WO2012129782A1 - 一种工业用纳米针紫色氧化钨的制备方法 - Google Patents

一种工业用纳米针紫色氧化钨的制备方法 Download PDF

Info

Publication number
WO2012129782A1
WO2012129782A1 PCT/CN2011/072279 CN2011072279W WO2012129782A1 WO 2012129782 A1 WO2012129782 A1 WO 2012129782A1 CN 2011072279 W CN2011072279 W CN 2011072279W WO 2012129782 A1 WO2012129782 A1 WO 2012129782A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten oxide
furnace tube
needle
gas
purple
Prior art date
Application number
PCT/CN2011/072279
Other languages
English (en)
French (fr)
Inventor
吴冲浒
吴其山
文晓
林高安
肖满斗
聂洪波
高观金
范超颖
马丽丽
Original Assignee
厦门金鹭特种合金有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门金鹭特种合金有限公司 filed Critical 厦门金鹭特种合金有限公司
Priority to KR1020137012346A priority Critical patent/KR101516900B1/ko
Priority to DE112011103494T priority patent/DE112011103494T5/de
Priority to JP2014501390A priority patent/JP2014513662A/ja
Priority to PCT/CN2011/072279 priority patent/WO2012129782A1/zh
Priority to US13/885,396 priority patent/US20140014875A1/en
Publication of WO2012129782A1 publication Critical patent/WO2012129782A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Definitions

  • the invention relates to a preparation method of industrial nanoneedle purple tungsten oxide.
  • Nano-sized tungsten powder (particle size ⁇ 100nm) and ultra-fine tungsten powder (100nm ⁇ particle size ⁇ 500nm) are prepared nano-scale tungsten carbide powder (particle size ⁇ 100nm), ultra-fine tungsten carbide powder (100nm ⁇ particle size ⁇ 500nm) And ultra-fine grained cemented carbide (100nm ⁇ grain degree ⁇ 500nm) of important raw materials, and nano-scale, ultra-fine tungsten carbide powder and ultra-fine-grained hard alloy are currently high value-added products on the international market.
  • Nano-needle Purple tungsten oxide (Nano-needleWO 2.72 ) as raw material, using Rayleighinstability and In-situhydrogenreduction technology to prepare nano-scale tungsten powder and ultra-fine tungsten powder is a kind of How fast and how to save.
  • Nanoneedle Purple Tungsten Oxide is also a functional nanomaterial with properties such as Photochromic Property, Electrochromic Property, and Gasochromic Property, which can be used in a variety of sensitive components in the future.
  • the nano-needle purple tungsten oxide has a high value and the market demand will be large.
  • large-scale preparation of nano-needle violet has not yet been seen.
  • the object of the present invention is to provide a method for preparing industrial nano-needle purple tungsten oxide to meet market demand.
  • Method for preparing industrial nanoneedle purple tungsten oxide using ammonium paratungstate 5(NH 4 ) 2 O ⁇ 12WO 3 ⁇ 5H 2 O (abbreviated as APT) as raw material; or tungstic acid mWO 3 ⁇ nH 2 O (m ⁇ 1) , n ⁇ 1) is the raw material; or the tungsten oxide WO x (2 ⁇ x ⁇ 3) is used as the raw material; or the tungsten oxide WO x (2 ⁇ x ⁇ 3) existing in the preparation process or in the product is The raw materials are prepared in a tilted, rotating furnace tube.
  • the raw material is pushed from the feeding port into the heated furnace tube by the feeding device, and gradually moves from the low temperature region to the high temperature region under the rotation of the inclined furnace tube; the high temperature of the raw material in the furnace tube
  • the region is reduced by H 2 to form nano-acicular purple tungsten oxide WO 2.72 , and gradually moves to the discharge end under the action of the inclined furnace tube, and the purple tungsten oxide WO 2.72 is discharged from the discharge port by the discharge device and is discharged.
  • the device is cooled to near room temperature.
  • a dedicated air outlet is provided on the furnace tube.
  • Ammonium paratungstate 5(NH 4 ) 2 O ⁇ 12WO 3 ⁇ 5H 2 O was used as a raw material.
  • Ammonia reaction products of formula NH (. 1) 3 or otherwise introduced ammonia NH 3 occurs formula (2) reacted in the tungsten oxide WO x (2 ⁇ x ⁇ 3) catalysis, a reducing gas Hydrogen H 2 .
  • the yellow tungsten oxide WO 3 of the reaction product in the formula (1) will react with the hydrogen product H 2 of the reaction product of the formula (2) and/or the hydrogen H 2 introduced by other means ( The reduction reaction in 3) produces blue tungsten oxide WO 2.9 and water vapor H 2 O.
  • reaction product blue tungsten oxide WO 2.9 in the formula (3) and the reaction product hydrogen H 2 in the formula (1) and/or other introduced hydrogen H 2 generation formula The reduction reaction in (4) produces purple tungsten oxide WO 2.72 and water vapor H 2 O.
  • water vapor H 2 O is generated, and at a high temperature, the water vapor H 2 O can reversibly react with the tungsten oxide WO x (2 ⁇ x ⁇ 3), specifically See equation (5).
  • the hydrated tungsten oxide WO 2 (OH) 2 is formed , and the hydrated tungsten oxide WO 2 (OH) 2 is a gas at a high temperature.
  • the purple tungsten oxide WO 2.72 crystal nucleus formed in the formula (4) can be grown into a needle-like purple tungsten oxide WO 2.72 crystal by vapor phase migration of hydrated tungsten oxide WO 2 (OH) 2 .
  • the gas discharge speed in the furnace tube is controlled by controlling the amount of exhaust air of the exhaust fan installed outside the air outlet, thereby ensuring a positive pressure in the furnace tube of 0 mbar to 5 mbar.
  • the purple tungsten oxide WO 2.72 needle crystal has a diameter of less than 100 nm and belongs to a nano material.
  • Ammonia NH 3 can be introduced through the gas inlet.
  • the introduced ammonia gas NH 3 undergoes a reaction in the formula (2) under the catalysis of the tungsten oxide WO x (2 ⁇ x ⁇ 3) to form a reducing gas hydrogen H 2 .
  • hydrogen gas H 2 can be introduced through the gas inlet.
  • the reaction temperature is raised above 500 ° C, the yellow tungsten oxide WO 3 of the reaction product in the formula (6) is reacted with the reaction product hydrogen H 2 in the formula (2) and/or the introduced hydrogen H 2 (3).
  • the reduction reaction in the process produces blue tungsten oxide WO 2.9 and water vapor H 2 O.
  • Water vapor H 2 O is generated in formula (6), formula (3) and formula (4). At high temperature, water vapor H 2 O can reversibly react with tungsten oxide WO x (2 ⁇ x ⁇ 3). See formula (5) to form hydrated tungsten oxide WO 2 (OH) 2 , and hydrated tungsten oxide WO 2 (OH) 2 is a gas at high temperatures.
  • the purple tungsten oxide WO 2.72 crystal nucleus formed in the formula (4) can be grown into a needle-like purple tungsten oxide WO 2.72 crystal by vapor phase migration of hydrated tungsten oxide WO 2 (OH) 2 .
  • the gas discharge speed in the furnace tube is controlled by controlling the amount of exhaust air of the exhaust fan installed outside the air outlet, thereby ensuring a positive pressure in the furnace tube of 0 mbar to 5 mbar.
  • the purple tungsten oxide WO 2.72 needle crystal has a diameter of less than 100 nm and belongs to a nano material.
  • ammonia NH 3 of formula (2) react at the tungsten oxide WO x (2 ⁇ x ⁇ 3) catalysis at elevated temperatures, a reducing gas of hydrogen H 2.
  • the tungsten oxide WO x (2 ⁇ x ⁇ 3) contains yellow tungsten oxide WO 3 .
  • the yellow tungsten oxide WO 3 undergoes a reduction reaction in the formula (3) with the introduced hydrogen H 2 to form blue tungsten oxide WO 2.9 and water vapor H 2 O.
  • reaction product blue tungsten oxide WO 2.9 in the formula (3) will undergo a reduction reaction with the introduced hydrogen H 2 in the formula (4) to form a purple tungsten oxide WO 2.72 and water. Vapor H 2 O.
  • the tungsten oxide WO x (2 ⁇ x ⁇ 3) contains blue tungsten oxide WO 2.9 .
  • the blue tungsten oxide WO 2.9 will undergo a reduction reaction with the introduced hydrogen H 2 in the formula (3) to form purple tungsten oxide WO 2.72 and water vapor H 2 O.
  • water vapor H 2 O is generated, and if the amount of water vapor H 2 O generated by the reaction of the formula (3) and/or the formula (4) is insufficient, water is introduced through the gas inlet. Vapor H 2 O.
  • the water vapor H 2 O and/or the introduced water vapor H 2 O produced by the reaction of the formula (3) and/or the formula (4) at high temperature may reversibly react with the tungsten oxide WO x (2 ⁇ x ⁇ 3), specifically See formula (5) to form hydrated tungsten oxide WO 2 (OH) 2 , and hydrated tungsten oxide WO 2 (OH) 2 is a gas at high temperatures.
  • the purple tungsten oxide WO 2.72 crystal nucleus formed in the formula (4) can be grown into a needle-like purple tungsten oxide WO 2.72 crystal by vapor phase migration of hydrated tungsten oxide WO 2 (OH) 2 .
  • the gas discharge speed in the furnace tube is controlled by controlling the amount of exhaust air of the exhaust fan installed outside the air outlet, thereby ensuring a positive pressure in the furnace tube of 0 mbar to 5 mbar.
  • the purple tungsten oxide WO 2.72 needle crystal has a diameter of less than 100 nm and belongs to a nano material.
  • the invention realizes large-scale industrial production of nano-needle purple tungsten oxide, and meets the market demand.
  • Figure 1 is a map obtained after XRD analysis of the product of Example 1, a Co target;
  • Fig. 2 is a view showing the microscopic morphology of the sample of the first embodiment using a Hitachi S-4800II cold field emission scanning electron microscope.
  • Figure 3 is a map obtained after XRD analysis of the product of Example 2, a Co target
  • Fig. 4 is a view showing the microscopic morphology of the sample of the second embodiment using a Hitachi S-4800II cold field emission scanning electron microscope.
  • Figure 5 is a chart obtained after XRD analysis of the product of Example 3, Co target;
  • Fig. 6 is a view showing the microscopic morphology of the sample of the third embodiment using a Hitachi S-4800II cold field emission scanning electron microscope.
  • the ammonium paratungstate 5(NH 4 ) 2 O ⁇ 12WO 3 ⁇ 5H 2 O is pushed from the feed port into the heated furnace tube by the feeding device from the feeding end, under the rotation of the inclined furnace tube, Gradually moving from the low temperature zone to the high temperature zone, when ammonium paratungstate 5(NH 4 ) 2 O ⁇ 12WO 3 ⁇ 5H 2 O enters the temperature range of 400 ° C to 600 ° C, the reaction in the formula (1) occurs to form tungsten trioxide WO 3 , ammonia gas NH 3 and water vapor H 2 O.
  • formula (3) and formula (4) is a good catalyst for the decomposition of ammonia gas NH 3 , and ammonia nitrogen NH 3 generation in the furnace tube
  • the thermal decomposition reaction in (2) generates a reducing gas hydrogen H 2 .
  • the material continues to move to the high temperature zone under the action of the tilting furnace tube.
  • the reaction in the formula (3) occurs; when the material temperature rises to 750 ° C - 800 ° C, occurs.
  • the reaction in the formula (4) produces a purple tungsten oxide WO 2.72 crystal nucleus.
  • Water vapor H 2 O is produced in the formulas (1), (3) and (4).
  • the furnace tube is provided with a dedicated air outlet, and the gas discharge speed in the furnace tube is controlled by controlling the amount of exhaust air of the air suction fan installed outside the air outlet, thereby ensuring a positive pressure in the furnace tube of 0.2 mbar to 2.0 mbar.
  • the water vapor H 2 O reacts reversibly with the tungsten oxide WO x ( 2 ⁇ x ⁇ 3), and specifically, the formula (5) produces hydrated tungsten oxide WO 2 (OH) 2 gas.
  • the purple tungsten oxide WO 2.72 crystal nucleus formed in the formula (4) was grown into nano-acicular purple tungsten oxide WO 2.72 crystal by vapor phase migration of hydrated tungsten oxide WO 2 (OH) 2 .
  • the nano-acicular purple tungsten oxide WO 2.72 crystal continues to move in the furnace tube to the discharge end.
  • the discharge end of the furnace tube is not heated, and the purple tungsten oxide WO 2.72 is discharged from the discharge port by the discharge device after being cooled to near room temperature.
  • the purple tungsten oxide WO 2.72 produced in the first example was used as a sample. After the sample was ground, the phase composition of the sample was analyzed by PANalytical X'pertPROXRD. The Co target was scanned at a step size of 0.033°, and each step was kept for 10 s.
  • Figure 1 is a map obtained after XRD analysis. As can be seen from Figure 1, the sample is a relatively pure purple tungsten oxide WO 2.72 .
  • the purple tungsten oxide WO 2.72 produced in Example 1 was used as a sample, and the microstructure of the sample was observed by a Hitachi S-4800II cold field emission scanning electron microscope. As can be seen from Fig. 2, the purple tungsten oxide WO 2.72 needle crystal has a diameter of 20-80 nm and belongs to a nano material.
  • the reaction in the formula (6) occurs to form tungsten trioxide WO 3 and water vapor H. 2 O.
  • the tungsten oxide WO x (2 ⁇ x ⁇ 3 ) is a good catalyst for the decomposition of ammonia gas NH 3 , and the ammonia gas NH 3 is subjected to thermal decomposition reaction in the formula (2) in the furnace tube to generate a reducing gas hydrogen gas H 2 .
  • the material continues to move to the high temperature zone under the action of the tilting furnace tube.
  • the reaction in the formula (3) occurs; when the material temperature rises to 750 ° C - 800 ° C, occurs.
  • the reaction in the formula (4) produces a purple tungsten oxide WO 2.72 crystal nucleus.
  • the furnace tube is provided with a dedicated air outlet, and the gas discharge speed in the furnace tube is controlled by controlling the amount of exhaust air of the air suction fan installed outside the air outlet, thereby ensuring a positive pressure in the furnace tube of 0.2 mbar to 2.0 mbar.
  • the water vapor H 2 O reacts reversibly with the tungsten oxide WO x ( 2 ⁇ x ⁇ 3), and specifically, the formula (5) produces hydrated tungsten oxide WO 2 (OH) 2 gas.
  • the purple tungsten oxide WO 2.72 crystal nucleus formed in the formula (4) was grown into nano-acicular purple tungsten oxide WO 2.72 crystal by vapor phase migration of hydrated tungsten oxide WO 2 (OH) 2 .
  • the nano-acicular purple tungsten oxide WO 2.72 crystal continues to move in the furnace tube to the discharge end.
  • the discharge end of the furnace tube is not heated, and the purple tungsten oxide WO 2.72 is discharged from the discharge port by the discharge device after being cooled to near room temperature.
  • the purple tungsten oxide WO 2.72 produced in the second embodiment was used as a sample. After the sample was ground, the phase components of the sample were analyzed by PANalytical X'pertPROXRD. The Co target was scanned at a step size of 0.033°, and each step was kept for 10 s.
  • Figure 3 is a map obtained after XRD analysis. As can be seen from Figure 3, the sample is a relatively pure purple tungsten oxide WO 2.72 .
  • the purple tungsten oxide WO 2.72 produced in the second embodiment was used as a sample, and the microstructure of the sample was observed by a Hitachi S-4800II cold field emission scanning electron microscope. As can be seen from Fig. 4, the purple tungsten oxide WO 2.72 needle crystal has a diameter of 20-80 nm and belongs to a nano material.
  • the yellow tungsten oxide WO 3 is pushed from the feed port into the heated furnace tube by the feeding device from the feeding end, and gradually moves from the low temperature region to the high temperature region under the action of the inclined furnace tube.
  • a tungsten oxide WO x (2 ⁇ x ⁇ 3) is good ammonia NH 3 decomposing catalyst, so that ammonia NH 3 in the furnace tube heat occurs (2) the decomposition reaction, a reducing gas of hydrogen H 2.
  • the material continues to move to the high temperature zone under the action of the tilting furnace tube.
  • the reaction in the formula (3) occurs; when the material temperature rises to 750 ° C - 800 ° C, occurs.
  • the reaction in the formula (4) produces a purple tungsten oxide WO 2.72 crystal nucleus.
  • the furnace tube is provided with a dedicated air outlet, and the gas discharge speed in the furnace tube is controlled by controlling the amount of exhaust air of the air suction fan installed outside the air outlet, thereby ensuring a positive pressure in the furnace tube of 0.2 mbar to 2.0 mbar.
  • the water vapor H 2 O reacts reversibly with the tungsten oxide WO x ( 2 ⁇ x ⁇ 3), and specifically, the formula (5) produces hydrated tungsten oxide WO 2 (OH) 2 gas.
  • the purple tungsten oxide WO 2.72 crystal nucleus formed in the formula (4) was grown into nano-acicular purple tungsten oxide WO 2.72 crystal by vapor phase migration of hydrated tungsten oxide WO 2 (OH) 2 .
  • the nano-acicular purple tungsten oxide WO 2.72 crystal continues to move in the furnace tube to the discharge end.
  • the discharge end of the furnace tube is not heated, and the purple tungsten oxide WO 2.72 is discharged from the discharge port by the discharge device after being cooled to near room temperature.
  • the purple tungsten oxide WO 2.72 produced in the third embodiment was used as a sample. After the sample was ground, the phase components of the sample were analyzed by PANalytical X'pertPROXRD. The Co target was scanned at a step size of 0.033°, and each step was kept for 10 s.
  • Figure 5 is a map obtained after XRD analysis. As can be seen from Figure 5, the sample is a relatively pure purple tungsten oxide WO 2.72 .
  • the purple tungsten oxide WO 2.72 produced in the third embodiment was used as a sample, and the microstructure of the sample was observed by a Hitachi S-4800II cold field emission scanning electron microscope. As can be seen from Fig. 6, the purple tungsten oxide WO 2.72 needle crystal has a diameter of 20-80 nm and belongs to a nano material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

一种工业用纳米针紫色氧化钨的制备方法 技术领域
本发明涉及一种工业用纳米针紫色氧化钨的制备方法。
背景技术
纳米级钨粉(颗粒度≤100nm)和超细钨粉(100nm<颗粒度≤500nm)是制备纳米级碳化钨粉(颗粒度≤100nm)、超细碳化钨粉(100nm<颗粒度≤500nm)和超细晶硬质合金(100nm<晶粒度≤500nm)的重要原料,而纳米级、超细碳化钨粉和超细晶硬质合金都是目前国际市场上附加值比较高的商品。
以纳米针紫色氧化钨(Nano-needleWO2.72)为原料,利用瑞利不稳定性原理(Rayleighinstability)和原位氢还原(In-situhydrogenreduction)技术,制备纳米级钨粉和超细钨粉是一种多快好省的方法。纳米针紫色氧化钨还是一种功能纳米材料,具有如光致变色(Photochromicproperty)、电致变色(Electrochromicproperty)和气致变色(Gasochromicproperty)等多种性能,未来可以用于多种敏感元件中。
基于上述,纳米针紫色氧化钨具有很高的价值,市场需求也将很大。但是目前还没有见到大规模制备纳米针紫
色氧化钨方法的报道。因此,本发明人专门研发了一种工业用纳米针紫色氧化钨的制备方法,本案由此产生。
发明内容
本发明的目的在于提供一种工业用纳米针紫色氧化钨的制备方法,以满足市场需求。
为了实现上述目的,本发明的技术方案如下:
一种工业用纳米针紫色氧化钨的制备方法,以仲钨酸铵5(NH4)2O·12WO3·5H2O(简称APT)为原料;或以钨酸mWO3·nH2O(m≥1,n≥1)为原料;或以钨氧化物WOx(2≤x≤3)为原料;或以某种制备过程中或产物中存在的钨氧化物WOx(2≤x≤3)为原料;制备在一个倾斜、转动的炉管中进行。在炉管的进料端,原料被进料装置从进料口推入到被加热的炉管内,在倾斜炉管的转动作用下,逐渐从低温区向高温区移动;原料在炉管内的高温区被H2还原生成纳米针状紫色氧化钨WO2.72,并在倾斜炉管的转动作用下,逐渐向出料端移动,紫色氧化钨WO2.72从出料口被出料装置排出,并被出料装置冷却近室温。在炉管上设置有专用的出气口。
制备机理:
(一)
以仲钨酸铵5(NH4)2O·12WO3·5H2O为原料。
当仲钨酸铵5(NH4)2O·12WO3·5H2O被加热到400℃以上时,发生式(1)中反应,生成黄色氧化钨WO3、氨气NH3和水蒸气H2O。
5(NH4)2O·12WO3·5H2O=12WO3+10NH3+10H2O(1)
式(1)中的反应产物氨气NH3或者其他方式引入的氨气NH3会在钨氧化物WOx(2≤x≤3)催化作用下发生式(2)中反应,生成还原性气体氢气H2
2NH3=N2+3H2(2)
当反应温度升高到500℃以上时,式(1)中的反应产物黄色氧化钨WO3会与式(2)中的反应产物氢气H2和/或其他方式引入的氢气H2发生式(3)中的还原反应,生成蓝色氧化钨WO2.9和水蒸气H2O。
WO3+0.1H2=WO2.9+0.1H2O(3)
反应温度继续升高到600℃以上时,式(3)中的反应产物蓝色氧化钨WO2.9会与式(1)中的反应产物氢气H2和/或其他方式引入的氢气H2发生式(4)中的还原反应,生成紫色氧化钨WO2.72和水蒸气H2O。
WO2.9+0.18H2=WO2.72+0.18H2O(4)
在式(1)、式(3)和式(4)中均有水蒸气H2O产生,高温下水蒸气H2O可以与钨氧化物WOx(2≤x≤3)发生可逆反应,具体见式(5)。生成水合氧化钨WO2(OH)2,水合氧化钨WO2(OH)2在高温下是一种气体。
WOx+(4-x)H2O≒WO2(OH)2+(3-x)H2(5)
通过水合氧化钨WO2(OH)2气相迁移,可以使在式(4)中形成的紫色氧化钨WO2.72晶核长大成针状紫色氧化钨WO2.72晶体。通过控制安装在出气口外部的抽气风机的抽风量来控制炉管内气体排出速度,从而保障炉管内正压力为0mbar-5mbar。在WO2(OH)2气体分压和温度适合的情况下,这种紫色氧化钨WO2.72针状晶体的直径小于100nm,属于纳米材料。
(二)
以钨酸mWO3·nH2O为原料,m≥1,n≥1。
当钨酸mWO3·nH2O被加热到100℃以上时,发生式(6)中反应,生成黄色氧化钨WO3和水蒸气H2O。
mWO3·nH2O=mWO3+nH2O(6)
可以通过进气口引入氨气NH3。引入的氨气NH3会在钨氧化物WOx(2≤x≤3)催化作用下发生式(2)中反应,生成还原性气体氢气H2
当反应温度升高到500℃以上时,式(6)中的反应产物黄色氧化钨WO3会与式(2)中的反应产物氢气H2发生式(3)中的还原反应,生成蓝色氧化钨WO2.9和水蒸气H2O。
如果不引入氨气NH3,或者引入的氨气NH3量不足时,可以通过进气口引入氢气H2。当反应温度升高到500℃以上时,式(6)中的反应产物黄色氧化钨WO3会与式(2)中的反应产物氢气H2和/或引入的氢气H2发生式(3)中的还原反应,生成蓝色氧化钨WO2.9和水蒸气H2O。
反应温度继续升高到600℃以上时,式(3)中的反应产物蓝色氧化钨WO2.9会与式(2)中的反应产物氢气H2发生式(4)中的还原反应,生成紫色氧化钨WO2.72和水蒸气H2O。
如果不引入氨气NH3,或者引入的氨气NH3量不足时,可以通过进气口引入氢气H2。当反应温度继续升高到600℃以上时,式(3)中的反应产物蓝色氧化钨WO2.9会与式(2)中的反应产物氢气H2和/或引入的氢气H2发生式(4)中的还原反应,生成紫色氧化钨WO2.72和水蒸气H2O。
在式(6)、式(3)和式(4)中均有水蒸气H2O产生,高温下水蒸气H2O可以与钨氧化物WOx(2≤x≤3)发生可逆反应,具体见式(5),生成水合氧化钨WO2(OH)2,水合氧化钨WO2(OH)2在高温下是一种气体。
通过水合氧化钨WO2(OH)2气相迁移,可以使在式(4)中形成的紫色氧化钨WO2.72晶核长大成针状紫色氧化钨WO2.72晶体。通过控制安装在出气口外部的抽气风机的抽风量来控制炉管内气体排出速度,从而保障炉管内正压力为0mbar-5mbar。在WO2(OH)2气体分压和温度适合的情况下,这种紫色氧化钨WO2.72针状晶体的直径小于100nm,属于纳米材料。
(三)
以钨氧化物WOx(2≤x≤3)为原料,或以制备过程中和/或产物中存在的钨氧化物WOx(2≤x≤3)为原料时,通过进气口引入氨气NH3和/或氢气H2,并根据钨氧化物WOx(2≤x≤3)的不同而选择是否通入水蒸气H2O。
如果有引入氨气NH3,高温下氨气NH3会在钨氧化物WOx(2≤x≤3)催化作用下发生式(2)中反应,生成还原性气体氢气H2
如果钨氧化物WOx(2≤x≤3)包含有黄色氧化钨WO3。当反应温度升高到500℃以上时,黄色氧化钨WO3会与引入的氢气H2发生式(3)中的还原反应,生成蓝色氧化钨WO2.9和水蒸气H2O。
反应温度继续升高到600℃以上时,式(3)中的反应产物蓝色氧化钨WO2.9会与引入的氢气H2发生式(4)中的还原反应,生成紫色氧化钨WO2.72和水蒸气H2O。
如果钨氧化物WOx(2≤x≤3)包含有蓝色氧化钨WO2.9。当反应温度继续升高到600℃以上时,蓝色氧化钨WO2.9会与引入的氢气H2发生式(3)中的还原反应,生成紫色氧化钨WO2.72和水蒸气H2O。
在式(3)和式(4)中均有水蒸气H2O产生,如果式(3)和/或式(4)反应产生的水蒸气H2O量不足时,通过进气口引入水蒸气H2O。高温下式(3)和/或式(4)反应产生的水蒸气H2O和/或引入的水蒸气H2O可以与钨氧化物WOx(2≤x≤3)发生可逆反应,具体见式(5),生成水合氧化钨WO2(OH)2,水合氧化钨WO2(OH)2在高温下是一种气体。
通过水合氧化钨WO2(OH)2气相迁移,可以使在式(4)中形成的紫色氧化钨WO2.72晶核长大成针状紫色氧化钨WO2.72晶体。通过控制安装在出气口外部的抽气风机的抽风量来控制炉管内气体排出速度,从而保障炉管内正压力为0mbar-5mbar。在WO2(OH)2气体分压和温度适合的情况下,这种紫色氧化钨WO2.72针状晶体的直径小于100nm,属于纳米材料。
采用上述方案后,本发明实现了纳米针紫色氧化钨的大批量工业化生产,满足了市场需求。
附图说明
图1是实施例一产品的XRD分析后获得图谱,Co靶;
图2是实施例一产品用HitachiS-4800Ⅱ冷场发射扫描电镜对试样的显微形貌观察图。
图3是实施例二产品的XRD分析后获得图谱,Co靶;
图4是实施例二产品用HitachiS-4800Ⅱ冷场发射扫描电镜对试样的显微形貌观察图。
图5是实施例三产品的XRD分析后获得图谱,Co靶;
图6是实施例三产品用HitachiS-4800Ⅱ冷场发射扫描电镜对试样的显微形貌观察图。
具体实施方式
实施例一,从进料端用进料装置将仲钨酸铵5(NH42O·12WO3·5H2O从进料口推入到被加热的炉管内,在倾斜炉管的转动作用下,逐渐向从低温区向高温区移动,当仲钨酸铵5(NH4)2O·12WO3·5H2O进入400℃-600℃温度区时,发生式(1)中反应,生成三氧化钨WO3、氨气NH3和水蒸气H2O。
利用式(1)、式(3)和式(4)中反应产物钨氧化物WOx(2≤x≤3)是氨气NH3分解的良好触媒,在炉管内使氨气NH3发生式(2)中的热分解反应,生成还原性气体氢气H2
物料在倾斜炉管的转动作用下继续向高温区移动,当物料温度升高到550℃-800℃时,发生式(3)中反应;当物料温度升高到750℃-800℃时,发生式(4)中反应,生成紫色氧化钨WO2.72晶核。
在式(1)、式(3)和式(4)中均有水蒸气H2O产生。
炉管设置有专用出气口,通过控制安装在出气口外部的抽气风机的抽风量来控制炉管内气体排出速度,从而保障炉管内正压力为0.2mbar-2.0mbar。
高温下水蒸气H2O与钨氧化物WOx(2≤x≤3)发生可逆反应,具体见式(5),生成水合氧化钨WO2(OH)2气体。通过水合氧化钨WO2(OH)2气相迁移,使在式(4)中形成的紫色氧化钨WO2.72晶核长大成纳米针状紫色氧化钨WO2.72晶体。
在倾斜炉管的转动作用下,纳米针状紫色氧化钨WO2.72晶体继续在炉管内向出料端移动。炉管的出料端不加热,紫色氧化钨WO2.72在冷却到接近室温后从出料口被出料装置排出。
以实施例一生产的紫色氧化钨WO2.72为试样,将试样研磨后用PANalyticalX'pertPROXRD对试样的相成分进行分析,Co靶,扫描步长为0.033°,每步停留10s。
图1是XRD分析后获得的图谱。从图1中可以看出,试样是物相比较纯净的紫色氧化钨WO2.72
以实施例一生产的紫色氧化钨WO2.72为试样,用HitachiS-4800Ⅱ冷场发射扫描电镜对试样的显微形貌进行观察。从图2中可以看出,紫色氧化钨WO2.72针状晶体直径在20-80nm之间,属于纳米材料。
实施例二,从进料端用进料装置将钨酸mWO3·nH2O(其中m=1,n=1)从进料口推入到被加热的炉管内,在倾斜炉管的转动作用下,逐渐向从低温区向高温区移动,当钨酸WO3·H2O进入100℃-300℃温度区时,发生式(6)中反应,生成三氧化钨WO3和水蒸气H2O。
通过进气口引入氨气NH3,氨气NH3引入量控制在氨气NH3:钨酸WO3·H2O=0.5mol~1.5mol:1mol。利用钨氧化物WOx(2≤x≤3)是氨气NH3分解的良好触媒,在炉管内使氨气NH3发生式(2)中的热分解反应,生成还原性气体氢气H2
物料在倾斜炉管的转动作用下继续向高温区移动,当物料温度升高到550℃-800℃时,发生式(3)中反应;当物料温度升高到750℃-800℃时,发生式(4)中反应,生成紫色氧化钨WO2.72晶核。
炉管设置有专用出气口,通过控制安装在出气口外部的抽气风机的抽风量来控制炉管内气体排出速度,从而保障炉管内正压力为0.2mbar-2.0mbar。
高温下水蒸气H2O与钨氧化物WOx(2≤x≤3)发生可逆反应,具体见式(5),生成水合氧化钨WO2(OH)2气体。通过水合氧化钨WO2(OH)2气相迁移,使在式(4)中形成的紫色氧化钨WO2.72晶核长大成纳米针状紫色氧化钨WO2.72晶体。
在倾斜炉管的转动作用下,纳米针状紫色氧化钨WO2.72晶体继续在炉管内向出料端移动。炉管的出料端不加热,紫色氧化钨WO2.72在冷却到接近室温后从出料口被出料装置排出。
以实施例二生产的紫色氧化钨WO2.72为试样,将试样研磨后用PANalyticalX'pertPROXRD对试样的相成分进行分析,Co靶,扫描步长为0.033°,每步停留10s。
图3是XRD分析后获得的图谱。从图3中可以看出,试样是物相比较纯净的紫色氧化钨WO2.72
以实施例二生产的紫色氧化钨WO2.72为试样,用HitachiS-4800Ⅱ冷场发射扫描电镜对试样的显微形貌进行观察。从图4中可以看出,紫色氧化钨WO2.72针状晶体直径在20-80nm之间,属于纳米材料。
实施例三,从进料端用进料装置将黄色氧化钨WO3从进料口推入到被加热的炉管内,在倾斜炉管的转动作用下,逐渐向从低温区向高温区移动。
通过进气口引入氨气NH3和水蒸气H2O,氨气NH3引入量控制在氨气NH3:黄色氧化钨WO3=0.5mol~1.5mol:1mol,水蒸气H2O引入量控制在水蒸气H2O:黄色氧化钨WO3=0.1mol~0.6mol:1mol。利用钨氧化物WOx(2≤x≤3)是氨气NH3分解的良好触媒,在炉管内使氨气NH3发生式(2)中的热分解反应,生成还原性气体氢气H2
物料在倾斜炉管的转动作用下继续向高温区移动,当物料温度升高到550℃-800℃时,发生式(3)中反应;当物料温度升高到750℃-800℃时,发生式(4)中反应,生成紫色氧化钨WO2.72晶核。
炉管设置有专用出气口,通过控制安装在出气口外部的抽气风机的抽风量来控制炉管内气体排出速度,从而保障炉管内正压力为0.2mbar-2.0mbar。
高温下水蒸气H2O与钨氧化物WOx(2≤x≤3)发生可逆反应,具体见式(5),生成水合氧化钨WO2(OH)2气体。通过水合氧化钨WO2(OH)2气相迁移,使在式(4)中形成的紫色氧化钨WO2.72晶核长大成纳米针状紫色氧化钨WO2.72晶体。
在倾斜炉管的转动作用下,纳米针状紫色氧化钨WO2.72晶体继续在炉管内向出料端移动。炉管的出料端不加热,紫色氧化钨WO2.72在冷却到接近室温后从出料口被出料装置排出。
以实施例三生产的紫色氧化钨WO2.72为试样,将试样研磨后用PANalyticalX'pertPROXRD对试样的相成分进行分析,Co靶,扫描步长为0.033°,每步停留10s。
图5是XRD分析后获得的图谱。从图5中可以看出,试样是物相比较纯净的紫色氧化钨WO2.72
以实施例三生产的紫色氧化钨WO2.72为试样,用HitachiS-4800Ⅱ冷场发射扫描电镜对试样的显微形貌进行观察。从图6中可以看出,紫色氧化钨WO2.72针状晶体直径在20-80nm之间,属于纳米材料。

Claims (17)

1、一种纳米针紫色氧化钨的制备方法,其特征在于是以仲钨酸铵5(NH4)2O·12WO3·5H2O为原材料,步骤如下:
A、从进料端用进料装置将仲钨酸铵5(NH4)2O·12WO3·5H2O从进料口推入到被加热的炉管内,在倾斜炉管的转动作用下,逐渐从低温区向高温区移动;
B、将仲钨酸铵5(NH4)2O·12WO3·5H2O加热分解生成三氧化钨WO3、氨气NH3和水蒸气H2O;
C、在炉管内使氨气NH3发生热分解,生成还原性气体氢气H2
D、物料在倾斜炉管的转动作用下继续向高温区移动,当物料温度升高继续时,三氧化钨WO3被氢气H2逐步还原生成紫色氧化钨WO2.72
2、根据权利要求1所述的一种纳米针紫色氧化钨的制备方法,其特征在于:倾斜炉管也通过进气口引入氨气NH3和/或氢气H2
3、根据权利要求1所述的一种纳米针紫色氧化钨的制备方法,其特征在于:仲钨酸铵5(NH4)2O·12WO3·5H2O的加热温度为400℃以上。
4、根据权利要求1所述的一种纳米针紫色氧化钨的制备方法,其特征在于:生成紫色氧化钨WO2.72控制反应温度设为600℃以上。
5、根据权利要求1所述的一种纳米针紫色氧化钨的制备方法,其特征在于:炉管端部设置有出气口,通过控制安装在出气口外部的抽气风机的抽风量来控制炉管内气体排出速度,保障炉管内正压力为0mbar-5mbar。
6、一种纳米针紫色氧化钨的制备方法,其特征在于是以钨酸mWO3·nH2O为原材料,m≥1,n≥1,步骤如下:
A、从进料端用进料装置将钨酸mWO3·nH2O从进料口推入到被加热的炉管内,在倾斜炉管的转动作用下,逐渐从低温区向高温区移动;
B、将钨酸mWO3·nH2O加热分解生成三氧化钨WO3和水蒸气H2O;
C、物料在倾斜炉管的转动作用下继续向高温区移动,当物料温度升高继续时,三氧化钨WO3被氢气H2逐步还原生成紫色氧化钨WO2.72
7、根据权利要求6所述的一种纳米针紫色氧化钨的制备方法,其特征在于:倾斜炉管通过进气口引入氨气NH3,在炉管内使氨气NH3发生热分解,生成还原性气体氢气H2
8、根据权利要求6所述的一种纳米针紫色氧化钨的制备方法,其特征在于:倾斜炉管也通过进气口引入氢气H2或氨气NH3与氢气H2混合气体。
9、根据权利要求6所述的一种纳米针紫色氧化钨的制备方法,其特征在于:钨酸mWO3·nH2O的加热温度为100℃以上。
10、根据权利要求6所述的一种纳米针紫色氧化钨的制备方法,其特征在于:生成紫色氧化钨WO2.72控制反应温度设为600℃以上。
11、根据权利要求6所述的一种纳米针紫色氧化钨的制备方法,其特征在于:炉管端部设置有出气口,通过控制安装在出气口外部的抽气风机的抽风量来控制炉管内气体排出速度,保障炉管内正压力为0mbar-5mbar。
12、一种纳米针紫色氧化钨的制备方法,其特征在于是以钨氧化物WOx,2≤x≤3,为原材料,步骤如下:
A、从进料端用进料装置将钨氧化物WOx从进料口推入到被加热的炉管内,在倾斜炉管的转动作用下,逐渐从低温区向高温区移动;
B、物料在倾斜炉管的转动作用下继续向高温区移动,当物料温度升高继续时,氧化物WOx在氢气H2作用下生成紫色氧化钨WO2.72
13、根据权利要求12所述的一种纳米针紫色氧化钨的制备方法,其特征在于:倾斜炉管通过进气口引入氨气NH3,在炉管内使氨气NH3发生热分解,生成还原性气体氢气H2
14、根据权利要求12所述的一种纳米针紫色氧化钨的制备方法,其特征在于:倾斜炉管也通过进气口引入氢气H2或氨气NH3与氢气H2混合气体。
15、根据权利要求12所述的一种纳米针紫色氧化钨的制备方法,其特征在于:倾斜炉管通过进气口引入水蒸气H2O。
16、根据权利要求12所述的一种纳米针紫色氧化钨的制备方法,其特征在于:生成紫色氧化钨WO2.72控制反应温度设为600℃以上。
17、根据权利要求12所述的一种纳米针紫色氧化钨的制备方法,其特征在于:炉管端部设置有出气口,通过控制安装在出气口外部的抽气风机的抽风量来控制炉管内气体排出速度,保障炉管内正压力为0mbar-5mbar。
PCT/CN2011/072279 2011-03-30 2011-03-30 一种工业用纳米针紫色氧化钨的制备方法 WO2012129782A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137012346A KR101516900B1 (ko) 2011-03-30 2011-03-30 공업용 나노니들 자주색 산화텅스텐의 화학적 제조 방법
DE112011103494T DE112011103494T5 (de) 2011-03-30 2011-03-30 Herstellungsverfahren von nanonadelförmigem purpurfarbenem Wolframoxid für die Industrie
JP2014501390A JP2014513662A (ja) 2011-03-30 2011-03-30 業用ナノニードル紫色酸化タングステンの調製方法
PCT/CN2011/072279 WO2012129782A1 (zh) 2011-03-30 2011-03-30 一种工业用纳米针紫色氧化钨的制备方法
US13/885,396 US20140014875A1 (en) 2011-03-30 2011-03-30 Preparation method of industrial purple nano-needle tungsten oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/072279 WO2012129782A1 (zh) 2011-03-30 2011-03-30 一种工业用纳米针紫色氧化钨的制备方法

Publications (1)

Publication Number Publication Date
WO2012129782A1 true WO2012129782A1 (zh) 2012-10-04

Family

ID=46929327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072279 WO2012129782A1 (zh) 2011-03-30 2011-03-30 一种工业用纳米针紫色氧化钨的制备方法

Country Status (5)

Country Link
US (1) US20140014875A1 (zh)
JP (1) JP2014513662A (zh)
KR (1) KR101516900B1 (zh)
DE (1) DE112011103494T5 (zh)
WO (1) WO2012129782A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103351028A (zh) * 2013-08-05 2013-10-16 上海海事大学 一种连续生产多形貌纳米三氧化钨材料的制备方法
CN105016393A (zh) * 2015-08-07 2015-11-04 江西稀有金属钨业控股集团有限公司 一种高比表面积蓝钨的制备系统及方法
CN109622989A (zh) * 2019-02-26 2019-04-16 江钨世泰科钨品有限公司 一种高纯均相针状紫钨粉末的制备方法
CN109761283A (zh) * 2019-03-20 2019-05-17 江西省鑫盛钨业有限公司 一种处理废旧氧化钨的还原氧化钨的工艺
CN112479259A (zh) * 2020-12-14 2021-03-12 江钨世泰科钨品有限公司 一种高比表面积低残氨黄色氧化钨及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10203102B2 (en) * 2015-10-08 2019-02-12 Air Motion Systems, Inc. LED module with liquid cooled reflector
WO2017164898A1 (en) * 2016-03-23 2017-09-28 Aeroalloys Llc Method of treating unrefined tungstic acid to produce alloy grade tungsten for use in tungsten bearing steels and nickel based superalloys
JP7072145B2 (ja) * 2018-02-16 2022-05-20 住友金属鉱山株式会社 複合タングステン酸化物粒子の製造方法
CN112777639A (zh) * 2019-11-08 2021-05-11 中国科学院大连化学物理研究所 一种半导体金属氧化物wo3的水热制备方法及wo3的应用
CN113716610A (zh) * 2021-08-02 2021-11-30 崇义章源钨业股份有限公司 处理氧化钨炉头粉的方法及紫钨

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3174822A (en) * 1961-02-14 1965-03-23 Du Pont Double oxides of yttrium and tungsten
CN1593822A (zh) * 2003-09-10 2005-03-16 厦门金鹭特种合金有限公司 一种高性能纳米级及超细钨粉的制备方法
CN1594107A (zh) * 2003-09-10 2005-03-16 厦门金鹭特种合金有限公司 一种仲钨酸氨自还原制备蓝色氧化钨的方法及装置
CN101898139A (zh) * 2010-06-25 2010-12-01 张麒 氧化钨掺杂二氧化钛光催化剂的配方及制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3222436A1 (de) * 1982-06-15 1983-12-15 Kernforschungsanlage Jülich GmbH, 5170 Jülich Verfahren zur herstellung einer wolframcarbidaktivierten elektrode
WO2000076698A1 (en) * 1999-06-11 2000-12-21 Georgia Tech Research Corporation Metallic articles formed by reduction of nonmetallic articles and method of producing metallic articles
JP4853710B2 (ja) * 2006-11-22 2012-01-11 住友金属鉱山株式会社 レーザー溶着用光吸収樹脂組成物及び光吸収樹脂成形体、並びに光吸収樹脂成形体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3174822A (en) * 1961-02-14 1965-03-23 Du Pont Double oxides of yttrium and tungsten
CN1593822A (zh) * 2003-09-10 2005-03-16 厦门金鹭特种合金有限公司 一种高性能纳米级及超细钨粉的制备方法
CN1594107A (zh) * 2003-09-10 2005-03-16 厦门金鹭特种合金有限公司 一种仲钨酸氨自还原制备蓝色氧化钨的方法及装置
CN101898139A (zh) * 2010-06-25 2010-12-01 张麒 氧化钨掺杂二氧化钛光催化剂的配方及制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103351028A (zh) * 2013-08-05 2013-10-16 上海海事大学 一种连续生产多形貌纳米三氧化钨材料的制备方法
CN105016393A (zh) * 2015-08-07 2015-11-04 江西稀有金属钨业控股集团有限公司 一种高比表面积蓝钨的制备系统及方法
CN109622989A (zh) * 2019-02-26 2019-04-16 江钨世泰科钨品有限公司 一种高纯均相针状紫钨粉末的制备方法
CN109761283A (zh) * 2019-03-20 2019-05-17 江西省鑫盛钨业有限公司 一种处理废旧氧化钨的还原氧化钨的工艺
CN112479259A (zh) * 2020-12-14 2021-03-12 江钨世泰科钨品有限公司 一种高比表面积低残氨黄色氧化钨及其制备方法
CN112479259B (zh) * 2020-12-14 2023-01-03 江钨世泰科钨品有限公司 一种高比表面积低残氨黄色氧化钨及其制备方法

Also Published As

Publication number Publication date
KR101516900B1 (ko) 2015-05-04
JP2014513662A (ja) 2014-06-05
US20140014875A1 (en) 2014-01-16
KR20130100337A (ko) 2013-09-10
DE112011103494T5 (de) 2013-09-26

Similar Documents

Publication Publication Date Title
WO2012129782A1 (zh) 一种工业用纳米针紫色氧化钨的制备方法
Chen et al. Synthesis and characterization of Co3O4 hollow spheres
Gong et al. Continuous hollow α-Fe 2 O 3 and α-Fe fibers prepared by the sol–gel method
US20110070426A1 (en) Sintering aids for boron carbide ultrafine particles
CN106431418A (zh) 水热法制备纳米AlN粉体的方法和其中间体及产品
CN102583398B (zh) 一种制备二氧化硅包覆碳纳米管及二氧化硅纳米管的方法
Yu et al. Preparation and characterization of ZnTiO3 powders by sol–gel process
WO2016024689A1 (ko) 탄질화티타늄 분말의 제조 방법
CN108328585A (zh) 一种氮化硼包覆石墨烯纳米片的制备方法
CN103803513B (zh) 一种氮化硼纳米管的制备方法
EP3816133A1 (en) Method for preparing alumina-based solid solution ceramic powder by using aluminum oxygen combustion synthesis water mist process
Yilmaz et al. Carbothermic reduction synthesis of calcium hexaboride using PVA-calcium hexaborate mixed gels
WO2020040353A1 (ko) 텅스텐과 티타늄 복합 탄화물 분말의 제조 방법
CN112209423A (zh) 火焰合成法一步合成超薄空心球微米铝酸锌的方法
CN104925810B (zh) 一种纳米碳化铬粉体的制备方法
CN113353899B (zh) 一种氮化硼纳米管的制备方法、氮化硼纳米管及其应用
CN110330008A (zh) 一种碳纳米管的连续生产方法
JP2841862B2 (ja) 炭化ケイ素を製造する方法
CN1843931A (zh) 复合金属氧化物粉末的制备方法
CN1546370A (zh) 一种立方相纳米氮化锆粉体的还原氮化制备方法
CN113620329A (zh) 一种氧化铝-氧化锆纳米复合粉的制备方法
CN106187203B (zh) 一种基于碳化铝制备氮化铝粉体的方法及其产品
CN112479711A (zh) 一种碳化锆/碳化铪纳米复合颗粒的制备方法
US20110008246A1 (en) System and method for generating nanoparticles
CN113929099A (zh) 一种超细碳化钨粉末的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137012346

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13885396

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014501390

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120111034946

Country of ref document: DE

Ref document number: 112011103494

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 95232011

Country of ref document: AT

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11862064

Country of ref document: EP

Kind code of ref document: A1