WO2012128085A1 - 液晶表示パネル及び液晶表示装置 - Google Patents

液晶表示パネル及び液晶表示装置 Download PDF

Info

Publication number
WO2012128085A1
WO2012128085A1 PCT/JP2012/056173 JP2012056173W WO2012128085A1 WO 2012128085 A1 WO2012128085 A1 WO 2012128085A1 JP 2012056173 W JP2012056173 W JP 2012056173W WO 2012128085 A1 WO2012128085 A1 WO 2012128085A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
electrode
crystal display
substrate
display panel
Prior art date
Application number
PCT/JP2012/056173
Other languages
English (en)
French (fr)
Inventor
洋典 岩田
村田 充弘
大明 淺木
安宏 那須
吉田 秀史
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201280014122.5A priority Critical patent/CN103460122B/zh
Publication of WO2012128085A1 publication Critical patent/WO2012128085A1/ja
Priority to US14/030,155 priority patent/US20140016075A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134381Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates

Definitions

  • the present invention relates to a liquid crystal display panel and a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display panel and a liquid crystal display device including liquid crystal molecules that are aligned in a direction perpendicular to a main surface of a substrate when no voltage is applied.
  • a liquid crystal display panel is configured by sandwiching a liquid crystal display element between a pair of glass substrates and the like, taking advantage of its thin, lightweight, and low power consumption characteristics, such as personal computers, televisions, car navigation systems, and other portable devices.
  • the display of a portable information terminal such as a telephone is indispensable for daily life and business.
  • liquid crystal display panels of various modes related to electrode arrangement and substrate design for changing the optical characteristics of the liquid crystal layer have been studied.
  • VA vertical alignment
  • IPS In-plane switching
  • FFS fringe field switching
  • an FFS driving type liquid crystal display device a thin film transistor type liquid crystal display having high-speed response and a wide viewing angle, a first substrate having a first common electrode layer, a pixel electrode layer, and a second common A second substrate having both electrode layers, a liquid crystal sandwiched between the first substrate and the second substrate, high-speed response to a high input data transfer rate, and a wide field of view for a viewer An electric field is generated between the first common electrode layer on the first substrate and both the pixel electrode layer and the second common electrode layer on the second substrate to provide a corner.
  • a display including the means is disclosed (for example, refer to Patent Document 1).
  • a liquid crystal device for applying a lateral electric field by a plurality of electrodes a liquid crystal device in which a liquid crystal layer made of a liquid crystal having a positive dielectric anisotropy is sandwiched between a pair of substrates arranged opposite to each other, The first substrate and the second substrate constituting the substrate are opposed to each other with the liquid crystal layer sandwiched therebetween, and an electrode for applying a vertical electric field to the liquid crystal layer is provided.
  • a liquid crystal device provided with a plurality of electrodes for applying a lateral electric field to the liquid crystal layer is disclosed (for example, see Patent Document 2).
  • the rise occurs between the upper layer slit electrode and the lower surface electrode on the lower substrate.
  • the fringe electric field Due to the fringe electric field (FFS drive), the fall (while the display state changes from the bright state [white display] to the dark state [black display]) is caused by the vertical electric field generated by the potential difference between the substrates. It can be rotated for high speed response.
  • FFS drive fringe electric field
  • Patent Document 1 even when a fringe electric field is applied to a liquid crystal display device in which liquid crystal molecules are vertically aligned using a slit electrode, only the liquid crystal molecules near the end of the slit electrode rotate (see FIG. 66), sufficient transmittance cannot be obtained.
  • FIG. 64 is a schematic cross-sectional view of a liquid crystal display panel having a conventional FFS drive type electrode structure on the lower substrate.
  • FIG. 66 shows simulation results showing the distribution of the director D, the electric field distribution, and the transmittance distribution in the liquid crystal display panel shown in FIG. 64 shows the structure of the liquid crystal display panel, in which the slit electrode is applied to a constant voltage (in the figure, 14 V.
  • the potential difference with the counter electrode 313 may be equal to or greater than a threshold value.
  • Counter electrodes 313 and 323 are arranged. The counter electrodes 313 and 323 are 7V.
  • FIG. 66 shows the simulation result at the rising edge, and shows the voltage distribution, the distribution of the director D, and the transmittance distribution
  • Patent Document 2 describes that a response speed is improved by using comb driving in a liquid crystal display device having a three-layer electrode structure.
  • a response speed is improved by using comb driving in a liquid crystal display device having a three-layer electrode structure.
  • a twisted nematic (TN) mode liquid crystal device as a display method, and a vertical alignment type liquid crystal display device that is advantageous for obtaining a wide viewing angle, high contrast characteristics, etc.
  • TN twisted nematic
  • the present invention has been made in view of the above situation, and a sufficiently high-speed response is achieved in a liquid crystal display panel and a liquid crystal display device in which a liquid crystal layer includes liquid crystal molecules aligned in a direction perpendicular to a main surface of a substrate when no voltage is applied. It is an object of the present invention to provide a liquid crystal display panel and a liquid crystal display device that are sufficiently excellent in transmittance.
  • the present inventors have studied to achieve both high-speed response and high transmittance in a vertical alignment type liquid crystal display panel and liquid crystal display device, and control the alignment of liquid crystal molecules by an electric field both at the rise and fall.
  • the liquid crystal molecules can be rotated by an electric field for both rising and falling to achieve high-speed response, and a high transmittance can be realized by a lateral electric field driven by a comb tooth, and the above problem can be solved brilliantly.
  • the present invention has been achieved.
  • the liquid crystal display device having the vertical alignment type three-layer electrode structure as described above it is possible to realize high-speed response and high transmittance, and in this respect, the invention described in the prior art document Different. Furthermore, the problem of response speed becomes particularly noticeable in a low-temperature environment. In the present invention, this problem can be solved and the transmittance can be improved.
  • the present invention is a liquid crystal display panel comprising a first substrate, a second substrate, and a liquid crystal layer sandwiched between the two substrates, the first substrate and the second substrate having electrodes
  • the electrode of the second substrate includes a pair of comb electrodes and a planar electrode
  • the liquid crystal display panel is configured to generate liquid crystal by an electric field generated between the pair of comb electrodes or between the first substrate and the second substrate. It is the liquid crystal display panel comprised so that the liquid crystal molecule in a layer might align with a horizontal direction with respect to a substrate main surface.
  • the planar electrode is usually formed through a pair of comb electrodes and an electric resistance layer.
  • the electrical resistance layer is preferably an insulating layer.
  • the insulating layer may be an insulating layer in the technical field of the present invention.
  • the pair of comb electrodes may be anything as long as it can be said that the two comb electrodes face each other when the substrate main surface is viewed in plan. Since a pair of comb electrodes can generate a lateral electric field between the comb electrodes, when the liquid crystal layer includes liquid crystal molecules having positive dielectric anisotropy, the response performance and transmission at the time of rising When the liquid crystal layer includes liquid crystal molecules having negative dielectric anisotropy, the liquid crystal molecules can be rotated by a lateral electric field at the time of falling to achieve a high-speed response.
  • the electrodes of the first substrate and the second substrate may be any electrode as long as it can provide a potential difference between the substrates, whereby the liquid crystal layer has liquid crystal molecules having positive dielectric anisotropy.
  • a vertical electric field is generated by the potential difference between the substrates at the time of falling when including and when the liquid crystal layer includes liquid crystal molecules having negative dielectric anisotropy, and the liquid crystal molecules are rotated by the electric field and rotated at high speed. Can be responsive.
  • 71 and 72 are cross-sectional schematic views showing one embodiment of the comb electrode of the liquid crystal display panel according to the present invention.
  • a pair of comb electrodes 417, 419 may be provided in the same layer, and as shown in FIG. 72, as long as the effects of the present invention can be exhibited, a pair of comb electrodes is provided.
  • the tooth electrodes 517 and 519 may be provided in different layers, but the pair of comb electrodes are preferably provided in the same layer.
  • a pair of comb electrodes is provided in the same layer when each comb electrode has a common member (for example, an insulating layer, a liquid crystal layer side and / or a side opposite to the liquid crystal layer side). A liquid crystal layer, etc.).
  • the comb-tooth portions are respectively along when the main surface of the substrate is viewed in plan.
  • the comb-tooth portions of the pair of comb-tooth electrodes are substantially parallel, in other words, each of the pair of comb-tooth electrodes has a plurality of substantially parallel slits.
  • the comb-tooth electrode which has one comb-tooth part typically is shown by FIG. 19 etc., normally one comb-tooth electrode has two or more comb-tooth parts.
  • the liquid crystal layer preferably includes liquid crystal molecules that are aligned in a direction perpendicular to the main surface of the substrate when no voltage is applied.
  • the term “orienting in the direction perpendicular to the main surface of the substrate” may be anything that can be said to be oriented in the direction perpendicular to the main surface of the substrate. Including. It is preferable that the liquid crystal molecules contained in the liquid crystal layer are substantially composed of liquid crystal molecules that are aligned in a direction perpendicular to the main surface of the substrate at a voltage lower than the threshold voltage.
  • the “when no voltage is applied” may be anything as long as it can be said that substantially no voltage is applied in the technical field of the present invention.
  • Such a vertical alignment type liquid crystal display panel is an advantageous system for obtaining a wide viewing angle, high contrast characteristics, and the like, and its application is expanding.
  • the pair of comb electrodes can have different potentials at a threshold voltage or higher.
  • it means a voltage value that gives a transmittance of 5% when the transmittance in the bright state is set to 100%.
  • the potential different from the threshold voltage can be any voltage as long as it can realize a driving operation with a potential different from the threshold voltage. This makes it possible to suitably control the electric field applied to the liquid crystal layer. Become.
  • a preferable upper limit value of the different potential is, for example, 20V.
  • one of the pair of comb electrodes is driven by one TFT and the other comb electrode is driven by another TFT.
  • a pair of comb electrodes can be set to different potentials by conducting with the lower electrode of the other comb electrode.
  • the width of the comb tooth portion in the pair of comb electrodes is preferably 2 ⁇ m or more, for example.
  • the width between the comb tooth portions (also referred to as a space in the present specification) is preferably 2 ⁇ m to 7 ⁇ m, for example.
  • the liquid crystal display panel is configured such that liquid crystal molecules in a liquid crystal layer are aligned in a direction perpendicular to the main surface of the substrate by an electric field generated between a pair of comb electrodes or between a first substrate and a second substrate.
  • the electrode of the first substrate is preferably a planar electrode.
  • the planar electrode includes a form electrically connected within a plurality of pixels, for example, as a planar electrode of the first substrate, a form electrically connected within all pixels, A configuration in which the electrodes are electrically connected along the pixel line is preferable.
  • the second substrate preferably further includes a planar electrode. Thereby, a vertical electric field can be applied suitably and high-speed response can be achieved.
  • the electrode of the first substrate is a planar electrode and the second substrate further has a planar electrode
  • a vertical electric field can be suitably generated by a potential difference between the substrates at the time of falling. Can be made to respond quickly.
  • the liquid crystal layer side electrode (upper layer electrode) of the second substrate is used as a pair of comb-teeth electrodes, and the electrode on the opposite side of the second substrate from the liquid crystal layer side (lower layer)
  • a form in which the electrode is a planar electrode is particularly preferable.
  • the planar electrode of the second substrate can be provided below the pair of comb electrodes on the second substrate (the layer on the side opposite to the liquid crystal layer as viewed from the second substrate) via an insulating layer.
  • the planar electrodes of the second substrate are preferably electrically connected along pixel lines, but may be independent for each pixel.
  • the comb-shaped electrode is electrically connected to the lower-layer planar electrode and the planar electrode is electrically connected along the pixel line, the comb-shaped electrode also follows the pixel line.
  • this form is also one of the preferred forms of the present invention.
  • substrate is planar at least the location which overlaps with the electrode which a 1st board
  • the term “electrically connected along the pixel line” may be used as long as it is electrically connected across a plurality of pixels along at least one of the vertical and horizontal arrays of pixels.
  • the electrodes it is not necessary for the electrodes to be electrically connected to all the pixel lines, and any electrode can be used as long as it can be said to be substantially electrically connected along the pixel lines in the liquid crystal display panel.
  • the planar electrodes are electrically connected within the same pixel column.
  • the same pixel column is a pixel column arranged along the gate bus line in the active matrix substrate when the main surface of the substrate is viewed in plan.
  • the planar electrodes of the first substrate and / or the planar electrodes of the second substrate are electrically connected in the same pixel column, so that, for example, every pixel corresponding to an even number of gate bus lines is odd.
  • a voltage can be applied to the electrode so that the potential change is reversed, and a vertical electric field can be suitably generated to achieve high-speed response.
  • the planar electrode of the first substrate and / or the second substrate may be any surface shape in the technical field of the present invention, and has an alignment regulating structure such as a rib or a slit in a partial region thereof.
  • the alignment regulating structure may be provided at the center of the pixel when the main surface of the substrate is viewed in plan, but those having substantially no alignment regulating structure are suitable.
  • the liquid crystal layer is usually aligned with a horizontal component with respect to the substrate main surface at a threshold voltage or higher by a pair of comb electrodes or an electric field generated between the first substrate and the second substrate.
  • the liquid crystal molecules contained in the liquid crystal layer are preferably substantially composed of liquid crystal molecules that are aligned at a threshold voltage or higher in the horizontal direction with respect to the main surface of the substrate.
  • the liquid crystal layer preferably includes liquid crystal molecules (positive liquid crystal molecules) having positive dielectric anisotropy.
  • the liquid crystal molecules having positive dielectric anisotropy are aligned in a certain direction when an electric field is applied, and the alignment control is easy, and a faster response can be achieved.
  • the liquid crystal layer preferably also includes liquid crystal molecules having negative dielectric anisotropy (negative liquid crystal molecules). Thereby, the transmittance can be further improved. That is, it is preferable that the liquid crystal molecules are substantially composed of liquid crystal molecules having positive dielectric anisotropy from the viewpoint of high-speed response, and the liquid crystal molecules are negative from the viewpoint of transmittance. It can be said that it is preferable to be substantially composed of liquid crystal molecules having a dielectric anisotropy of
  • the first substrate and the second substrate usually have an alignment film on at least one liquid crystal layer side.
  • the alignment film is preferably a vertical alignment film.
  • Examples of the alignment film include alignment films formed from organic materials and inorganic materials, and photo-alignment films formed from photoactive materials.
  • the alignment film may be an alignment film that has not been subjected to an alignment process such as a rubbing process.
  • the first substrate and the second substrate preferably have a polarizing plate on the side opposite to at least one liquid crystal layer side.
  • the polarizing plate is preferably a circular polarizing plate. With such a configuration, the transmittance improvement effect can be further exhibited.
  • the polarizing plate is also preferably a linear polarizing plate. With such a configuration, the viewing angle characteristics can be improved.
  • the liquid crystal display panel of the present invention usually generates a potential difference between at least an electrode of the first substrate and an electrode (for example, a planar electrode) of the second substrate when a vertical electric field is generated.
  • an electrode for example, a planar electrode
  • a higher potential difference is generated between the electrodes of the first substrate and the electrodes of the second substrate than between the electrodes of the second substrate (for example, a pair of comb electrodes). is there.
  • the potential of the planar electrode included in the first substrate and the potential of the planar electrode included in the second substrate are set to 7.5 V and 0 V, respectively, and the potential of the pair of comb electrodes included in the second substrate is set to Both the potential of the planar electrode of the first substrate and the potential of the planar electrode of the second substrate are 7.5 V and 15 V, respectively, and a pair of comb teeth of the second substrate
  • Both the electrode potential is 15 V
  • the electrode potential of the first substrate and the electrode potential of the planar electrode of the second substrate are 0 V and 15 V, respectively
  • a pair of comb teeth that the second substrate has Both electrode potentials can be set to 15V.
  • the potential difference between the planar electrode of the first substrate and the planar electrode of the second substrate, and the potential difference between the pair of comb electrodes of the second substrate are substantially reduced.
  • a form that is not caused to occur also referred to as an initialization step in this specification
  • a potential difference is substantially generated between all electrodes of the electrode (for example, a planar electrode) included in the first substrate and the electrode (for example, the pair of comb electrodes and the planar electrode) included in the second substrate. It is preferable to execute a driving operation that does not occur.
  • the orientation of liquid crystal molecules in the vicinity of the edges of a pair of comb electrodes can be suitably controlled, and the transmittance that floats without all electrodes being equipotential can be sufficiently lowered to the initial black state. (For example, a portion surrounded by a dotted line in FIG. 8 described later).
  • the initialization step may be one that performs substantially not to cause a potential difference driving operation between all the electrodes, for example, be done by floating at least one of the pair of comb electrodes and the TFT in the OFF state may, instead, or a constant voltage is applied to at least one of the pair of comb electrodes and all the TFT in the oN state, at least the pair of comb electrodes and the TFT in the even lines or odd lines in the oN state Alternatively, a constant voltage may be applied to each of the even and odd lines. Further, the initialization step may be performed after the generation of the vertical electric field, and other electric fields may be generated after the generation of the vertical electric field, but it is preferable that the initialization process is performed immediately after the generation of the vertical electric field.
  • a potential difference is usually generated at least between electrodes (for example, a pair of comb electrodes) included in the second substrate.
  • electrodes for example, a pair of comb electrodes
  • a higher potential difference can be generated between the electrodes of the second substrate than between the electrodes of the first substrate and the electrodes (eg, planar electrodes) of the second substrate.
  • the potential of the planar electrode of the first substrate and the potential of the planar electrode of the second substrate are 7.5 V and 0 V, respectively, and the potential of the pair of comb electrodes of the second substrate is 15 V, respectively.
  • 0 V, or the potential of the planar electrode of the first substrate and the potential of the planar electrode of the second substrate are 7.5 V and 7.5 V, respectively, and a pair of combs of the second substrate
  • the potential of the tooth electrode is set to 15 V and 0 V, respectively, and the potential of the planar electrode of the first substrate and the potential of the planar electrode of the second substrate are set to 0 V and 0 V, respectively.
  • the potential of the pair of comb electrodes is 15 V and 0 V, respectively. It can be or.
  • a potential difference lower than that between the electrode of the first substrate and the electrode of the second substrate may be generated between the electrodes of the second substrate.
  • the potential of the planar electrode included in the first substrate and the potential of the planar electrode included in the second substrate are set to 7.5 V and 0 V, respectively, and the pair of the second substrate includes.
  • the potential of the comb-tooth electrode is 10 V, 5 V (inter-comb potential 5 V), respectively.
  • the potential change can be reversed by applying to the lower layer electrode (planar electrode of the second substrate) commonly connected to each of the even lines and odd lines.
  • the potential of the electrode held at a constant voltage may be an intermediate potential.
  • the potential of the electrode held at the constant voltage is considered to be 0 V, the polarity of the voltage applied to the lower layer electrode for each bus line is reversed. It can be said that it is done.
  • the first substrate and the second substrate included in the liquid crystal display panel of the present invention are a pair of substrates for sandwiching a liquid crystal layer.
  • an insulating substrate such as glass or resin is used as a base, and wiring and electrodes are formed on the insulating substrate. It is formed by making a color filter or the like.
  • the liquid crystal display panel of the present invention may be any of a transmissive type, a reflective type, and a transflective type.
  • the present invention is also a liquid crystal display device including the liquid crystal display panel of the present invention.
  • the preferred form of the liquid crystal display panel in the liquid crystal display device of the present invention is the same as the preferred form of the liquid crystal display panel of the present invention described above.
  • Examples of the liquid crystal display device include in-vehicle devices such as personal computers, televisions, and car navigation systems, and displays of portable information terminals such as mobile phones. In particular, in a low-temperature environment such as in-vehicle devices such as car navigation systems. It is preferable to be applied to devices used in the above.
  • the invention related to the present invention is a thin film transistor array substrate having thin film transistor elements, wherein the electrode of the thin film transistor array substrate includes a pair of comb electrodes and a planar electrode, and the pair of comb electrodes and planar sheet At least one electrode selected from the group consisting of electrodes is a thin film transistor array substrate that is electrically connected along a pixel line.
  • the planar electrodes are preferably electrically connected along the pixel line. More preferably, the planar electrode is composed of a transparent conductor and a metal conductor that is electrically connected to the transparent conductor. As a result, the resistance of the electrode can be reduced, and the waveform can be sufficiently prevented from becoming distorted. In a large panel, the resistance of the electrode may be too large and the waveform may be distorted, and it is particularly preferable to apply to a large liquid crystal display device in that this can be prevented.
  • At least one of the pair of comb electrodes is preferably electrically connected along the pixel line. More preferably, at least one of the pair of comb electrodes is composed of a transparent conductor and a metal conductor electrically connected to the transparent conductor. For the same reason as described above, it is particularly preferable to apply such a liquid crystal driving device to a large liquid crystal display device. Further, it is preferable that at least one of the pair of comb electrodes is electrically connected to the planar electrode.
  • the electrode is electrically connected along the pixel line, in other words, the electrode is electrically connected at least for each identical pixel line. May be connected for every one pixel line, or may be connected for every n pixel lines (each n lines), both of which are preferable. Note that n is an integer of 2 or more.
  • the electrode is connected to each of a plurality (n) of pixel lines as long as the electrodes corresponding to the plurality of pixel lines are electrically connected. For example, the electrodes are odd-numbered. A form of electrical connection for every pixel line and every even-numbered pixel line is also included.
  • the plurality of lines are usually reversed at the same time.
  • the invention related to the present invention is a thin film transistor array substrate having thin film transistor elements, wherein the electrode of the thin film transistor array substrate includes a pair of comb-shaped electrodes and a planar electrode, and at least one of the pair of comb-shaped electrodes is The thin film transistor array substrate is electrically connected to the planar electrode.
  • the invention related to the present invention is also a liquid crystal display device comprising the thin film transistor array substrate of the present invention.
  • the preferred form of the thin film transistor array substrate in the liquid crystal display device of the present invention is the same as the preferred form of the thin film transistor array substrate of the present invention described above.
  • As a liquid crystal display device it can apply suitably for the use mentioned above.
  • the configuration of the liquid crystal display panel and the liquid crystal display device of the present invention is not particularly limited by other components as long as such components are formed as essential, and the liquid crystal display panel and the liquid crystal display are not limited. Other configurations normally used in the apparatus can be applied as appropriate.
  • the first substrate and the second substrate have electrodes, and the electrodes of the second substrate include a pair of comb electrodes and a planar electrode. It is possible to achieve a high speed response and a sufficiently high transmittance.
  • FIG. 3 is a schematic cross-sectional view of the liquid crystal display panel according to Embodiment 1 when a horizontal electric field is generated.
  • FIG. 3 is a schematic cross-sectional view of the liquid crystal display panel according to Embodiment 1 when a vertical electric field is generated.
  • FIG. 3 is a schematic cross-sectional view of the liquid crystal display panel according to Embodiment 1 when a horizontal electric field is generated.
  • FIG. It is a simulation result about the liquid crystal display panel shown in FIG.
  • FIG. 6 is a graph showing measured values of drive response waveforms and applied rectangular waves of each electrode in the first embodiment.
  • 6 is a graph showing the relationship between maximum transmittance and cell thickness d in the first embodiment.
  • 4 is a graph showing the relationship between maximum transmittance and space S in the first embodiment.
  • 6 is a schematic cross-sectional view of a liquid crystal display panel according to Embodiment 2 when a horizontal electric field is generated.
  • FIG. 6 is a schematic cross-sectional view of a liquid crystal display panel according to Embodiment 2 when a vertical electric field is generated.
  • FIG. 10 is a graph showing a rectangular wave (driving waveform) applied to each electrode in the second embodiment.
  • FIG. 6 is a schematic cross-sectional view of a liquid crystal display panel according to Embodiment 3 when a horizontal electric field is generated.
  • FIG. 6 is a schematic cross-sectional view of a liquid crystal display panel according to Embodiment 3 when a vertical electric field is generated.
  • FIG. 10 is a graph showing an applied rectangular wave (drive waveform) of each electrode in Embodiment 3.
  • 6 is a graph showing actual measured values of drive response waveforms in the first to third embodiments.
  • 1 is a schematic cross-sectional view of a liquid crystal display panel according to Embodiment 1.
  • FIG. 4 is a schematic plan view of picture elements of the liquid crystal display panel according to Embodiment 1.
  • FIG. 3 is a picture element equivalent circuit diagram of the liquid crystal display panel according to Embodiment 1.
  • FIG. 3 is a diagram illustrating a potential change of each electrode of the liquid crystal display panel according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view showing each electrode of the Nth row when a horizontal electric field is generated in the liquid crystal display panel according to Embodiment 1.
  • FIG. 3 is a schematic cross-sectional view showing each electrode of the Nth row when a vertical electric field is generated in the liquid crystal display panel according to Embodiment 1.
  • FIG. 4 is a schematic cross-sectional view showing each electrode in the Nth row in an initialization process after the occurrence of a vertical electric field in the liquid crystal display panel according to Embodiment 1.
  • FIG. 3 is a diagram illustrating a potential change of each electrode of the liquid crystal display panel according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view showing each electrode of the Nth row when a horizontal electric field is generated in the liquid crystal display panel according to Embodiment 1.
  • FIG. 3 is a schematic cross-sectional view showing each electrode
  • FIG. 3 is a schematic cross-sectional view showing each electrode in the (N + 1) th row when a horizontal electric field is generated in the liquid crystal display panel according to Embodiment 1.
  • FIG. 3 is a schematic cross-sectional view showing each electrode in the (N + 1) th row when a vertical electric field is generated in the liquid crystal display panel according to Embodiment 1.
  • FIG. 3 is a schematic cross-sectional view showing each electrode of the (N + 1) th row in the initialization process after the vertical electric field is generated in the liquid crystal display panel according to Embodiment 1.
  • 6 is a schematic cross-sectional view of a liquid crystal display panel according to Embodiment 2.
  • FIG. 6 is a schematic plan view of picture elements of a liquid crystal display panel according to Embodiment 2.
  • FIG. 1 is a schematic cross-sectional view showing each electrode in the (N + 1) th row when a horizontal electric field is generated in the liquid crystal display panel according to Embodiment 1.
  • FIG. 3 is a schematic cross
  • FIG. 6 is a picture element equivalent circuit diagram of a liquid crystal display panel according to Embodiment 2.
  • FIG. FIG. 6 is a diagram showing a potential change of each electrode of a liquid crystal display panel according to Embodiment 2.
  • 10 is a schematic cross-sectional view showing each electrode of the Nth row when a horizontal electric field is generated in the liquid crystal display panel according to Embodiment 2.
  • FIG. 10 is a schematic cross-sectional view illustrating each electrode in the Nth row in an initialization process after generation of a horizontal electric field in the liquid crystal display panel according to Embodiment 2.
  • FIG. 10 is a schematic cross-sectional view showing each electrode of the Nth row when a vertical electric field is generated in the liquid crystal display panel according to Embodiment 2.
  • FIG. 10 is a schematic cross-sectional view showing each electrode in the Nth row in an initialization process after generation of a vertical electric field in the liquid crystal display panel according to Embodiment 2.
  • FIG. 10 is a schematic cross-sectional view showing each electrode of the (N + 1) th row when a horizontal electric field is generated in the liquid crystal display panel according to Embodiment 2.
  • FIG. 10 is a schematic cross-sectional view showing each electrode in the (N + 1) th row in an initialization process after generation of a horizontal electric field in the liquid crystal display panel according to Embodiment 2.
  • FIG. 10 is a schematic cross-sectional view showing each electrode of the (N + 1) th row when a vertical electric field is generated in the liquid crystal display panel according to Embodiment 2.
  • FIG. 10 is a schematic cross-sectional view showing each electrode of the (N + 1) th row when a vertical electric field is generated in the liquid crystal display panel according to Embodiment 2.
  • FIG. 10 is a schematic cross-sectional view showing each electrode of the (N + 1) th row in an initialization process after generation of a vertical electric field in the liquid crystal display panel according to Embodiment 2.
  • 10 is a schematic cross-sectional view of a liquid crystal display panel according to a modification of Embodiment 2.
  • FIG. 11 is a schematic plan view of picture elements of a liquid crystal display panel according to a modification of the second embodiment.
  • FIG. 10 is a picture element equivalent circuit diagram of a liquid crystal display panel according to a modification of the second embodiment.
  • FIG. 10 is a diagram illustrating a potential change of each electrode of a liquid crystal display panel according to a modification of the second embodiment.
  • FIG. 10 is a schematic cross-sectional view showing each electrode in the Nth row when a horizontal electric field is generated in a liquid crystal display panel according to a modification of the second embodiment.
  • FIG. 10 is a schematic cross-sectional view showing each electrode in the Nth row when a vertical electric field is generated in a liquid crystal display panel according to a modification of the second embodiment.
  • FIG. 10 is a schematic cross-sectional view showing each electrode in the Nth row in an initialization process after the occurrence of a vertical electric field in a liquid crystal display panel according to a modification of Embodiment 2.
  • FIG. 10 is a schematic cross-sectional view showing each electrode in the (N + 1) th row when a horizontal electric field is generated in a liquid crystal display panel according to a modification of the second embodiment.
  • FIG. 10 is a schematic cross-sectional view showing each electrode of the (N + 1) th row when a vertical electric field is generated in a liquid crystal display panel according to a modification of Embodiment 2.
  • FIG. 11 is a schematic cross-sectional view showing each electrode of the (N + 1) th row in an initialization process after a vertical electric field is generated in a liquid crystal display panel according to a modification of Embodiment 2.
  • 6 is a schematic cross-sectional view of a liquid crystal display panel according to Embodiment 3.
  • FIG. 6 is a schematic plan view of picture elements of a liquid crystal display panel according to Embodiment 3.
  • FIG. 6 is a picture element equivalent circuit diagram of a liquid crystal display panel according to Embodiment 3.
  • FIG. 10 is a schematic cross-sectional view showing each electrode of the Nth row when a horizontal electric field is generated in the liquid crystal display panel according to Embodiment 3.
  • FIG. 10 is a schematic cross-sectional view showing each electrode of the Nth row when a vertical electric field is generated in the liquid crystal display panel according to Embodiment 3.
  • FIG. 10 is a schematic cross-sectional view showing each electrode of the Nth row in an initialization process after generation of a vertical electric field in the liquid crystal display panel according to Embodiment 3.
  • FIG. 10 is a schematic cross-sectional view showing each electrode of the Nth row in an initialization process after generation of a vertical electric field in the liquid crystal display panel according to Embodiment 3.
  • FIG. 10 is a schematic cross-sectional view showing each electrode in the (N + 1) th row when a horizontal electric field is generated in the liquid crystal display panel according to Embodiment 3.
  • FIG. 10 is a schematic cross-sectional view showing each electrode in the (N + 1) th row when a vertical electric field is generated in the liquid crystal display panel according to Embodiment 3.
  • FIG. 10 is a schematic cross-sectional view showing each electrode in the (N + 1) th row in an initialization process after generation of a vertical electric field in the liquid crystal display panel according to Embodiment 3. It is a plane schematic diagram which shows the drive form of the liquid crystal display panel of this invention. It is a plane schematic diagram which shows the drive form of the liquid crystal display panel of this invention.
  • FIG. 67 is a schematic plan view of the liquid crystal display panel shown in FIG. 64.
  • 65 is a simulation result on the liquid crystal display panel shown in FIG. 64.
  • It is a graph which shows the response waveform by the simulation of the comb drive using the TN mode in the comparative example 2. It is a simulation result about the liquid crystal display panel which concerns on the comparative example 2.
  • FIG. It is a simulation result about the liquid crystal display panel which concerns on the comparative example 2.
  • FIG. It is a simulation result about the liquid crystal display panel which concerns on the comparative example 2.
  • FIG. It is a cross-sectional schematic diagram which shows one form of the comb-tooth electrode of the liquid crystal display panel which concerns on this invention. It is a cross-sectional schematic diagram which shows one form of the comb-tooth electrode of the liquid crystal display panel which concerns on this invention. It is a plane schematic diagram which shows one form of the thin-film transistor used for the pixel electrode of the liquid crystal display panel which concerns on this invention.
  • a pixel may be a picture element (sub-pixel) unless otherwise specified.
  • a subframe refers to a frame that is displayed by all pixels (for example, pixels including RGB), for example, in one frame by field sequential (time division) driving using some or all picture elements.
  • the time spent for displaying one color is referred to as a period for the display in this specification.
  • the planar electrode is a planar electrode in the technical field of the present invention, for example, dot-shaped ribs and / or slits may be formed, but the planar electrode has a substantially alignment regulating structure. What is not preferred is preferred.
  • the substrate on the display surface side is also referred to as an upper substrate, and the substrate on the opposite side to the display surface is also referred to as a lower substrate.
  • the electrodes arranged on the substrate the electrode on the display surface side is also referred to as an upper layer electrode, and the electrode on the opposite side to the display surface is also referred to as a lower layer electrode.
  • the circuit substrate (second substrate) of this embodiment is also referred to as a TFT substrate or an array substrate because it includes a thin film transistor element (TFT).
  • the TFT is turned on and a voltage is applied to at least one electrode (pixel electrode) of the pair of comb-teeth electrodes both at the rising edge (lateral electric field application) and the falling edge (vertical electric field application). ing.
  • the member and part which exhibit the same function are attached
  • (i) shows the potential of one of the comb-shaped electrodes on the upper layer of the lower substrate, and (ii) shows the other potential of the comb-shaped electrode on the upper layer of the lower substrate.
  • (Iii) shows the potential of the planar electrode on the lower layer of the lower substrate, and (iv) shows the potential of the planar electrode on the upper substrate.
  • FIG. 1 is a schematic cross-sectional view of the liquid crystal display panel according to Embodiment 1 when a lateral electric field is generated.
  • FIG. 2 is a schematic cross-sectional view of the liquid crystal display panel according to Embodiment 1 when a vertical electric field is generated. 1 and 2, the dotted line indicates the direction of the generated electric field.
  • the liquid crystal display panel according to the first embodiment, the liquid crystal molecules 31 is a positive liquid crystal three-layer electrode structure (here vertically oriented type using, upper electrode of the lower substrate located in the second layer is comb electrodes ). As shown in FIG.
  • the rise is caused by a lateral electric field generated by a potential difference of 14 V between a pair of comb electrodes 16 (for example, a comb electrode 17 having a potential of 0 V and a comb electrode 19 having a potential of 14 V). Rotate the liquid crystal molecules. At this time, a potential difference between the substrates (between the counter electrode 13 having a potential of 7V and the counter electrode 23 having a potential of 7V) does not substantially occur.
  • the fall occurs between the substrates (for example, between the counter electrode 13, the comb electrode 17 and the comb electrode 19 each having a potential of 14 V, and the counter electrode 23 having a potential of 7 V.
  • the liquid crystal molecules are rotated by a vertical electric field generated at a potential difference of 7V.
  • there is substantially no potential difference between the pair of comb-shaped electrodes 16 for example, the comb-shaped electrode 17 having a potential of 14V and the comb-shaped electrode 19 having a potential of 14V).
  • High-speed response is achieved by rotating liquid crystal molecules by an electric field for both rising and falling. That is, at the rising edge, the lateral electric field between the pair of comb electrodes is turned on to increase the transmittance, and at the falling edge, the vertical electric field between the substrates is turned on to increase the response speed. Further, a high transmittance can be realized by a lateral electric field driven by a comb.
  • a positive liquid crystal is used as the liquid crystal, but a negative liquid crystal may be used instead of the positive liquid crystal.
  • the liquid crystal molecules are aligned in the horizontal direction due to the potential difference between the pair of substrates, and the liquid crystal molecules are aligned in the vertical direction due to the potential difference between the pair of comb electrodes.
  • the transmittance is excellent, and the liquid crystal molecules can be rotated by an electric field at both rising and falling, thereby achieving high-speed response.
  • the effect of sufficiently reducing the transmittance during black display can be exhibited as in the case of the positive type liquid crystal.
  • At least a driving operation for generating a potential difference between the opposing electrodes disposed on each of the upper and lower substrates a driving operation for generating a potential difference between the electrodes of at least one pair of comb-tooth electrodes, the counter electrode and the pair of comb teeth It is preferable to execute in the order of driving operations that do not cause a potential difference between the electrodes.
  • the potential of the pair of comb electrodes is indicated by (i) and (ii)
  • the potential of the planar electrode of the lower substrate is indicated by (iii)
  • the potential of the planar electrode of the upper substrate is ( iv).
  • the liquid crystal display panel according to the first embodiment as shown in FIGS. 1 and 2, the array substrate 10, the liquid crystal layer 30 and the counter substrate 20 (color filter substrate), the viewing surface side from the back side of the liquid crystal display panel
  • the layers are stacked in this order.
  • the liquid crystal display panel of Embodiment 1 vertically aligns liquid crystal molecules below a threshold voltage.
  • the voltage difference between the comb electrodes when the voltage difference between the comb electrodes is equal to or higher than the threshold voltage, it is generated between the upper layer electrodes 17 and 19 (a pair of comb electrodes) formed on the glass substrate 11 (second substrate).
  • the transmitted light amount is controlled by tilting the liquid crystal molecules in the horizontal direction between the comb-teeth electrodes with an electric field.
  • the planar lower electrode 13 (counter electrode 13) is formed with the insulating layer 15 sandwiched between the upper electrodes 17 and 19 (a pair of comb electrodes 16).
  • the insulating layer 15 for example, an oxide film SiO 2 , a nitride film SiN, an acrylic resin, or the like can be used, or a combination of these materials can also be used.
  • a polarizing plate is disposed on the opposite side of the liquid crystal layers of both substrates.
  • the polarizing plate either a circular polarizing plate or a linear polarizing plate can be used.
  • alignment films are arranged on the liquid crystal layer side of both substrates, and these alignment films are either organic alignment films or inorganic alignment films as long as the liquid crystal molecules stand vertically with respect to the film surfaces. There may be.
  • a voltage supplied from the video signal line is applied to the comb electrode 19 that drives the liquid crystal material through a thin film transistor element (TFT).
  • TFT thin film transistor element
  • the comb-teeth electrode 17 and the comb-teeth electrode 19 are formed in the same layer, and a form in which the comb-teeth electrode 17 and the comb-teeth electrode 19 are formed in the same layer is preferable. As long as the effect of the present invention of improving the transmittance by applying an electric field can be exhibited, it may be formed in a separate layer.
  • the comb electrode 19 is connected to a drain electrode extending from the TFT through a contact hole.
  • the counter electrodes 13 and 23 have a planar shape, and the counter electrode 13 is commonly connected to each of the even and odd lines of the gate bus line. Such an electrode is also referred to as a planar electrode in this specification.
  • the counter electrode 23 is connected in common to all the pixels.
  • the electrode width L of the comb-tooth electrode is 2.4 ⁇ m, but for example, 2 ⁇ m or more is preferable.
  • the electrode spacing S of the comb electrodes is 2.6 ⁇ m, but preferably 2 ⁇ m or more, for example.
  • a preferable upper limit is, for example, 7 ⁇ m.
  • the ratio (L / S) between the electrode spacing S and the electrode width L is preferably 0.4 to 3, for example.
  • a more preferable lower limit value is 0.5, and a more preferable upper limit value is 1.5.
  • the cell gap d is 5.4 ⁇ m, but may be 2 ⁇ m to 7 ⁇ m, and is preferably within the range.
  • the cell gap d thickness of the liquid crystal layer
  • the cell gap d is preferably calculated by averaging all the thicknesses of the liquid crystal layers in the liquid crystal display panel.
  • FIG. 3 is a schematic cross-sectional view of the liquid crystal display panel according to Embodiment 1 when a lateral electric field is generated.
  • a transverse electric field between a pair of comb electrodes 16 (for example, a comb electrode 17 having a potential of 0 V and a comb electrode 19 having a potential of 14 V)
  • FIG. 4 shows simulation results for the liquid crystal display panel shown in FIG.
  • FIG. 4 shows the simulation results of the director D, the electric field, and the transmittance distribution at the point of 2.2 ms after the rise (note that the first 0.4 ms is driven as shown in the graphs described later). Not.)
  • the graph indicated by the solid line indicates the transmittance.
  • Director D indicates the alignment direction of the major axis of the liquid crystal molecule.
  • the cell thickness was 5.4 ⁇ m
  • the comb-teeth spacing was 2.6 ⁇ m.
  • FIG. 5 is a schematic cross-sectional view of the liquid crystal display panel according to Embodiment 1 when a vertical electric field is generated.
  • FIG. 6 shows simulation results for the liquid crystal display panel shown in FIG.
  • FIG. 6 shows a simulation result at the time point of 3.5 ms after the end point of the rising period (time point of 2.8 ms) of the director D, the electric field, and the transmittance distribution.
  • FIG. 7 is a graph comparing response waveforms obtained by simulation of comb tooth drive and FFS drive. Since the first 0.4 ms period is not driven, the rising period (horizontal electric field application period) is 2.4 ms, and the falling period (vertical electric field application period) is 0.8 ms.
  • Comb drive (Embodiment 1) is compared with FFS drive (Comparative Example 1) described later. The simulation conditions were performed with a cell thickness of 5.4 ⁇ m and an electrode interval of a pair of comb-teeth electrodes of 2.6 ⁇ m.
  • the response speed can be considered as follows.
  • the transmittance (18.6%) obtained by the comb driving according to the first embodiment is higher than that of the FFS driving (3.6%) according to Comparative Example 1. Therefore, when trying to obtain a transmittance of 3.6% with the comb drive according to the first embodiment, a faster response can be realized by using the overdrive drive as compared with the FFS drive. That is, by applying a voltage larger than the rated voltage necessary to obtain a transmittance of 3.6% by at least comb driving, the liquid crystal is made to respond quickly and reaches the rated voltage at the timing when the desired transmittance is reached. By reducing the applied voltage, the rise response time can be shortened. For example, in FIG. 7, the response time of the rise can be shortened by reducing the voltage to the rated voltage at the time 41 of 0.6 ms. Fall response times from the same transmittance are equivalent.
  • FIG. 8 is a graph showing the measured drive response waveform and the applied rectangular wave of each electrode in the first embodiment.
  • the evaluation cell had a cell thickness of 5.4 ⁇ m, and the distance between the pair of comb electrodes was 2.6 ⁇ m.
  • the measurement temperature was 25 ° C.
  • a voltage was applied to the electrodes as shown in FIGS. 3 and 5, and a horizontal electric field and a vertical electric field were applied to the liquid crystal molecules, respectively. That is, the rising period is 2.4 ms between the pair of comb electrodes (Embodiment 1), and the falling period is the pair of comb electrodes, the lower layer electrode of the lower substrate, and the upper substrate.
  • the vertical electric field drive was 0.8 ms between the counter electrodes (between the counter electrode 13, the comb electrode 17 and the comb electrode 19 and the counter electrode 23 in FIG. 2) (see FIG. 8 for the applied waveform of each electrode). .
  • the maximum transmittance is 17.7% in the first embodiment (the transmittance in the simulation is 18.6%), which is higher than the comparative example 1 (simulation transmittance 3.6%) described later.
  • the rise is 10% -90% transmittance (value when the maximum transmittance is 100%) and the response speed is 0.9 ms, and the fall is 90-10% transmittance (when the maximum transmittance is 100%). Value) of 0.4 ms, and both rising and falling speeds were realized.
  • the preferred comb electrode width (L; Line), comb electrode spacing (S; Space), and cell thickness (d) for the longitudinal electric field on-lateral electric field on in the first embodiment were studied.
  • the transmittance increases in proportion to the decrease in the comb electrode width L.
  • the comb electrode width L is too small, problems such as leakage and disconnection occur in device fabrication. .
  • FIG. 9 is a graph showing the relationship between the maximum transmittance and the cell thickness d in the first embodiment.
  • FIG. 10 is a graph showing the relationship between the maximum transmittance and the space S in the first embodiment.
  • both the cell thickness d and the space S are from 2 ⁇ m.
  • the maximum transmittance increased as the value increased, but decreased significantly when the value exceeded 7 ⁇ m. Therefore, the cell thickness d and the space S are desirably 7 ⁇ m or less. Therefore, both the cell thickness d and the space S are desirably 2 ⁇ m or more and 7 ⁇ m or less.
  • FIG. 11 is a schematic cross-sectional view of the liquid crystal display panel according to Embodiment 2 when a horizontal electric field is generated.
  • FIG. 12 is a schematic cross-sectional view of the liquid crystal display panel according to Embodiment 2 when a vertical electric field is generated.
  • FIG. 13 is a graph showing a rectangular wave (driving waveform) applied to each electrode in the second embodiment.
  • the counter electrode 13 and the counter electrode 23 apply the intermediate voltage (7 V) of the voltage difference (14 V) between the pair of comb electrodes.
  • the counter electrode 113 is set to the same potential as the comb electrode 117 that is one side of the pair of comb electrodes, and the counter electrode 123 is set to an intermediate voltage (14V) between the pair of comb electrodes. 7V) (Embodiment 2), and other configurations are the same as those in Embodiment 1.
  • FIG. 14 is a schematic cross-sectional view of the liquid crystal display panel according to Embodiment 3 when a horizontal electric field is generated.
  • FIG. 15 is a schematic cross-sectional view of the liquid crystal display panel according to Embodiment 3 when a vertical electric field is generated.
  • FIG. 16 is a graph showing a rectangular wave (driving waveform) applied to each electrode in the third embodiment.
  • the counter electrode 213 is set to the same potential as the comb electrode 217 that is one side of the pair of comb electrodes, and the counter electrode 223 is set to 0 V.
  • Other configurations are the same as those in the first embodiment. It is the same.
  • FIG. 17 is a graph showing actual measured values of drive response waveforms in the first to third embodiments.
  • the response performance and the transmittance were measured as in the first embodiment.
  • the evaluation cell has a cell thickness of 5.4 ⁇ m, and the electrode interval between the pair of comb electrodes is 2.6 ⁇ m.
  • the measurement temperature was 25 ° C.
  • in the first embodiment in the second and third embodiments, as shown in FIG. 17, as compared with Comparative Example 1 (simulation transmittance 3.6%) while maintaining high-speed response. It was confirmed that high response performance and high transmittance can be achieved.
  • FIG. 18 is a schematic cross-sectional view of the liquid crystal display panel according to the first embodiment.
  • FIG. 19 is a schematic plan view of picture elements of the liquid crystal display panel according to the first embodiment.
  • FIG. 20 is a pixel equivalent circuit diagram of the liquid crystal display panel according to the first embodiment.
  • FIG. 21 is a diagram illustrating a change in potential of each electrode of the liquid crystal display panel according to the first embodiment. As a driving method with the module in the first embodiment, two TFTs are driven per picture element. In FIG. 18 to FIG. 21, the wiring electrically connected to the lower layer electrode of the lower substrate is indicated by a two-dot chain line.
  • a wiring electrically connected to one of the pair of comb electrodes on the lower substrate is indicated by a one-dot chain line.
  • a wiring electrically connected to the other of the pair of comb electrodes on the lower substrate is represented by a dotted line having a narrower interval in the drawing.
  • Wirings electrically connected to the electrodes of the upper substrate are represented by dotted lines with wider intervals in the drawing.
  • the lower layer electrode also serves as the Cs electrode, and is commonly connected to each of the even line and the odd line.
  • the auxiliary capacitance formed by the overlap of the comb-tooth electrode and the Cs electrode is indicated by Cs
  • the liquid crystal capacitance formed between the pair of comb-tooth electrodes is indicated by Clc1
  • Clc2 the liquid crystal capacitance formed between the pair of comb-tooth electrodes
  • Clc2 the liquid crystal capacitance formed between the pair of comb-tooth electrodes.
  • Clc2 the formed liquid crystal capacitance.
  • the voltage applied to the lower layer electrode is 7.5V during bright display, then 15V during dark display (black display), and 7.5V during the initialization process.
  • the voltage applied to the lower layer electrode is 7.5V during bright display, then becomes 0V during dark display (black display), and becomes 7.5V during the initialization process. Yes.
  • the Nth row may be an even line
  • the N + 1th row may be an odd line
  • the Nth row may be an odd line
  • the N + 1th row may be an even line.
  • the potential change is reversed by applying to the lower layer electrode commonly connected to each of the even and odd lines. Note that although the potential of the electrode held at a constant voltage is expressed as 7.5 V, this can be said to be substantially 0 V, and thus it can be said that the N line and the N + 1 line are driven with the polarity reversed.
  • FIG. 22 is a schematic cross-sectional view showing each electrode in the Nth row when the horizontal electric field is generated in the liquid crystal display panel according to Embodiment 1.
  • FIG. 23 is a schematic cross-sectional view showing each electrode in the Nth row when the vertical electric field is generated in the liquid crystal display panel according to Embodiment 1.
  • FIG. 24 is a schematic cross-sectional view showing each electrode in the Nth row in the initialization process after the vertical electric field is generated in the liquid crystal display panel according to Embodiment 1.
  • FIG. 25 is a schematic cross-sectional view showing each electrode in the (N + 1) th row when the horizontal electric field is generated in the liquid crystal display panel according to the first embodiment.
  • FIG. 26 is a schematic cross-sectional view showing each electrode in the (N + 1) th row when the vertical electric field is generated in the liquid crystal display panel according to Embodiment 1.
  • FIG. 27 is a schematic cross-sectional view showing each electrode of the (N + 1) th row in the initialization process after the vertical electric field is generated in the liquid crystal display panel according to Embodiment 1.
  • the liquid crystal is driven by a lateral electric field between a pair of comb electrodes.
  • a vertical electric field is applied with both the comb-tooth electrode and the lower layer electrode set to 15 V or 0 V (TFTs are turned on for each even line and odd line).
  • the TFTs are turned off and the pair of comb electrodes are floated, or all the TFTs are turned on and the pair of comb electrodes are set to 7.5V, and the lower layer electrode is 7.5V.
  • the initial orientation is refreshed (initialization process).
  • the liquid crystal display device provided with the liquid crystal display panel of Embodiment 1 can appropriately include a member (for example, a light source or the like) included in a normal liquid crystal display device. The same applies to the embodiments described later.
  • FIG. 28 is a schematic cross-sectional view of a liquid crystal display panel according to the second embodiment.
  • FIG. 29 is a schematic plan view of picture elements of a liquid crystal display panel according to the second embodiment.
  • FIG. 30 is a picture element equivalent circuit diagram of the liquid crystal display panel according to the second embodiment.
  • FIG. 31 is a diagram illustrating a potential change of each electrode of the liquid crystal display panel according to the second embodiment. As a driving method using a module in the second embodiment, one TFT is driven per picture element.
  • the wiring electrically connected to the lower layer electrode of the lower substrate is indicated by a two-dot chain line.
  • a wiring electrically connected to one of the pair of comb electrodes on the lower substrate is indicated by a one-dot chain line.
  • the wiring electrically connected to the other of the pair of comb electrodes on the lower substrate is indicated by a two-dot chain line because the other of the comb electrodes is electrically connected to the lower electrode of the lower substrate.
  • a wiring electrically connected to the electrode of the upper substrate is represented by a dotted line.
  • the lower layer electrode also serves as the Cs electrode, and is commonly connected to each of the even line and the odd line.
  • the voltage applied to the lower layer electrode is 0 V during bright display, and then after an initialization process of 7.5 V (all TFTs on) during dark display (black display), At the time of application, it is 15V, and in the initialization process after application of the vertical electric field, it is 7.5V.
  • the voltage applied to the lower layer electrode is 15 V during bright display, and then after an initialization process of 7.5 V (all TFTs on) in dark display (black display), The voltage is 0 V when the vertical electric field is applied, and 7.5 V in the initialization process after the vertical electric field is applied.
  • the Nth row may be an even line
  • the N + 1th row may be an odd line
  • the Nth row may be an odd line
  • the N + 1th row may be an even line.
  • the potential change is inverted by applying to the lower layer electrode commonly connected to each of the even and odd lines. Note that although the potential of the electrode held at a constant voltage is expressed as 7.5 V, this can be said to be substantially 0 V, so that it can be said that the N line and the N + 1 line are driven with the polarity reversed.
  • FIG. 32 is a schematic cross-sectional view showing each electrode in the Nth row when a horizontal electric field is generated in the liquid crystal display panel according to the second embodiment.
  • FIG. 33 is a schematic cross-sectional view showing each electrode in the Nth row in the initialization process after the generation of the horizontal electric field in the liquid crystal display panel according to Embodiment 2.
  • FIG. 34 is a schematic cross-sectional view showing each electrode in the Nth row when a vertical electric field is generated in the liquid crystal display panel according to the second embodiment.
  • FIG. 35 is a schematic cross-sectional view illustrating each electrode in the Nth row in the initialization process after the vertical electric field is generated in the liquid crystal display panel according to the second embodiment.
  • FIG. 36 is a schematic cross-sectional view showing each electrode of the (N + 1) th row when the horizontal electric field is generated in the liquid crystal display panel according to the second embodiment.
  • FIG. 37 is a schematic cross-sectional view showing each electrode of the (N + 1) th row in the initialization process after the generation of the horizontal electric field in the liquid crystal display panel according to the second embodiment.
  • FIG. 38 is a schematic cross-sectional view showing each electrode in the (N + 1) th row when a vertical electric field is generated in the liquid crystal display panel according to the second embodiment.
  • FIG. 39 is a schematic cross-sectional view showing each electrode of the (N + 1) th row in the initialization process after the vertical electric field is generated in the liquid crystal display panel according to the second embodiment.
  • the liquid crystal is driven by a lateral electric field between a pair of comb electrodes.
  • all TFTs are turned on and all electrodes are once reset to 7.5V.
  • the TFT is turned off to float one of the pair of comb electrodes, or the TFT is turned on every even line / odd line and one of the pair of comb electrodes is set to 15V or 0V.
  • the vertical electric field is applied with the lower electrode set at 15V or 0V.
  • the TFT is turned off to float one of the pair of comb electrodes, or the entire TFT is turned on and the pair of comb electrodes is set to 7.5V, and the lower electrode 7.5V is initially set.
  • the alignment is refreshed (initialization process).
  • Other reference numerals in the drawing according to the second embodiment are the same as those shown in the drawing according to the first embodiment except that 1 is added to the hundreds place.
  • FIG. 40 is a schematic cross-sectional view of a liquid crystal display panel according to a modification example of the second embodiment.
  • FIG. 41 is a schematic plan view of picture elements of a liquid crystal display panel according to a modification of the second embodiment.
  • FIG. 42 is a pixel equivalent circuit diagram of a liquid crystal display panel according to a modification of the second embodiment.
  • FIG. 43 is a diagram illustrating a potential change of each electrode of the liquid crystal display panel according to the modification of the second embodiment.
  • the wiring electrically connected to the lower layer electrode of the lower substrate is indicated by a two-dot chain line.
  • a wiring electrically connected to one of the pair of comb electrodes on the lower substrate is indicated by a one-dot chain line.
  • the wiring electrically connected to the other of the pair of comb electrodes on the lower substrate is indicated by a two-dot chain line because the other of the comb electrodes is electrically connected to the lower electrode of the lower substrate.
  • a wiring electrically connected to the electrode of the upper substrate is represented by a dotted line.
  • the lower layer electrode also serves as the Cs electrode, and is commonly connected to each of the even line and the odd line. In the picture element in the Nth row, the voltage applied to the lower layer electrode is 0 V during bright display, then 15 V during dark display (black display), and in the initialization process for dark display (black display), 7. It is 5V.
  • the voltage applied to the lower layer electrode is 15 V during bright display, then becomes 0 V during dark display (black display), and in the initialization process where dark display (black display) is performed. It is 7.5V.
  • the Nth row may be an even line
  • the N + 1th row may be an odd line
  • the Nth row may be an odd line
  • the N + 1th row may be an even line.
  • the potential change is inverted by applying to the lower layer electrode connected in common for each of the even and odd lines. Note that although the potential of the electrode held at a constant voltage is expressed as 7.5 V, this can be said to be substantially 0 V, so that it can be said that the N line and the N + 1 line are driven with the polarity reversed.
  • FIG. 44 is a schematic cross-sectional view showing each electrode in the Nth row when a horizontal electric field is generated in a liquid crystal display panel according to a modification of the second embodiment.
  • FIG. 45 is a schematic cross-sectional view showing each electrode in the Nth row when a vertical electric field is generated in a liquid crystal display panel according to a modification of the second embodiment.
  • FIG. 46 is a schematic cross-sectional view showing each electrode in the Nth row in the initialization process after the vertical electric field is generated in the liquid crystal display panel according to the modification of the second embodiment.
  • FIG. 47 is a schematic cross-sectional view showing each electrode in the (N + 1) th row when a horizontal electric field is generated in the liquid crystal display panel according to the modification of the second embodiment.
  • FIG. 48 is a schematic cross-sectional view showing each electrode of the (N + 1) th row when a vertical electric field is generated in the liquid crystal display panel according to the modification of the second embodiment.
  • FIG. 49 is a schematic cross-sectional view showing each electrode of the (N + 1) th row in the initialization process after the vertical electric field is generated in the liquid crystal display panel according to the modification of the second embodiment.
  • the liquid crystal is driven by a lateral electric field between a pair of comb electrodes.
  • the TFT is turned on for each even line / odd line, and the vertical electric field is applied with both the comb electrode and the lower layer electrode set to 15V or 0V.
  • the TFT is turned off to float one of the pair of comb electrodes, or the entire TFT is turned on to set the pair of comb electrodes to 7.5V and the lower layer electrode to 7.5V.
  • the initial orientation is refreshed (initialization process).
  • the other reference numbers of the figure which concerns on the modification of Embodiment 2 are the same as what was shown to the figure which concerns on Embodiment 1 except having attached 1 to the hundreds place and attaching "'". .
  • FIG. 50 is a schematic cross-sectional view of a liquid crystal display panel according to Embodiment 3.
  • FIG. 51 is a schematic plan view of picture elements of a liquid crystal display panel according to Embodiment 3.
  • FIG. 52 is a pixel equivalent circuit diagram of the liquid crystal display panel according to the third embodiment.
  • FIG. 53 is a diagram illustrating a potential change of each electrode of the liquid crystal display panel according to the third embodiment. As a driving method by the module in the third embodiment, one TFT is driven per picture element. 50 to 53, the wiring electrically connected to the lower layer electrode of the lower substrate is indicated by a two-dot chain line.
  • a wiring electrically connected to one of the pair of comb electrodes on the lower substrate is indicated by a one-dot chain line.
  • the wiring electrically connected to the other of the pair of comb electrodes on the lower substrate is indicated by a two-dot chain line because the other of the comb electrodes is electrically connected to the lower layer electrode of the lower substrate.
  • a wiring electrically connected to the electrode of the upper substrate is represented by a dotted line.
  • the lower layer electrode also serves as the Cs electrode, and is commonly connected to each of the even line and the odd line. Further, in the third embodiment, the counter electrode on the counter substrate side is also commonly connected for every even line / odd line.
  • the voltage applied to the lower layer electrode is 0 V during bright display, and then 15 V during dark display (black display).
  • the voltage applied to the lower layer electrode is 15 V during bright display, and then 0 V during dark display (black display).
  • the voltage applied to the counter electrode on the counter substrate side is 0V during bright display and is maintained during dark display (black display) thereafter, but is 15V during the initialization process. The potential change is reversed.
  • the voltage applied to the counter electrode on the counter substrate side is 15 V during bright display and is maintained during dark display (black display) after that, but is 0 V during the initialization process.
  • the potential change is reversed.
  • the Nth row may be an even line
  • the N + 1th row may be an odd line
  • the Nth row may be an odd line
  • the N + 1th row may be an even line.
  • the potential change is inverted by applying the voltage to the lower electrode and the counter electrode on the counter substrate side that are commonly connected to the even lines and the odd lines.
  • FIG. 54 is a schematic cross-sectional view showing each electrode in the Nth row when a horizontal electric field is generated in the liquid crystal display panel according to Embodiment 3.
  • FIG. 55 is a schematic cross-sectional view showing each electrode in the Nth row when a vertical electric field is generated in the liquid crystal display panel according to Embodiment 3.
  • FIG. 56 is a schematic cross-sectional view showing each electrode in the Nth row in the initialization step after the vertical electric field is generated in the liquid crystal display panel according to Embodiment 3.
  • FIG. 57 is a schematic cross-sectional view showing each electrode of the (N + 1) th row when the horizontal electric field is generated in the liquid crystal display panel according to Embodiment 3.
  • FIG. 58 is a schematic cross-sectional view showing each electrode of the (N + 1) th row when a vertical electric field is generated in the liquid crystal display panel according to Embodiment 3.
  • FIG. 59 is a schematic cross-sectional view showing each electrode of the (N + 1) th row in the initialization process after the vertical electric field is generated in the liquid crystal display panel according to Embodiment 3.
  • the liquid crystal is driven by a lateral electric field between a pair of comb electrodes.
  • the TFT is turned on for each even line / odd line, both the comb electrode and the lower layer electrode are set to 15 V or 0 V, and the counter electrode on the counter substrate side is set to 0 V or 15 V.
  • the TFT is turned off to float one of the pair of comb electrodes, or the TFT is turned on every even line / odd line and one of the pair of comb electrodes is set to 15 or 0V.
  • the counter electrode of the counter substrate is refreshed to the initial orientation (initialization process) at 15 V or 0 V and the lower electrode is 15 V or 0 V.
  • Embodiments 1 to 3 are easy to manufacture and can achieve high-speed response and high transmittance.
  • the TFT driving method described above is a method of driving including a subframe that is a driving cycle until the liquid crystal is changed back to the initial state, and a potential difference is generated between the electrodes of the pair of comb electrodes during the subframe cycle.
  • a driving operation that generates a potential difference higher than that between the electrodes of the pair of comb electrodes, and a potential difference between all the electrodes of the pair of comb electrodes and the pair of counter electrodes. Performing a drive operation that does not occur.
  • a potential difference is substantially generated between the pair of comb electrodes and all the electrodes of the pair of counter electrodes.
  • a driving operation that does not occur is performed, and thereby the above-described effects of the present invention can be exhibited, and the alignment of the liquid crystal molecules can be suitably controlled to make the transmittance during black display sufficiently low.
  • FIG. 60 is a schematic plan view showing a driving mode of the liquid crystal display panel of the present invention.
  • FIG. 60 shows how white display is written on the liquid crystal display panel.
  • white writing is applied like vertical line inversion. Black writing is not reversed.
  • the gate bus line side is scanned (binary of + 35V and ⁇ 5V).
  • the lower layer electrode is also scanned (three values of 7.5V, 15V, and 0V).
  • the white (halftone) display is already written, and the white (halftone) display is maintained (display maintenance 41).
  • the lower electrode is maintained at 7.5V.
  • the voltage of the gate bus line is 35 V, and white (halftone) display is written.
  • the lower electrode is also scanned and becomes 7.5V.
  • black is written and held.
  • the lower layer electrode is 15V.
  • Black is also written and held in the pixel 43 'along the fourth bus line from the top.
  • the lower layer electrode is 0V.
  • the counter electrode 23 is always 7.5V.
  • FIG. 61 is a schematic plan view showing a driving mode of the liquid crystal display panel of the present invention.
  • FIG. 62 is a schematic plan view showing the drive mode of the liquid crystal display panel of the present invention.
  • FIG. 63 is a schematic plan view showing a driving mode of the liquid crystal display panel of the present invention.
  • FIG. 64 is a schematic cross-sectional view of the liquid crystal display panel according to Comparative Example 1 when a fringe electric field is generated.
  • 65 is a schematic plan view of the liquid crystal display panel shown in FIG.
  • FIG. 66 shows simulation results for the liquid crystal display panel shown in FIG.
  • FIG. 61 conceptually shows the entire display panel shown in FIG.
  • a data signal is applied by display writing and held.
  • 35V is applied to the gate bus line
  • 7.5V is applied to the lower layer electrode
  • the data signal is applied.
  • the black maintenance 43 display writing has not yet been performed.
  • FIG. 62 and 63 conceptually show the entire display panel on which black writing is performed.
  • black is written in a lump without scanning. This increases the writing speed.
  • FIG. 63 similarly to display writing, scanning is sequentially performed to write black.
  • 15V or 0V input may be performed alternately on the line or on the frame.
  • a liquid crystal drive device performs a field sequential drive and is provided with a circularly-polarizing plate.
  • field sequential driving internal reflection increases because there is no color filter. This is because the transmittance of the color filter is usually 1/3, and the reflected light passes through the color filter twice, so that if there is a color filter, the internal reflection is about 1/10. For this reason, such internal reflection can be sufficiently reduced by using a circularly polarizing plate.
  • the electrode structure and the like according to the liquid crystal display panel and the liquid crystal display device of the present invention can be confirmed by microscopic observation such as SEM (Scanning / Electron / Microscope).
  • FIG. 64 is a schematic cross-sectional view of the liquid crystal display panel according to Comparative Example 1 when a fringe electric field is generated.
  • 65 is a schematic plan view of the liquid crystal display panel shown in FIG.
  • FIG. 66 shows simulation results for the liquid crystal display panel shown in FIG. Similar to Patent Document 1, the liquid crystal display panel according to Comparative Example 1 generates a fringe electric field by FFS driving.
  • FIG. 66 shows the simulation results (cell thickness 5.4 ⁇ m, slit interval 2.6 ⁇ m) of the director D, the electric field, and the transmittance distribution. Note that the reference numbers in FIG. 64 according to the comparative example 1 are the same as those shown in the drawings according to the first embodiment except that the hundreds are marked with 3.
  • the slit electrode is 14V and the opposing planar electrode is 7V.
  • the slit electrode may be 5V and the opposing planar electrode may be 0V.
  • liquid crystal molecules are rotated by a fringe electric field generated between the upper layer and lower layer electrodes of the lower substrate. .
  • the transmittance in the simulation is low, which is 3.6%. The transmittance could not be improved as in the above-described embodiment (see FIG. 66).
  • FIG. 67 is a graph showing response waveforms obtained by simulation of comb driving using the TN mode in Comparative Example 2. Since the first 0.4 ms period is not driven, the rising period (horizontal electric field application period) is 2.4 ms, and the falling period (vertical electric field application period) is 1.6 ms.
  • FIG. 68 to 70 are simulation results for the liquid crystal display panel according to Comparative Example 2.
  • FIG. 68 the simulation result at the time of 2.6 ms of the director D, the electric field, and the transmittance distribution is shown.
  • FIG. 69 the simulation result at the time of 4.2 ms of the director D, the electric field, and the transmittance distribution is shown.
  • FIG. 70 the simulation result at the time of 5.6 ms of the director D, the electric field, and the transmittance distribution is shown.
  • the first 0.4 ms is not driven.
  • the graph indicated by the solid line indicates the transmittance.
  • Director D indicates the alignment direction of the major axis of the liquid crystal molecule.
  • Comparative Example 2 the comb electrode described in Patent Document 2 and the TN mode were used.
  • the cell thickness was 5.4 ⁇ m
  • the comb-teeth spacing was 2.6 ⁇ m.
  • the liquid crystal molecules respond vertically by the vertical electric field as shown in FIG.
  • the liquid crystal molecules between the comb electrodes are horizontal due to the horizontal electric field, but the liquid crystal molecules on the comb electrodes are caused by the vertical electric field between the lower and upper substrates, Don't respond while facing vertically.
  • FIG. 73 is a schematic plan view showing one embodiment of a thin film transistor used for a pixel electrode of a liquid crystal display panel according to the present invention.
  • S represents a source
  • D represents a drain
  • G represents a gate.
  • the semiconductor in the thin film transistor used for the pixel electrode of the present invention is preferably an oxide semiconductor (such as indium gallium zinc composite oxide [IGZO]).
  • FIG. 73 shows the case where a Si semiconductor layer (Si) is used, but IGZO can be suitably used as the semiconductor layer instead of the Si semiconductor layer.
  • An oxide semiconductor shows higher carrier mobility than amorphous silicon. For this reason, the area of a transistor using an oxide semiconductor can be smaller in one pixel than that of amorphous silicon. Specifically, the size can be reduced by about 40 to 50%.
  • This miniaturization contributes as it is as an aperture ratio, so that the light transmittance per pixel can be increased. Therefore, by using the oxide semiconductor TFT, the transmittance improving effect which is the effect of the present invention can be obtained more remarkably.
  • the mainstream is about 300 ppi (pixel per inch), which has a pixel pitch of about 30 ⁇ m, and uses IGZO in addition to the liquid crystal mode of the present invention described above.
  • the aperture ratio (transmittance) of 5% can be increased by reducing the area of the TFT to adopt IGZO, as shown in Table 3 below.
  • L ( ⁇ m) is the length shown in FIG. 73
  • W ( ⁇ m) is the length shown in FIG.
  • the area ( ⁇ m 2 ) refers to the area of the TFT.
  • the aperture ratio refers to the ratio of the area of the opening in one pixel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

本発明は、充分に高速応答化するとともに、透過率が充分に優れる液晶表示パネル及び液晶表示装置を提供する。本発明の液晶表示パネルは、第1基板、第2基板、及び、両基板に挟持された液晶層を備える液晶表示パネルであって、該第1基板及び該第2基板は、電極を有し、該第2基板の電極は、一対の櫛歯電極、及び、面状電極を含み、該液晶表示パネルは、一対の櫛歯電極間又は第1基板と第2基板との間で生じる電界により、液晶層における液晶分子が基板主面に対して水平方向に配向するように構成された液晶表示パネルである。

Description

液晶表示パネル及び液晶表示装置
本発明は、液晶表示パネル及び液晶表示装置に関する。より詳しくは、電圧無印加時に基板主面に対して垂直な方向に配向する液晶分子を含む液晶表示パネル及び液晶表示装置に関するものである。
液晶表示パネルは、一対のガラス基板等に液晶表示素子を挟持して構成され、薄型で軽量かつ低消費電力といった特長を活かして、パーソナルコンピュータ、テレビジョン、カーナビゲーション等の車載用の機器、携帯電話等の携帯情報端末のディスプレイ等、日常生活やビジネスに欠かすことのできないものとなっている。これらの用途において、液晶層の光学特性を変化させるための電極配置や基板の設計に係る各種モードの液晶表示パネルが検討されている。
近年の液晶表示装置の表示方式としては、負の誘電率異方性を有する液晶分子を基板面に対して垂直配向させた垂直配向(VA:Vertical Alignment)モードや、正又は負の誘電率異方性を有する液晶分子を基板面に対して水平配向させて液晶層に対し横電界を印加する面内スイッチング(IPS:In-Plane Switching)モード及び縞状電界スイッチング(FFS:Fringe Field Switching)等が挙げられる。
例えば、FFS駆動方式の液晶表示装置として、高速応答性及び広視野角を有する薄膜トランジスタ型液晶ディスプレイであって、第1の共通電極層を有する第1の基板と、ピクセル電極層及び第2の共通電極層の両方を有する第2の基板と、前記第1の基板と前記第2の基板との間に挟まれた液晶と、高速な入力データ転送速度に対する高速応答性及び見る人にとっての広視野角をもたらすために、前記第1の基板にある前記第1の共通電極層と、前記第2の基板にある前記ピクセル電極層及び第2の共通電極層の両方との間に電界を発生させる手段とを含むディスプレイが開示されている(例えば、特許文献1参照。)。
また複数の電極により横電界を印加する液晶装置として、互いに対向配置された一対の基板間に誘電率異方性が正の液晶からなる液晶層が挟持された液晶装置であって、前記一対の基板を構成する第1の基板、第2の基板のそれぞれに前記液晶層を挟んで対峙し、該液晶層に対して縦電界を印加する電極が設けられるとともに、前記第2の基板には、前記液晶層に対して横電界を印加する複数の電極が設けられた液晶装置が開示されている(例えば、特許文献2参照。)。
特表2006-523850号公報 特開2002-365657号公報
FFS駆動方式の液晶表示装置においては、立上がり(暗状態〔黒表示〕から明状態〔白表示〕に表示状態が変化する間)は下側基板の上層スリット電極-下層面状電極間で発生するフリンジ電界(FFS駆動)により、立下がり(明状態〔白表示〕から暗状態〔黒表示〕に表示状態が変化する間)は基板間の電位差で発生する縦電界により、それぞれ電界によって液晶分子を回転させて高速応答化できる。一方、特許文献1に記載されるように、液晶分子が垂直配向している液晶表示装置にスリット電極を用いてフリンジ電界を印加しても、スリット電極端近傍の液晶分子しか回転しないため(図66参照。)、充分な透過率が得られない。
なお、図64は、下側基板上に従来のFFS駆動方式の電極構造を有する液晶表示パネルの断面模式図である。図66は、図64に示した液晶表示パネルにおける、ダイレクタDの分布、電界分布及び透過率分布を示すシミュレーション結果である。図64では、液晶表示パネルの構造を示しており、スリット電極が一定の電圧に印加され(図では14V。例えば、対向電極313との電位差が閾値以上であればよい。上記閾値とは、液晶層が光学的な変化を起こし、液晶表示装置において表示状態が変化することになる電場及び/又は電界を生じる電圧値を意味する。)、スリット電極が配置された基板と、対向基板に、それぞれ対向電極313、323が配置されている。対向電極313、323は、7Vである。図66は、立上がりにおけるシミュレーション結果を示しており、電圧分布、ダイレクタDの分布、透過率分布(実線)が示されている。
上記特許文献2は、3層電極構造を有する液晶表示装置において櫛歯駆動を用いて応答速度を向上させることを記載している。しかしながら、実質的に表示方式がツイステッドネマティック(TN)モードの液晶装置についての記載しかなく、広視野角、高コントラストの特性等を得るのに有利な方式である垂直配向型の液晶表示装置については何ら開示されていない。また、透過率の改善や、電極構造と透過率との関連性についても何ら開示されていない。
本発明は、上記現状に鑑みてなされたものであり、液晶層が電圧無印加時に基板主面に対して垂直方向に配向する液晶分子を含む液晶表示パネル及び液晶表示装置において、充分に高速応答化するとともに、透過率が充分に優れる液晶表示パネル及び液晶表示装置を提供することを目的とするものである。
本発明者らは、垂直配向型の液晶表示パネル及び液晶表示装置において高速応答化と高透過率とを両立させることを検討し、立上がり・立下がりの両方において液晶分子を電界によって配向制御させる3層電極構造に着目した。そして、電極構造について更なる検討をおこない、液晶層を挟持する第1基板及び第2基板が電極を有し、第2基板の電極を一対の櫛歯電極とすることにより、立上がりは一対の櫛歯電極間の電位差で横電界、立下がりは基板間の電位差で縦電界を発生させ、3層電極構造による縦電界オン-横電界オンのスイッチングを好適におこなうことができることを見出した。これにより、立上がり、立下がりともに電界によって液晶分子を回転させて高速応答化し、かつ櫛歯駆動の横電界により高透過率化も実現できることを見出し、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。本発明では、このように、垂直配向型の3層電極構造を有する液晶表示装置において、高速応答化し、かつ高透過率化も実現できることを特徴とし、この点で先行技術文献に記載の発明と異なる。更に言えば、低温環境下では応答速度の課題が特に顕著になるところ、本発明ではこれを解決し、かつ透過率にも優れたものとすることができる。
すなわち、本発明は、第1基板、第2基板、及び、両基板に挟持された液晶層を備える液晶表示パネルであって、該第1基板及び該第2基板は、電極を有し、該第2基板の電極は、一対の櫛歯電極、及び、面状電極を含み、該液晶表示パネルは、一対の櫛歯電極間又は第1基板と第2基板との間で生じる電界により、液晶層における液晶分子が基板主面に対して水平方向に配向するように構成された液晶表示パネルである。なお、面状電極は、通常は一対の櫛歯電極と電気抵抗層を介して形成される。上記電気抵抗層は、絶縁層であることが好ましい。絶縁層とは、本発明の技術分野において、絶縁層といえるものであればよい。
上記一対の櫛歯電極は、基板主面を平面視したときに、2つの櫛歯電極が対向するように配置されているといえるものであればよい。これら一対の櫛歯電極により櫛歯電極間で横電界を好適に発生させることができるため、液晶層が正の誘電率異方性を有する液晶分子を含むときは、立上がり時の応答性能及び透過率が優れたものとなり、液晶層が負の誘電率異方性を有する液晶分子を含むときは、立下がり時において横電界によって液晶分子を回転させて高速応答化することができる。また、上記第1基板及び上記第2基板が有する電極は、基板間に電位差を付与することができるものであればよく、これにより、液晶層が正の誘電率異方性を有する液晶分子を含むときの立下がり時、並びに、液晶層が負の誘電率異方性を有する液晶分子を含むときの立上がり時において基板間の電位差で縦電界を発生させ、電界によって液晶分子を回転させて高速応答化することができる。
図71及び図72は、本発明に係る液晶表示パネルの櫛歯電極の一形態を示す断面模式図である。図71に示されるように、一対の櫛歯電極417、419が同一の層に設けられていてもよく、また、図72に示されるように、本発明の効果を発揮できる限り、一対の櫛歯電極517、519が異なる層に設けられていてもよいが、一対の櫛歯電極は、同一の層に設けられていることが好ましい。一対の櫛歯電極が同一の層に設けられているとは、それぞれの櫛歯電極が、その液晶層側、及び/又は、液晶層側と反対側において、共通する部材(例えば、絶縁層、液晶層等)と接していることを言う。
上記一対の櫛歯電極は、基板主面を平面視したときに、櫛歯部分がそれぞれ沿っていることが好ましい。中でも、一対の櫛歯電極の櫛歯部分がそれぞれ略平行であること、言い換えれば、一対の櫛歯電極がそれぞれ複数の略平行なスリットを有することが好適である。また、図19等に模式的に1つの櫛歯部分を有する櫛歯電極が示されているが、通常は、1つの櫛歯電極が2つ以上の櫛歯部分を有するものである。
上記液晶層は、電圧無印加時に基板主面に対して垂直方向に配向する液晶分子を含むことが好ましい。なお、基板主面に対して垂直方向に配向するとは、本発明の技術分野において、基板主面に対して垂直方向に配向するといえるものであればよく、実質的に垂直方向に配向する形態を含む。上記液晶層に含まれる液晶分子は、閾値電圧未満で基板主面に対して垂直方向に配向する液晶分子から実質的に構成されるものであることが好適である。上記「電圧無印加時に」は、本発明の技術分野において実質的に電圧が印加されていないといえるものであればよい。このような垂直配向型の液晶表示パネルは、広視野角、高コントラストの特性等を得るのに有利な方式であり、その適用用途が拡大しているものである。
上記一対の櫛歯電極は、閾値電圧以上で異なる電位とすることができることが好ましい。例えば、明状態の透過率を100%に設定したとき、5%の透過率を与える電圧値を意味する。閾値電圧以上で異なる電位とすることができるとは、閾値電圧以上で異なる電位とする駆動操作を実現できるものであればよく、これにより液晶層に印加する電界を好適に制御することが可能となる。異なる電位の好ましい上限値は、例えば20Vである。異なる電位とすることができる構成としては、例えば、一対の櫛歯電極のうち、一方の櫛歯電極をあるTFTで駆動するとともに、他方の櫛歯電極を、別のTFTで駆動したり、該他方の櫛歯電極の下層電極と導通させたりすることにより、一対の櫛歯電極をそれぞれ異なる電位とすることができる。上記一対の櫛歯電極における櫛歯部分の幅は、例えば2μm以上が好ましい。また、櫛歯部分と櫛歯部分との間の幅(本明細書中、スペースともいう。)は、例えば2μm~7μmであることが好ましい。
上記液晶表示パネルは、一対の櫛歯電極間又は第1基板と第2基板との間で生じる電界により、液晶層における液晶分子が基板主面に対して垂直方向に配向されるように構成されたものであることが好ましい。また、上記第1基板の電極は、面状電極であることが好ましい。本明細書中、面状電極とは、複数の画素内で電気的に接続された形態を含み、例えば第1基板の面状電極としては、すべての画素内で電気的に接続された形態、画素ラインに沿って電気的に接続された形態等が好適なものとして挙げられる。また、上記第2基板は、更に、面状電極を有することが好ましい。これにより、縦電界を好適に印加して高速応答化することができる。特に、上記第1基板の電極が面状電極であり、かつ第2基板が更に面状電極を有する形態とすることにより、立下がり時に基板間の電位差で好適に縦電界を発生させることができ、高速応答化させることができる。また、横電界・縦電界を好適に印加するうえで、第2基板の液晶層側の電極(上層電極)を一対の櫛歯電極とし、第2基板の液晶層側と反対側の電極(下層電極)を面状電極とする形態が特に好ましい。例えば、第2基板の一対の櫛歯電極の下層(第2基板からみて液晶層と反対側の層)に絶縁層を介して第2基板の面状電極を設けることができる。更に、上記第2基板の面状電極は、画素ラインに沿って電気的に接続されているものであることが好ましいが、各画素単位で独立であってもよい。なお、櫛歯電極をその下層電極である面状電極と導通させた場合に、当該面状電極が画素ラインに沿って電気的に接続されているときは、当該櫛歯電極も画素ラインに沿って電気的に接続されている形態となり、当該形態も本発明の好ましい形態の一つである。そして、上記第2基板の面状電極は、少なくとも、基板主面を平面視したときに第1基板が有する電極と重畳する箇所が面状であることが好ましい。画素ラインに沿って電気的に接続されているとは、画素の縦、横等の配列のいずれかの少なくとも1つに沿って複数の画素にわたって電気的に接続されるものであればよい。また、すべての画素ラインにおいてそれぞれ電極が電気的に接続されている必要はなく、液晶表示パネルにおいて実質的に画素ラインに沿って電気的に接続されているといえるものであればよい。
上記面状電極が同一の画素列内で電気的に接続されている形態がより好ましい。上記同一の画素列とは、例えば第2基板がアクティブマトリクス基板である場合、基板主面を平面視したときに、アクティブマトリクス基板におけるゲートバスラインに沿って配置される画素列である。このように第1基板の面状電極及び/又は第2基板の面状電極が同一の画素列内で電気的に接続されていることにより、例えば偶数のゲートバスラインに対応する画素ごと・奇数のゲートバスラインに対応する画素ごとに、電位変化が反転するように電極に電圧を印加することができ、好適に縦電界を発生させて高速応答化することができる。
上記第1基板及び/又は第2基板の面状電極は、本発明の技術分野において面形状といえるものであればよく、その一部の領域にリブやスリット等の配向規制構造体を有していたり、基板主面を平面視したときに画素の中心部分に当該配向規制構造体を有していたりしてもよいが、実質的に配向規制構造体を有さないものが好適である。
上記液晶層は、通常、一対の櫛歯電極又は第1基板と第2基板との間で生じる電界により、閾値電圧以上で基板主面に対して水平成分を含んで配向するものであるが、中でも、水平方向に配向する液晶分子を含むことが好ましい。水平方向に配向するとは、本発明の技術分野において水平方向に配向するといえるものであればよい。これにより透過率を向上することができる。上記液晶層に含まれる液晶分子は、閾値電圧以上で基板主面に対して水平方向に配向する液晶分子から実質的に構成されるものであることが好適である。
上記液晶層は、正の誘電率異方性を有する液晶分子(ポジ型液晶分子)を含むことが好ましい。正の誘電率異方性を有する液晶分子は、電界を印加した場合に一定方向に配向されるものであり、配向制御が容易であり、より高速応答化することができる。また、上記液晶層は、負の誘電率異方性を有する液晶分子(ネガ型液晶分子)を含むこともまた好ましい。これにより、より透過率を向上することができる。すなわち、高速応答化の観点からは、上記液晶分子が正の誘電率異方性を有する液晶分子から実質的に構成されることが好適であり、透過率の観点からは、上記液晶分子が負の誘電率異方性を有する液晶分子から実質的に構成されることが好適であるといえる。
上記第1基板及び第2基板は、少なくとも一方の液晶層側に、通常は配向膜を有する。該配向膜は、垂直配向膜であることが好ましい。また、該配向膜としては、有機材料、無機材料から形成された配向膜、光活性材料から形成された光配向膜等が挙げられる。なお、上記配向膜は、ラビング処理等による配向処理がなされていない配向膜であってもよい。有機材料、無機材料から形成された配向膜、光配向膜等の、配向処理が必要ない配向膜を用いることによって、プロセスの簡略化によりコストを削減するとともに、信頼性及び歩留まりを向上することができる。また、ラビング処理をおこなった場合、ラビング布などからの不純物混入による液晶汚染、異物による点欠陥不良、液晶パネル内でラビングが不均一であるために表示ムラが発生するなどのおそれがあるが、これら不利点も無いものとすることができる。また、上記第1基板及び第2基板は、少なくとも一方の液晶層側と反対側に、偏光板を有することが好ましい。該偏光板は、円偏光板が好ましい。このような構成により、透過率改善効果を更に発揮することができる。該偏光板は、直線偏光板であることもまた好ましい。このような構成により、視野角特性を優れたものとすることができる。
本発明の液晶表示パネルは、縦電界発生時においては、通常、少なくとも第1の基板が有する電極と第2の基板が有する電極(例えば、面状電極)との間に電位差を生じさせる。好ましい形態は、第1の基板が有する電極と第2の基板が有する電極との間に、第2の基板が有する電極(例えば、一対の櫛歯電極)間よりも高い電位差を生じさせる形態である。例えば、第1の基板が有する面状電極の電位及び第2の基板が有する面状電極の電位を、それぞれ、7.5V、0Vとし、第2の基板が有する一対の櫛歯電極の電位を、ともに0Vとしたり、第1の基板が有する面状電極の電位及び第2の基板が有する面状電極の電位を、それぞれ、7.5V、15Vとし、第2の基板が有する一対の櫛歯電極の電位を、ともに15Vとしたり、第1の基板が有する電極の電位及び第2の基板が有する面状電極の電位を、それぞれ、0V、15Vとし、第2の基板が有する一対の櫛歯電極の電位を、ともに15Vとしたりすることができる。
また縦電界発生後、第1の基板が有する面状電極の電位と第2の基板が有する面状電極の電位差、及び、第2の基板が有する一対の櫛歯電極間の電位差を、実質的に生じさせないものとする形態(本明細書中、初期化工程ともいう。)が好ましい。言い換えれば、第1の基板が有する電極(例えば、面状電極)、及び、第2の基板が有する電極(例えば、一対の櫛歯電極及び面状電極)の全電極間に実質的に電位差を生じさせない駆動操作を実行することが好ましい。この形態により、特に一対の櫛歯電極のエッジ付近における液晶分子の配向を好適に制御でき、全電極を等電位にしないままでは浮いてしまう透過率を、初期の黒状態まで充分に下げることができる(例えば、後述する図8の点線で囲んだ箇所)。上記初期化工程は、全電極間に実質的に電位差を生じさせない駆動操作を実行するものであればよく、例えば、TFTをオフ状態にして一対の櫛歯電極の少なくとも一方をフローティングさせておこなってもよく、その代わりに、すべてのTFTをオン状態にして一対の櫛歯電極の少なくとも一方に一定電圧を印加したり、偶数ライン又は奇数ラインにおけるTFTをオン状態にして一対の櫛歯電極の少なくとも一方に偶数ライン・奇数ラインごとに一定電圧を印加したりすることによりおこなってもよい。また、上記初期化工程は、縦電界発生後におこなうものであればよく、縦電界発生後にその他の電界を発生させてもよいが、縦電界発生直後におこなうものであることが好適である。
また横電界発生時においては、通常、少なくとも第2の基板が有する電極(例えば、一対の櫛歯電極)間に、電位差を生じさせる。例えば、第2の基板が有する電極間に、第1の基板が有する電極と第2の基板が有する電極(例えば、面状電極)間よりも高い電位差を生じさせる形態とすることができ、第1の基板が有する面状電極の電位及び第2の基板が有する面状電極の電位を、それぞれ、7.5V、0Vとし、第2の基板が有する一対の櫛歯電極の電位を、それぞれ15V、0Vとしたり、第1の基板が有する面状電極の電位及び第2の基板が有する面状電極の電位を、それぞれ、7.5V、7.5Vとし、第2の基板が有する一対の櫛歯電極の電位を、それぞれ15V、0Vとしたり、第1の基板が有する面状電極の電位及び第2の基板が有する面状電極の電位を、それぞれ、0V、0Vとし、第2の基板が有する一対の櫛歯電極の電位を、それぞれ15V、0Vとしたりすることができる。また、第2の基板が有する電極間に、第1の基板が有する電極と第2の基板が有する電極間よりも低い電位差を生じさせる形態とすることもでき、櫛歯間の横電界により低階調表示をおこなう場合、例えば、第1の基板が有する面状電極の電位及び第2の基板が有する面状電極の電位を、それぞれ、7.5V、0Vとし、第2の基板が有する一対の櫛歯電極の電位を、それぞれ10V、5V(櫛歯間電位5V)とする場合等が挙げられる。
ここで、偶数ライン・奇数ラインごとに共通接続された下層電極(第2基板が有する面状電極)に印加して電位変化を反転させるものとすることができる。また一定電圧で保持された電極の電位を中間電位としてもよく、この一定電圧で保持された電極の電位を0Vであると考えると、バスラインごとの下層電極に印加される電圧の極性が反転されているともいえる。
本発明の液晶表示パネルが備える第1基板及び第2基板は、液晶層を挟持するための一対の基板であり、例えば、ガラス、樹脂等の絶縁基板を母体とし、絶縁基板上に配線、電極、カラーフィルタ等を作り込むことで形成される。
なお、上記一対の櫛歯電極の少なくとも一方が画素電極であること、上記一対の櫛歯電極を備える第2基板がアクティブマトリクス基板であることが好適である。また、本発明の液晶表示パネルは、透過型、反射型、半透過型のいずれであってもよい。
本発明はまた、本発明の液晶表示パネルを備える液晶表示装置でもある。本発明の液晶表示装置における液晶表示パネルの好ましい形態は、上述した本発明の液晶表示パネルの好ましい形態と同様である。液晶表示装置としては、パーソナルコンピュータ、テレビジョン、カーナビゲーション等の車載用の機器、携帯電話等の携帯情報端末のディスプレイ等が挙げられ、特に、カーナビゲーション等の車載用の機器等の低温環境下等で用いられる機器に適用されることが好ましい。
本発明に関連する発明は、薄膜トランジスタ素子を有する薄膜トランジスタアレイ基板であって、上記薄膜トランジスタアレイ基板の電極は、一対の櫛歯電極、及び、面状電極を含み、該一対の櫛歯電極及び面状電極からなる群より選択される少なくとも1つの電極は、画素ラインに沿って電気的に接続されている薄膜トランジスタアレイ基板である。
上記面状電極は、画素ラインに沿って電気的に接続されていることが好ましい。より好ましくは、上記面状電極は、透明導電体及び該透明導電体と電気的に接続される金属導電体から構成されることである。これにより、電極を低抵抗化することができ、波形がなまることを充分に防止できる。大型パネルにおいて、電極の抵抗が大き過ぎて波形がなまるおそれがあるところ、これを防ぐことができる点で、大型の液晶表示装置に適用することが特に好ましい。
上記一対の櫛歯電極の少なくとも一方は、画素ラインに沿って電気的に接続されていることが好ましい。より好ましくは、上記一対の櫛歯電極の少なくとも一方は、透明導電体及び該透明導電体と電気的に接続される金属導電体から構成されることである。上述したのと同様の理由のため、このような液晶駆動装置を大型の液晶表示装置に適用することが特に好ましい。
また上記一対の櫛歯電極の少なくとも一方は、上記面状電極と電気的に接続されていることが好ましい。
なお、本明細書中、電極が画素ラインに沿って電気的に接続されるとは、言い換えれば、電極が少なくとも同一の画素ラインごとに電気的に接続されていることを言うが、例えば、電極が1本の画素ラインごとに接続されているものであってもよく、電極がn本の画素ラインごとに(nラインずつ)接続されているものであってもよく、いずれも好ましい。なお、nは、2以上の整数である。電極が複数本(n本)の画素ラインごとに接続されているとは、当該複数本の画素ラインに対応する電極が電気的に接続されているものであればよく、例えば、電極が奇数番目の画素ラインごと、偶数番目の画素ラインごとに電気的に接続される形態も含まれる。このように電極が複数本の画素ラインごとに接続されている場合は、通常は当該複数ラインを同時に反転させることになる。
本発明に関連する発明はそして、薄膜トランジスタ素子を有する薄膜トランジスタアレイ基板であって、上記薄膜トランジスタアレイ基板の電極は、一対の櫛歯電極及び面状電極を含み、上記一対の櫛歯電極の少なくとも一方は、該面状電極と電気的に接続されている薄膜トランジスタアレイ基板でもある。
本発明に関連する発明はまた、本発明の薄膜トランジスタアレイ基板を備えることを特徴とする液晶表示装置でもある。本発明の液晶表示装置における薄膜トランジスタアレイ基板の好ましい形態は、上述した本発明の薄膜トランジスタアレイ基板の好ましい形態と同様である。液晶表示装置としては、上述した用途に好適に適用することができる。
本発明の液晶表示パネル及び液晶表示装置の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではなく、液晶表示パネル及び液晶表示装置に通常用いられるその他の構成を適宜適用することができる。
上述した各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
本発明の液晶表示パネル及び液晶表示装置によれば、第1基板及び第2基板が電極を有し、第2基板の電極が一対の櫛歯電極、及び、面状電極を含むことにより、充分に高速応答化するとともに、透過率を充分に優れるものとすることができる。
実施形態1に係る液晶表示パネルの横電界発生時における断面模式図である。 実施形態1に係る液晶表示パネルの縦電界発生時における断面模式図である。 実施形態1に係る液晶表示パネルの横電界発生時における断面模式図である。 図3に示した液晶表示パネルについてのシミュレーション結果である。 実施形態1に係る液晶表示パネルの縦電界発生時における断面模式図である。 図5に示した液晶表示パネルについてのシミュレーション結果である。 櫛歯駆動とFFS駆動のシミュレーションによる応答波形比較を示すグラフである。 実施形態1における駆動応答波形実測値及び各電極の印加矩形波を示すグラフである。 実施形態1における最大透過率とセル厚dとの関係を示すグラフである。 実施形態1における最大透過率とスペースSとの関係を示すグラフである。 実施形態2に係る液晶表示パネルの横電界発生時における断面模式図である。 実施形態2に係る液晶表示パネルの縦電界発生時における断面模式図である。 実施形態2における各電極の印加矩形波(駆動波形)を示すグラフである。 実施形態3に係る液晶表示パネルの横電界発生時における断面模式図である。 実施形態3に係る液晶表示パネルの縦電界発生時における断面模式図である。 実施形態3における各電極の印加矩形波(駆動波形)を示すグラフである。 実施形態1~3における駆動応答波形実測値を示すグラフである。 実施形態1に係る液晶表示パネルの断面模式図である。 実施形態1に係る液晶表示パネルの絵素平面模式図である。 実施形態1に係る液晶表示パネルの絵素等価回路図である。 実施形態1に係る液晶表示パネルの各電極の電位変化を示す図である。 実施形態1に係る液晶表示パネルの横電界発生時におけるN行目の各電極を示す断面模式図である。 実施形態1に係る液晶表示パネルの縦電界発生時におけるN行目の各電極を示す断面模式図である。 実施形態1に係る液晶表示パネルの縦電界発生後の初期化工程におけるN行目の各電極を示す断面模式図である。 実施形態1に係る液晶表示パネルの横電界発生時におけるN+1行目の各電極を示す断面模式図である。 実施形態1に係る液晶表示パネルの縦電界発生時におけるN+1行目の各電極を示す断面模式図である。 実施形態1に係る液晶表示パネルの縦電界発生後の初期化工程におけるN+1行目の各電極を示す断面模式図である。 実施形態2に係る液晶表示パネルの断面模式図である。 実施形態2に係る液晶表示パネルの絵素平面模式図である。 実施形態2に係る液晶表示パネルの絵素等価回路図である。 実施形態2に係る液晶表示パネルの各電極の電位変化を示す図である。 実施形態2に係る液晶表示パネルの横電界発生時におけるN行目の各電極を示す断面模式図である。 実施形態2に係る液晶表示パネルの横電界発生後の初期化工程におけるN行目の各電極を示す断面模式図である。 実施形態2に係る液晶表示パネルの縦電界発生時におけるN行目の各電極を示す断面模式図である。 実施形態2に係る液晶表示パネルの縦電界発生後の初期化工程におけるN行目の各電極を示す断面模式図である。 実施形態2に係る液晶表示パネルの横電界発生時におけるN+1行目の各電極を示す断面模式図である。 実施形態2に係る液晶表示パネルの横電界発生後の初期化工程におけるN+1行目の各電極を示す断面模式図である。 実施形態2に係る液晶表示パネルの縦電界発生時におけるN+1行目の各電極を示す断面模式図である。 実施形態2に係る液晶表示パネルの縦電界発生後の初期化工程におけるN+1行目の各電極を示す断面模式図である。 実施形態2の変形例に係る液晶表示パネルの断面模式図である。 実施形態2の変形例に係る液晶表示パネルの絵素平面模式図である。 実施形態2の変形例に係る液晶表示パネルの絵素等価回路図である。 実施形態2の変形例に係る液晶表示パネルの各電極の電位変化を示す図である。 実施形態2の変形例に係る液晶表示パネルの横電界発生時におけるN行目の各電極を示す断面模式図である。 実施形態2の変形例に係る液晶表示パネルの縦電界発生時におけるN行目の各電極を示す断面模式図である。 実施形態2の変形例に係る液晶表示パネルの縦電界発生後の初期化工程におけるN行目の各電極を示す断面模式図である。 実施形態2の変形例に係る液晶表示パネルの横電界発生時におけるN+1行目の各電極を示す断面模式図である。 実施形態2の変形例に係る液晶表示パネルの縦電界発生時におけるN+1行目の各電極を示す断面模式図である。 実施形態2の変形例に係る液晶表示パネルの縦電界発生後の初期化工程におけるN+1行目の各電極を示す断面模式図である。 実施形態3に係る液晶表示パネルの断面模式図である。 実施形態3に係る液晶表示パネルの絵素平面模式図である。 実施形態3に係る液晶表示パネルの絵素等価回路図である。 実施形態3に係る液晶表示パネルの各電極の電位変化を示す図である。 実施形態3に係る液晶表示パネルの横電界発生時におけるN行目の各電極を示す断面模式図である。 実施形態3に係る液晶表示パネルの縦電界発生時におけるN行目の各電極を示す断面模式図である。 実施形態3に係る液晶表示パネルの縦電界発生後の初期化工程におけるN行目の各電極を示す断面模式図である。 実施形態3に係る液晶表示パネルの横電界発生時におけるN+1行目の各電極を示す断面模式図である。 実施形態3に係る液晶表示パネルの縦電界発生時におけるN+1行目の各電極を示す断面模式図である。 実施形態3に係る液晶表示パネルの縦電界発生後の初期化工程におけるN+1行目の各電極を示す断面模式図である。 本発明の液晶表示パネルの駆動形態を示す平面模式図である。 本発明の液晶表示パネルの駆動形態を示す平面模式図である。 本発明の液晶表示パネルの駆動形態を示す平面模式図である。 本発明の液晶表示パネルの駆動形態を示す平面模式図である。 比較例1に係る液晶表示パネルのフリンジ電界発生時における断面模式図である。 図64に示した液晶表示パネルの平面模式図である。 図64に示した液晶表示パネルについてのシミュレーション結果である。 比較例2におけるTNモードを用いた櫛歯駆動のシミュレーションによる応答波形を示すグラフである。 比較例2に係る液晶表示パネルについてのシミュレーション結果である。 比較例2に係る液晶表示パネルについてのシミュレーション結果である。 比較例2に係る液晶表示パネルについてのシミュレーション結果である。 本発明に係る液晶表示パネルの櫛歯電極の一形態を示す断面模式図である。 本発明に係る液晶表示パネルの櫛歯電極の一形態を示す断面模式図である。 本発明に係る液晶表示パネルの画素電極に使用する薄膜トランジスタの一形態を示す平面模式図である。
以下に実施形態を掲げ、本発明を図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。本明細書中、画素とは、特に明示しない限り、絵素(サブ画素)であってもよい。また、サブフレームとは、すべての画素(例えば、RGBを含む画素)による表示であるフレームに対し、一部又は全ての絵素を用いて、例えば、フィールドシーケンシャル(時分割)駆動で1フレーム内での各色の連続表示をおこなう際に、1色を表示するために費やす時間をいい、本明細書中では該表示のための期間をいう。更に、面状電極は、本発明の技術分野において面状電極であるといえる限り、例えば、点形状のリブ及び/又はスリットが形成されていてもよいが、実質的に配向規制構造体を有さないものが好ましい。そして、液晶層を挟持する一対の基板のうち、表示面側の基板を上側基板ともいい、表示面と反対側の基板を下側基板ともいう。また、基板に配置される電極のうち、表示面側の電極を上層電極ともいい、表示面と反対側の電極を下層電極ともいう。更に、本実施形態の回路基板(第2基板)を、薄膜トランジスタ素子(TFT)を有すること等から、TFT基板又はアレイ基板ともいう。なお、本実施形態では、立上がり(横電界印加)・立下がり(縦電界印加)の両方において、TFTをオン状態にして一対の櫛歯電極の少なくとも一方の電極(画素電極)に電圧を印加している。
なお、各実施形態において、同様の機能を発揮する部材及び部分は同じ符号を付している。また、図中、特に断らない限り、(i)は、下側基板の上層にある櫛歯電極の一方の電位を示し、(ii)は、下側基板の上層にある櫛歯電極の他方の電位を示し、(iii)は、下側基板の下層の面状電極の電位を示し、(iv)は、上側基板の面状電極の電位を示す。
実施形態1
図1は、実施形態1に係る液晶表示パネルの横電界発生時における断面模式図である。図2は、実施形態1に係る液晶表示パネルの縦電界発生時における断面模式図である。図1及び図2において、点線は、発生する電界の向きを示す。実施形態1に係る液晶表示パネルは、ポジ型液晶である液晶分子31を用いた垂直配向型の3層電極構造(ここで、第2層目に位置する下側基板の上層電極は櫛歯電極である。)を有する。立上がりは、図1に示すように、一対の櫛歯電極16(例えば、電位0Vである櫛歯電極17と電位14Vである櫛歯電極19とからなる)間の電位差14Vで発生する横電界により、液晶分子を回転させる。このとき、基板間(電位7Vである対向電極13と電位7Vである対向電極23との間)の電位差は実質的に生じていない。
また、立下がりは、図2に示すように、基板間(例えば、それぞれ電位14Vである対向電極13、櫛歯電極17、及び、櫛歯電極19と、電位7Vである対向電極23との間)の電位差7Vで発生する縦電界により、液晶分子を回転させる。このとき、一対の櫛歯電極16(例えば、電位14Vである櫛歯電極17と電位14Vである櫛歯電極19とからなる)間の電位差は実質的に生じていない。
立上がり、立下がりともに電界によって液晶分子を回転させることにより、高速応答化する。すなわち、立上がりでは、一対の櫛歯電極間の横電界でオン状態として高透過率化し、立下がりでは、基板間の縦電界でオン状態として高速応答化する。更に、櫛歯駆動の横電界により高透過率化も実現することができる。なお、実施形態1及びこれ以降の実施形態では液晶としてポジ型液晶を用いているが、ポジ型液晶の代わりにネガ型液晶を用いてもよい。ネガ型液晶を用いた場合は、一対の基板間の電位差により、液晶分子が水平方向に配向し、一対の櫛歯電極間の電位差により、液晶分子が垂直方向に配向することになる。これにより、透過率が優れたものとなるとともに、立上がり・立下がりの両方において電界によって液晶分子を回転させて高速応答化することができる。また、初期化工程により液晶分子をより充分に垂直方向に配向させることにより、ポジ型液晶の場合と同様に黒表示時の透過率を充分に低くする効果を発揮することができる。この場合は、少なくとも上下基板のそれぞれに配置された対向電極間に電位差を生じさせる駆動操作、少なくとも一対の櫛歯電極の電極間に電位差を生じさせる駆動操作、該対向電極及び該一対の櫛歯電極間に電位差を生じさせない駆動操作の順に実行することが好適である。なお、本明細書中、一対の櫛歯電極の電位を(i)、(ii)で示し、下層基板の面状電極の電位を(iii)で示し、上層基板の面状電極の電位を(iv)で示す。
実施形態1に係る液晶表示パネルは、図1及び図2に示されるように、アレイ基板10、液晶層30及び対向基板20(カラーフィルタ基板)が、液晶表示パネルの背面側から観察面側に向かってこの順に積層されて構成されている。実施形態1の液晶表示パネルは、図2に示されるように、閾値電圧未満では液晶分子を垂直配向させる。また、図1に示されるように、櫛歯電極間の電圧差が閾値電圧以上ではガラス基板11(第2基板)上に形成された上層電極17、19(一対の櫛歯電極)間に発生する電界で、液晶分子を櫛歯電極間で水平方向に傾斜させることによって透過光量を制御する。面状の下層電極13(対向電極13)は、上層電極17、19(一対の櫛歯電極16)との間に絶縁層15を挟んで形成される。絶縁層15には、例えば、酸化膜SiOや、窒化膜SiNや、アクリル系樹脂等が使用され、または、それらの材料の組み合わせも使用可能である。
図1、図2には示していないが、偏光板が、両基板の液晶層とは反対側に配置されている。偏光板としては、円偏光板又は直線偏光板のいずれも使用することが可能である。また、両基板の液晶層側にはそれぞれ配向膜が配置され、これら配向膜には、膜面に対して液晶分子を垂直に立たせるものである限り、有機配向膜又は無機配向膜のいずれであってもよい。
走査信号線で選択されたタイミングで、映像信号線から供給された電圧を薄膜トランジスタ素子(TFT)を通じて、液晶材料を駆動する櫛歯電極19に印加する。なお、本実施形態では櫛歯電極17と櫛歯電極19とは同層に形成されており、同層に形成される形態が好適であるが、櫛歯電極間に電圧差を発生させて横電界を印加し、透過率を向上するという本発明の効果を発揮できる限り、別層に形成されるものであってもよい。櫛歯電極19は、コンタクトホールを介してTFTから伸びているドレイン電極と接続されている。なお、図1、図2では、対向電極13、23が面状形状であり、対向電極13は、ゲートバスラインの偶数ライン・奇数ラインごとに共通接続されている。このような電極も本明細書では面状電極という。また、対向電極23は、すべての画素に対応して共通接続されている。
本実施形態では、櫛歯電極の電極幅Lは2.4μmであるが、例えば2μm以上が好ましい。櫛歯電極の電極間隔Sは、2.6μmであるが、例えば2μm以上が好ましい。なお、好ましい上限値は、例えば7μmである。
また、電極間隔Sと電極幅Lとの比(L/S)としては、例えば0.4~3であることが好ましい。より好ましい下限値は、0.5であり、より好ましい上限値は、1.5である。
セルギャップdは、5.4μmであるが、2μm~7μmであればよく、当該範囲内であることが好適である。セルギャップd(液晶層の厚み)は、本明細書中、液晶表示パネルにおける液晶層の厚みの全部を平均して算出されるものであることが好ましい。
(シミュレーションによる応答性能及び透過率の検証)
図3は、実施形態1に係る液晶表示パネルの横電界発生時における断面模式図である。実施形態1に係る櫛歯駆動では、一対の櫛歯電極16(例えば、電位0Vである櫛歯電極17と電位14Vである櫛歯電極19とからなる)間で横電界を発生させることにより、一対の櫛歯電極間の広範囲にわたって液晶分子を回転させることが可能となる(図3及び図4参照)。
図4は、図3に示した液晶表示パネルについてのシミュレーション結果である。図4では、ダイレクタD、電界、および透過率分布の、立上がり後2.2msの時点でのシミュレーション結果を示す(なお、後述する図〔グラフ〕等に示すように、最初の0.4msは駆動していない。)。実線で示されたグラフは、透過率を示す。また、ダイレクタDは、液晶分子長軸の配向方向を示す。シミュレーション条件として、セル厚は5.4μmとし、櫛歯間隔は2.6μmとした。
実施形態1の液晶表示パネルにおいて櫛歯駆動による横電界を印加した場合は、櫛歯電極間の広範囲で液晶分子を回転させることができ、高透過率化を実現した(シミュレーションにおける透過率18.6%〔図7参照〕、後述する実測透過率17.7%〔図8等参照〕)。一方、後述する比較例1(先行資料のFFS駆動)では、充分な透過率を得ることができなかった。なお、図5は、実施形態1に係る液晶表示パネルの縦電界発生時における断面模式図である。基板間(例えば、それぞれ電位14Vである対向電極13、櫛歯電極17、及び櫛歯電極19と、電位7Vである対向電極23との間)の電位差7Vで発生する縦電界により、液晶分子を回転させる。図6は、図5に示した液晶表示パネルについてのシミュレーション結果である。図6では、ダイレクタD、電界、および透過率分布の、立上がり期間の終点(2.8msの時点)を過ぎた後の、3.5msの時点でのシミュレーション結果を示す。
図7は、櫛歯駆動とFFS駆動のシミュレーションによる応答波形を比較したグラフである。最初の0.4msの期間は駆動していないため、立上がり期間(横電界印加期間)は、2.4msであり、立下がり期間(縦電界印加期間)は0.8msである。櫛歯駆動(実施形態1)と後述するFFS駆動(比較例1)とを比較している。なお、シミュレーション条件は、セル厚5.4μm、一対の櫛歯電極の電極間隔2.6μmでおこなったものである。
応答速度については、以下のように考えられる。実施形態1に係る櫛歯駆動で得られる透過率(18.6%)は、比較例1に係るFFS駆動の場合(3.6%)と比較して高い。そのため、実施形態1に係る櫛歯駆動で3.6%の透過率を得ようとする際には、オーバードライブ駆動を用いることにより、FFS駆動と比較してより高速な応答を実現できる。すなわち、少なくとも櫛歯駆動で3.6%の透過率を得るために必要な定格電圧よりも大きい電圧を印加して、液晶を速く応答させておき、目的の透過率に達するタイミングで定格電圧まで印加電圧を下げることにより、立上がりの応答時間を短縮することができる。例えば、図7では、0.6msの時点41で定格電圧まで下げて、立上がりの応答時間を短縮できる。同じ透過率からの立下がりの応答時間は同等である。
(実測による応答性能及び透過率の検証)
図8は、実施形態1における駆動応答波形実測値及び各電極の印加矩形波を示すグラフである。評価セルは、上述したシミュレーションと同様に、セル厚5.4μmとし、一対の櫛歯電極の電極間隔は2.6μmとした。なお、測定温度は、25℃であった。
立上がり及び立下がりにおいては、図3及び図5に示したように電極に電圧を印加し、それぞれ横電界及び縦電界を液晶分子に印加した。すなわち、立上がり期間は、一対の櫛歯電極間で櫛歯駆動(実施形態1)2.4msであり、立下がり期間は、一対の櫛歯電極、下側基板の下層電極、及び、上側基板の対向電極間(図2における対向電極13、櫛歯電極17、及び櫛歯電極19と対向電極23との間)で縦電界駆動0.8ms(各電極の印加波形は図8参照)であった。
実測の結果、実施形態1では最大透過率17.7%(シミュレーションでの透過率は18.6%)で、後述する比較例1(シミュレーション透過率3.6%)と比較して高透過率化を実現した。また、立上がりは透過率10%-90%(最大透過率を100%としたときの値)で応答速度0.9ms、立下がりは透過率90-10%(最大透過率を100%としたときの値)で0.4msであり、立上がり、立下がりともに高速化を実現した。
実施形態1における縦電界オン-横電界オンの好ましい櫛歯電極幅(L;Line)、櫛歯電極間隔(S;Space)、セル厚(d)について検討した。
(透過率とライン幅〔L〕との関係)
透過率は櫛歯電極幅Lの減少に比例して増大するが、櫛歯電極幅Lを小さくしすぎると、リーク、断線等デバイス作製上の問題が発生するため、2μm以上であることが望ましい。
(透過率とセル厚d、櫛歯電極間隔Sの関係)
図9は、実施形態1における最大透過率とセル厚dとの関係を示すグラフである。図10は、実施形態1における最大透過率とスペースSとの関係を示すグラフである。セル厚d、スペースSともに、大きくなるにしたがって応答速度は遅くなる。よって、応答速度の観点からは、セル厚d、スペースSは小さいほどよいが、あまり小さくしすぎるとリーク、断線などデバイス作製上の問題が発生するおそれがある。このため、セル厚d、スペースSは、2μm以上であることが望ましい。次に、セル厚d、スペースSを変化させた際の最大透過率をLCD MASTERによりシミュレーションしたところ(図9、図10、表1及び表2参照)、セル厚d、スペースSともに、2μmから大きくなるにしたがって最大透過率は増大するが、7μmを超えると大きく減少した。よって、セル厚d、スペースSは7μm以下であることが望ましい。したがって、セル厚d、スペースSともに、2μm以上、7μm以下であることが望ましい。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
実施形態2
図11は、実施形態2に係る液晶表示パネルの横電界発生時における断面模式図である。図12は、実施形態2に係る液晶表示パネルの縦電界発生時における断面模式図である。図13は、実施形態2における各電極の印加矩形波(駆動波形)を示すグラフである。
実施形態1において説明した駆動方法では、横電界発生時において、対向電極13及び対向電極23は、一対の櫛歯電極間の電圧差(14V)の中間電圧(7V)を印加していたが、実施形態2では、対向電極113を一対の櫛歯電極の片側である櫛歯電極117と同電位に設定するとともに、対向電極123を一対の櫛歯電極間の電圧差(14V)の中間電圧(7V)とした場合(実施形態2)であり、その他の構成は実施形態1におけるものと同様である。
実施形態3
図14は、実施形態3に係る液晶表示パネルの横電界発生時における断面模式図である。図15は、実施形態3に係る液晶表示パネルの縦電界発生時における断面模式図である。図16は、実施形態3における各電極の印加矩形波(駆動波形)を示すグラフである。
実施形態3では、対向電極213を一対の櫛歯電極の片側である櫛歯電極217と同電位に設定するとともに、対向電極223を0Vとした場合であり、その他の構成は実施形態1におけるものと同様である。
図17は、実施形態1~3における駆動応答波形実測値を示すグラフである。他の駆動法である実施形態2、実施形態3についても実施形態1と同様に応答性能及び透過率を実測した。例えば、評価セルは、セル厚5.4μmとし、一対の櫛歯電極の電極間隔は2.6μmとした。また、測定温度は、25℃とした。ここで、実施形態1と同様に、実施形態2や、実施形態3においても、図17に示すように高速応答性を維持しながら比較例1(シミュレーション透過率3.6%)と比較して高応答性能・高透過率化を実現できることを確認した。
(TFT駆動方法)
実施形態1
図18は、実施形態1に係る液晶表示パネルの断面模式図である。図19は、実施形態1に係る液晶表示パネルの絵素平面模式図である。図20は、実施形態1に係る液晶表示パネルの絵素等価回路図である。図21は、実施形態1に係る液晶表示パネルの各電極の電位変化を示す図である。実施形態1におけるモジュールでの駆動法としては、1絵素当たり2つのTFTを駆動させておこなう。図18~図21では、下側基板の下層電極と電気的に接続される配線は、二点鎖線で示す。下側基板の一対の櫛歯電極の一方と電気的に接続される配線は、一点鎖線で示す。下側基板の一対の櫛歯電極の他方と電気的に接続される配線は、当該図においてより間隔の狭い点線で表す。上側基板の電極と電気的に接続される配線は、当該図においてより間隔の広い点線で表す。下層電極は、Cs電極を兼ねており、偶数ライン・奇数ラインごとに共通接続されている。なお、図18において、櫛歯電極とCs電極との重なりで形成される補助容量をCsで示し、一対の櫛歯電極間で形成される液晶容量をClc1で示し、一対の基板の電極間で形成される液晶容量をClc2で示す。
N行目の絵素においては、下層電極に印加される電圧は、明表示時には7.5Vであり、その後暗表示(黒表示)では15Vとなり、初期化工程では7.5Vとなっている。また、N+1行目の絵素においては、下層電極に印加される電圧は、明表示時には7.5Vであり、その後暗表示(黒表示)では0Vとなり、初期化工程では7.5Vとなっている。なお、N行目が偶数ラインであり、N+1行目が奇数ラインであってもよく、N行目が奇数ラインであり、N+1行目が偶数ラインであってもよい。実施形態1では、偶数ライン・奇数ラインごとに共通接続された下層電極に印加して電位変化を反転させる。なお、一定電圧で保持された電極の電位を7.5Vと表記しているが、これは実質的に0Vともいえるため、NラインとN+1ラインは極性反転させて駆動されるともいえる。
図22は、実施形態1に係る液晶表示パネルの横電界発生時におけるN行目の各電極を示す断面模式図である。図23は、実施形態1に係る液晶表示パネルの縦電界発生時におけるN行目の各電極を示す断面模式図である。図24は、実施形態1に係る液晶表示パネルの縦電界発生後の初期化工程におけるN行目の各電極を示す断面模式図である。図25は、実施形態1に係る液晶表示パネルの横電界発生時におけるN+1行目の各電極を示す断面模式図である。図26は、実施形態1に係る液晶表示パネルの縦電界発生時におけるN+1行目の各電極を示す断面模式図である。図27は、実施形態1に係る液晶表示パネルの縦電界発生後の初期化工程におけるN+1行目の各電極を示す断面模式図である。
図22及び図25は、一対の櫛歯電極間の横電界で液晶駆動している。図23及び図26は、櫛歯電極と下層電極とをともに15V又は0Vとして縦電界印加(TFTを偶数ライン・奇数ラインごとにオン)している。図24及び図27は、TFTをオフして一対の櫛歯電極をフローティング(float)させるか、又は、全TFTをオンして一対の櫛歯電極を7.5Vとして、下層電極7.5Vで初期配向にリフレッシュ(初期化工程)をおこなったものである。
なお、実施形態1の液晶表示パネルを備える液晶表示装置は、通常の液晶表示装置が備える部材(例えば、光源等)を適宜備えることができる。後述する実施形態においても同様である。
実施形態2
図28は、実施形態2に係る液晶表示パネルの断面模式図である。図29は、実施形態2に係る液晶表示パネルの絵素平面模式図である。図30は、実施形態2に係る液晶表示パネルの絵素等価回路図である。図31は、実施形態2に係る液晶表示パネルの各電極の電位変化を示す図である。
実施形態2におけるモジュールでの駆動法としては、1絵素当たり1つのTFTを駆動させておこなう。
図28~図31では、下側基板の下層電極と電気的に接続される配線は、二点鎖線で示す。下側基板の一対の櫛歯電極の一方と電気的に接続される配線は、一点鎖線で示す。下側基板の一対の櫛歯電極の他方と電気的に接続される配線は、櫛歯電極の他方が下側基板の下層電極と電気的に接続されているので、二点鎖線で示す。上側基板の電極と電気的に接続される配線は、点線で表す。下層電極は、Cs電極を兼ねており、偶数ライン・奇数ラインごとに共通接続されている。
N行目の絵素においては、下層電極に印加される電圧は、明表示時には0Vであり、その後暗表示(黒表示)では初期化工程7.5V(全TFTオン)を経た後、縦電界印加時では15Vとなり、縦電界印加後の初期化工程では7.5Vとなっている。また、N+1行目の絵素においては、下層電極に印加される電圧は、明表示時には15Vであり、その後暗表示(黒表示)では初期化工程7.5V(全TFTオン)を経た後、縦電界印加時では0Vとなり、縦電界印加後の初期化工程では7.5Vとなっている。なお、N行目が偶数ラインであり、N+1行目が奇数ラインであってもよく、N行目が奇数ラインであり、N+1行目が偶数ラインであってもよい。実施形態2では、偶数ライン・奇数ラインごとに共通接続された下層電極に印加して電位変化を反転させる。なお、一定電圧で保持された電極の電位を7.5Vと表記しているが、これは実質的に0Vともいえるため、NラインとN+1ラインは極性反転させて駆動されるといえる。
図32は、実施形態2に係る液晶表示パネルの横電界発生時におけるN行目の各電極を示す断面模式図である。図33は、実施形態2に係る液晶表示パネルの横電界発生後の初期化工程におけるN行目の各電極を示す断面模式図である。図34は、実施形態2に係る液晶表示パネルの縦電界発生時におけるN行目の各電極を示す断面模式図である。図35は、実施形態2に係る液晶表示パネルの縦電界発生後の初期化工程におけるN行目の各電極を示す断面模式図である。図36は、実施形態2に係る液晶表示パネルの横電界発生時におけるN+1行目の各電極を示す断面模式図である。図37は、実施形態2に係る液晶表示パネルの横電界発生後の初期化工程におけるN+1行目の各電極を示す断面模式図である。図38は、実施形態2に係る液晶表示パネルの縦電界発生時におけるN+1行目の各電極を示す断面模式図である。図39は、実施形態2に係る液晶表示パネルの縦電界発生後の初期化工程におけるN+1行目の各電極を示す断面模式図である。
図32及び図36は、一対の櫛歯電極間の横電界で液晶駆動している。図33及び図37は、すべてのTFTをオンにして、一度全電極を7.5Vにリセットしている。図34及び図38は、TFTをオフして一対の櫛歯電極の一方をフローティングさせるか、又は、TFTを偶数ライン・奇数ラインごとにオンして一対の櫛歯電極の一方を15V又は0Vとして、下層電極を15V又は0Vとして縦電界印加している。図35及び図39は、TFTをオフして一対の櫛歯電極の一方をフローティングさせるか、又は、全TFTをオンして一対の櫛歯電極を7.5Vとして、下層電極7.5Vで初期配向にリフレッシュ(初期化工程)をおこなったものである。なお、実施形態2に係る図のその他の参照番号は、百の位に1を付した以外は、実施形態1に係る図に示したものと同様である。
実施形態2の変形例
図40は、実施形態2の変形例に係る液晶表示パネルの断面模式図である。図41は、実施形態2の変形例に係る液晶表示パネルの絵素平面模式図である。図42は、実施形態2の変形例に係る液晶表示パネルの絵素等価回路図である。図43は、実施形態2の変形例に係る液晶表示パネルの各電極の電位変化を示す図である。
実施形態2の変形例におけるモジュールでの駆動法としては、1絵素当たり1つのTFTを駆動させておこなう。
図40~図43では、下側基板の下層電極と電気的に接続される配線は、二点鎖線で示す。下側基板の一対の櫛歯電極の一方と電気的に接続される配線は、一点鎖線で示す。下側基板の一対の櫛歯電極の他方と電気的に接続される配線は、櫛歯電極の他方が下側基板の下層電極と電気的に接続されているので、二点鎖線で示す。上側基板の電極と電気的に接続される配線は、点線で表す。下層電極は、Cs電極を兼ねており、偶数ライン・奇数ラインごとに共通接続されている。
N行目の絵素においては、下層電極に印加される電圧は、明表示時には0Vであり、その後暗表示(黒表示)では15Vとなり、暗表示(黒表示)である初期化工程では7.5Vとなっている。また、N+1行目の絵素においては、下層電極に印加される電圧は、明表示時には15Vであり、その後暗表示(黒表示)では0Vとなり、暗表示(黒表示)である初期化工程では7.5Vとなっている。なお、N行目が偶数ラインであり、N+1行目が奇数ラインであってもよく、N行目が奇数ラインであり、N+1行目が偶数ラインであってもよい。実施形態2の変形例では、偶数ライン・奇数ラインごとに共通接続された下層電極に印加して電位変化を反転させる。なお、一定電圧で保持された電極の電位を7.5Vと表記しているが、これは実質的に0Vともいえるため、NラインとN+1ラインは極性反転させて駆動されるといえる。
図44は、実施形態2の変形例に係る液晶表示パネルの横電界発生時におけるN行目の各電極を示す断面模式図である。図45は、実施形態2の変形例に係る液晶表示パネルの縦電界発生時におけるN行目の各電極を示す断面模式図である。図46は、実施形態2の変形例に係る液晶表示パネルの縦電界発生後の初期化工程におけるN行目の各電極を示す断面模式図である。図47は、実施形態2の変形例に係る液晶表示パネルの横電界発生時におけるN+1行目の各電極を示す断面模式図である。図48は、実施形態2の変形例に係る液晶表示パネルの縦電界発生時におけるN+1行目の各電極を示す断面模式図である。図49は、実施形態2の変形例に係る液晶表示パネルの縦電界発生後の初期化工程におけるN+1行目の各電極を示す断面模式図である。
図44及び図47は、一対の櫛歯電極間の横電界で液晶駆動している。図45及び図48は、TFTを偶数ライン・奇数ラインごとにオンにして、櫛歯電極と下層電極とをともに15V又は0Vとして縦電界を印加している。図46及び図49は、TFTをオフして一対の櫛歯電極の一方をフローティングさせるか、又は、全TFTをオンして一対の櫛歯電極を7.5Vとして、下層電極を7.5Vで初期配向にリフレッシュ(初期化工程)をおこなったものである。なお、実施形態2の変形例に係る図のその他の参照番号は、百の位に1を付して「′」を付した以外は、実施形態1に係る図に示したものと同様である。
実施形態3
図50は、実施形態3に係る液晶表示パネルの断面模式図である。図51は、実施形態3に係る液晶表示パネルの絵素平面模式図である。図52は、実施形態3に係る液晶表示パネルの絵素等価回路図である。図53は、実施形態3に係る液晶表示パネルの各電極の電位変化を示す図である。
実施形態3におけるモジュールでの駆動法としては、1絵素当たり1つのTFTを駆動させておこなう。
図50~図53では、下側基板の下層電極と電気的に接続される配線は、二点鎖線で示す。下側基板の一対の櫛歯電極の一方と電気的に接続される配線は、一点鎖線で示す。下側基板の一対の櫛歯電極の他方に電気的に接続される配線は、当該櫛歯電極の他方が下側基板の下層電極と電気的に接続されているので、二点鎖線で示す。上側基板の電極と電気的に接続される配線は、点線で表す。下層電極は、Cs電極を兼ねており、偶数ライン・奇数ラインごとに共通接続されている。また、実施形態3においては、対向基板側の対向電極も、偶数ライン・奇数ラインごとに共通接続されている。
N行目の絵素においては、下層電極に印加される電圧は、明表示時には0Vであり、その後暗表示(黒表示)では15Vとなる。また、N+1行目の絵素においては、下層電極に印加される電圧は、明表示時には15Vであり、その後暗表示(黒表示)では0Vとなる。また、N行目の絵素においては、対向基板側の対向電極に印加される電圧は、明表示時には0Vであり、その後暗表示(黒表示)でも維持されるが、初期化工程では15Vと電位変化が反転する。また、N+1行目の絵素においては、対向基板側の対向電極に印加される電圧は、明表示時には15Vであり、その後暗表示(黒表示)でも維持されるが、初期化工程では0Vと電位変化が反転する。なお、N行目が偶数ラインであり、N+1行目が奇数ラインであってもよく、N行目が奇数ラインであり、N+1行目が偶数ラインであってもよい。実施形態3では、偶数ライン・奇数ラインごとに共通接続された下層電極及び対向基板側の対向電極に印加して電位変化を反転される。
図54は、実施形態3に係る液晶表示パネルの横電界発生時におけるN行目の各電極を示す断面模式図である。図55は、実施形態3に係る液晶表示パネルの縦電界発生時におけるN行目の各電極を示す断面模式図である。図56は、実施形態3に係る液晶表示パネルの縦電界発生後の初期化工程におけるN行目の各電極を示す断面模式図である。図57は、実施形態3に係る液晶表示パネルの横電界発生時におけるN+1行目の各電極を示す断面模式図である。図58は、実施形態3に係る液晶表示パネルの縦電界発生時におけるN+1行目の各電極を示す断面模式図である。図59は、実施形態3に係る液晶表示パネルの縦電界発生後の初期化工程におけるN+1行目の各電極を示す断面模式図である。
図54及び図57は、一対の櫛歯電極間の横電界で液晶駆動している。図55及び図58は、TFTを偶数ライン・奇数ラインごとにオンにして、櫛歯電極と下層電極とをともに15V又は0Vとするとともに、対向基板側の対向電極を0V又は15Vとして縦電界を印加している。図56及び図59は、TFTをオフして一対の櫛歯電極の一方をフローティングさせるか、又は、TFTを偶数ライン・奇数ラインごとにオンして一対の櫛歯電極の一方を15又は0Vとして、対向基板の対向電極を15V又は0V、下層電極を15V又は0Vで初期配向にリフレッシュ(初期化工程)をおこなったものである。なお、実施形態3に係る図のその他の参照番号は、百の位に2を付した以外は、実施形態1に係る図に示したものと同様である。実施形態1~3の液晶表示パネルは、製造が容易で、高速応答化・高透過率化が達成可能なものである。
上述したTFT駆動方法は、液晶を変化させて初期状態に戻すまでの駆動周期であるサブフレームを含んで駆動する方法であり、サブフレームの周期中に、一対の櫛歯電極の電極間に電位差を生じさせる駆動操作、対向電極間に一対の櫛歯電極の電極間よりも高い電位差を生じさせる駆動操作、並びに、一対の櫛歯電極及び一対の対向電極の全電極間に実質的に電位差を生じさせない駆動操作を実行することを含む。上述した実施形態では、対向電極間に一対の櫛歯電極の電極間よりも高い電位差を生じさせる駆動操作の後に、一対の櫛歯電極及び一対の対向電極の全電極間に実質的に電位差を生じさせない駆動操作を実行しており、これにより上述した本発明の効果を発揮できると共に、液晶分子の配向を好適に制御して黒表示時の透過率を充分に低いものとすることができる。
図60は、本発明の液晶表示パネルの駆動形態を示す平面模式図である。図60は、液晶表示パネルにおいて白表示が書き込まれていく様子を示している。ソース側は、白書き込みは、縦ライン反転のように印加する。黒書き込みは、反転しない。図60では、ゲートバスライン側をスキャンしている(+35Vと-5Vとの2値)。また、下層電極もスキャンしている(7.5V、15V、0Vの3値)。図60において、一番上のバスラインに沿った画素では、白(中間調)表示がすでに書き込まれた後であり、白(中間調)表示が維持(表示維持41)されている。下層電極は、7.5Vが維持されている。上から二番目のバスラインに沿った画素42では、ゲートバスラインの電圧が35Vとなっており、白(中間調)表示が書き込まれている。下層電極もスキャンされ、7.5Vとなっている。上から三番目のバスラインに沿った画素43では、黒が書き込まれて保持されている。下層電極は、15Vとなっている。上から四番目のバスラインに沿って画素43′でも、黒が書き込まれて保持されている。下層電極は、0Vとなっている。なお、対向電極23は、常に7.5Vである。
図61は、本発明の液晶表示パネルの駆動形態を示す平面模式図である。図62は、本発明の液晶表示パネルの駆動形態を示す平面模式図である。図63は、本発明の液晶表示パネルの駆動形態を示す平面模式図である。図64は、比較例1に係る液晶表示パネルのフリンジ電界発生時における断面模式図である。図65は、図64に示した液晶表示パネルの平面模式図である。図66は、図64に示した液晶表示パネルについてのシミュレーション結果である。
図61は、図60で示した表示書き込みされる表示パネルの全体を概念的に示している。表示維持41では、表示書き込みによりデータ信号が印加され、これが保持されている。表示書き込み42では、ゲートバスラインに35Vが印加され、下層電極に7.5Vが印加されて、データ信号が印加されている。また、黒維持43では、まだ表示書き込みがおこなわれていない。
図62及び図63は、黒書き込みされる表示パネルの全体を概念的に示している。図62では、スキャニングすることなく、一括で黒を書き込んでいる。これにより、書き込みの速度はより速くなる。図63では、表示書き込みと同様に、順次、スキャニングをおこない、黒を書き込んでいる。下層電極には、15V又は0Vの入力を、ライン交互でおこなってもよく、フレーム交互でおこなってもよい。
上述した各実施形態では、液晶表示ディスプレイの製造が容易で、高透過率化が達成可能である。また、フィールドシーケンシャル方式が実施可能であり、また、車載用途、3D表示装置用途に好適である応答速度を実現できる。中でも、液晶駆動装置は、フィールドシーケンシャル駆動をおこなうものであり、かつ円偏光板を備えるものであることが好ましい。フィールドシーケンシャル駆動をおこなうとき、カラーフィルタが無いため、内部反射が大きくなる。カラーフィルタの透過率が通常は1/3で、反射光は2回カラーフィルタを通るので、カラーフィルタがある場合は内部反射が1/10程度になるからである。このため、円偏光板を用いることでこのような内部反射を充分に低減することができる。なお、TFT基板及び対向基板において、SEM(Scanning Electron Microscope:走査型電子顕微鏡)等の顕微鏡観察により、本発明の液晶表示パネル及び液晶表示装置に係る電極構造等を確認することができる。
比較例1
図64は、比較例1に係る液晶表示パネルのフリンジ電界発生時における断面模式図である。図65は、図64に示した液晶表示パネルの平面模式図である。図66は、図64に示した液晶表示パネルについてのシミュレーション結果である。
比較例1に係る液晶表示パネルは、特許文献1と同様に、FFS駆動によりフリンジ電界を発生させるものである。図66は、ダイレクタD、電界、および透過率分布のシミュレーション結果(セル厚5.4μm、スリット間隔2.6μm)を示す。なお、比較例1に係る図64の参照番号は、百の位に3を付した以外は、実施形態1に係る図に示したものと同様である。
なお、図64ではスリット電極を14Vとし、対向する面状電極を7Vとしているが、例えば、スリット電極を5Vとし、対向する面状電極を0Vとするものであってもよい。上述した特許文献1に記載のFFS駆動のディスプレイ(一対の櫛歯電極の代わりにスリット電極を用いたもの)では、下側基板の上層-下層電極間で発生するフリンジ電界で液晶分子を回転させる。この場合スリット電極端近傍の液晶分子しか回転しないため、シミュレーションにおける透過率は低く、3.6%となった。上述した実施形態のように透過率を向上させることができなかった(図66参照)。
比較例2
図67は、比較例2におけるTNモードを用いた櫛歯駆動のシミュレーションによる応答波形を示すグラフである。最初の0.4msの期間は駆動していないため、立上がり期間(横電界印加期間)は、2.4msであり、立下がり期間(縦電界印加期間)は1.6msである。
図68~図70は、比較例2に係る液晶表示パネルについてのシミュレーション結果である。すなわち、図68では、ダイレクタD、電界、及び、透過率分布の、2.6msの時点でのシミュレーション結果を示す。図69では、ダイレクタD、電界、及び、透過率分布の、4.2msの時点でのシミュレーション結果を示す。図70では、ダイレクタD、電界、及び、透過率分布の、5.6msの時点でのシミュレーション結果を示す。なお、図67に示すように、最初の0.4msは駆動していない。実線で示されたグラフは、透過率を示す。また、ダイレクタDは、液晶分子長軸の配向方向を示す。比較例2では、特許文献2に記載の櫛歯電極、及び、TNモードを用いた。LCD MASTER 2Dによるシミュレーションをおこなったところ、比較例2では高速応答化の効果が得られないことを確認した。なお、シミュレーション条件として、セル厚は5.4μmとし、櫛歯間隔は2.6μmとした。2.6msの時点では、図68に示されるように縦電界により液晶分子が垂直に応答する。4.2msの時点では、図69に示されるように横電界により櫛歯電極間の液晶分子は水平になるが、櫛歯電極上の液晶分子は下側基板と上側基板との縦電界により、垂直を向いたままで応答しない。5.6msの時点では、図70に示されるように初期化工程を設けても横電界により配向が乱れたため、初期の配向になかなか戻らない。比較例2の結果から、特許文献2に記載の櫛歯電極、及び、TNモードを用いた場合は、高速応答化の効果が得られないことが分かった。
図73は、本発明に係る液晶表示パネルの画素電極に使用する薄膜トランジスタの一形態を示す平面模式図である。Sは、ソースを示し、Dは、ドレインを示し、Gは、ゲートを示す。
本発明の画素電極に使用する薄膜トランジスタにおける半導体は、酸化物半導体(インジウムガリウム亜鉛複合酸化物〔IGZO〕等)が好ましい。なお、図73は、Si半導体層(Si)を用いた場合を示しているが、半導体層としてSi半導体層の代わりにIGZOを好適に用いることができる。酸化物半導体は、アモルファスシリコンよりも高いキャリア移動度を示す。このため酸化物半導体を使用したトランジスタの面積は、アモルファスシリコンより1画素に占める割合を小さくすることができる。具体的には、40~50%程度の小型化が可能である。
この小型化は、そのまま開口率として寄与するため、1画素あたりの光の透過率を高めることが可能となる。したがって、酸化物半導体TFTを用いることで、本発明の効果である透過率改善効果をより顕著に得ることができる。
高精細化が伴う携帯端末(タブレット、スマートフォン)に関しては、300ppi(pixel per inch)程度が主流であり、これは画素ピッチとして30μm程度であり、上述した本発明の液晶モードに加え、IGZOを使用したTFTによる開口率の向上により、透過率の向上に対して相乗効果が得られる。
例えば、35μmピッチの画素なら、下記表3に示すように、IGZOを採用することへのTFTの面積縮小で、5%の開口率(透過率)が増加できる。なお、下記表3中、L(μm)は、図73に示した長さであり、W(μm)は、図73に示した長さである。面積(μm)は、TFTの面積を言う。開口率は、1画素における開口部の面積の割合を言う。
Figure JPOXMLDOC01-appb-T000003
更に、高精細化に伴い画素数も増加しているため、高速駆動時の高速書き込みが必要となる。ここでも高いキャリア移動度を示す酸化物半導体は高速書き込みに有利に適用することができる。
すなわち、画素の小さい高精細な液晶パネルに関しては、本発明の液晶モードと酸化物半導体TFTを用いることで、従来のアモルファスTFTで作製された液晶パネルより飛躍的に性能を向上できる。
上述した実施形態における各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
なお、本願は、2011年3月18日に出願された日本国特許出願2011-061662号及び2011年6月27日に出願された日本国特許出願2011-142351号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
10、110、110′、210、410、510:アレイ基板
11、21、411、421、511、521:ガラス基板
13、23、113、113′、123、213、223、313、323、413、423、513、523:対向電極
15、415、515:絶縁層
16:一対の櫛歯電極
17、19、117、117′、119、119′、217、219、417、419、517、519:櫛歯電極
20 、120、120′、220、420、520:対向基板
30、130、130′、230、430、530:液晶層
31:液晶(液晶分子)
41、63:表示維持
42:表示書き込み
43、43′、61、61′:黒維持
51、62:黒書き込み
Si:Si半導体層
S:ソース
D:ドレイン
G:ゲート

Claims (10)

  1. 第1基板、第2基板、及び、両基板に挟持された液晶層を備える液晶表示パネルであって、
    該第1基板及び該第2基板は、電極を有し、
    該第2基板の電極は、一対の櫛歯電極、及び、面状電極を含み、
    該液晶表示パネルは、一対の櫛歯電極間又は第1基板と第2基板との間で生じる電界により、液晶層における液晶分子が基板主面に対して水平方向に配向するように構成されたものである
    ことを特徴とする液晶表示パネル。
  2. 前記液晶層は、電圧無印加時に基板主面に対して垂直方向に配向する液晶分子を含む
    ことを特徴とする請求項1に記載の液晶表示パネル。
  3. 前記一対の櫛歯電極は、同一の層に設けられている
    ことを特徴とする請求項1又は2に記載の液晶表示パネル。
  4. 前記一対の櫛歯電極は、閾値電圧以上で異なる電位とすることができる
    ことを特徴とする請求項1~3のいずれかに記載の液晶表示パネル。
  5. 前記液晶表示パネルは、一対の櫛歯電極間又は第1基板と第2基板との間で生じる電界により、液晶層における液晶分子が基板主面に対して垂直方向に配向されるように構成されたものである
    ことを特徴とする請求項1~4のいずれかに記載の液晶表示パネル。
  6. 前記第1基板の電極は、面状電極である
    ことを特徴とする請求項1~5のいずれかに記載の液晶表示パネル。
  7. 前記液晶層は、正の誘電率異方性を有する液晶分子を含む
    ことを特徴とする請求項1~6のいずれかに記載の液晶表示パネル。
  8. 前記液晶層は、負の誘電率異方性を有する液晶分子を含む
    ことを特徴とする請求項1~6のいずれかに記載の液晶表示パネル。
  9. 前記第2基板の面状電極は、画素ラインに沿って電気的に接続されている
    ことを特徴とする請求項1~8のいずれかに記載の液晶表示パネル。
  10. 請求項1~9のいずれかに記載の液晶表示パネルを備えることを特徴とする液晶表示装置。
PCT/JP2012/056173 2011-03-18 2012-03-09 液晶表示パネル及び液晶表示装置 WO2012128085A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280014122.5A CN103460122B (zh) 2011-03-18 2012-03-09 液晶显示面板和液晶显示装置
US14/030,155 US20140016075A1 (en) 2011-03-18 2013-09-18 Liquid crystal display panel and liquid crystal display apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011061662 2011-03-18
JP2011-061662 2011-03-18
JP2011142351 2011-06-27
JP2011-142351 2011-06-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/030,155 Continuation US20140016075A1 (en) 2011-03-18 2013-09-18 Liquid crystal display panel and liquid crystal display apparatus

Publications (1)

Publication Number Publication Date
WO2012128085A1 true WO2012128085A1 (ja) 2012-09-27

Family

ID=46879238

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/056173 WO2012128085A1 (ja) 2011-03-18 2012-03-09 液晶表示パネル及び液晶表示装置
PCT/JP2012/056170 WO2012128084A1 (ja) 2011-03-18 2012-03-09 薄膜トランジスタアレイ基板及び液晶表示装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056170 WO2012128084A1 (ja) 2011-03-18 2012-03-09 薄膜トランジスタアレイ基板及び液晶表示装置

Country Status (4)

Country Link
US (2) US9252282B2 (ja)
JP (1) JP5643422B2 (ja)
CN (2) CN103430087A (ja)
WO (2) WO2012128085A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105026995A (zh) * 2013-03-07 2015-11-04 夏普株式会社 液晶显示装置
WO2016021527A1 (ja) * 2014-08-04 2016-02-11 シャープ株式会社 液晶表示装置

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9165948B2 (en) 2011-10-31 2015-10-20 Sharp Kabushiki Kaisha Thin film transistor array substrate and liquid crystal display device
JP5898307B2 (ja) 2012-05-10 2016-04-06 シャープ株式会社 液晶駆動方法及び液晶表示装置
CN102692770B (zh) * 2012-06-07 2015-02-18 昆山龙腾光电有限公司 液晶显示装置
WO2014065202A1 (ja) * 2012-10-23 2014-05-01 シャープ株式会社 液晶表示装置
WO2014097998A1 (ja) * 2012-12-19 2014-06-26 シャープ株式会社 液晶表示装置
CN103336393B (zh) * 2013-07-02 2015-09-09 京东方科技集团股份有限公司 一种像素结构、阵列基板及显示装置
CN103399439B (zh) * 2013-07-26 2015-11-25 深圳市华星光电技术有限公司 一种阵列基板及液晶显示面板
CN103454817B (zh) * 2013-08-26 2017-08-25 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN103744240A (zh) * 2013-12-27 2014-04-23 深圳市华星光电技术有限公司 阵列基板及用该阵列基板的液晶显示面板
US10031384B2 (en) * 2014-07-28 2018-07-24 Dic Corporation Liquid-crystal display element
JP6070897B2 (ja) 2014-07-29 2017-02-01 Dic株式会社 液晶表示素子
JP6103333B2 (ja) 2014-07-29 2017-03-29 Dic株式会社 液晶表示素子
US10001681B2 (en) * 2014-09-03 2018-06-19 Sharp Kabushiki Kaisha Liquid crystal display device
US10067397B2 (en) * 2014-09-03 2018-09-04 Sharp Kabushiki Kaisha Liquid crystal display device
KR20160087461A (ko) * 2015-01-13 2016-07-22 삼성디스플레이 주식회사 광 변조 장치 및 그 구동 방법
KR20160092582A (ko) * 2015-01-27 2016-08-05 삼성디스플레이 주식회사 액정표시장치 및 이의 구동 방법
CN104808844A (zh) * 2015-04-03 2015-07-29 深超光电(深圳)有限公司 触控显示装置
KR102422555B1 (ko) * 2015-05-08 2022-07-21 삼성디스플레이 주식회사 표시장치
JP6020743B1 (ja) * 2015-05-13 2016-11-02 凸版印刷株式会社 液晶表示装置
US10311804B2 (en) * 2015-05-22 2019-06-04 Sharp Kabushiki Kaisha Liquid crystal display device
JP6548015B2 (ja) * 2015-08-07 2019-07-24 Tianma Japan株式会社 液晶表示装置
KR102416410B1 (ko) * 2015-12-21 2022-07-04 삼성디스플레이 주식회사 액정 표시 장치
CN107479265B (zh) * 2016-06-08 2020-08-14 南京瀚宇彩欣科技有限责任公司 显示面板
US10976625B2 (en) 2016-06-08 2021-04-13 Hannstar Display (Nanjing) Corporation Display panel
CN107632469A (zh) * 2017-10-19 2018-01-26 武汉华星光电半导体显示技术有限公司 显示面板及显示面板的制作方法
US20190130863A1 (en) * 2017-10-27 2019-05-02 A.U. Vista, Inc. Top-alignment vertical alignment fringe in-plane switching (va-fis) liquid crystal display
CN107808652B (zh) * 2017-11-16 2018-09-14 黑龙江天有为电子有限责任公司 车载段码液晶显示屏的抗震动方法
WO2019222465A1 (en) 2018-05-17 2019-11-21 Amerlux Llc Linear optic and led lighting fixture
US11092858B2 (en) * 2018-09-26 2021-08-17 Xianyang Caihong Optoelectronics Technology Co., Ltd Pixel structure and pixel unit
CN110376773B (zh) * 2019-07-22 2022-02-11 昆山龙腾光电股份有限公司 视角可切换液晶显示装置的驱动方法
FR3131015B1 (fr) * 2021-12-17 2024-04-05 Commissariat Energie Atomique Dispositif de modulation de phase à cristal liquide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001209063A (ja) * 1999-09-24 2001-08-03 Sharp Corp 液晶表示装置およびその表示方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002023178A (ja) * 2000-07-04 2002-01-23 Matsushita Electric Ind Co Ltd 液晶表示装置
JP3900859B2 (ja) 2001-06-07 2007-04-04 セイコーエプソン株式会社 液晶装置、投射型表示装置および電子機器
JP4111785B2 (ja) * 2001-09-18 2008-07-02 シャープ株式会社 液晶表示装置
US7995181B2 (en) 2002-08-26 2011-08-09 University Of Central Florida Research Foundation, Inc. High speed and wide viewing angle liquid crystal displays
JP4051001B2 (ja) 2003-05-26 2008-02-20 株式会社日立製作所 液晶表示装置
CN101144954B (zh) * 2007-11-09 2010-06-02 友达光电股份有限公司 液晶显示器面板及液晶显示器
JP2010060857A (ja) * 2008-09-04 2010-03-18 Hitachi Displays Ltd 液晶表示装置
JP4817080B2 (ja) * 2008-10-29 2011-11-16 奇美電子股▲ふん▼有限公司 水平駆動型液晶ディスプレイ装置
CN101840099B (zh) * 2009-03-18 2012-12-26 北京京东方光电科技有限公司 液晶面板及其制造方法
JP5229162B2 (ja) * 2009-09-01 2013-07-03 セイコーエプソン株式会社 映像処理回路、その処理方法、液晶表示装置および電子機器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001209063A (ja) * 1999-09-24 2001-08-03 Sharp Corp 液晶表示装置およびその表示方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105026995A (zh) * 2013-03-07 2015-11-04 夏普株式会社 液晶显示装置
CN105026995B (zh) * 2013-03-07 2017-06-16 夏普株式会社 液晶显示装置
WO2016021527A1 (ja) * 2014-08-04 2016-02-11 シャープ株式会社 液晶表示装置

Also Published As

Publication number Publication date
WO2012128084A1 (ja) 2012-09-27
JPWO2012128084A1 (ja) 2014-07-24
CN103460122A (zh) 2013-12-18
US20140016075A1 (en) 2014-01-16
JP5643422B2 (ja) 2014-12-17
US9252282B2 (en) 2016-02-02
CN103460122B (zh) 2016-10-05
US20140036192A1 (en) 2014-02-06
CN103430087A (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
WO2012128085A1 (ja) 液晶表示パネル及び液晶表示装置
JP5719439B2 (ja) 液晶駆動装置及び液晶表示装置
JP4731206B2 (ja) 液晶表示装置
US10338445B2 (en) Pixel driving structure and liquid crystal display panel
WO2012128061A1 (ja) 液晶駆動方法及び液晶表示装置
JP5654677B2 (ja) 液晶表示パネル及び液晶表示装置
US9430979B2 (en) Liquid crystal display panel, method for driving the same and display device
US8836900B2 (en) Array substrate and liquid crystal display device
JP5764665B2 (ja) 薄膜トランジスタアレイ基板及び液晶表示装置
US11537017B2 (en) Array substrate and display panel
WO2013146635A1 (ja) 液晶駆動方法及び液晶表示装置
US9116568B2 (en) Liquid crystal display device
JP5728587B2 (ja) 液晶駆動方法及び液晶表示装置
WO2013001983A1 (ja) 液晶表示パネル及び液晶表示装置
US9645453B2 (en) Liquid crystal panel having a plurality of first common electrodes and a plurality of first pixel electrodes alternately arranged on a lower substrate, and display device incorporating the same
JP5898307B2 (ja) 液晶駆動方法及び液晶表示装置
US7599036B2 (en) In-plane switching active matrix liquid crystal display apparatus
US20190258123A1 (en) Display panel, display apparatus and driving method thereof
WO2017130293A1 (ja) 液晶表示装置
JP7464625B2 (ja) 表示パネル及び表示装置
WO2013146856A1 (ja) 液晶表示装置及び液晶駆動方法
US9250485B1 (en) Liquid crystal display panel and array substrate thereof wherein a width of bar-shaped gaps in each of a plurality of pixel units increases gradually

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12759939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12759939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP