1 to the surface of the LED illumination, the inside of the skeleton nanoparticle 1 is hollow and the hole 1b exists between the silica frames. Further, the incident light is diffused and reflected by the silica frame, the luminous efficiency is increased, and wide-area diffused light having a luminance equal to or higher than that of fluorescence or the like can be obtained. Therefore, power consumption can be reduced.
  • the holes 1b exist on each surface of the cubic frame, it is possible to selectively pass a light source such as an LED in a three-dimensional direction (straight direction, vertical direction, vertical direction, etc.).
  • a light source such as an LED in a three-dimensional direction (straight direction, vertical direction, vertical direction, etc.).
  • the light guide plate for a light source such as a light source, it is possible to increase the light emission efficiency and obtain a wide range of diffused light necessary for illumination use.
  • the use of the skeleton nanoparticle 1 as a catalyst carrier utilizing the permeability (low resistance to passage) of liquid or the like due to the cubic frame structure is included.
  • the skeleton nanoparticle 1 has a cubic frame structure and the pores 1b between the silica frames, the liquid or the like is easy to pass therethrough and the passage resistance is low, and the inclusion substance and the external substance via the pores 1b Is easy to contact.
  • an unstable catalyst such as a photocatalyst such as titanium oxide or a gas contact catalyst in the skeleton nanoparticle 1
  • An external solvent such as water or an organic solvent or a catalyst material comes into contact.
  • the catalytic reaction can be effectively advanced as a catalyst carrier.
  • the conventional mesoporous silica as a catalyst carrier there is a limit in improving the decomposition performance of the catalyst due to high passage resistance of liquids and the like, whereas in the skeleton nanoparticle 1 according to the present embodiment, Since the ratio of each hole 1b to the surface area of each surface of the cubic frame is in the range of 3% to 94%, the passage resistance is low, and the decomposition performance of the catalyst as a catalyst carrier can be improved. Is possible. Furthermore, when the material to be catalyzed has an affinity for the silica frame, the catalytic reaction efficiency can be improved.
  • a large-sized skeleton nanoparticle 1 for example, a particle having an outer diameter of 200 nm
  • a skeleton having a smaller size is arranged on the inside.
  • the skeleton nanoparticles 1 By arranging the nanoparticles 1 (for example, particles having an outer diameter of 100 nm and particles having an outer diameter of 40 nm) in order, the skeleton nanoparticles 1 prevent the passage of impurities such as bacteria, and the pores of the skeleton nanoparticles 1 In 1b, liquids other than impurities, such as bacteria, will pass by the liquid pressure, and impurities, such as bacteria, will be filtered. Further, as shown in FIG. 8B, the skeleton nanoparticles 1 are arranged as a mask or an air filter by gradually decreasing the size of the particle diameter from the outside to the inside (for example, 200 nm, 100 nm, 40 nm in order from the outside).
  • the ratio of each hole 1b to the surface area of each surface of the cubic frame is in the range of 3% to 94% and the aperture ratio of the hole 1b is high. Therefore, compared to conventional fiber-laminated gap type filters and filters perforated on plates, it can sufficiently block the passage of outside air while highly preventing the passage of pollen and influenza virus, and it is difficult to breathe when using a mask. Is improved. In addition, after use, it can be incinerated, and no gas is generated during incineration, as in the case of using organic fibers. This also contributes to environmental conservation.
  • the skeleton nanoparticles 1 having an outer diameter of 200 nm are filled with the electrolyte solution of the lithium ion battery, and the skeleton nanoparticles 1 having an outer diameter of 100 nm and 40 nm are secured while ensuring the amount of movement of ions.
  • the electrolyte can be retained by suppressing the outflow of the electrolyte to the outside.
  • the skeleton nanoparticle 1 as a superhydrophobic film / superhydrophilic film utilizing a cubic frame-like structure can be mentioned.
  • the skeleton nanoparticles 1 are dispersed in the resin and applied (arranged) on the substrate, nano-sized irregularities can be formed on the substrate due to the cohesiveness thereof.
  • the skeleton nanoparticle 1 forms irregularities on the substrate, the skeleton nanoparticle 1 has a cubic frame-like structure. Therefore, as shown in FIG. The contact with the skeleton nanoparticle 1 is only the silica frame portion, and the contact area is reduced. Therefore, it is effective as a super water-repellent film / super hydrophilic film.
  • the skeleton nanoparticle 1 can be obtained by adjusting the pore diameter of the calcium carbonate particle 2 serving as the core particle and the amount of the organic solvent, the silicon alkoxide 6 and the base catalyst. Since the outer diameter of 1 can be easily controlled, it is easy to control the size of the nano-sized irregularities formed on the substrate, and a superhydrophobic surface / superhydrophilic surface can be easily formed.
  • cosmetics that make the wrinkles less noticeable by utilizing the light diffusibility of refraction and scattering by the silica frame part of the skeleton nanoparticle 1 or change the texture of the skin to produce an optical lift-up effect (for example, , Lipstick, foundation).
  • it is designed to absorb sebum etc. in the pores 1b of the skeleton nanoparticle 1 and is applied as a sebum absorber, and further, the surface of the silica shell 1a is made hydrophilic to make it hydrophobic and sebum.
  • cosmetics for example, oil collecting paper
  • microcapsule that encloses and transports magnetism, fragrance, ink, temperature response, color development, ultraviolet light emission, etc. by utilizing the inclusion property of the skeleton nanoparticle 1, for example, in the case of an ink inclusion capsule
  • the capsule is collapsed by the printing impact of the register and the inner ink is colored.
  • the skeleton nanoparticle 1 and the manufacturing method thereof of the present embodiment it is possible to further expand the application field of the nanoparticle made of silica shell, and it can be used for many purposes.
  • the width W of the silica frame is in the range of 3 nm to 115 nm as described above, it is not easily destroyed by the external environment, High transparency. Therefore, it is possible to cope with applications requiring high strength and high transparency of the silica shell.
  • the ratio of each hole 1b to the surface area of each surface of the cubic frame is in the range of 3% to 94%, it can be easily used for various purposes.
  • the present inventors investigate the influence of the reaction time (treatment time) in the silica formation step on various properties such as the recovery rate of the skeleton nanoparticles 1.
  • the production test was carried out by changing the reaction time (treatment time) in the silica formation step into Examples 8 to 11 and Comparative Examples 3 and 4.
  • rosin acid-coated calcium carbonate particles (Shiraishi Calcium Co., Ltd.) were used as the organic acid-coated calcium carbonate particles 4 obtained by coating the surface of the calcium carbonate particles 2 in a dry powder state with the organic acid 3.
  • the product name “Homocal D (cubic form, average primary particle size: 80 nm)”) was used, and 2.50 g of this rosin acid-coated calcium carbonate particle was added to 39.96 ml (31.53 g) of ethanol 5 as an organic solvent.
  • step S2 Disperse for 5 minutes using an ultrasonic homogenizer, and then add 1.61 ml (1.50 g) of tetraethoxysilane (TEOS) (“KBE-04” manufactured by Shin-Etsu Chemical Co., Ltd.) as silicon alkoxide 6 shaker Te (150 rpm, 25 ° C.) with dispersed for 10 minutes, thereto, 28% reagent ammonia as a base catalyst (NH 4 OH 0.86 g of water 8 and 8.43 ml (8.43 g) of distilled water 7 were added, and the sol-gel reaction was allowed to proceed in each reaction time shown in Table 2 described later in a shaker (150 rpm, 25 ° C.) The formation process (step S2) was performed.
  • TEOS tetraethoxysilane
  • the reaction suspension was centrifuged (3000 rpm, 10 minutes) to remove the supernatant, then washed with ethanol, centrifuged again (3000 rpm, 10 minutes), washed with distilled water, and further centrifuged (3000 rpm). 10 minutes), 4.71 ml of 3N hydrochloric acid aqueous solution and 188.40 ml of distilled water were added to dissolve the calcium carbonate 2, and the calcium carbonate dissolving step (step S3) was performed. Thereafter, centrifugation (3000 rpm, 10 minutes) was performed, followed by washing with distilled water, ethanol substitution, and drying at 80 ° C. overnight. And the recovery amount of the product obtained in this way and the microscope observation were performed.
  • Table 2 summarizes the blending contents of Examples 8 to 11 and Comparative Examples 3 and 4 described above.
  • Table 3 summarizes the results of the production experiments performed in each reaction time in Examples 8 to 11 and Comparative Examples 3 and 4, and micrographs of the obtained products are shown in FIGS. Shown in
  • the particle form of the skeleton nanoparticles 1 generated by the reaction time specifically, the silica frame
  • the width W and the size (opening diameter A) of the hole 1b surrounded by the silica frame did not change.
  • the reaction time in the silica formation step does not affect the particle form of the skeleton nanoparticle 1, affects the recovery rate, and makes the reaction time 90 minutes or longer, thereby recovering the skeleton nanoparticle 1.
  • the rate was confirmed to be high. Therefore, in order to increase the productivity of the skeleton nanoparticle 1, it is desirable to set the reaction time in the silica formation step to 90 minutes or more.
  • rosin acid-coated calcium carbonate particles (product name of “Homocal” manufactured by Shiroishi Calcium Co., Ltd.) are used as the organic acid-coated calcium carbonate particles 4 obtained by coating the surface of the dry powdered calcium carbonate (CaCO 3 ) particles 2 with the organic acid 3. D (cubic shape, average primary particle size: 80 nm) "), and the rosin acid-coated calcium carbonate particles are dispersed in various organic solvents shown in Table 4 below using an ultrasonic homogenizer for 5 minutes.
  • Tetraethoxysilane (TEOS) (product name “KBE-04” manufactured by Shin-Etsu Chemical Co., Ltd.) as silicon alkoxide 6 is added and dispersed for 10 minutes with a shaker (150 rpm, 25 ° C.). 28% reagent ammonia (NH 4 OH) water 8 and distilled water 7 as a catalyst was added, shaker (150 rpm, 25 ° C.) in 90 min the reaction Sol - was performed gel reaction) is allowed silica-forming step (step S2).
  • TEOS Tetraethoxysilane
  • the reaction suspension was centrifuged (3000 rpm, 10 minutes) to remove the supernatant, then washed with ethanol, centrifuged again (3000 rpm, 10 minutes), washed with distilled water, and further centrifuged (3000 rpm). 10 minutes), 4.71 ml of 3N hydrochloric acid aqueous solution and 188.40 ml of distilled water were added to dissolve the calcium carbonate 2, and the calcium carbonate dissolving step (step S3) was performed. Thereafter, centrifugation (3000 rpm, 10 minutes) was performed, followed by washing with distilled water, ethanol substitution, and drying at 80 ° C. overnight. And the microscopic observation of the product obtained in this way was performed.
  • Table 4 summarizes the results of the production experiment using each blending content and each organic solvent in Examples 12 to 17 described above, and each blending content and each in Comparative Example 5 and Comparative Example 11
  • Table 5 summarizes the results of manufacturing experiments using organic solvents. Further, micrographs and the like of the obtained product are shown in FIGS.
  • the organic solvent was ethanol, 1-propanol, 2-propanol, 1-butanol alcohol. It has been clarified that skeleton nanoparticles 1 having a cubic frame shape having pores between silica frames can be formed by using a system, a ketone-based methyl ethyl ketone, or an ether-based dioxane having high solubility in water.
  • Table 5 and FIG. 17 in Comparative Example 5 and Comparative Example 6, even in the same alcohol type, in the case of methanol or 1-octanol, the silica shell does not have a cubic frame-like particle form.
  • a hollow particle having a cubic shape surrounded by the surface was formed. Further, as shown in Table 5 and FIG. 20, in Comparative Examples 7 to 11, ketone-based acetone, glycol or diethylene glycol, ethylene glycol-based, water-soluble ether-based diethyl ether, It was confirmed that N, N-dimethylformaldehyde (DMF) of a proton solvent system cannot form skeleton nanoparticles 1 having a cubic frame shape having pores between silica frames.
  • DMF N, N-dimethylformaldehyde
  • Example 13 from the comparison of Example 12, Example 13 and Example 15, there is a difference in the proportion (%) occupied by the pores in the skeleton nanoparticles 1 formed even in the same alcohol system,
  • the skeleton nanoparticles 1 of Example 13 formed using 1-propanol are the same as the skeleton nanoparticles 1 of Example 12 using ethanol and the skeleton nanoparticles 1 of Example 15 using 1-butanol.
  • the hole 1b was large and the frame was in the form of thin particles. That is, it was confirmed that the particle form of the skeleton nanoparticle 1 changes depending on the type of the organic solvent. Therefore, depending on the type of the organic solvent, it is possible to control the particle form such as the width W of the silica frame and the size (opening diameter A) of the hole 1b surrounded by the silica frame.
  • the polarity of the organic solvent is related to the interaction (affinity / reactivity) with the organic acid-coated calcium carbonate and TEOS in the formation of the skeleton nanoparticles 1 having a cubic frame shape. It is thought that there is.
  • the organic solvents are used in Examples 12 to 17, in which ethanol, 1-propanol, 1-butanol alcohol, ketone methyl ethyl ketone, or ether dioxane is used as the organic solvent.
  • the organic acid 3 is partly dissolved by the solvent, the solubility of the organic solvent in the organic acid 3 is small, and the interaction with the calcium carbonate particles 2 and the silicon alkoxide 6 (affinity / reactivity) For this reason, the silica shell 1a produced by the hydrolysis of the silicon alkoxide 6 is easily adsorbed only to the edge portion of the calcium carbonate 2 exposed by the dissolution of the organic acid 3, and a cubic frame shape having pores between the silica frames is formed.
  • the hydrolysis of the silicon alkoxide is promoted by the interaction between the organic solvent and the silicon alkoxide, and the hydrolysis of the silicon alkoxide 6 is performed on the entire surface of the calcium carbonate particles 2 by complex formation of calcium carbonate-organic solvent and organic solvent-silicon alkoxide. It seems that the formation of the silica shell 1a generated by the above process was promoted, and the hollow particles having a cubic shape surrounded by the surface of the silica shell were formed.
  • alcohols such as propanol and butanol
  • ketones such as methyl ethyl ketone
  • ethers such as dioxane
  • the silica shell 1a can be formed only on the edge portion of calcium carbonate even in a short reaction time in the silica forming step as shown in Examples 12 to 17 above.
  • the reaction efficiency is high and the production efficiency can be improved.
  • Alcohol-based, ketone-based, and ether-based solvents are all easily available and handled, and are relatively inexpensive. Therefore, it is possible to reduce the cost.
  • the skeleton nanoparticle 1 having a cubic frame shape as compared with the hollow particles having a cubic shape surrounded by the surface of the silica shell, since the pores 1b are provided between the silica frames, transparency and light transmittance are improved. The incident light is refracted and scattered at a high frequency by the silica frame, and the light diffusibility and light scattering are high. For this reason, for example, when the skeleton nanoparticle 1 is used for a lighting device such as an LED light, an improvement in luminous efficiency can be expected as compared with the case where hollow particles having a cubic shape surrounded by the surface of the silica shell are used.
  • the modified silicone oil 9 is mixed in order to protect the surface of the silica shell 1a to improve the production efficiency and the dispersibility.
  • an amino-modified silicone oil having a structure in which a part of the methyl group of the silicone oil is replaced with an aminoalkyl group
  • the skeleton nanoparticle 1 It has been confirmed that the recovery rate is high and a low particle size distribution is obtained.
  • the amino-modified silicone oil has good reactivity to the surface of the silica-forming particles 10 (silica shell 1a), and silica-forming particles 10 are formed by using amino-modified silicone oil.
  • the subsequent washing treatment only the target silica-forming particles 10 are settled and separated by centrifugation without filtering or using a flocculant, and the target silica-forming particles 10 generated by the sol-gel method are used.
  • By-products such as solid silica particles other than the above can be easily removed, and in the washing treatment after dissolution of calcium carbonate 2, the object is obtained by centrifugation without using filtering or using a flocculant.
  • the amino-modified silicone oil is highly reactive to the surface of the silica-forming particles 10 (silica shell 1a), and the surface of the silica shell 1a is highly protected by the amino-modified silicone oil.
  • the skeleton nanoparticles 1 obtained by dissolving the calcium carbonate 2 inside the silica-forming particles 10 are also prevented from agglomerating, and the particle size distribution is low and the dispersibility is high.
  • this amino-modified silicone oil has good production efficiency because it can protect the surface of the silica shell 1a of the silica-forming particles 10 by mixing simultaneously with the reaction of forming the silica shell 1a (sol-gel reaction) in the silica forming step. .
  • amino-modified silicone oil is preferable as the silicone oil. More preferably, it is a side chain type monoamine modified silicone oil.
  • the calcium carbonate particles 2 in a dry powder state commercially available calcium carbonate particles, for example, synthetic calcium carbonate (product name “Brilliant (primary particle diameter: 150 nm)”) manufactured by Shiroishi Kogyo Co., Ltd. ) And the like, and this can be coated with an organic acid 3 such as rosin acid to form organic acid-coated calcium carbonate particles 4 in a dry powder state. It is also possible to use acid-coated calcium carbonate powder.
  • synthetic calcium carbonate product name “Brilliant (primary particle diameter: 150 nm)
  • organic acid 3 such as rosin acid
  • Examples of such commercially available organic acid-coated calcium carbonate powder include rosin acid-coated calcium carbonate particles (product names “Homocal D (primary particle diameter: 80 nm)”, “Shirakaka DD (primary particle diameter) of Shiroishi Kogyo Co., Ltd.” : 50 nm) ”,“ white luster O (primary particle size: 30 nm) ”and the like.
  • the size of the organic acid-coated calcium carbonate particles 4 in a dry powder state is preferably such that the outer diameter measured by microscopy is in the range of 26 nm to 280 nm. As a result, the outer diameter of the finally obtained skeleton nanoparticle 1 measured by the microscopy can be in the range of 30 nm to 300 nm.
  • the organic acid-coated calcium carbonate particles 4 in the dry powder state in which the surfaces of the calcium carbonate particles 2 in the dry powder state are coated with the organic acid 3 are used.
  • the period is stable and there is no cost for quality control.
  • rosin acid-coated calcium carbonate as the organic acid-coated calcium carbonate particles 4 can be obtained at low cost.
  • organic solvents such as alcohols, ketones, and ethers are stable for a long period of time, and cost is not required for quality control and can be obtained at a low price. Therefore, since the raw material is inexpensive and does not require manufacturing cost, it can be manufactured at low cost, and further, since the quality of the raw material is small, the production efficiency can be improved.
  • the amount and ratio of each component in the method for producing skeleton nanoparticles, the reaction time, the reaction temperature, etc., and the other steps of the method for producing skeleton nanoparticles are also described above.
  • the present invention is not limited to the embodiment and each example.
  • the numerical values given in the embodiment of the present invention do not indicate critical values but indicate preferable values suitable for implementation, and therefore, even if the numerical values are slightly changed, the implementation is denied. is not.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Silicon Compounds (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)

Abstract

 シリカ殻からなるナノ粒子の応用分野を更に広げることができ、多用途に使用可能であること。 スケルトンナノ粒子1は、30nm~300nmの範囲内の外径Rを有し、シリカ殻1aからなるナノ粒子であって、シリカ殻1aは立方体フレーム状をなしており、立方体フレームの内部は空洞で、立方体フレームの各面における四辺形状のシリカフレーム間に孔1bを有するものである。

Description

スケルトンナノ粒子及びその製造方法
 本発明は、30nmから300nmまでの範囲内の外径を有するシリカ殻からなるスケルトンナノ粒子及びその製造方法に関するもので、特に、多用途に使用可能なスケルトンナノ粒子及びその製造方法に関するものである。
近年、ナノテクノロジー研究の一環として、数百ナノメートル以下の粒子径を有する粒子についての応用研究が盛んに行われている。特に、ナノテクノロジーに代表される超微細化技術の流れに対応すべく、シリカ等を使用した中空粒子についてもナノサイズのものが嘱望されている。中空粒子は、内部が空洞であることから、例えば、有効成分を内包した徐放性医薬品や徐放性化粧品としての活用や、外環境との接触により分解あるいは劣化してしまう物質の保護、ドラッグデリバリーシステムのための担体などとして活用しようとする研究が行われており、多方面に亘る応用が期待されている。
シリカを使用した中空粒子の一例としては、特許文献1に記載の高分散シリカナノ中空粒子及びそれを製造する方法の発明がある。特許文献1の記載によれば、このナノ中空粒子は、緻密なシリカ殻からなるナノ中空粒子であって、透過型電子顕微鏡法による一次粒子径が30~300nm、静的光散乱法による粒子径が30~800nm、水銀圧入法により測定される細孔分布において2nm~20nmの細孔が検出されないものである。
特開2005-263550号公報
ここで、特許文献1に記載の発明においては、実施例1に、炭酸カルシウム表面に厚さ5~10nmのシリカ殻が確認されたと記載されていることから、炭酸カルシウムの表面全体にシリカ殻が被覆され、かかる炭酸カルシウムを溶解してなる粒子は、炭酸カルシウムの形状が転写されてシリカ殻の面で囲まれた形状をなしていると考えられる。このため、例えば、炭酸カルシウムが立方体状形態である場合、図11に示されるように、得られる中空粒子は、立方体状形態の表面全体がシリカ殻で形成されたものと推察される。
しかしながら、この立方体状形態のシリカナノ粒子においては、内部が空洞(中空)であるものの、立方体状形態の表面全体がシリカ殻で形成されていて、空洞はシリカ殻で囲まれているため、内部(中空部分)に有効成分等を導入したり、内包させた成分を放出したりするのを容易にできるものではない。また、中空粒子の表面全体が緻密なシリカ殻で形成されているため、流体等の通過抵抗が高く、例えば、中空構造を利用した触媒担体としての用途等には不向きである。このため、応用範囲の拡大には限界があり、応用分野を広げるためには、更なる別形態の中空粒子の製造の確立が望まれる。
 そこで、本発明は、かかる不具合を解決すべくなされたものであって、シリカ殻からなるナノ粒子の応用分野を更に広げることができ、多用途に使用可能なスケルトンナノ粒子及びその製造方法の提供を課題とするものである。
 請求項1の発明に係るスケルトンナノ粒子は、30nm~300nmの範囲内の外径を有し、シリカ殻からなるナノ粒子であって、前記シリカ殻は全体が六面で形成される立方体フレーム状をなしており、前記立方体フレームの内部は空洞で、前記立方体フレームの各面における四辺形状のシリカフレーム間に孔を有するものである。
 ここで、「スケルトンナノ粒子」とは、前記シリカ殻の立方体フレーム状をなす前記立方体フレームの内部が空洞のものを意味する。
 また、「立方体フレーム状」には、フレーム形状が立方体のみならず、6つの略四辺形状で構成される立方体に似た形状のものも含まれる。即ち、全体が六面で形成される立方体フレーム状とは、必ずしも正六面体で形成される立方体のフレームを意味するものではなく、立方体のフレーム状を意味するものであり、六面体のシルエットライン以外の個所を問題とするものではない。
 なお、「30nm~300nmの範囲内の外径を有する」とは、本明細書及び特許請求の範囲においては、顕微鏡法により測定される一次粒子径が30nm~300nmの範囲内であることを意味し、ここでいう顕微鏡法とは、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)を用いて粒子を実際に観察して、粒子の各部分の大きさを求める方法である。なお、上記数値は、臨界値、境界値として当該値が出てきたものではなく、その数値は大凡の値として捉えているものである。
 請求項2の発明に係るスケルトンナノ粒子は、前記各孔の占める割合が、前記立方体フレームの各面の表面積に対して、3%~94%の範囲内であるもの、より好ましくは、10%~87%の範囲内であるものである。
 請求項3の発明に係るスケルトンナノ粒子は、前記シリカフレームの幅が5nm~115nmの範囲内であるもの、より好ましくは、10nm~100nmの範囲内であるものである。
 請求項4の発明に係るスケルトンナノ粒子は、所定の大きさの外径を有し立方体状形態で乾燥粉末状態の炭酸カルシウム粒子の表面を有機酸で被覆してなる乾燥粉末状態の有機酸被覆炭酸カルシウム粒子を、当該有機酸被覆炭酸カルシウム粒子における有機酸の一部を溶解する有機溶媒に分散させ、更に、シリコンアルコキシド及び塩基触媒を混合し、前記炭酸カルシウム粒子のエッジに沿ってシリカ殻を形成してシリカ形成粒子とし、その後、当該シリカ形成粒子の内部における前記炭酸カルシウムを酸処理によって溶解させてなるものである。
 ここで、「立方体状形態」とは、立方体に限らず、略四辺形状の6面で囲まれた立方体に似た形態をいう。
 そして、「有機酸」としては、乾燥粉末状態の炭酸カルシウム粒子を被覆できるものであればよく、例えば、ロジン酸、脂肪酸等のアルカリ性石鹸等が挙げられる。
 また、「有機溶媒」としては、有機酸被覆炭酸カルシウム粒子における有機酸の一部を溶解でき、かつ、シリコンアルコキシドと水に対して溶解性があるものであればよく、有機酸に対する溶解性が小さく、炭酸カルシウム粒子やシリコンアルコキシドとの相互作用性(親和性・反応性)が小さい、例えば、エタノール、プロパノール、ブタノール等のアルコール系や、メチルエチルケトン等のケトン系や、ジオキサン等のエーテル系等の溶媒が挙げられる。これらは1種単独であってもよいし、または2種以上を組みわせることも可能である。
 更に、「シリコンアルコキシド」としては、その加水分解によりシリカを析出させることができるものであればよく、例えば、テトラエトキシシラン(TEOS)、トリメトキシシラン、テトラメトキシシラン、トリエトキシシラン、トリプロポキシシラン、テトラプロポキシシラン、トリブトキシシラン等を用いることができる。
 加えて、「塩基触媒」としては、例えば、アンモニア、アミン類等が挙げられる。
 請求項5の発明に係るスケルトンナノ粒子は、請求項4の構成において、前記有機酸がロジン酸であるものである。
 請求項6の発明に係るスケルトンナノ粒子は、請求項4または請求項5の構成において、前記有機溶媒が、アルコール系、ケトン系、エーテル系から選ばれる少なくとも1種であるものである。
 「アルコール系」としては、エタノール、プロパノール、ブタノール等が挙げられ、「ケトン系」としては、メチルエチルケトン等が挙げられ、「エーテル系」としてはジオキサン等が挙げられる。
 請求項7の発明に係るスケルトンナノ粒子は、請求項4乃至請求項6の構成において、媒質中に、更に、シリコーンオイル、好ましくは、変性シリコオイール、より好ましくは、モノアミン(NH2)変性シリコーンオイルを混合してなるものである。
 請求項8の発明に係るスケルトンナノ粒子は、請求項4乃至請求項7の構成において、前記炭酸カルシウム粒子の表面にシリカ殻を形成する過程において超音波処理を行ったものである。
 請求項9の発明に係るスケルトンナノ粒子の製造方法は、30nm~300nmの範囲内の外径を有する立方体フレーム状のシリカ殻からなり、前記立方体フレームの内部は空洞で、前記立方体フレームの各面における四辺形状のシリカフレーム間に孔を有するナノ粒子の製造方法であって、
 所定の大きさの外径を有し立方体状形態で乾燥粉末状態の炭酸カルシウム粒子の表面を有機酸で被覆して有機酸被覆炭酸カルシウム粒子とする有機酸被覆炭酸カルシウム形成工程と、前記有機酸被覆炭酸カルシウム粒子における有機酸の一部を溶解する有機溶媒に、前記有機酸被覆炭酸カルシウム粒子を分散させ、更に、シリコンアルコキシド及び塩基触媒を混同し前記炭酸カルシウム粒子のエッジに沿ってシリカ殻を形成してシリカ形成粒子とするシリカ形成工程と、前記シリカ形成粒子の内部における前記炭酸カルシウムを酸処理によって溶解させる炭酸カルシウム溶解工程とを具備するものである。
 請求項10の発明に係るスケルトンナノ粒子の製造方法は、請求項9の構成において、前記各孔の占める割合が、前記立方体フレームの各面の表面積に対して、3%~94%の範囲内であるもの、より好ましくは、10%~87%の範囲内であるものである。
 請求項11の発明に係るスケルトンナノ粒子の製造方法は、請求項9または請求項10の構成において、前記シリカフレームの幅が5nm~115nmの範囲内であるもの、より好ましくは、10nm~100nmの範囲内であるものである。
 請求項12の発明に係るスケルトンナノ粒子の製造方法は、請求項9乃至請求項11の構成において、前記有機酸が、ロジン酸であるものである。
 請求項13の発明に係るスケルトンナノ粒子の製造方法は、請求項9乃至請求項12の構成において、前記有機溶媒が、アルコール系、ケトン系、エーテル系から選ばれる少なくとも1種であるものである。
 請求項14の発明に係るスケルトンナノ粒子の製造方法は、請求項9乃至請求項13の構成において、前記シリカ形成工程において、媒質中に、更に、シリコーンオイル、好ましくは、変性シリコオイール、より好ましくは、モノアミン(NH2)変性シリコーンオイルを混合したものである。
 請求項15の発明に係るスケルトンナノ粒子の製造方法は、請求項9乃至請求項14の構成において、シリカ形成工程において、超音波処理を行ったものである。
 請求項1の発明に係るスケルトンナノ粒子によれば、前記シリカ殻は立方体フレーム状をなしており、前記立方体フレームの内部は空洞で、前記立方体フレームの各面における四辺形状のシリカフレーム間に孔を有することから、係る孔より内部の空洞に有効成分等の物質を容易に挿入でき、また、内包させた物質の放出も容易にできる。しかも、その外径は30nm~300nmの範囲内と極めて小さいものである。このため、例えば、デリバリーシステムとして活用が容易であり、その応用範囲を広げることができる。
 また、このように内部が空洞の立方体フレーム状構造でシリカフレーム間に孔を有することによって、液体・気体等が通過しやすくて通過抵抗性が低く、孔を介して内包させた物質と外部の物質との接触も可能であることから、触媒担持体としての用途に用いることができるようになる。更には、孔によって、選択的に流体等を通過させることができることから、フィルタや電解液保持体としての使用も可能である。加えて、光を透過させることも可能で(光透過性)、孔を介して入射した光の一部をシリカフレームによって屈折・散乱させることもできることから(光拡散性)、LED等の照明へ応用して発光効率の増大を図ることも可能である。
 その他にも、スケルトンナノ粒子の凝集性によって基板上にスケルトンナノ粒子を塗布した際に凹凸を形成でき、このとき、スケルトンナノ粒子が立方体フレーム状構造であることで、基板上に近づく物質に対しての接触がスケルトンナノ粒子のシリカフレーム部分のみとなり、接触面積を少なくすることができることから、超撥水性膜・超親水性膜としての応用も可能となる。
 このようにして、シリカ殻からなるナノ粒子の応用分野を更に広げることができ、多用途に使用可能なスケルトンナノ粒子となる。
 請求項2の発明に係るスケルトンナノ粒子によれば、前記各孔の占める割合が、前記立方体フレームの各面の表面積に対して、3%~94%の範囲内であるから、様々な大きさの有効成分等の物質をより容易に挿入・放出できる。また、外部の物質とも接触し易かったり、液体・気体等が通過し易かったりする。よって、請求項1に記載の効果に加えて、様々な用途に使用し易い。
 請求項3の発明に係るスケルトンナノ粒子によれば、前記シリカフレームの幅が5nm~115nmの範囲内であるから、外部環境によって容易に破壊されることがなく、また、透明性が高い。したがって、請求項1または請求項2に記載の効果に加えて、シリカ殻の高い強度や、高い透明度が要求される用途にも対応可能である。
 請求項4の発明に係るスケルトンナノ粒子は、立方体状形態で乾燥粉末状態の炭酸カルシウム粒子の表面を有機酸で被覆してなる乾燥粉末状態の有機酸被覆炭酸カルシウム粒子を、当該有機酸被覆炭酸カルシウム粒子における有機酸の一部を溶解する有機溶媒に分散させ、更に、シリコンアルコキシド及び塩基触媒を混合し前記炭酸カルシウム粒子のエッジに沿ってシリカ殻を形成してシリカ形成粒子とし、その後、当該シリカ形成粒子内部の前記炭酸カルシウムを酸処理によって溶解させてなる。
 ここで、乾燥粉末状態の有機酸被覆炭酸カルシウム粒子を有機溶媒に分散させると、立方体状形態の有機酸被覆炭酸カルシウム粒子におけるエッジ部分の有機酸が溶解し(有機酸の一部が溶解し)、更に、シリコンアルコキシド及び塩基触媒が混合されると、シリコンアルコキシドの加水分解と重縮合によって生じたSiO2 分子が、有機酸の溶解によって表出した立方体状形態の炭酸カルシウム粒子のエッジに沿ってシリカ殻を形成し、シリカ形成粒子となる。最後に、酸処理によって、シリカ形成粒子内部の炭酸カルシウムが溶解し、30nm~300nmの範囲内の外径を有するスケルトンナノ粒子となる。
 かかるスケルトンナノ粒子は、立方体形状態の炭酸カルシウム粒子のエッジに沿ってシリカ殻が形成されてなるものであることから、シリカ殻は立方体フレーム状をなして、立方体フレームの各面における四辺形状のシリカフレーム間に孔を有することになる。また、シリカ殻が形成された後に炭酸カルシウムが溶解されてなるものであることから、立方体フレームの内部は空洞となる。
 このように、本発明に係るスケルトンナノ粒子によれば、乾燥粉末状態の炭酸カルシウム粒子の表面を有機酸で被覆してなる乾燥粉末状態の有機酸被覆炭酸カルシウム粒子を用いたことから、即ち、コア粒子としての炭酸カルシウム粒子の表面が有機酸で被覆されていることから、シリカ殻をコーティングする過程において、コア粒子としての炭酸カルシウム粒子が水分を吸収して互いに凝集するのが防止される。このため、凝集が防止された状態のシリカ形成粒子内部の炭酸カルシウムを溶解することによって得られるスケルトンナノ粒子は、凝集が少なくて分散性が高いものとなる。
 また、乾燥粉末状態の炭酸カルシウム粒子の表面を有機酸で被覆した乾燥粉末状態の有機酸被覆炭酸カルシウム粒子を用いることで原料の変質が起こりにくくなるため、品質管理にコストが掛からず低コスト化が可能であり、量産性を向上させることもできる。
 したがって、請求項1乃至請求項3の何れか1つに記載の効果に加えて、低コスト化及び生産効率の向上を図ることができ、かつ、二次粒子への凝集が少なくて分散性が高いスケルトンナノ粒子となる。
 請求項5の発明に係るスケルトンナノ粒子によれば、前記有機酸は、ロジン酸であるから、確実に前記乾燥粉末状態の炭酸カルシウム粒子を被覆してコア粒子同士の凝集を防止することができる。したがって、請求項4に記載の効果に加えて、確実に二次粒子への凝集が少なくて分散性が高いものとすることができる。
 請求項6の発明に係るスケルトンナノ粒子によれば、前記有機溶媒は、アルコール系、ケトン系、エーテル系から選ばれる少なくとも1種であるから、確実に、有機酸の一部を溶解するものの、有機酸に対する溶解性が小さく、また、炭酸カルシウム粒子やシリコンアルコキシドとの相互作用性(親和性・反応性)が弱く、それ故、有機酸の溶解によって表出した炭酸カルシウムのエッジ部分のみにシリコンアルコキシドの加水分解によって生成したシリカ殻が吸着されやすい。また、アルコール系、ケトン系、エーテル系の溶媒は入手が容易であり、かつ比較的安価である。したがって、請求項4または請求項5に記載の効果に加えて、反応効率を高めて生産効率の向上を図ることができる。また、低コスト化を図ることも可能である。
 請求項7の発明に係るスケルトンナノ粒子によれば、媒質中に、更にシリコーンオイルを混合してなることから、シリコーンオイルによってシリカ形成粒子の表面が保護され、シリカ殻の炭酸カルシウム粒子表面への付着が安定化される。したがって、請求項4乃至請求項6の何れか1つに記載の効果に加えて、より反応効率を高めて生産効率を向上させることができる。また、シリカ形成粒子の表面が保護されることから、シリカ殻形成の反応液中において、シリカ形成粒子同士の凝集が防止されると共に、炭酸カルシウムを溶解して得られるシリカ殻からなるナノ粒子においてもシリコーンオイルによってその表面が保護されるため、凝集が防止される。このため、二次粒子への凝集が一段と少なくて分散性がより高いものとなる。
 より好ましくは、アミノ変性シリコーンオイルであり、アミノ変性シリコーンオイルはシリカ形成粒子表面との反応性が高いことから、アミノ変性シリコーンオイルを混合してなるスケルトンナノ粒子によれば、回収率が高く、かつ、粒度分布が低いものとなる。
 請求項8の発明に係るスケルトンナノ粒子によれば、前記シリカ形成粒子を形成する過程において、超音波処理を行ったことから、有機酸被覆炭酸カルシウム粒子が分散され易く互いの凝集が防止され、かかる粒子が分散されている状態でシリカ殻が形成されたシリカ形成粒子においても互いの凝集が防止される。したがって、請求項4乃至請求項7の何れか1つに記載の効果に加えて、二次粒子への凝集がより少なくて分散性がより高いものとなる。加えて、超音波によって、炭酸カルシウム表面へシリカ殻が付着されやすくなっていることから、更に反応効率を高めて生産効率を向上させることができる。
 請求項9の発明に係るスケルトンナノ粒子の製造方法によれば、有機酸被覆炭酸カルシウム形成工程において、立方体状形態で乾燥粉末状態の炭酸カルシウム粒子の表面を有機酸で被覆して乾燥粉末状態の有機酸被覆炭酸カルシウム粒子とし、続いて、シリカ形成工程において、前記有機酸被覆炭酸カルシウム粒子における有機酸の一部を溶解する有機溶媒に、前記有機酸被覆炭酸カルシウム粒子を分散させ、更に、シリコンアルコキシド及び塩基触媒を混合し前記炭酸カルシウム粒子のエッジに沿ってシリカ殻を形成してシリカ形成粒子とし、その後、炭酸カルシウム溶解工程において、前記シリカ形成粒子の内部における前記炭酸カルシウムを酸処理によって溶解させてスケルトンナノ粒子とする。
 ここで、有機酸被覆炭酸カルシウム形成工程において作製した乾燥粉末状態の有機酸被覆炭酸カルシウム粒子を有機溶媒に分散させると、立方体状形態の有機酸被覆炭酸カルシウム粒子におけるエッジ部分の有機酸が溶解し(有機酸の一部が溶解し)、更に、シリコンアルコキシド及び塩基触媒が混合されると、シリコンアルコキシドの加水分解と重縮合によって生じたSiO2 分子が、有機酸の溶解によって表出した立方体状形態の炭酸カルシウム粒子のエッジに沿ってシリカ殻を形成し、シリカ形成粒子となる。かかるシリカ形成粒子は、その後、炭酸カルシウム溶解工程において、酸処理によって、内部の炭酸カルシウムが溶解され、30nm~300nmの範囲内の外径を有するスケルトンナノ粒子となる。
 そして、このように本発明に係るスケルトンナノ粒子の製造方法によれば、立方体形状態の炭酸カルシウム粒子のエッジに沿ってシリカ殻が形成され、またシリカ殻が形成された後に炭酸カルシウムが溶解されることから、立方体フレーム状のシリカ殻からなり、前記立方体フレームの内部は空洞で、前記立方体フレームの各面における四辺形状のシリカフレーム間に孔を有するスケルトンナノ粒子が得られる。
 このようにして得られたスケルトンナノ粒子は、孔より内部の空洞に有効成分等の物質を容易に挿入することができ、また、内包させた物質の放出も容易にできる。しかも、その外径は30nm~300nmの範囲内と極めて小さいものである。このため、例えば、デリバリーシステムとして活用が容易であり、その応用範囲を広げることができる。
 また、このように内部が空洞の立方体フレーム状構造でシリカフレーム間に孔を有することによって、液体・気体等が通過しやすくて通過抵抗性が低く、孔を介して内包させた物質と外部の物質との接触も可能であることから、触媒担持体としての用途に用いることができるようになる。更には、孔によって、選択的に流体等を通過させることができることから、フィルタや電解液保持体としての使用も可能である。加えて、光を透過させることも可能で(光透過性)、孔を介して入射した光の一部をシリカフレームによって屈折・散乱させることもできることから(光拡散性)、LED等の照明へ応用して発光効率の増大を図ることも可能である。
 その他にも、スケルトンナノ粒子の凝集性によって基板上にスケルトンナノ粒子を塗布した際に凹凸を形成でき、このとき、スケルトンナノ粒子が立方体フレーム状構造であることで、基板上に近づく物質に対しての接触がスケルトンナノ粒子のシリカフレーム部分のみとなり、接触面積を少なくすることができることから、超撥水性膜・超親水性膜としての応用も可能となる。
 このようにして、シリカ殻からなるナノ粒子の応用分野を更に広げることができ、多用途に使用可能なスケルトンナノ粒子の製造方法となる。
 更に、本発明に係るスケルトンナノ粒子の製造方法によれば、乾燥粉末状態の炭酸カルシウム粒子の表面を有機酸で被覆してなる乾燥粉末状態の有機酸被覆炭酸カルシウム粒子を用いたことから、即ち、コア粒子としての炭酸カルシウム粒子の表面が有機酸で被覆されていることから、シリカ殻をコーティングする過程において、コア粒子としての炭酸カルシウム粒子が水分を吸収して互いに凝集するのが防止される。このため、凝集が防止された状態のシリカ形成粒子内部の炭酸カルシウムを溶解することによって得られるスケルトンナノ粒子も、凝集が少なくて分散性が高いものとなる。
 加えて、乾燥粉末状態の炭酸カルシウム粒子の表面を有機酸で被覆した乾燥粉末状態の有機酸被覆炭酸カルシウム粒子を用いることで原料の変質が起こりにくくなるため、品質管理のコストが掛からず低コスト化が可能であり、量産性を向上させることができる。
 したがって、低コスト化及び生産効率の向上を図ることができ、かつ、二次粒子への凝集が少なくて分散性が高いスケルトンナノ粒子を得ることができる。
 請求項10の発明に係るスケルトンナノ粒子の製造方法によれば、前記スケルトンナノ粒子の各孔の占める割合が、前記立方体フレームの各面の表面積に対して、3%~94%の範囲内であるから、様々な大きさの有効成分等の物質をより容易に挿入・放出できるスケルトンナノ粒子となる。また、係るスケルトンナノ粒子は、外部の物質とも接触し易かったり、液体・気体等が通過し易かったりする。よって、請求項9に記載の効果に加えて、様々な用途に使用し易いスケルトンナノ粒子となる。
 請求項11の発明に係るスケルトンナノ粒子の製造方法によれば、前記シリカフレームの幅が5nm~115nmの範囲内であるから、外部環境によって容易に破壊されることがなく、また、透明性が高いスケルトンナノ粒子となる。したがって、請求項9または請求項10に記載の効果に加えて、シリカ殻の高い強度や、高い透明度が要求される用途にも対応可能なスケルトンナノ粒子となる。
 請求項12の発明に係るスケルトンナノ粒子の製造方法によれば、前記有機酸は、ロジン酸であるから、確実に前記乾燥粉末状態の炭酸カルシウム粒子を被覆してコア粒子同士の凝集を防止することができる。したがって、請求項9乃至請求項11の何れか1つに記載の効果に加えて、確実に二次粒子への凝集が少なくて分散性が高いスケルトンナノ粒子を得ることができる。
 請求項13の発明に係るスケルトンナノ粒子の製造方法によれば、前記有機溶媒は、アルコール系、ケトン系、エーテル系から選ばれる少なくとも1種であるから、確実に、有機酸の一部を溶解するものの、有機酸に対する溶解性が小さく、また、炭酸カルシウム粒子やシリコンアルコキシドとの相互作用性(親和性)が弱く、それ故、有機酸の溶解によって表出した炭酸カルシウムのエッジ部分のみにシリコンアルコキシドの加水分解によって生成したシリカ殻が吸着されやすい。また、アルコール系、ケトン系、エーテル系の溶媒は入手が容易であり、かつ比較的安価である。したがって、請求項9乃至請求項12の何れか1つに記載の効果に加えて、反応効率を高めて生産効率の向上を図ることができる。また、低コスト化を図ることも可能である。
 請求項14の発明に係るスケルトンナノ粒子の製造方法によれば、媒質中に、更にシリコーンオイルを混合したことから、シリコーンオイルによってシリカ形成粒子の表面が保護され、シリカ殻の炭酸カルシウム粒子表面への付着が安定化される。したがって、請求項9乃至請求項13の何れか1つに記載の効果に加えて、より反応効率を高めて生産効率を向上させることができる。また、シリカ形成粒子の表面が保護されることから、シリカ殻形成の反応液中において、シリカ形成粒子同士の凝集が防止されると共に、炭酸カルシウム粒子を溶解して得られるシリカ殻からなるナノ粒子においてもシリコーンオイルによってその表面が保護されるため、凝集が防止される。このため、二次粒子への凝集が一段と少なくて分散性がより高いもスケルトンナノ粒子を得ることができる。
 より好ましくは、アミノ変性シリコーンオイルであり、アミノ変性シリコーンオイルはシリカ形成粒子表面との反応性が高いことから、アミノ変性シリコーンオイルを混合することによって、回収率が高く、かつ、粒度分布が低いスケルトンナノ粒子を得ることができる。
 請求項15の発明に係るスケルトンナノ粒子の製造方法によれば、シリカ形成工程において、超音波処理を行ったことから、有機酸被覆炭酸カルシウム粒子が分散され易く互いの凝集がより防止され、かかる粒子が分散されている状態でシリカ殻が形成されたシリカ形成粒子においても互いの凝集がより防止される。したがって、請求項9乃至請求項14の何れか1つに記載の効果に加えて、二次粒子への凝集がより少なくて分散性がより高いスケルトンナノ粒子を得ることができる。加えて、超音波によって、炭酸カルシウム表面へシリカ殻が付着されやすくなっていることから、更に反応効率を高めて生産効率を向上させることができる。
図1は本発明の実施の形態に係るスケルトンナノ粒子の製造方法を示すフローチャートである。 図2(a)は本発明の実施の形態に係るスケルトンナノ粒子の製造工程を示す模式図であり、図2(b)は本発明の実施の形態に係るスケルトンナノ粒子の四辺形状のシリカフレーム部分を示す模式図である 図3(a)は本発明の実施の形態に係るスケルトンナノ粒子の走査型電子顕微鏡(SEM)写真(SEI:走査二次電子像)であり、図3(b)は本発明の実施の形態に係るスケルトンナノ粒子の透過型電子顕微鏡(TEM)写真である。 図4は本発明の実施例1乃至実施例7に係るスケルトンナノ粒子の走査型電子顕微鏡(SEM)写真(SEI:走査二次電子像)を、比較例1及び比較例2と比較して示す模式図である。 図5は本発明の実施の形態に係るスケルトンナノ粒子のデリバリーシステムへの応用を説明するための説明図である。 図6(a)は本発明の実施の形態に係るスケルトンナノ粒子をLEDに使用した一例を示す模式図であり、(b)はその拡大図である。 図7は本発明の実施の形態に係るスケルトンナノ粒子の触媒担持体への応用を説明するための説明図である。 図8は本発明の実施の形態に係るスケルトンナノ粒子をフィルタに使用した一例を示す模式図であり、(a)は浄化フィルタへの使用例を示す模式図、(b)はマスクへの使用例を示す模式図である。 図9は本発明の実施の形態に係るスケルトンナノ粒子の電解質保持体への応用を説明するための説明図である。 図10は本発明の実施の形態に係るスケルトンナノ粒子の超撥水性膜・超親水性膜への応用を説明するための説明図である。 図11は従来の立方体状形態の表面全体がシリカ殻で形成されているシリカナノ中空粒子を説明するための模式図である。 図12(a)はシリカ形成工程における反応時間を15分とした比較例3の生成物の走査型電子顕微鏡(SEM)写真(SEI:走査二次電子像)、図12(b)はシリカ形成工程における反応時間を30分とした比較例4の生成物の走査型電子顕微鏡(SEM)写真(SEI:走査二次電子像、及びSTEM:走査透過像)である。 図13(c)はシリカ形成工程における反応時間を60分とした実施例8の生成物の走査型電子顕微鏡(SEM)写真(SEI:走査二次電子像、及びSTEM:走査透過像)、図13(d)はシリカ形成工程における反応時間を90分とした実施例9の生成物の走査型電子顕微鏡(SEM)写真(SEI:走査二次電子像)である。 図14(e)はシリカ形成工程における反応時間を120分とした実施例10の生成物の走査型電子顕微鏡(SEM)写真(SEI:走査二次電子像、及びSTEM:走査透過像)、図14(f)はシリカ形成工程における反応時間を240分とした実施例11の生成物の走査型電子顕微鏡(SEM)写真(SEI:走査二次電子像)である。 図15(a)は有機溶媒としてエタノールを使用した実施例12の生成物の走査型電子顕微鏡(SEM)写真(SEI:走査二次電子像)、図15(b)は有機溶媒として1‐プロパノールを使用した実施例13の生成物の走査型電子顕微鏡(SEM)写真(SEI:走査二次電子像、及びSTEM:走査透過像)である。 図16(c)は有機溶媒として2‐プロパノールを使用した実施例14の生成物の走査型電子顕微鏡(SEM)写真(SEI:走査二次電子像、及びSTEM:走査透過像)、図16(d)は有機溶媒として1‐ブタノールを使用した実施例15の生成物の走査型電子顕微鏡(SEM)写真(SEI:走査二次電子像、及びSTEM:走査透過像)である。 図17(a)は有機溶媒としてメタノールを使用した比較例5の生成物の走査型電子顕微鏡(SEM)写真(SEI:走査二次電子像、及びSTEM:走査透過像)、図17(b)は有機溶媒として1‐オクタノールを使用した比較例6の生成物の走査型電子顕微鏡(SEM)写真(SEI:走査二次電子像)である。 図18(a)は有機溶媒としてメチルエチルケトンを使用した実施例16の生成物の走査型電子顕微鏡(SEM)写真(SEI:走査二次電子像、及びSTEM:走査透過像)、図18(b)は有機溶媒としてアセトンを使用した比較例7の生成物の走査型電子顕微鏡(SEM)写真(SEI:走査二次電子像)である。 図19は有機溶媒としてジオキサンを使用した実施例17の生成物の走査型電子顕微鏡(SEM)写真(SEI:走査二次電子像、及びSTEM:走査透過像)である。 図20は有機溶媒としてジエチレングリコールを使用した比較例9の生成物の走査型電子顕微鏡(SEM)写真(SEI:走査二次電子像)である。 図21は異なる有機溶媒によって製造されたスケルトンナノ粒子の粒子形態を説明するための説明図である。
1 スケルトンナノ粒子
2 炭酸カルシウム粒子
3 有機酸
4 有機酸被覆炭酸カルシウム粒子
5 エタノール(有機溶媒)
6 シリコンアルコキシド
7 アンモニア水(塩基触媒)
9 変性シリコーンオイル
10 シリカ形成粒子
 以下、本発明の実施の形態について、図面を参照しながら説明する。
 なお、本実施の形態において、同一の記号及び同一の符号は同一または相当する機能部分を意味するものであるから、ここでは重複する詳細な説明を省略する。
 [実施の形態]
 まず、本発明の実施の形態に係るスケルトンナノ粒子及びその製造方法について、図1乃至図4を参照して説明する。
 図1のフローチャートに示されるように、本実施の形態に係るスケルトンナノ粒子1の製造方法においては、最初に、有機酸被覆炭酸カルシウム形成工程にて、乾燥粉末状態(乾燥状態の固体微粉末状)の炭酸カルシウム(CaCO3 )粒子2の表面を有機酸3で被覆して乾燥粉末状態の有機酸被覆炭酸カルシウム粒子4を形成する(ステップS1)。
 ここで、乾燥粉末状態の炭酸カルシウム粒子2は、立方体状形態となっており、この炭酸カルシウム粒子2に有機酸3が被覆されてなる有機酸被覆炭酸カルシウム粒子4も、図2に示されるように、立方体状形態である。
 乾燥粉末状態の炭酸カルシウム粒子2には、市販の炭酸カルシウム粒子を購入して使用することができ、例えば、林化成株式会社の粒子炭酸カルシウムや、白石工業株式会社の合成炭酸カルシウム等を使用することができる。
 また、例えば、水系で炭酸カルシウム結晶を成長させた後に熟成して脱水する方法で乾燥粉末状態の炭酸カルシウム粒子2を製造し、これを用いることも可能である。この方法で生成する炭酸カルシウムの結晶はカルサイトであり六方晶系であるが、合成条件を制御することにより、あたかも立方晶系であるかのような形状、即ち「立方体状形態」に成長させることができる。なお、水系で結晶を成長させる方法は、特段に限定されるものではなく、水酸化カルシウムのスラリーに炭酸ガスを導入して炭酸カルシウムを沈殿させる方法や、塩化カルシウムなどの可溶性カルシウム塩の水溶液に炭酸ナトリウムなどの可溶性炭酸塩を添加して炭酸カルシウムを沈殿させる方法などが適用できる。この際、後述するように目的とする外径が8nm~200nmの範囲内である炭酸カルシウム粒子2を得るには、比較的低温でかつ炭酸カルシウムの沈殿反応の速度を速めることが望ましい。例えば、水酸化カルシウムスラリーに炭酸ガスを導入する方法においては、炭酸ガスを導入する際の液温を30℃以下とし、また炭酸ガスを導入する速度を、水酸化カルシウム100g当り、1.0L/min以上とすることが好適である。
 なお、乾燥粉末状態の炭酸カルシウム粒子2の大きさは、顕微鏡法により測定した外径が8nm~200nmの範囲内であることが好ましい。これによって、最終的に得られるスケルトンナノ粒子1の顕微鏡法により測定した外径を30nm~300nmの範囲内とすることができる。
 また、有機酸3としては、乾燥粉末状態の炭酸カルシウム粒子2を被覆することによって、シリカ殻を形成する過程において、炭酸カルシウム粒子2同士の凝集を防止できるものであればよく、例えば、ロジン酸等のアルカリ性石鹸等が使用される。
 そして、乾燥粉末状態の有機酸被覆炭酸カルシウム粒子4は、例えば、市販の乾燥粉末状態の炭酸カルシウム粒子2に有機酸3を混合したり、水酸化カルシウム懸濁液に炭酸源を添加(吹き込み)後、有機酸3を添加したりすること等によって作製(形成)することができる。
 続いて、シリカ形成工程にて、有機酸被覆炭酸カルシウム粒子4における有機酸3の一部を溶解可能な有機溶媒としてのエタノール5に、有機酸被覆炭酸カルシウム粒子4を分散させて(ステップS2a)、有機酸被覆炭酸カルシウム粒子4における有機酸3の一部を溶解し、更に、シリコンアルコキシド6、塩基触媒としてのアンモニア(NH4OH)水8、水7、及びシリコーンオイルとしての変性シリコーンオイル9を混合して(ステップS2b)、ゾル-ゲル法により炭酸カルシウム粒子2にシリカ(SiO2 )殻1aを形成し、シリカ形成粒子10とする(ステップS2)。
 なお、本実施の形態においては、有機酸被覆炭酸カルシウム粒子4(有機酸3の一部が溶解したものも含む)を十分に分散させながらゾルーゲル法によるシリカ殻1aの形成を行うため、超音波(周波数:20KHZ~40KHZ)をかけながら反応させた。
 このとき、有機溶媒としてのエタノール5への有機酸被覆炭酸カルシウム粒子4の分散によって、図2(a)に示されるように、立方体状形態の有機酸被覆炭酸カルシウム粒子4におけるエッジ部分の有機酸3が溶解し(有機酸の一部が溶解し)、更に、シリコンアルコキシド6、塩基触媒としてのアンモニア水8、及び水7の混合によって、シリコンアルコキシド6の加水分解によって生じたSiO2 分子が重縮合したシリカ殻1aが、有機酸3の溶解によって表出した炭酸カルシウム粒子2におけるエッジ部分に形成されて、シリカ形成粒子10となる。
 なお、本実施の形態においては、変性シリコーンオイル9を混合していることから、シリカ形成粒子10の表面は変性シリコーンオイル9によって保護されることになる。
 ここで、本実施の形態においては、有機溶媒としてエタノール5を使用したが、本発明を実施する場合には、有機溶媒としては、有機酸被覆炭酸カルシウム粒子4における有機酸3を一部溶解でき、かつ、シリコンアルコキシド6及び水7に対して溶解可能なものであればよい。なお、有機溶媒としてより好ましくは、有機酸被覆炭酸カルシウム粒子4における有機酸3に対して10%~60%の溶解性があるものである。
 そして、炭酸カルシウム粒子2の表面に、ゾル-ゲル法でシリカ殻1aをコーティングするためのシリコンアルコキシド6としては、テトラエトキシシラン(TEOS)を始めとする種々のシリコンアルコキシドを用いることができ、より具体的には、例えば多摩化学工業株式会社のエチルシリケート(製品名「高純度正珪酸エチル」:テトラエトキシシラン(TEOS))、信越化学工業株式会社の機能性シランの中のアルコキシシラン(製品名「KBE-04」:テトラエトキシシラン(TEOS))、等を使用することができる。
 また、本実施の形態においては、塩基触媒としてアンモニア水8を使用したが、本発明を実施する場合には、塩基触媒としてその他にも、例えば、アミン類等を使用することも可能である。しかし、反応効率の良さ、価格面、入手しやすさ、扱いやすさ等を考慮すると、塩基触媒としてはアンモニアが最適であり、塩基触媒としてアンモニアを使用することで、確実にしかも効率よく、シリコンアルコキシド6と水7とを反応させてSiO2 分子が重縮合したシリカを析出させ、炭酸カルシウム粒子2にシリカ殻1aを形成させることが可能である。
 更に、変性シリコーンオイル9としては、ポリエーテル基、エトキシ基、カルボキシル基等の親水性有機基が導入された変性シリコーンオイルや、モノアミン基、アミノ基、アルキル基等の親油性有機基が導入された変性シリコーンオイル等が用いられる。中でも、変性シリコーンオイル9として、入手が容易で、シリカ形成粒子10の表面を保護する反応性が高いモノアミン変性シリコーンオイルを用いるのが好ましい。因みに、変性シリコーンオイル9として、モノアミン基、アミノ基、アルキル基、等の親油性有機基が導入された変性シリコーンオイルを用いた場合には、親油性のスケルトンナノ粒子1となって有機溶媒や溶剤系塗料への分散が容易となる。一方、ポリエーテル基、エトキシ基、カルボキシル基等の親水性有機基が導入された変性シリコーンオイルを用いた場合には、親水性のスケルトンナノ粒子1となって水や水性塗料の分散が容易となる。
 なお、超音波照射に使用する装置としては、溶液に超音波ホーンを直接入れる形式(UH-600S 周波数 20KHZ/(株)エスエムテー、SONIFIER 4020-800 周波数 40KHZ/BRANSON)のものや、溶液を循環させる形式(UH-600SR 周波数 20KHZ/(株)エスエムテー)のものや、溶液を入れた容器を外から間接的に照射するバス型(超音波洗浄機型)形式のもの等が使用できる。
 次に、このようにして形成されたシリカ形成粒子10を洗浄した(ステップS3a)後に、水に分散させる(ステップS3b)。そして、炭酸カルシウム溶解工程にて、酸処理として塩酸11を添加して(ステップS3c)内部の炭酸カルシウム2を溶解させて残りの有機酸3と共に流出させる(ステップS3)。最後に、水洗浄(ステップS4a)を行った後、乾燥(ステップS4b)させる。これによって、スケルトンナノ粒子1が製造される。
 なお、上記炭酸カルシウム溶解工程(ステップS3)においては、酸処理による分散系の水素イオン濃度指数をpH5以下とすることが好まししい。分散系の水素イオン濃度指数がpH5を上回った状態においては、内部の炭酸カルシウム2を完全に溶解させることが困難だからである。因みに、本発明を実施する場合には、酸処理としてその他にも、例えば、硝酸、酢酸、クエン酸等の酸を用いることも可能である。
 このようにして製造されたスケルトンナノ粒子1は、上述の如く、立方体状形態の炭酸カルシウム粒子2のエッジに沿ってシリカ殻1aが形成されたことから、図2(a)に示されるように、シリカ殻1aは立方体フレーム状をなして、立方体フレームの各面における略四辺形状のシリカフレーム間に孔1bを有している。そして、シリカ殻1aが形成された後に炭酸カルシウム2が溶解されてなるものであることから、立方体フレームの内部は空洞となっている。念のため、スケルトンナノ粒子1の走査型電子顕微鏡(SEM:JSM-7600F/日本電子(株)により測定)による写真を図3(a)に示す。
 そして、このスケルトンナノ粒子1は、顕微鏡法による測定(ここではSEM観察)で、その外径R(図2(b)参照)が30nm~300nmの範囲内となっており、各面の孔1bが略四辺形状をなしていて、その開口径A(図2(b)参照)は5nm~290nmの範囲内となっている。よって、立方体フレームの各面の表面積に対して各孔1bの占める割合(開口率)は3%~94%の範囲内となる。また、立方体フレームの各面の表面積に対して各孔1bの占める割合(開口率)が3%~94%の範囲内であるとき、略四辺形状のシリカフレームの幅W(図2(b)参照)は3nm~115nmの範囲内となっている。なお、強度や使用し易さ等の観点からすると、スケルトンナノ粒子1の開口径Aが10nm~280nmの範囲内で、立方体フレームの各面の表面積に対して各孔1bの占める割合(開口率)が10%~87%の範囲内、また、シリカフレームの幅Wが5nm~100nmの範囲内であるものが好ましい。
 因みに、ここでは「孔(1b)の占める割合(開口率)」は、下記の式によって算出したものである。
 孔の占める割合(開口率)(%)={A(開口径)}2/{R(外径)}2・100
 また、シリカフレームの幅Wは、顕微鏡法による測定(SEM観察)の他、下記の式によって、算出することも可能である。
 シリカフレームの幅W={R(外径)ーA(開口径)}/2
 なお、シリカ殻1aは炭酸カルシウム粒子2のエッジに沿って形成されたものであり、本実施の形態1においては、コア粒子としての炭酸カルシウム粒子2の外径(コア径)が8nm~200nmの範囲内であることから、シリカフレームの厚さt(図2(b)参照)は1nm~10nmの範囲内、厚くても10nm~30nmの範囲内となっており、顕微鏡法による測定(ここではTEM観察)においても確認されている。念のため、スケルトンナノ粒子1の走査型電子顕微鏡(TEM:JEOL JEM 2000 FX/日本電子(株)により測定)による写真を図3(b)に示す。
 ここで、乾燥粉末状態の有機酸被覆炭酸カルシウム粒子4とシリコンアルコキシド6の重量比や、塩基触媒の量がスケルトンナノ粒子1の粒子形態に及ぼす影響について調べるため、係る配合比や量を様々変えて実施例1乃至実施例7とし、製造試験を実施した。また、比較のために、比較例1及び比較例2の各配合による製造試験も実施した。実施例1乃至実施例7、比較例1及び比較例2の各配合内容を表1に示す。
 なお、ここでは、有機酸被覆炭酸カルシウム粒子4として、白石工業(株)のロジン酸被覆炭酸カルシウム粒子(製品名「ホモカルD(一次粒子径:80nm)」)、また、シリコンアルコキシド6として、テトラエトキシシラン(TEOS)(製品名「KBE-04」)、さらに、塩基触媒としてアンモニア水8を使用した。配合比は、いずれも重量部で表されている。また、これらの各配合内容で図1のフローチャートにしたがって製造されたものについて、走査型電子顕微鏡(SEM:JSM-7600F/日本電子(株)により測定)による写真を図4に示す。
Figure JPOXMLDOC01-appb-T000001
 
 図4に示されるように、実施例1乃至実施例6から、テトラエトキシシラン(TEOS)/ロジン酸被覆炭酸カルシウムの配合比が、1.2~0.6の範囲内においては、確実にシリカ殻が立方体フレーム状の粒子形態となることがわかる。また、実施例7から、テトラエトキシシラン(TEOS)/ロジン酸被覆炭酸カルシウムの配合比が、0.4であっても、塩基触媒としてのアンモニア水8の量が多いときには、シリカ殻が立方体フレーム状の粒子形態となる。
 これに対し、比較例1及び比較例2から、塩基触媒としてのアンモニア水8の量が少ないと、テトラエトキシシラン(TEOS)/ロジン酸被覆炭酸カルシウムの配合比が、0.5以下においては、シリカ殻が立方体フレーム状の粒子形態とならない場合がある。
 なお、本発明者らの実験研究によれば、テトラエトキシシラン(TEOS)/ロジン酸被覆炭酸カルシウムの配合比が1.3以上であると、未反応のテトラエトキシシラン(TEOS)が多くなって回収に手間がかかるようになったり、また、シリカ形成後の洗浄(ステップS3a)の際に、シリカ形成粒子10が凝集しやすくなったりすることが確認されている。一方、テトラエトキシシラン(TEOS)/ロジン酸被覆炭酸カルシウムの配合比が0.3以下であると、塩基触媒としてのアンモニア水8の量が多いときでも、シリカフレームに必要なテトラエトキシシラン(TEOS)の量が不足してシリカ殻1aが立方体フレーム状をなさないことが確認されている。
 よって、シリカ殻1aが立方体フレーム状をなすスケルトンナノ粒子1を確実に製造するためには、テトラエトキシシラン(TEOS)/ロジン被覆炭酸カルシウムの配合比を0.4~1.2の範囲内とすることが好ましく、より好ましくは、0.6~1.2の範囲内である。
 また、図4の写真に示されるように、テトラエトキシシラン(TEOS)/ロジン被覆炭酸カルシウムの配合比が大きいほど、即ち、テトラエトキシシラン(TEOS)の量が多いほど、シリカフレームの幅Wが大きくなることが明らかとなった。更に、塩基触媒としてのアンモニア水8の量が多いことによっても、シリカフレームの幅Wが大きくなることが確認された。
 これらのことから、本実施の形態に係るスケルトンナノ粒子1によれば、有機酸被覆炭酸カルシウム粒子4やシリコンアルコキシド6や塩基触媒の配合量を変えることによって、スケルトンナノ粒子1の外径R(粒子径)や、シリカフレームの幅Wや、シリカフレームに囲まれた孔1bの大きさ(開口径A)等の粒子形態を制御できることが可能である。勿論、コア粒子となる炭酸カルシウム粒子2の粒子径等を調節することによっても上記粒子形態を制御することが可能である。
 ところで、上述の如く、本実施の形態に係るスケルトンナノ粒子1は、所定の大きさの外径を有し立方体状形態で乾燥粉末状態の炭酸カルシウム粒子2の表面を有機酸3で被覆してなる乾燥粉末状態の有機酸被覆炭酸カルシウム粒子4を、有機酸被覆炭酸カルシウム粒子4における有機酸3の一部を溶解可能な有機溶媒としてのエタノール5に分散させ、更に、シリコンアルコキシド6と塩基触媒としてのアンモニア水8と水7を混合し、炭酸カルシウム粒子2のエッジに沿ってシリカ殻1aを形成してシリカ形成粒子10とし、その後、このシリカ形成粒子10内部の炭酸カルシウム2を酸処理としての塩酸11によって溶解させてなるものである。
 また、本実施の形態に係るスケルトンナノ粒子1の製造方法は、所定の大きさの外径を有し立方体状形態で乾燥粉末状態の炭酸カルシウム粒子2の表面を有機酸3で被覆して有機酸被覆炭酸カルシウム粒子4とする有機酸被覆炭酸カルシウム形成工程(ステップS1)と、有機酸被覆炭酸カルシウム粒子4における有機酸3の一部を溶解可能な有機溶媒としてのエタノール5に有機酸被覆炭酸カルシウム粒子4を分散させ、更に、シリコンアルコキシド6と塩基触媒としてのアンモニア水8と水7を混合して、炭酸カルシウム粒子2のエッジに沿ってシリカ殻1aを形成してシリカ形成粒子10とするシリカ形成工程(ステップS2)と、シリカ形成粒子10内部の炭酸カルシウム2を酸処理としての塩酸11によって溶解させる炭酸カルシウム溶解工程(ステップS3)とを具備するものである。
 このように本実施の形態においては、乾燥粉末状態の炭酸カルシウム粒子2の表面を有機酸3で被覆してなる乾燥粉末状態の有機酸被覆炭酸カルシウム粒子4を用いたことから、即ち、コア粒子としての炭酸カルシウム粒子2の表面が有機酸3で被覆されていることから、炭酸カルシウム粒子2にシリカ殻1aが形成される過程において、炭酸カルシウム粒子2が剥き出しとなって水分を吸収してしまうことによる炭酸カルシウム粒子2同士の凝集が防止される。このため、凝集が防止された状態のシリカ形成粒子10内部の炭酸カルシウム2を溶解することによって得られるスケルトンナノ粒子1は、凝集が少なくて分散性が高いものとなる。
 特に、本実施の形態においては、上述の如く、シリカ形成粒子10を形成する過程において超音波処理を行ったことから、有機酸被覆炭酸カルシウム粒子4(有機酸3の一部が溶解された状態のものも含む)が分散され易くて互いの凝集が防止されることになる。また、かかる粒子が分散されている状態でシリカ殻1aが形成されるため、シリカ形成粒子10においても互いの凝集が防止される。このため、凝集が防止された状態のシリカ形成粒子10内部の炭酸カルシウム2を溶解することによって得られるスケルトンナノ粒子1同士の凝集も防止される。
 加えて、媒質中に変性シリコーンオイル9が混合されており、この変性シリコーンオイル9でシリカ殻1aの表面が保護されるため、変性シリコーンオイル9によってもシリカ形成粒子10の互いの凝集が防止される。
 故に、本実施の形態に係るスケルトンナノ粒子1は、二次粒子への凝集が一段と少なくて分散性がより高いものとなる。
 また、本実施の形態に係るスケルトンナノ粒子1及びその製造方法によれば、このように、乾燥粉末状態の炭酸カルシウム粒子2の表面を有機酸3で被覆した乾燥粉末状態の有機酸被覆炭酸カルシウム粒子4を用いていて原料の変質が起こりにくいため、原料の品質管理にコストが掛からない。したがって、低コスト化が可能である。また、原料の変質が起こりにくいため、生産効率や量産性を向上させることが可能である。
 加えて、本実施の形態においては、超音波処理によって、炭酸カルシウム粒子2の表面へシリカ殻1aが付着されやすくなっている。
 更に、変性シリコーンオイル9によって、シリカ殻1aの表面が保護されて、シリカ殻1aの炭酸カルシウム粒子2への付着が安定化している。
 したがって、本実施の形態に係るスケルトンナノ粒子1及びその製造方法によれば、反応効率を高めて生産効率の向上を図ることができる。
 ここで、このようなシリカ殻1aが立方体フレーム状のスケルトンナノ粒子1の応用分野(使用用途)について、図5乃至図10を参照して説明する。
 上述の如く、本実施の形態に係るスケルトンナノ粒子1は、30nm~300nmの範囲内の外径Rを有し、シリカ殻1aからなるナノ粒子であって、シリカ殻1aは立方体フレーム状をなしており、立方体フレームの内部は空洞で、立方体フレームの各面における略四辺形状のシリカフレーム間に孔1bを有するものである。
 したがって、本実施の形態に係るスケルトンナノ粒子1によれば、孔1bより、ナノ粒子内部の空洞への有効成分等の物質の挿入が容易であり、また、内包させた物質の放出も容易である。
 このため、まず、スケルトンナノ粒子1の立方体フレーム状構造を利用したデリバリーシステムへの応用が挙げられる。
 即ち、スケルトンナノ粒子1によれば、上述の如く、シリカ殻1aが立方体フレーム状で、シリカフレーム間に孔1bが存在することから、フレーム間に存在する孔1bから内部の空洞に有効成分(例えば、触媒、薬剤、ビタミン剤、タンパク質等の外部刺激により劣化する不安定な成分や、そのままでは周囲に悪影響を与える成分や、外部環境から保護する必要がある成分)等の物質を挿入し易い。また、挿入した有効成分等の物質は、シリカフレームによって内包させることができる。更に、内包させた有効成分等の物質は、孔1bより放出させ易い。このため、図5に示すように、スケルトンナノ粒子1内部の空洞に、有効成分等の物質を挿入して内包(封入・保護・貯蔵)させ、内包物を目的細胞や目的組織に運搬して放出(徐放)させるデリバリーシステムとして利用される。
 殊に、本実施の形態に係るスケルトンナノ粒子1によれば、上述の如く、立方体フレームの各面の表面積に対して各孔1bの占める割合が3%~94%の範囲内であり、更に、コア粒子となる炭酸カルシウム粒子2の孔径、また、有機溶媒やシリコンアルコキシド6や塩基触媒の量を調節することにより、スケルトンナノ粒子1の外径Rやシリカフレーム間の孔径(孔1bの大きさ)やシリカフレームの幅Wを制御可能であることから、タンパク質のような大きな会合分子を含む様々な大きさの有効成分等を挿入させることができ、更には、内包物質を目的用途の経路で運搬させることができる。
 また、シリカ殻1aの表面改質によってフレームとフレーム内部に挿入した物質との間の空間を狭める処理等を行うことで、内包性を持たせフレーム内部に挿入した物質を放出し難くすることが可能である。一方、目的の場所への運搬後は、内包物質に反発する処理等を施すことで、徐放性を持たせたり内包物質を放出させたりすることも可能である。更に、シリカ殻1aの表面改質として磁性粒子で被覆することで、磁力で回収することも可能となる。
 ここで、更に、このスケルトンナノ粒子1によるデリバリーシステムの具体的用途について説明する。スケルトンナノ粒子1によるデリバリーシステムは、医療分野、化粧品分野、食品分野等で利用が可能である。
 医療分野においては、スケルトンナノ粒子1の外径Rが30nm~300nmであることから、ドラッグデリバリーシステムとして、スケルトンナノ粒子1内部の空洞に薬剤(有効成分)等を内包させた場合、かかる薬剤(有効成分)等を内包したスケルトンナノ粒子1は200nm程度に広がっている腫瘍、動脈硬化、リウマチ等の患部付近の血管内皮細胞間隙を通過できることになる。よって、治療薬として有効となる。
 特に、体内に滞留させて、内包させた薬剤の効力を発揮させるためには、100nm~数100nmの外径を有するスケルトンナノ粒子1の使用が好ましい。
 なお、本発明者らの実験研究によれば、前立腺がんの治療に使用されるリュ-プリンや、転移性乳がんの治療に使用されるマイオセットを内包したスケルトンナノ粒子1によるドラッグデリバリーシステムが有効であることが確認されている。また、C型肝炎特効薬や糖尿病特効薬(インシュリン)のドラッグデリバリーシステムとしてスケルトンナノ粒子1を使用することで徐放性が改善され患者のQOLが向上することや、末梢動脈閉そく症特効薬のデリバリーシステムとしてスケルトンナノ粒子1を使用することで安定性が向上され、病変部位へのターゲッティングが改善されることが確認されている。
 その他にも、医療分野においては、遺伝子等の生理活性物質を封入して目的細胞や目的組織にピンポイントで効率よく導入するピンポイントデリバリーシステムやフラーレンで遺伝子を導入するDNAデリバリーシステムとしても有効である。
 また、化粧品分野においては、例えば、皮膚における角質細胞間に存在する皮膚の潤い成分であるセラミド分子をスケルトンナノ粒子1内部の空洞に内包させて、50nm~70nmである角質細胞間へと通過させることができる。このため、保湿対策化粧品として有効である。その他にも、例えば、空気、光、熱により破壊されやすいレチノール(ビタミンA)をスケルトンナノ粒子1の内部(空洞部分)に内包させて、表皮の基底層へ届けることができ、シミ・シワ対策化粧品としても有効である。
 更に、食品分野においては、スケルトンナノ粒子1に香料等の食品添加物やビタミン剤を内包させて食品に加えることで、空気等の外部環境の接触による食品添加物やビタミン(抗酸化作用等)の変質が抑制される。
 その他、例えば、入浴剤、接着剤、肥料等を内包させて外部環境から保護し、使用時のみに放出させるという使用形態が可能である。
 次に、スケルトンナノ粒子1の立方体フレーム状構造による光透過性や光拡散性を利用したLEDライト等の照明器具への使用が挙げられる。
 上述の如く、スケルトンナノ粒子1は、内部が空洞の立方体フレーム状構造でシリカフレーム間に孔1bを有することから、孔1bによって光を透過することができて光透過性・透明性を有する。殊に、本実施の形態においては、その外径Rが30nm~300nmの範囲内で、立方体フレームの各面の表面積に対して各孔1bの占める割合が3%~94%の範囲内であり、また、シリカフレーム幅Wも3nm~115nmの範囲内であることから、光透過性・透明性が高い。更に、孔1bを介して入射した光の一部をシリカフレームによって屈折・散乱させることができることから光拡散性を有している。
 ここで、従来のLEDライトは、点発光(スポット照射光)であるため、直管型や電球型に隙間なくLEDチップを配列させなければならず、価格や消費電力が高いという問題点があった。
 そこで、図6に示すように、LED照明の表面にスケルトンナノ粒子1を塗布することで、スケルトンナノ粒子1の内部が空洞でシリカフレーム間に孔1bが存在することによる光透過性・透明性が発揮され、更に、シリカフレームによって入射した光が拡散反射されて、発光効率が増大し、蛍光等と同等以上の輝度をもつ広域拡散光が得られる。よって、消費電力を低下させることが可能となる。
 また、立方体フレームの各面に孔1bが存在することから、LED等の光源を3次元方向(直進方向、垂直方向、上下方向等)に選択的に通過させることが可能であり、例えば、LED等の光源用の導光板等への使用によって、発光効率を増大させ照明用途として必要な広域拡散光を得ることができるようになる。
 続いて、スケルトンナノ粒子1の立方体フレーム状構造による液体等の通過性(通過低抵抗性)や内包性を利用した触媒担持体としての使用が挙げられる。
 具体的には、スケルトンナノ粒子1が立方体フレーム構造でシリカフレーム間に孔1bを有するため、液体等が通過しやすくて通過抵抗性が低く、また、孔1bを介しての内包物質と外部物質との接触が容易である。このため、図7に示されるように、スケルトンナノ粒子1に酸化チタン等の光触媒やガス接触触媒等の不安定な触媒を内包させることで、シリカフレーム間の孔1bによって、内包させた触媒と外部の水・有機溶媒等の溶媒や被触媒物質とが接触することになる。故に、触媒担持体として触媒反応を有効に進めることができる。
 特に、従来の、触媒担持体としてのメソポーラスシリカでは、液体等の通過抵抗性が高いために触媒の分解性能の向上に限界があるのに対し、本実施の形態に係るスケルトンナノ粒子1においては、立方体フレームの各面の表面積に対して各孔1bの占める割合が3%~94%の範囲内であることから、通過抵抗性が低くて触媒担持体として触媒の分解性能を向上させることが可能である。更に、被触媒物質がシリカフレームと親和性のある場合には、触媒反応効率の向上が見込める。
 また、スケルトンナノ粒子1の立方体フレーム状構造による液体等の通過性を利用したフィルタとしての使用が挙げられる。
 例えば、浄水濾過フィルタとして、図8(a)に示すように、外側に大きいサイズのスケルトンナノ粒子1(例えば、200nmの外径を有する粒子)を配置し、内側にそれよりも小さいサイズのスケルトンナノ粒子1(例えば、100nmの外径を有する粒子、40nmの外径を有する粒子)を順に配置することで、スケルトンナノ粒子1により細菌等の不純物の通過が阻止され、スケルトンナノ粒子1の孔1bには細菌等の不純物以外の液体がその液圧によって通過することになり、細菌等の不純物が濾過される。
 また、マスクや空気フィルタとして、図8(b)に示すように、外側から内側にかけて徐々に粒子径のサイズを小さくしてスケルトンナノ粒子1を配置(例えば、外側から順に、200nm、100nm、40nmの外径を有するスケルトンナノ粒子1を配置)した積層型のフィルタとすることで、スケルトンナノ粒子1により花粉やインフルエンザウィルスの通過を阻止することも可能である。殊に、本実施の形態に係るスケルトンナノ粒子1によれば、立方体フレームの各面の表面積に対して各孔1bの占める割合が3%~94%の範囲内と孔1bの開口率が高いことから、従来の繊維積層の隙間式フィルタやプレートに穿孔したフィルタと比較して、花粉やインフルエンザウィルスの通過を高度に阻止しつつ、外気を十分に通過させることができ、マスク使用時における息苦しさが改善される。また、使用後は焼却処分が可能であり、有機繊維を使用した場合のように焼却時にガスを発生しないので、環境保全への貢献にも繋がる。
 更に、粒子径サイズによる液体等の通過性の違いを利用した電解液保持体としての使用が挙げられる。
 従来のリチウムポリマー電池におけるミクロ相分離ゲル(MPSD)においては、乾燥によって電解質が染み出してしまうという問題点があった。
 そこで、例えば、図9に示されるように、200nmの外径を有するスケルトンナノ粒子1の周りに100nmの外径を有するスケルトンナノ粒子1、更にその周りに40nmの外径を有するスケルトンナノ粒子1を配置して、200nmの外径を有するスケルトンナノ粒子1にリチウムイオン電池の電解液を充填することで、イオンの移動量は確保しつつ、100nm及び40nmの外径を有するスケルトンナノ粒子1によって、電解質の外部への流出を抑制し電解質を保持することができる。
 続いて、スケルトンナノ粒子1の立方体フレーム状構造を利用した超撥水性膜・超親水性膜としての使用が挙げられる。
 ここで、スケルトンナノ粒子1を樹脂中に分散させて基板上に塗布(配列)すると、その凝集性により基板上にナノサイズの凹凸を形成させることができる。そして、スケルトンナノ粒子1によって基板上に凹凸を形成した場合、スケルトンナノ粒子1が立方体フレーム状構造であるため、図10に示されるように、基板表面上に近づいた液状物やゲル状物に対しての接触がスケルトンナノ粒子1のシリカフレーム部分のみとなり、接触面積が少なくなる。このため、超撥水性膜・超親水性膜として有効である。殊に、本実施の形態に係るスケルトンナノ粒子1によれば、コア粒子となる炭酸カルシウム粒子2の孔径、また、有機溶媒やシリコンアルコキシド6や塩基触媒の量を調節することにより、スケルトンナノ粒子1の外径を容易に制御できることから、基板上に形成させるナノサイズの凹凸の大きさの制御も簡単であり、容易に超撥水性表面・超親水性表面を形成することができる。
 また、スケルトンナノ粒子1によって基板上に凹凸を形成することで、基板に対して斜めに入射する可視光線はスケルトンナノ粒子1のシリカフレーム部分で屈折・散乱させることができ、基板に対して略垂直に入射する可視光線はスケルトンナノ粒子1の孔1bによって通過させることができることから、反射防止膜としての利用が挙げられる。
 その他、スケルトンナノ粒子1のシリカフレーム部分による屈折・散乱の光拡散性を利用してシワを目立たなくしたり、肌の質感の変化をさせて光学的なリフトアップ効果を演出したりする化粧品(例えば、口紅、ファンデーション)としての応用が挙げられる。
 また、スケルトンナノ粒子1の孔1bに皮脂等を吸収させるように設計し皮脂吸収材としての応用や、更には、シリカ殻1aの表面改質によって親水性・疎水性を持たせて肌の皮脂のみを吸収し水分を残すことができる化粧品(例えば、油取紙)としての応用が挙げられる。
 更に、スケルトンナノ粒子1の内包性を利用し、磁性・香料・インク・温度応答・発色・紫外線発光等を内包して運搬するマイクロカプセルとしての応用も可能であり、例えば、インク内包カプセルの場合には、レジスターの印字衝撃でカプセルを崩壊させ、内包インクを発色させるといった使用形態がある。
 このように、本実施の形態のスケルトンナノ粒子1及びその製造方法によれば、シリカ殻からなるナノ粒子の応用分野を更に広げることができ、多用途に使用可能である。
 殊に、本実施の形態のスケルトンナノ粒子1によれば、上述の如く、シリカフレームの幅Wが3nm~115nmの範囲内であることから、外部環境によって容易に破壊されることがなく、また、透明性が高い。よって、シリカ殻の高い強度や、高い透明度が要求される用途にも対応可能である。また、立方体フレームの各面の表面積に対して各孔1bの占める割合が3%~94%の範囲内であることから、様々な用途に使用し易い。
 ここで、本発明者らは、更に、生産の効率化を図るために、即ち、シリカ形成工程における反応時間(処理時間)がスケルトンナノ粒子1の回収率等の諸性質に及ぼす影響について調べるために、シリカ形成工程における反応時間(処理時間)を様々変えて実施例8乃至実施例11並びに比較例3及び比較例4とし、製造試験を実施した。
 各実施例及び比較例においては、乾燥粉末状態の炭酸カルシウム粒子2の表面を有機酸3で被覆してなる有機酸被覆炭酸カルシウム粒子4として、ロジン酸被覆炭酸カルシウム粒子(白石カルシウム(株)の製品名「ホモカルD(立方体状形態,平均一次粒子径:80nm)」)を用い、このロジン酸被覆炭酸カルシウム粒子2.50gを、39.96ml(31.53g)の有機溶媒としてのエタノール5に超音波ホモジナイザーを用いて5分間分散させ、更に、シリコンアルコキシド6としてのテトラエトキシシラン(TEOS)(信越化学工業(株)製の「KBE-04」)1.61ml(1.50g)を添加して振とう器(150rpm、25℃)で10分間分散させ、これに、塩基触媒としての28%試薬アンモニア(NH4OH)水8を0.86gと蒸留水7を8.43ml(8.43g)加え、振とう器(150rpm、25℃)において後述の表2に示す各反応時間でゾル‐ゲル反応を進行させ、シリカ形成工程(ステップS2)を実施した。
 続いて、反応懸濁液を遠心分離(3000rpm、10分間)して上澄みを除去した後、エタノール洗浄を行い、再び遠心分離(3000rpm、10分間)し、蒸留水で洗浄、更に遠心分離(3000rpm、10分間)を行った後、3N塩酸水溶液4.71mlと蒸留水188.40mlを加えて、炭酸カルシウム2を溶解させ、炭酸カルシウム溶解工程(ステップS3)を実施した。
 その後は、遠心分離(3000rpm、10分間)を行い、蒸留水で洗浄後、エタノール置換して80℃で一晩乾燥させた。
 そして、このようにして得られた生成物の回収量の測定及び顕微鏡観察を行った。
 以上説明した実施例8乃至実施例11並びに比較例3及び比較例4における配合内容を表2に纏めて示す。また、実施例8乃至実施例11並びに比較例3及び比較例4における各反応時間で製造実験を行った結果を纏めて表3に示し、得られた生成物の顕微鏡写真を図12乃至図14に示す。
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
 表3及び図12乃至図14に示したように、比較例3及び比較例4において、シリカ形成工程における反応時間が30分以下では、立方体フレーム状をなすスケルトンナノ粒子が生成されなかったのに対し、実施例8乃至実施例11において、係る反応時間を60分以上にすると、立方体フレーム状をなすスケルトンナノ粒子1が生成された。そして、実施例8と実施例9乃至実施例12の比較から、シリカ形成工程における反応時間を90分以上にすると、スケルトンナノ粒子1の回収率が顕著に高くなった。
 また、図13乃至図14に示した実施例8乃至実施例12に係るスケルトンナノ粒子1の顕微鏡写真から、反応時間によって生成されるスケルトンナノ粒子1の粒子形態、具体的には、シリカフレームの幅Wや、シリカフレームに囲まれた孔1bの大きさ(開口径A)等が変化することはなかった。
 これより、シリカ形成工程における反応時間は、スケルトンナノ粒子1の粒子形態に影響を与えることはなく、回収率に影響を与え、反応時間を90分以上にすることで、スケルトンナノ粒子1の回収率が高くなることが確認された。故に、スケルトンナノ粒子1の生産性を高めるためには、シリカ形成工程における反応時間を90分以上とすることが望ましい。
 ところで、上記実施の形態及び実施例においては、有機溶媒としてエタノール5を使用したが、シリカフレーム間に孔をする立方体フレーム状をなすスケルトンナノ粒子を形成可能な有機溶媒について検討した結果を説明する。
 本発明者らは、鋭意実験研究を重ねた結果、有機溶媒の種類によってシリカ形成粒子10の粒子形態が変化することを見出し、種々の有機溶媒を使用して実施例12乃至実施例17並びに比較例5及び比較例11とし製造実験を行った。なお、ここでの実施条件も、上述の各実施例及び比較例と同様に行った。
 即ち、乾燥粉末状態の炭酸カルシウム(CaCO3 )粒子2の表面を有機酸3で被覆してなる有機酸被覆炭酸カルシウム粒子4としてロジン酸被覆炭酸カルシウム粒子(白石カルシウム(株)の製品名「ホモカルD(立方体状形態,平均一次粒子径:80nm)」)を用い、このロジン酸被覆炭酸カルシウム粒子を、後述の表4に示す各種有機溶媒に超音波ホモジナイザーを用いて5分間分散させ、更に、シリコンアルコキシド6としてのテトラエトキシシラン(TEOS)(信越化学工業(株)の製品名「KBE-04」)を添加して振とう器(150rpm、25℃)で10分間分散させ、これに、塩基触媒としての28%試薬アンモニア(NH4OH)水8と蒸留水7を加え、振とう器(150rpm、25℃)において90分間反応(ゾル‐ゲル反応)させシリカ形成工程(ステップS2)を実施した。
 続いて、反応懸濁液を遠心分離(3000rpm、10分間)して上澄みを除去した後、エタノール洗浄を行い、再び遠心分離(3000rpm、10分間)し、蒸留水で洗浄、更に遠心分離(3000rpm、10分間)を行った後、3N塩酸水溶液4.71mlと蒸留水188.40mlを加えて、炭酸カルシウム2を溶解させ、炭酸カルシウム溶解工程(ステップS3)を実施した。
 その後は、遠心分離(3000rpm、10分間)を行い、蒸留水で洗浄後、エタノール置換して80℃で一晩乾燥させた。
 そして、このようにして得られた生成物の顕微鏡観察を行った。
 以上説明した実施例12乃至実施例17における各配合内容と各有機溶媒を使用して製造実験を行った結果を纏めて表4に、また、比較例5及び比較例11における各配合内容と各有機溶媒を使用して製造実験を行った結果を纏めて表5に示す。さらに、得られた生成物の顕微鏡写真等を図15乃至図21に示す。
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
 表4、並びに、図15、図16、図18及び図19に示したように、実施例12乃至実施例17において、有機溶媒として、エタノール、1‐プロパノール、2‐プロパノール、1‐ブタノールのアルコール系、ケトン系のメチルエチルケトン、水への溶解性が高いエーテル系のジオキサンを使用することで、シリカフレーム間に孔をする立方体フレーム状をなすスケルトンナノ粒子1を形成できることが明らかとなった。
 これに対し、表5及び図17に示したように、比較例5及び比較例6において、同じアルコール系でもメタノールや1‐オクタノールでは、シリカ殻が立方体フレーム状の粒子形態とならず、シリカ殻の面で囲まれた立方体状形態の中空粒子が形成された。また、表5や図20に示したように、比較例7乃至比較例11において、ケトン系のアセトン、グリコールやジエチレングリコールのエチレングリコール系、水への溶解性が低いエーテル系のジエチルエーテル、極性非プロトン溶媒系のN,N‐ジメチルホルムアルデヒド(DMF)では、シリカフレーム間に孔を有する立方体フレーム状をなすスケルトンナノ粒子1を形成できないことが確認された。
 さらに、図21に示したように、実施例12、実施例13及び実施例15の比較から、同じアルコール系でも形成されたスケルトンナノ粒子1において孔が占める割合(%)に違いがみられ、特に、1‐プロパノールを使用して形成された実施例13のスケルトンナノ粒子1は、エタノールを使用した実施例12のスケルトンナノ粒子1や1‐ブタノールを使用した実施例15のスケルトンナノ粒子1と比較して、孔1bが大きく、フレームが細い粒子形態であった。即ち、有機溶媒の種類によってスケルトンナノ粒子1の粒子形態が変化することが確認された。故に、有機溶媒の種類によっても、シリカフレームの幅Wや、シリカフレームに囲まれた孔1bの大きさ(開口径A)等の粒子形態を制御できることが可能である。
 なお、これらのことから、立方体フレーム状をなすスケルトンナノ粒子1の形成には、有機溶媒の極性等が有機酸被覆炭酸カルシウム及びTEOSとの相互作用性(親和性・反応性)に関係していると考えられる。
 そして、このように有機溶媒として、エタノール、1‐プロパノール、1‐ブタノールのアルコール系や、ケトン系のメチルエチルケトンや、エーテル系のジオキサンを使用した実施例12乃至実施例17においては、それらの有機溶媒によって有機酸3の一部が確実に溶解されるものの、それら有機溶媒の有機酸3に対する溶解性が小さく、また、炭酸カルシウム粒子2やシリコンアルコキシド6との相互作用性(親和性・反応性)が弱く、このため、有機酸3の溶解によって表出した炭酸カルシウム2のエッジ部分のみにシリコンアルコキシド6の加水分解によって生成したシリカ殻1aが吸着されやすく、シリカフレーム間に孔をする立方体フレーム状をなすスケルトンナノ粒子1が形成されたと思われる。
 これに対し、有機溶媒としてメタノール、1-オクタノールを使用した比較例5、比較例6においては、有機溶媒の有機酸3に対する溶解性が大きく、また、炭酸カルシウム粒子2やシリコンアルコキシド6との相互作用性(親和性・反応性)が強く、有機酸3の溶解によって表出した炭酸カルシウム粒子2の表面と有機溶媒の相互作用により、炭酸カルシウム粒子2の表面の大部分が有機溶媒に覆わる。そして、有機溶媒とシリコンアルコキシドとの相互作用によりシリコンアルコキシドの加水分解が促進され、炭酸カルシウム-有機溶媒、有機溶媒-シリコンアルコキシドの錯体形成によって炭酸カルシウム粒子2の表面全体にシリコンアルコキシド6の加水分解によって生じたシリカ殻1aの形成が促進され、シリカ殻の面で囲まれた立方体状形態の中空粒子が形成されたと思われる。
 これより、本発明を実施する場合においては、有機溶媒としてエタノール5の他にも、プロパノール、ブタノール等のアルコール系、メチルエチルケトン等のケトン系、ジオキサン等のエーテル系を使用することができる。特に、アルコール系、ケトン系、エーテル系の溶媒では、上記実施例12乃至実施例17に示したようにシリカ形成工程において短い反応時間でも炭酸カルシウムのエッジ部分のみにシリカ殻1aを形成できることから、反応効率が高く生産効率の向上を図ることができる。また、アルコール系、ケトン系、エーテル系の溶媒はいずれも入手や取扱いが容易であり、かつ、比較的安価である。したがって、低コスト化を図ることも可能である。
 なお、シリカ殻の面で囲まれた立方体状形態の中空粒子と比較して、立方体フレーム状をなすスケルトンナノ粒子1においては、シリカフレーム間に孔1bを有することから透明性や光透過性がより高く、入射する光がシリカフレームによって高頻度で屈折・散乱して光拡散性・光散乱性が高い。このため、例えば、スケルトンナノ粒子1のLEDライト等への照明器具への使用において、シリカ殻の面で囲まれた立方体状形態の中空粒子を使用した場合より、発光効率の向上が期待できる。
 ところで、上記実施の形態においては、シリカ殻1aの表面を保護して生産効率の向上や分散性の向上を図るために変性シリコーンオイル9を混合しているが、本発明者らの鋭意実験研究の結果、シリカ殻1aの表面を保護するシリコーンオイルとして、アミノ変性シリコーンオイル(シリコーンオイルのメチル基の一部をアミノアルキル基に置換えた構造をもつもの)を使用することで、スケルトンナノ粒子1において回収率が高くなり、かつ、低い粒度分布が得られることが確認されている。
 即ち、本発明者らの実験研究によって、アミノ変性シリコーンオイルは、シリカ形成粒子10の表面(シリカ殻1a)への反応性がよく、アミノ変性シリコーンオイルを使用することで、シリカ形成粒子10形成後の洗浄処理において、フィルタリングしたり、凝集剤を用いたりすることなく、遠心分離によって目的とするシリカ形成粒子10のみを沈降分離させ、ゾル‐ゲル法により生成された目的とするシリカ形成粒子10以外の中実シリカ粒子等の副産物を容易に除去することができ、さらに、炭酸カルシウム2溶解後の洗浄処理においても、フィルタリングしたり、凝集剤を用いたりすることなく、遠心分離によって目的とするスケルトンナノ粒子1のみを沈降分離させ、塩酸処理による炭酸カルシウム2の溶解で生じた塩酸カルシウム(残留カルシウム塩)等を容易に除去することができ、スケルトンナノ粒子1のみが効率よく回収されて、高い回収率でスケルトンナノ粒子1が得られることが確認されている。
 また、アミノ変性シリコーンオイルはシリカ形成粒子10表面(シリカ殻1a)への反応性が高く、アミノ変性シリコーンオイルによってシリカ殻1aの表面が高度に保護されることから、シリカ形成粒子10同士の凝集が防止され、このシリカ形成粒子10内部の炭酸カルシウム2を溶解することによって得られるスケルトンナノ粒子1においてもその凝集が防止されて、粒度分布が低く、分散性が高いものとなる。
 さらに、このアミノ変性シリコーンオイルは、シリカ形成工程におけるシリカ殻1a形成の反応(ゾル‐ゲル反応)と同時の混合により、シリカ形成粒子10のシリカ殻1aの表面を保護できることから、製造効率もよい。
 これより、シリコーンオイルとしては、アミノ変性シリコーンオイルが好ましい。より好ましくは、側鎖型モノアミン変性シリコーンオイルである。
 ところで、本発明を実施する場合には、乾燥粉末状態の炭酸カルシウム粒子2として、市販の炭酸カルシウム粒子、例えば、白石工業株式会社の合成炭酸カルシウム(製品名「Brilliant(一次粒子径:150nm)」)等を購入し、これにロジン酸等の有機酸3を被覆処理して乾燥粉末状態の有機酸被覆炭酸カルシウム粒子4とすることもできるが、有機酸被覆炭酸カルシウム粒子4として、市販の有機酸被覆炭酸カルシウム粉末を用いることも可能である。このような市販の有機酸被覆炭酸カルシウム粉末としては、例えば、白石工業(株)のロジン酸被覆炭酸カルシウム粒子(製品名「ホモカルD(一次粒子径:80nm)」、「白艶華DD(一次粒子径:50nm)」、「白艶華O(一次粒子径:30nm)」等)がある。
 そして、乾燥粉末状態の有機酸被覆炭酸カルシウム粒子4の大きさは、顕微鏡法により測定した外径が26nm~280nmの範囲内であることが好ましい。これによって、最終的に得られるスケルトンナノ粒子1の顕微鏡法により測定した外径を30nm~300nmの範囲内とすることができる。
 このように、本発明においては、乾燥粉末状態の炭酸カルシウム粒子2の表面を有機酸3で被覆した乾燥粉末状態の有機酸被覆炭酸カルシウム粒子4が使用されるため、原料の変質が少なくて長期間安定しており、品質管理にコストがかからない。特に、有機酸被覆炭酸カルシウム粒子4としてのロジン酸被覆炭酸カルシウムは安価に入手できる。さらに、アルコール系、ケトン系、エーテル系等の有機溶媒も、長期間安定しており、品質管理にコストがかからないうえ、低価格で入手できる。
 故に、原料が安価であり、製造コストもかからないことから、低コストで製造でき、さらに、原料の変質も少ないことから生産効率の向上を図ることができる。
 なお、本発明を実施するに際しては、スケルトンナノ粒子の製造方法における各成分の配合量・配合比、反応時間、反応温度等についても、スケルトンナノ粒子の製造方法のその他の工程についても、上記各実施の形態及び各実施例に限定されるものではない。
 また、本発明の実施の形態で挙げている数値は、臨界値を示すものではなく、実施に好適な好適値を示すものであるから、上記数値を若干変更してもその実施を否定するものではない。
 

Claims (15)

  1.  30nm~300nmの範囲内の外径を有し、シリカ殻からなるナノ粒子であって、
     前記シリカ殻は全体が六面で形成される立方体フレーム状をなしており、前記立方体フレームの内部は空洞で、前記立方体フレームの各面における四辺形状のシリカフレーム間に孔を有することを特徴とするスケルトンナノ粒子。
  2.  前記各孔の占める割合が、前記立方体フレームの各面の表面積に対して、3%~94%の範囲内であることを特徴とする請求項1に記載のスケルトンナノ粒子。
  3.  前記シリカフレームの幅が5nm~115nmの範囲内であることを特徴とする請求項1または請求項2に記載のスケルトンナノ粒子。
  4.  前記スケルトンナノ粒子は、所定の大きさの外径を有し立方体状形態で乾燥粉末状態の炭酸カルシウム粒子の表面を有機酸で被覆してなる乾燥粉末状態の有機酸被覆炭酸カルシウム粒子を、当該有機酸被覆炭酸カルシウム粒子における有機酸の一部を溶解する有機溶媒に分散させ、更に、シリコンアルコキシド及び塩基触媒を混合し前記炭酸カルシウム粒子のエッジに沿ってシリカ殻を形成して、シリカ形成粒子とし、その後、当該シリカ形成粒子の内部における前記炭酸カルシウムを酸処理によって溶解させてなることを特徴とする請求項1乃至請求項3の何れか1つに記載のスケルトンナノ粒子。
  5.  前記有機酸は、ロジン酸であることを特徴とする請求項4に記載のスケルトンナノ粒子。
  6.  前記有機溶媒は、アルコール系、ケトン系、エーテル系から選ばれる少なくとも1種であることを特徴とする請求項4または請求項5に記載のスケルトンナノ粒子。
  7.  媒質中に、更に、シリコーンオイルを添加してなることを特徴とする請求項4乃至請求項6の何れか1つに記載のスケルトンナノ粒子。
  8.  前記シリカ形成粒子を形成する過程において、超音波処理を行ったことを特徴とする請求項4乃至請求項7の何れか1つに記載のスケルトンナノ粒子。
  9.  30nm~300nmの範囲内の外径を有する立方体フレーム状のシリカ殻からなり、前記立方体フレームの内部は空洞で、前記立方体フレームの各面における四辺形状のシリカフレーム間に孔を有するナノ粒子の製造方法であって、
     所定の大きさの外径を有し立方体状形態で乾燥粉末状態の炭酸カルシウム粒子の表面を有機酸で被覆して乾燥粉末状態の有機酸被覆炭酸カルシウム粒子とする有機酸被覆炭酸カルシウム形成工程と、
      前記有機酸被覆炭酸カルシウム粒子における有機酸の一部を溶解する有機溶媒に、前記有機酸被覆炭酸カルシウム粒子を分散させ、更に、シリコンアルコキシド及び塩基触媒を混同し前記炭酸カルシウム粒子のエッジに沿ってシリカ殻を形成してシリカ形成粒子とするシリカ形成工程と、
     前記シリカ形成粒子の内部における前記炭酸カルシウムを酸処理によって溶解させる炭酸カルシウム溶解工程と
     を具備することを特徴とするスケルトンナノ粒子の製造方法。
  10.  前記各孔の占める割合が、前記立方体フレームの各面の表面積に対して、3%~94%の範囲内であることを特徴とすることを特徴とする請求項9に記載のスケルトンナノ粒子の製造方法。
  11.  前記シリカフレームの幅が5nm~115nmの範囲内であることを特徴とする請求項9または請求項10に記載のスケルトンナノ粒子の製造方法。
  12.  前記有機酸は、ロジン酸であることを特徴とする請求項9乃至請求項11の何れか1つに記載のスケルトンナノ粒子の製造方法。
  13.  前記有機溶媒は、アルコール系、ケトン系、エーテル系から選ばれる少なくとも1種であることを特徴とする請求項9乃至請求項12の何れか1つに記載のスケルトンナノ粒子の製造方法。
  14.  前記シリカ形成工程において、媒質中に、更に、シリコーンオイルを混合したことを特徴とする請求項9乃至請求項13の何れか1つに記載のスケルトンナノ粒子の製造方法。
  15.  前記シリカ形成工程において、超音波処理を行ったことを特徴とする請求項9乃至請求項14の何れか1つに記載のスケルトンナノ粒子の製造方法。
PCT/JP2012/055330 2011-03-30 2012-03-02 スケルトンナノ粒子及びその製造方法 WO2012132757A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/007,490 US9493361B2 (en) 2011-03-30 2012-03-02 Skeleton nanoparticles and method for manufacturing the same
JP2013507304A JP5669152B2 (ja) 2011-03-30 2012-03-02 スケルトンナノ粒子及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-076062 2011-03-30
JP2011076062 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012132757A1 true WO2012132757A1 (ja) 2012-10-04

Family

ID=46930504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055330 WO2012132757A1 (ja) 2011-03-30 2012-03-02 スケルトンナノ粒子及びその製造方法

Country Status (3)

Country Link
US (1) US9493361B2 (ja)
JP (1) JP5669152B2 (ja)
WO (1) WO2012132757A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11266596B2 (en) * 2013-12-16 2022-03-08 The University Of British Columbia Self-fueled particles for propulsion through flowing aqueous fluids

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9859494B1 (en) * 2016-06-29 2018-01-02 International Business Machines Corporation Nanoparticle with plural functionalities, and method of forming the nanoparticle
TWI757349B (zh) * 2016-11-07 2022-03-11 日商日揮觸媒化成股份有限公司 研磨用氧化矽系粒子及研磨材
TWI762528B (zh) * 2016-12-02 2022-05-01 日商日揮觸媒化成股份有限公司 研磨用氧化矽系粒子及研磨材
JP2019098292A (ja) * 2017-12-07 2019-06-24 トヨタ自動車株式会社 内燃機関の排気浄化触媒
CN109900846B (zh) * 2019-03-29 2021-05-14 湖北民族大学 一种应用SiO2@松香基高分子色谱柱分离天麻素及其衍生物的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107857A (ja) * 2007-10-26 2009-05-21 Grandex Co Ltd 分散性シリカナノ中空粒子及びシリカナノ中空粒子の分散液の製造方法
JP2009234854A (ja) * 2008-03-27 2009-10-15 Jsr Corp シリカ系中空粒子の製造方法
JP2010105840A (ja) * 2008-10-29 2010-05-13 Dic Corp カーボン含有金属酸化物中空粒子及びその製造方法
JP2010131592A (ja) * 2008-10-31 2010-06-17 Hitachi Chem Co Ltd 中空状無機粒子の前駆体、中空状無機粒子及びこの製造方法、並びに中空状無機粒子を用いた光学部材及び光学部材体
JP2010215490A (ja) * 2009-02-17 2010-09-30 Nagoya Institute Of Technology 低密度シリカ殻からなるナノ中空粒子及びその製造方法
JP2010222147A (ja) * 2009-03-19 2010-10-07 Kao Corp 板状シリカ粒子の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19738481C2 (de) * 1997-09-03 1999-08-12 Solvay Alkali Gmbh In Wässrigen Systemen mit oberflächenaktiven Stoffen gecoatetes Calciumcarbonat sowie Verfahren zur gesteuerten bimolekularen Beschichtung von Calciumcarbonat - Teichen
CN100335567C (zh) * 2002-03-20 2007-09-05 新加坡纳米材料科技有限公司 CaCO3/SiO2·nH2O纳米复合颗粒和空心SiO2·nH2O纳米材料及其制备方法
JP4654428B2 (ja) 2004-03-18 2011-03-23 国立大学法人 名古屋工業大学 高分散シリカナノ中空粒子及びそれを製造する方法
KR20170001758A (ko) * 2004-12-22 2017-01-04 솔베이(소시에떼아노님) 알칼리 토금속 카르보네이트의 내산성 입자
JP5218720B2 (ja) * 2007-03-28 2013-06-26 Jsr株式会社 シリカ中空粒子分散体の製造方法
WO2010050263A1 (ja) * 2008-10-31 2010-05-06 旭硝子株式会社 中空粒子、その製造方法、塗料組成物および物品
WO2013073475A1 (ja) * 2011-11-15 2013-05-23 国立大学法人名古屋工業大学 ナノ中空粒子およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107857A (ja) * 2007-10-26 2009-05-21 Grandex Co Ltd 分散性シリカナノ中空粒子及びシリカナノ中空粒子の分散液の製造方法
JP2009234854A (ja) * 2008-03-27 2009-10-15 Jsr Corp シリカ系中空粒子の製造方法
JP2010105840A (ja) * 2008-10-29 2010-05-13 Dic Corp カーボン含有金属酸化物中空粒子及びその製造方法
JP2010131592A (ja) * 2008-10-31 2010-06-17 Hitachi Chem Co Ltd 中空状無機粒子の前駆体、中空状無機粒子及びこの製造方法、並びに中空状無機粒子を用いた光学部材及び光学部材体
JP2010215490A (ja) * 2009-02-17 2010-09-30 Nagoya Institute Of Technology 低密度シリカ殻からなるナノ中空粒子及びその製造方法
JP2010222147A (ja) * 2009-03-19 2010-10-07 Kao Corp 板状シリカ粒子の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11266596B2 (en) * 2013-12-16 2022-03-08 The University Of British Columbia Self-fueled particles for propulsion through flowing aqueous fluids

Also Published As

Publication number Publication date
US9493361B2 (en) 2016-11-15
US20140017496A1 (en) 2014-01-16
JP5669152B2 (ja) 2015-02-12
JPWO2012132757A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5669152B2 (ja) スケルトンナノ粒子及びその製造方法
JP5747329B2 (ja) シリカ殻からなるナノ中空粒子の製造方法
Abazari et al. Synthesis of a nanostructured pillar MOF with high adsorption capacity towards antibiotics pollutants from aqueous solution
CN103803565B (zh) 一种单分散性中空介孔二氧化硅纳米粒子的制备方法
CN101205420B (zh) 一种磁性无机纳米粒/有序介孔二氧化硅核壳微球及其制备方法
JP4654428B2 (ja) 高分散シリカナノ中空粒子及びそれを製造する方法
Fujiwara et al. Calcium carbonate microcapsules encapsulating biomacromolecules
Agrawal et al. Synthesis of novel tantalum oxide sub-micrometer hollow spheres with tailored shell thickness
JP2013133250A5 (ja)
Tang et al. Coordination polymer nanocapsules prepared using metal–organic framework templates for pH-responsive drug delivery
Wang et al. Fabrication of mesoporous silica nanoparticle with well-defined multicompartment structure as efficient drug carrier for cancer therapy in vitro and in vivo
CN104078229B (zh) 一种二氧化硅包覆磁性氧化铁纳米粒子的方法
Shi et al. Preparation and enzymatic application of flower-like hybrid microcapsules through a biomimetic mineralization approach
US20160002438A1 (en) Core-shell nanoparticles and method for manufacturing the same
CN103351016A (zh) 一种制备球粒状多孔碳酸钙颗粒的方法
Yu et al. Synthesis and characterization of magnetically separable Ag nanoparticles decorated mesoporous Fe3O4@ carbon with antibacterial and catalytic properties
Kang et al. Synthesis of silica nanoparticles using biomimetic mineralization with polyallylamine hydrochloride
Li et al. One-pot synthesis of surface roughness controlled hollow silica spheres with enhanced drug loading and release profiles under ambient conditions in aqueous solutions
CN108384284A (zh) 一种超疏水无机材料粉体及其制备方法
JP2013237601A (ja) 表面改質されたシリカ殻からなる中空粒子およびその製造方法
Nie et al. Preparation and characterization of sodium alginate/phosphate-stabilized amorphous calcium carbonate nanocarriers and their application in the release of curcumin
Hu et al. Antagonistic effect in pickering emulsion stabilized by mixtures of hydroxyapatite nanoparticles and sodium oleate
Jeong et al. Completely green synthesis of rose-shaped Au nanostructures and their catalytic applications
Wang et al. Pickering emulsions based on sustainable MIL-101 (Fe)/CNC hybrid nanoparticles for effective photocatalytic degradation of aqueous dyes
CN108014092A (zh) 一种磁性氧化石墨烯-鱼精蛋白/羧甲基纤维素钠复合物的制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507304

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14007490

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765495

Country of ref document: EP

Kind code of ref document: A1